2004(1)工科高数试卷
04年4月全国自学考试高等数学(工本)统一考试试题及答案
-第 1 页 共 6 页-2004年上半年高等教育自学考试全国统一命题考试高等数学(工本)试题(课程代码 0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f(x)=xx1x 37-+-的定义域是( ) A .⎥⎦⎤ ⎝⎛∞-37,B .⎥⎦⎤⎝⎛-∞37,0)0,(C .)37,0()0,( -∞D .)37,(-∞2.设是,则数列}a {1n 2n1a n n +-=( ) A .单调减而下有界 B .单调减而下无界 C .单调增而下有界 D .单调增而下无界3.极限=---→21x )1x ()1x cos(1lim ( ) A .21- B .0 C .1D .21 4.函数f(x)=⎪⎩⎪⎨⎧=≠-0x ,20x 22x1,在x=0处( )A .左连续B .右连续C .连续D .前三个均不成立5.设函数f(x)在x 0处可导,则极限=--+→h)h x (f )h x (f lim000h ( ) A .)x (f 20' B .)x (f 210'C .)x (f 0'D .06.设函数=''+-=⎰)(,11)(x f xxx 则( ) A .3)x 1(4+B .2)x 1(4+--第 2 页 共 6 页-C .3)x 1(x 2+- D .3)x 1(x 2+7.下列结论正确的是( ) A .函数y=x 2在[)+∞,0上是单调减函数B .x=0是曲线y=x 3的拐点C .直线y=0是曲线y=|x|在点(0,0)处的切线D ..x=0是函数y=x 3的驻点8.不定积分⎰=-dx x311( ) A .C x 31+-- B .C x 31+- C .C x 3123+--D .C x 3132+--9.定积分⎰=+10dx x11( ) A .2+22lnB .2lnC .2-ln 4D .1-ln 210.曲线2y 2x -=和x=|y|所围成的平面图形面积为( ) A .4πB .2π C .πD .23π 11.在下列方程中其图形是圆柱面的方程是( ) A .x 2+y 2-3=0 B .x 2+y 2+z 2-3=0 C .x 2+y 2-z 2-3=0 D .x 2+y 2-z-3=0 12.与平面3x-4y-5z=0平行的平面方程为( ) A .6x-8y+10z-9=0 B .3x+4y-5z-8=0 C .6x-8y-10z-7=0 D .3x-4y+5z-10=0 13.设z=f(x,y)在(x 0,y 0)处的偏导数存在,则=∂∂)y ,x (00xz( )A .x)y ,x (f )y y ,x x (f lim00000x ∆-∆+∆+→∆B .x)y ,x (f )y ,x x (f lim 000x ∆-∆+→∆C .x)y ,x (f )y ,x x (f lim 0x ∆-∆+→∆D .x)y ,x (f )y ,x x (f lim 00000x ∆-∆+→∆14.函数z=(6x-x 2)(4y-y 2)的驻点个数为( )-第 3 页 共 6 页-A .2B .3C .4D .515.设积分区域B 是连结三点(1,1),(4,1),(4,2)的线段所围成的三角形,则⎰⎰=σBd 4( ) A .4B .6C .8D .1216.设G 是由坐标面和平面x+y+z=1所围成的区域,则三重积分⎰⎰⎰Gdv 化为累积分为( ) A .⎰⎰⎰11010dz dy dxB .⎰⎰⎰--yx 101010dz dxdy C .⎰⎰⎰---yx 10x 101dz dydxD .⎰⎰⎰---xy 10z 1010dz dxdy17.微分方程是x sin xydx dy =+( ) A .可分离变量的微分方程 B .齐次微分方程 C .一阶线性齐次微分方程 D .一阶线性非齐次微分方程 18.下列函数中,是微分方程0y 3y =-'的通解的是( ) A .y=e -3x+CB .y=Ce 3xC .y=Ce -3xD .y=Ce x+319.设a 是非零常数,则当|q|<1时,级数∑∞=-0n n naq )1(收敛于( ) A .q 11- B .q 11+ C .q1a +D .q1a - 20.幂级数∑∞=-1n nn )1x (的收敛区间是( )A .(-1,1)B .[)2,0C .[)1,1-D .(0,2)二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2004年高考数学试题(福建理)及答案
2004年普通高等学校招生福建卷理工类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数10)11(ii +-的值是( ) A .-1 B .1 C .-32 D .32 2.tan15°+cot15°的值是( )A .2B .2+3C .4D .3343.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是 ( )A .3332 B .32C .22D .235.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β.其中真命题的个数是 ( ) A .0 B .1 C .2 D .36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 ( )A .2426C A B .242621C A C .2426A AD .262A7.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是 ( )A .6πB .3πC .32πD .65π9.若(1-2x )9展开式的第3项为288,则)111(lim 2n n xx x +++∞→ 的值是 ( )A .2B .1C .21D .5210.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63 C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( )A .f (sin6π)<f (cos 6π) B .f (sin1)>f (cos1) C .f (cos 32π)<f (sin 32π) D .f (cos2)>f (sin2) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( ) A .(27-2)a 万元 B .5a 万元C .(27+1) a 万元D .(23+3) a 万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 .14.设函数⎪⎩⎪⎨⎧-+=ax x x f 11)()0()0(=≠x x 在x =0处连续,则实数a 的值为 . 15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起, 做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为 时,其容积最大. 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数f(x)=a ·b ,其中向量a=(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ;(Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 19.(本小题满分12分)在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC , SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 20.(本小题满分12分)某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润? 21.(本小题满分14分) 已知f(x)=222+-x ax (x ∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.22.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q. (Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST 的取值范围.2004年普通高等学校招生福建卷理工类数学试题参考答案一、1.A 2.C 3.D 4.A 5.B 6.C 7.C 8.B 9.A 10.D 11.D 12.B二、13.45 14.1/2 15.1,3 16.2/3 三、17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x -m)+n 的图象,即函数y=f(x)的图象. 由(Ⅰ)得 f(x)=2sin2(x +12π)+1. ∵|m|<2π,∴m=-12π,n=1.18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544. 19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取AC 中点D ,连结SD 、DB. ∵SA=SC ,AB=BC , ∴AC ⊥SD 且AC ⊥BD ,∴AC ⊥平面SDB ,又SB ⊂平面SDB , ∴AC ⊥SB.(Ⅱ)∵AC ⊥平面SDB ,AC ⊂平面ABC , ∴平面SDB ⊥平面ABC.过N 作NE ⊥BD 于E ,NE ⊥平面ABC , 过E 作EF ⊥CM 于F ,连结NF , 则NF ⊥CM.∴∠NFE 为二面角N -CM -B 的平面角.∵平面SAC ⊥平面ABC ,SD ⊥AC ,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC ,∴NE ∥SD.∵SN=NB ,∴NE=21SD=2122AD SA -=21412-=2,且ED=EB.在正△ABC 中,由平几知识可求得EF=41MB=21, 在Rt △NEF 中,tan ∠NFE=EFEN=22, ∴二面角N —CM —B 的大小是arctan22.(Ⅲ)在Rt △NEF 中,NF=22EN EF +=23, ∴S △CMN =21CM ·NF=233,S △CMB =21BM ·CM=23. 设点B 到平面CMN 的距离为h , ∵V B-CMN =V N-CMB ,NE ⊥平面CMB ,∴31S △CMN ·h=31S △CMB ·NE ,∴h=CMNCMB S NE S ⋅=324.即点B 到平面CMN 的距离为324.解法二:(Ⅰ)取AC 中点O ,连结OS 、OB.∵SA=SC ,AB=BC , ∴AC ⊥SO 且AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面 ABC=AC ∴SO ⊥面ABC ,∴SO ⊥BO.如图所示建立空间直角坐标系O -x yz.则A (2,0,0),B (0,23,0),C (-2,0,0), S (0,0,22),M(1,3,0),N(0,3,2). ∴=(-4,0,0),=(0,23,22), ∵·=(-4,0,0)·(0,23,22)=0, ∴AC ⊥SB.(Ⅱ)由(Ⅰ)得=(3,3,0),=(-1,0,2).设n=(x ,y ,z )为平面CMN 的一个法向量,·n=3x +3y=0,z=1,则x =2,y=-6,·n=-x +2z=0,6,1),0,22)为平面ABC 的一个法向量, ∴cos(n ,OS ||||OS n ⋅=31.∴二面角N -CM -B 的大小为arccos 31. (Ⅲ)由(Ⅰ)(Ⅱ)得MB =(-1,3,0),n=(2,-6,1)为平面CMN 的一个法向量,∴点B 到平面CMN 的距离d=|||·|n n =324.20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 2500-100. (Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2)=10n 2+10n -n 2500-100=10[n(n+1) - n 250-10].因为函数y=x (x +1) - n 250-10在(0,+∞)上为增函数,当1≤n ≤3时,n(n+1) - n 250-10≤12-850-10<0;当n ≥4时,n(n+1) - n 250-10≥20-1650-10>0.∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.21.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设ϕ(x )=x 2-ax -2, 方法一: ① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ⇔-1≤a ≤1,∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. 方法二:①⇔⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1 或 -1≤a ≤0 ⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}. (Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a .∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立, 即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ② 设g(t)=m 2+tm -2=mt+(m 2-2), 方法一:② ⇔ g(-1)=m 2-m -2≥0,g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}. 方法二:当m=0时,②显然不成立; 当m ≠0时,②⇔ m>0,g(-1)=m 2-m -2≥0 或 m<0,g(1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.22. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x .∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点 ∴ x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1) 消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x ,将上式代入②并整理,得 y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l :y=k x +b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'.由 y=21x 2, y=kx+b 消去x ,得y 2-2(k 2+b)y+b 2=0. ③ 则y 1+y 2=2(k 2+b),y 1y 2=b 2.方法一: ∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b=2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +.当b>0时,||||||||SQ ST SP ST +=b 22)(2bb k +=b b k )(22+=b k 22+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2b b k +=b b k -+)(22.又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>bb b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞).方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x by -.则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +=1|21|21x x -+1|21|21x x -=||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞).2 2。
2004年高考数学(浙江卷理工类)
2004年普通高等学校招生全国统一考试数 学(浙江卷)(理工类)第Ⅰ卷 (选择题 共60分)一、选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则 =⋃)(N M ( )(A) {1,2,3}(B) {2}(C) {1,3,4}(D) {4}(2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为( )(A) )23,21(-(B) ()21,23--(C) ()23,21--(D) ()21,23-(3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( )(A) –4(B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是( )(A) x y 482-= (B) 842-=x y (C) x y 4162-=(D) 1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为( )(A) 1(B) –1(C) 3(D) –3(6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t= ( )(A)43(B)34(C) --34(D) --43(7) 若n xx )2(3+展开式中存在常数项,则n 的值可以是()(A) 8(B) 9(C) 10 (D) 12 (8)在ΔABC 中,“A>30º”是“sinA >21”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为 ( )(A)1716(B )17174 (C )54(D )552 (10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α= ( )(A)3π(B)4π(C)410arcsin(D)46arcsin(11)设)(x f '是函数)(x f 的导函数,)(x f y '= 的图象如图所示,则)(x f y =的图象最有可能 的是( )(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可能...是 (A )512-+x x (B )512++x x(C )512-x(D )512+x 第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在题中横线上. (13)已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 .(14)已知平面上三点A 、B 、C 满足,5,4,3CA 则AB· BC+BC ·CA+CA·AB 的值等于 .(15)设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有 种(用数字作答). (16)已知平面α和平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .三、 解答题:本大题共6小题,满分74分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分) 在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A . (Ⅰ)求A CB 2cos 2sin2++的值; (Ⅱ)若3=a ,求bc 的最大值.(18)(本题满分12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后...第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.(Ⅰ)求随机变量ξ的分布列;(Ⅱ)求随机变量ξ的期望ξE.(19)(本题满分12分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M 是线段EF的中点.(Ⅰ)求证AM∥平面BDE;(Ⅱ)求二面角A—DF—B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60o.(20)(本题满分12分)设曲线x e y x(-=≥0)在点M (t,e --t )处的切线l 与x 轴y 轴所围成的三角形面积为S (t ). (Ⅰ)求切线l 的方程;(Ⅱ)求S (t )的最大值.(21)(本题满分12分)已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q 在双曲线的右支上,点M (m,0)到直线AP 的距离为1.(Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围; (Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.(22)(本题满分14分)如图,ΔOBC 的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.2004年普通高等学校招生全国统一考试数 学(浙江卷)参考答案一.选择题: 本大题共12小题,每小题5分,共60分.1. D2.A3.B4.C5.A6.A7.C8.B9.D 10.D 11.C 12.B 二.填空题:本大题共4小题,每小题4分,满分16分.13. ]23,(-∞ 14. --25 15. 5 16. 5三.解答题:本大题共6小题,满分74分. 17. (本题满分12分)解: (Ⅰ)A CB 2cos 2sin2++ =)1cos 2()]cos(1[212-++-A C B=)1cos 2()cos 1(212-++A A=)192()311(21-++= 91-(Ⅱ) ∵31cos 2222==-+A bc a c b ∴2222232a bc a cb bc -≥-+=, 又∵3=a∴.49≤bc 当且仅当 b=c=23时,bc=49,故bc 的最大值是49. (18) (满分12分)解: (Ⅰ)由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下ξ2 3 4 6 7 10 P0.090.240.160.180.240.09随机变量ξ的数学期望ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.(19) (满分12分)方法一解: (Ⅰ)记AC 与BD 的交点为O,连接OE,∵O 、M 分别是AC 、EF 的中点,ACEF 是矩形, ∴四边形AOEM 是平行四边形, ∴AM ∥OE.∵⊂OE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDE.(Ⅱ)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS , ∵AB ⊥AF , AB ⊥AD , ,A AF AD =I ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影, 由三垂线定理得BS ⊥DF.∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(Ⅲ)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AF AB =I , ∴PQ ⊥平面ABF ,⊂QF 平面ABF , ∴PQ ⊥QF.在RtΔPQF 中,∠FPQ=60º, PF=2PQ.∵ΔPAQ 为等腰直角三角形, ∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF , ∴).2(2221)2(2t t -⋅=+- 所以t=1或t=3(舍去)即点P 是AC 的中点.方法二(Ⅰ)建立如图所示的空间直角坐标系.设N BD AC =I ,连接NE ,则点N 、E 的坐标分别是()0,22,22、(0,0,1), ∴NE=()1,22,22--, 又点A 、M 的坐标分别是(0,2,2)、()1,22,22 ∴ AM=()1,22,22--∴且NE 与AM 不共线,∴NE ∥AM.又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDF.(Ⅱ)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD =I∴AB ⊥平面ADF .∴)0,0,2(-=AB 为平面DAF 的法向量.∵NE·DB=()1,22,22--·)0,2,2(-=0, ∴NE·DF=()1,22,22--·)0,2,2(=0得 NE ⊥,⊥,∴为平面BDF 的法向量.∴cos<AB,NE>=21 ∴AB 与NE 的夹角是60º.即所求二面角A —DF —B 的大小是60º.(Ⅲ)设P(t,t,0)(0≤t≤2)得),1,2,2(t t PF --=∴CD=(2,0,0)又∵PF 和CD 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去), 即点P 是AC 的中点.(20)(满分12分)解:(Ⅰ)因为,)()(x x e ex f ---='=' 所以切线l 的斜率为,t e --故切线l 的方程为).(t x e ey t t --=---即0)1(=+-+--t e y x e t t .(Ⅱ)令y=0得x=t+1,又令x=0得)1(+=-t e y t 所以S (t )=)1()1(21+⋅+-t e t t =t e t -+2)1(21 从而).1)(1(21)(t t e t S t +-='- ∵当∈t (0,1)时,)(t S '>0,当∈t (1,+∞)时,)(t S '<0,所以S(t)的最大值为S(1)=e 2(21) (满分12分)解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y即.0=--k y kx因为点M 到直线AP 的距离为1, ∵,112=+-k k mk 即221111k k k m +=+=-. ∵],3,33[∈k ∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332. ∴m 的取值范围是].3,3321[]3321,1[+--Y (Ⅱ)可设双曲线方程为),0(1222≠=-b by x 由),0,1(),0,12(A M + 得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ的角平分线,且M 到AQ 、PQ 的距离均为1.因此,1,1-==AQ AP k k (不妨设P 在第一象限)直线PQ 方程为22+=x .直线AP 的方程y=x-1, ∴解得P 的坐标是(2+2,1+2),将P 点坐标代入1222=-b y x 得,32122++=b 所以所求双曲线方程为,112)32(22=++-y x即.1)122(22=--y x (22)(满分14分)解:(Ⅰ)因为43,21,153421=====y y y y y , 所以2321===a a a ,又由题意可知213+++=n n n y y y ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列. ∴.,21*∈==N n a a n (Ⅱ)将等式22121=++++n n n y y y 两边除以2,得 ,124121=++++n n n y y y 又∵2214++++=n n n y y y ∴.414n n y y -=+ (Ⅲ)∵)41()41(44444841n n n n n y y y y b ---=-=+++-)(41444n n y y --=+ ,41n b -= 又∵,041431≠-=-=y y b ∴{}n b 是首项和公比都为41-的等比数列.。
2004考研数一真题及答案解析
令 Y
1 n
n i 1
Xi
,
则
(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)
设
e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0
又
lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1
2004年普通高等学校招生全国统一考试
2004年普通高等学校招生全国统一考试数学(理工类)(上海卷)一、填空题(本大题满分48分,每小题4分) (1)若tgα=21,则tg(α+4π)= . (2)设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 . (3)设集合A={5,log 2(a +3)},集合B={a ,b}.若A∩B={2},则A ∪B= . (4)设等比数列{a n }(n ∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .(5)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等式f(x)<0的解是 .(6)已知点A(1, -2),若向量与a ={2,3}同向,=213,则点B 的坐标为 .(7)在极坐标系中,点M(4,3π)到直线l :ρ(2cosθ+sinθ)=4的距离d= . (8)圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .(9)若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)(10)若函数f(x)=a 2+-b x 在[0,+∞]上为增函数,则实数a 、b 的取值范围是 .(11)教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是.(12)若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和.二、选择题(本大题满分16分,每小题4分)(13)在下列关于直线l 、m 与平面α、β的命题中,真命题是(A )若l ⊂β且α⊥β,则l ⊥α. (B )若l ⊥β且α∥β,则l ⊥α.(C )若l ⊥β且α⊥β,则l ∥α.(D )若α∩β=m 且l ∥m,则l ∥α. (14)三角方程2sin(2π-x )=1的解集为(A ){x │x =2kπ+3π,k ∈Z}.(B ){x │x =2kπ+35π,k ∈Z}.(C ){x │x =2kπ±3π,k ∈Z}.(D ){x │x =kπ+(-1)K ,k ∈Z}.(15)若函数y=f(x)的图象可由函数y=lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f(x)=(A )10-x -1.(B )10x -1. (C )1-10-x .(D )1-10x .(16)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是(A )计算机行业好于化工行业. (B )建筑行业好于物流行业.(C )机械行业最紧张.(D )营销行业比贸易行业紧张.三、解答题(本大题满分86分) (17)(本题满分12分)已知复数z 1满足(1+i )z 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,a ∈R, 若21z z -<1z ,求a 的取值范围.(18)(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?记函数f(x)=132++-x x 的定义域为A, g(x )=lg[(x -a -1)(2a -x )](a <1) 的定义域为B. (Ⅰ)求A ;(Ⅱ)若B ⊆A, 求实数a 的取值范围.已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).(Ⅰ)求函数f(x)的表达式;(Ⅱ)证明:当a>3时,关于x的方程f(x)= fA有三个实数解.如图,P —ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF ∥底面ABC, 且棱台DEF —ABC 与棱锥P —ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(Ⅰ)证明:P —ABC 为正四面体; (Ⅱ)若PD=21PA, 求二面角D —BC —A 的大小;(结果用反三角函数值表示) (Ⅲ)设棱台DEF —ABC 的体积为V , 是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF —ABC 有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n ∈N) 是二次曲线C 上的点, 且a 1=1OP 2, a 2=2OP 2, …, a n =n OP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n .(Ⅰ)C 的方程为2510022y x +=1,n=3. 点P 1(3,0) 及S 3=255, 求点P 3的坐标; (只需写出一个)(Ⅱ)若C 的方程为12222=+by a x (a >b>0). 点P 1(a ,0), 对于给定的自然数n, 当公差d变化时, 求S n 的最小值;(Ⅲ)请选定一条除椭圆外的二次曲线C 及C 上的一点P 1,对于给定的自然数n,写出符合条件的点P 1, P 2,…P n 存在的充要条件,并说明理由.2004年普通高等学校招生全国统一考试 数学参考答案(理工类)(上海卷)一、填空题(本大题满分48分,每小题4分)(1)3 (2)(5,0) (3){1,2,5} (4)2 (5)(-2,0)∪(2,5] (6)(5,4) (7)5152 (8)(x -2)2+(y+3)2=5 (9)114(10)a >0且b≤0 (11)用代数的方法研究图形的几何性质 (12)①、④二、选择题(本大题满分16分,每小题4分)(13)B (14)C (15)A (16)B 三、解答题(本大题满分86分) (17)【解】由题意得 z 1=ii++-151=2+3i , 于是21z z -=i a 24+-=4)4(2+-a ,1z =13.4)4(2+-a <13,得a 2-8a+7<0,1<a<7.(18)【解】由题意得 x y+41x 2=8,∴y=x x 482-=48x x -(0<x <42). 于定, 框架用料长度为 l=2x +2y+2(x 22)=(23+2)x +x 16≥4246+.当(23+2)x=x16,即x=8-42时等号成立. 此时, x≈2.343,y=22≈2.828.故当x 为2.343m,y 为2.828m 时, 用料最省. (19)【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x <-1或x ≥1 即A=(-∞,-1)∪[1,+ ∞](2) 由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a)<0.∵a <1,∴a +1>2a , ∴B=(2a ,a +1). ∵B ⊆A, ∴2a ≥1或a +1≤-1, 即a ≥21或a ≤-2, 而a <1, ∴21≤a <1或a ≤-2, 故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1) (20)【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a =1, ∴f 1(x)= x 2. 设f 2(x)=xk(k>0),它的图象与直线y=x 的交点分别为A(k ,k )B(-k ,-k )由AB =8,得k=8,. ∴f 2(x )=x 8.故f(x)=x 2+x8. (2) 【证法一】f(x)=fA ,得x 2+x 8=a 2+a8,即x 8=-x 2+a 2+a8.在同一坐标系内作出f 2(x)=x8和f 3(x)= -x 2+a 2+a8的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+a8)为顶点,开口向下的抛物线.因此, f 2(x)与f 3(x)的图象在第三象限有一个交点, 即f(x)=fA 有一个负数解. 又∵f 2(2)=4, f 3(2)= -4+a 2+a8 当a >3时,. f 3(2)-f 2(2)= a 2+a8-8>0, ∴当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x)图象的上方. ∴f 2(x )与f 3(x)的图象在第一象限有两个交点,即f(x)=fA 有两个正数解. 因此,方程f(x)=fA 有三个实数解. 【证法二】由f(x)=fA ,得x 2+x 8=a 2+a8, 即(x -a )(x+a -ax8)=0,得方程的一个解x 1=a. 方程x+a -ax8=0化为ax 2+a 2x -8=0, 由a >3,△=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,∵x 2<0, x 3>0, ∴x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aaa a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾, ∴x 1≠ x 3. 故原方程f(x)=fA 有三个实数解.(21)【证明】(1) ∵棱台DEF —ABC 与棱锥P —ABC 的棱长和相等, ∴DE+EF+FD=PD+OE+PF. 又∵截面DEF ∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P —ABC 是正四面体. 【解】(2)取BC 的中点M,连拉PM,DM.AM. ∵BC ⊥PM,BC ⊥AM, ∴BC ⊥平面PAM,BC ⊥DM, 则∠DMA 为二面角D —BC —A 的平面角. 由(1)知,P —ABC 的各棱长均为1, ∴PM=AM=23,由D 是PA 的中点,得 sin ∠DMA=33=AM AD ,∴∠DMA=arcsin 33. (3)存在满足条件的直平行六面体.棱台DEF —ABC 的棱长和为定值6,体积为V.设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sinα=V .∵正四面体P —ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V) 故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求. (22)【解】(1) a 1=1OP 2=100,由S 3=23(a 1+a 3)=255,得a 3=3OP 3=70.由 2510022y x +=1 ,得x 23=60 X 23+y 23=70y 23=10∴点P 3的坐标可以为(215, 10).(2)【解法一】原点O 到二次曲线C:12222=+by a x (a>b>0)上各点的最小距离为b,最大距离为a . ∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP 2=a 2+(n -1)d≥b 2,∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0∴S n =n a 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为n a 2+2)1(-n n ·122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由 x 2k +y 2k =a 2+(k -1)d,解得y2k =222)1(b a dk b ---22a x k +22b y k =1∵0< y 2k ≤b 2,得122--k ab ≤d<0 ∴122--n a b ≤d<0 以下与解法一相同.(3)解法一】若双曲线C:22a x -22b y =1,点P 1(a ,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0. ∵原点O 到双曲线C 上各点的距离h ∈[a ,+∞),且1OP =a 2,∴点P 1, P 2,…P n 存在当且仅当n OP 2>1OP 2,即d>0.【解法二】若抛物线C:y 2=2x ,点P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.理由同上【解法三】若圆C:(x -a )+y 2=a 2(a ≠0), P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是0<d≤142-n a .∵原点O 到圆C 上各点的最小距离为0,最大距离为2a ,且1OP =0, ∴d>0且n OP 2=(n -1)d≤4a 2.即0<d≤142 n a .。
2004年普通高等学校招生全国统一考试湖南卷理科数学试题及答案
2004年普通高等学校招生湖南卷理工农医类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题 共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求的. 1.复数4)11(i+的值是 ( )A .i 4B .-i 4C .4D .-42.如果双曲线1121322=-y x 上一点P 到右焦点的距离等于13,那么点P 到右准线的距离 是( )A .513B .13C .5D .135 3.设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为( )A .1B .2C .3D .3log 24.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .90°B .60°C .45°D .30°5.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法6.设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( ) A .1 B .2C .3D .4 7.设,0,0>>b a 则以下不等式中不恒成立....的是( )A .4)11)((≥++ba b a B .2332ab b a ≥+C .b a b a 22222+≥++D .b a b a -≥-||8.数列{}=+++∈=+=→++)(lim *,,56,51,21111n n x n n n n a a a N n a a a a 则中( )A .52 B .72 C .41 D .254 9.设集合}0|),{(},02|),{(},,|),{(≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x U ,那么点P (2,3)⋂∈A (U C B )的充要条件是( )A .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m10.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( )A .56B .52C .48D .4011.农民收入由工资性收入和其它收入两部分构成2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元2008年该地区农民人均收入介于( )A .4200元~4400元B .4400元~4600元C .4600元~4800元D .4800元~5000元12.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,,0)()()()(>'+'x g x f x g x f且,0)3(=-g 则不等式0)()(<x g x f 的解集是 ( )A .),3()0,3(+∞⋃-B .)3,0()0,3(⋃-C .),3()3,(+∞⋃--∞D .)3,0()3,(⋃--∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题 共4小题,每小题4分,共16分,把答案填在题中横线上13.已知向量a =)sin ,(cos θθ,向量b =)1,3(-,则|2a -b |的最大值是 . 14.同时抛物线两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则E ξ= . 15.若n xx x )1(3+的展开式中的常数项为84,则n= .16.设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为 . 三、解答题:本大题 共6小题,共74分. 解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知1cot tan sin 2),2,4(,41)24sin()24sin(2--+∈=-⋅+αααππααπαπ求的值. 18.(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 19.(本小题满分12分) 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ;(II )求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 20.(本小题满分12分)已知函数e a e x x f ax,0,)(2≤=其中为自然对数的底数. (Ⅰ)讨论函数)(x f 的单调性;(Ⅱ)求函数)(x f 在区间[0,1]上的最大值. 21.(本小题满分12分)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A ,B 两点,点Q 是点P 关于原点的对称点.(I )设点P 分有向线段AB 所成的比为λ,证明:)(QB QA QP λ-⊥;(II )设直线AB 的方程是x -2y+12=0,过A 、B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程. 22.(本小题满分14分)如图,直线2121:)21,0(1:21+=±≠≠-+=x y l k k k kx y l 与相交于点P.直线l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…,这样一直作下去,可得到一系列点P 1、Q 1、P 2、Q 2,…,点P n (n=1,2,…)的横坐标构成数列{}.n x(Ⅰ)证明*),1(2111N n x kx n n ∈-=-+; (Ⅱ)求数列{}n x 的通项公式;(Ⅲ)比较5||4||22122+PP k PP n 与的大小.2004年普通高等学校招生湖南卷理工农医类数学试题参考答案A13.4 14. 15.9 16.]101,0()0,101[⋃- 17.解:由)24cos()24sin()24sin()24sin(απαπαπαπ+⋅+=-⋅+得 .214cos =α 又.125),2,4(παππα=∈所以 于是 ααααααααααα2sin 2cos 22cos cos sin cos sin 2cos 1cot tan sin 2222-+-=-+-=--+18.解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P C B P B A P 即 由①、③得)(891)(C P B P -= 代入②得 27[P(C)]2-51P(C)+22=0. 解得 91132)(或=C P (舍去). 将 32)(=C P 分别代入 ③、② 可得 .41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则 .653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.6519.(Ⅰ)证明 因为底面ABCD 是菱形,∠ABC=60°, 所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,所以PA ⊥平面ABCD. (Ⅱ)解 作EG//PA 交AD 于G , 由PA ⊥平面ABCD.知EG ⊥平面ABCD.作GH ⊥AC 于H ,连结EH , 则EH ⊥AC ,∠EHG 即为二面角θ的平面角.又PE : ED=2 : 1,所以.3360sin ,32,31a AG GH a AG a EG =︒=== 从而 ,33tan ==GH EG θ .30︒=θ (Ⅲ)解法一 以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直平面PAD 的直线为x 轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为 所以 ).0,21,23(),31,32,0(a a AC a a AE == 设点F 是棱PC 上的点,,10),,21,23(<<-==λλλλλ其中a a a PC PF 则 )).1(),1(21),1(23(λλλ-+-=a a a 令 AE AC BF 21λλ+= 得 解得 .23,21,2121=-==λλλ 即 21=λ时,.2321AE AC BF +-=① ② ③B 亦即,F 是PC 的中点时,BF 、AC 、AE 共面.又 BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF//平面AEC. 解法二 当F 是棱PC 的中点时,BF//平面AEC ,证明如下, 证法一 取PE 的中点M ,连结FM ,则FM//CE. ①由 ,21ED PE EM ==知E 是MD 的中点. 连结BM 、BD ,设BD ⋂AC=O ,则O 为BD 的中点.所以 BM//OE. ②由①、②知,平面BFM//平面AEC.又 BF ⊂平面BFM ,所以BF//平面AEC. 证法二因为 )(2121DP CD AD CP BC BF ++=+= 所以 BF 、AE 、AC 共面.又 BF ⊄平面ABC ,从而BF//平面AEC.20.解:(Ⅰ).)2()(axe ax x xf +='(i )当a =0时,令 .0,0)(=='x x f 得若),0()(,0)(,0+∞>'>在从而则x f x f x 上单调递增; 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减.(ii )当a <0时,令.20,0)2(,0)(ax x ax x x f -===+='或故得 若)0,()(,0)(,0-∞<'<在从而则x f x f x 上单调递减;若)2,0()(,0)(,20a x f x f a x ->'-<<在从而则上单调递增; 若,2a x ->),2()(,0)(+∞-<'ax f x f 在从而则上单调递减.(Ⅱ)(i )当a =0时,)(x f 在区间[0,1]上的最大值是.1)1(=f(ii )当02<<-a 时,)(x f 在区间[0,1]上的最大值是ae f =)1(.(iii )当2-≤a 时,)(x f 在区间[0,1]上的最大值是.4)2(22ea a f =-21.解:(Ⅰ)依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程y x 42=得.0442=--m kx x ①设A 、B 两点的坐标分别是 ),(11y x 、122),,(x y x 则、x 2是方程①的两根. 所以 .421m x x -=由点P (0,m )分有向线段AB 所成的比为λ, 得.,012121x xx x -==++λλλ即又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而)2,0(m QP =. 所以 ).(QB QA QP λ-⊥(Ⅱ)由 ⎩⎨⎧==+-,4,01222y x y x 得点A 、B 的坐标分别是(6,9)、(-4,4).由 y x =2得 ,21,412x y x y ='=所以抛物线 y x 42=在点A 处切线的斜率为 36='=x y设圆C 的方程是,)()(222r b y a x =-+-则⎪⎩⎪⎨⎧-++=-+--=--.)4()4()9()6(,3192222b a b a b a b 解之得 .2125)4()4(,223,23222=-++==-=b a r b a所以圆C 的方程是 ,2125)223()23(22=-++y x即 .07223322=+-++y x y x22.(Ⅰ)证明:设点P n 的坐标是),(n n y x ,由已知条件得点Q n 、P n+1的坐标分别是:由P n+1在直线l 1上,得.121211k kx x n n -+=++ 所以 ),1()1(211-=-+n n x k x 即 .*),1(2111N n x kx n n ∈-=-+(Ⅱ)解:由题设知 ,011,1111≠-=--=k x k x 又由(Ⅰ)知 )1(2111-=-+n n x kx ,所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.从而 .*,)21(21,)21(111N n kx k k x nn n n ∈⨯-=⨯-=--即(Ⅲ)解:由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以 ,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n n n n kk k kx x PP (i )当2121,21||>-<>k k k 或即时,5||4212+PP k >1+9=10. 而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP k n n 故所以 (ii )当)21,0()0,21(,21||0⋃-∈<<k k 即时,5||4212+PP k <1+9=10.而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP kn n 故所以。
2004考研数一真题及解析
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年普通高等学校招生全国统一考试数学 (理工农林医 类)
2004年普通高等学校招生全国统一考试数学 (理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至1页,第Ⅱ卷3至10页。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔在答题卡上对应题宗旨答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,惟有一项乃是符合题目要求的。
参阅公式:三角函数的和差化积公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合NM 中元素的个数为( )A .1B .2C .3D .4 2.函数2sin x y =的最小正周期乃是( )A .2πB .πC .π2D .π43.设数列{}n a 乃是等差数列,且6,682=-=a a ,n S 乃是数列{}n a 的前n 项和,则 ( )A .54S S <B .54S S =C .56S S <D .56S S = 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x 5.函数)1(log 221-=x y 的定义域为( )A .[)(]2,11,2 -- B .)2,1()1,2( --C .[)(]2,11,2 --D .)2,1()1,2( --6.设复数z 的辐角的主值为32π,虚部为3,则2z =( )A .i 322--B .i 232--C .i 32+D .i 232+7.设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5B .5 C .25D .45 8.不等式311<+<x 的解集为( )A .()2,0B .())4,2(0,2 -C .()0,4-D .())2,0(2,4 --9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( )A .322 B .2C .32D .324 10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .3311.设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A .(][]10,02, -∞-B .(][]1,02, -∞-C .(][]10,12, -∞-D .[]10,1]0,2[ -12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种第Ⅱ卷步骤.)13.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 .14.函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 .15.已知函数)(x f y =乃是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数乃是)(x g y =,则=-)8(g .16.设P 乃是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解读回答题(6道题,共76分)17.(本小题满分12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值.18.(本小题满分12分)解方程 11214=-+xx.m的矩形蔬菜温室。
2004—数一真题、标准答案及解析
2004年全国硕士研究生入学统一考试数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx上与直线x y 1垂直的切线方程为(2)已知f(e x) xxe ,且f(1)=0,则f(x)=(3)设L为正向圆周x22在第一象限中的部分,则曲线积分L xdy 2ydx的值为(4)欧拉方程x2d2ydx24x d^ 2y 0(x 0)的通解为•dx(5)2 1 设矩阵A 1 2矩阵,则(6)矩阵B满足ABA*2BA E ,其中A为A的伴随矩阵,E是单位设随机变量X服从参数为的指数分布,则P{X DX} =二、选择题(本题共8小题,每小题把所选项前的字母填在题后的括号内)4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,(7)把x 0时的无穷小量X cost2dt,0 '2xtanX 30 si nt dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D)(8)设函数f(x)连续,且f (0)0,则存在0,使得(A) f(x)在(0,)内单调增加.(B) f(x)在( ,0)内单调减少•(C) 对任意的x(0,)有f(x)>f(0).(D) 对任意的x(,0)有f(x)>f(0).(9)设a n为正项级数,下列结论中正确的是n 1(A) 若lim na n=0,则级数na n收敛•n 1(B)若存在非零常数,使得lim na nn ,则级数a n发散•n 1阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?t t(10) 设f(x)为连续函数,F(t) 1 dy y f(x)dx ,则F ⑵等于 (A)2f(2).(B) f(2).(C) -(2).(D) 0.[](11) 设A 是3阶方阵,将 A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C,贝U 满足AQ=C 的可逆矩阵Q 为(A) A 的列向量组线性相关, (B) A 的列向量组线性相关, (C) A 的行向量组线性相关, (D) A 的行向量组线性相关,(A) Cov( X 1,Y)2n(B) Cov(X 1,Y)2.(C)D(X 1 Y)n 2 2 (D)D(X 1Y) n 1nn(15) (本题满分 12分)设ea b e 2 ,证明ln 2 bIn 2a —2(b a)e(16) (本题满分 11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 (C) 若级数2a n 收敛,则lim nn0.(D)若级数a n 发散,则存在非零常数n 1,使得 lim na nn0 1 00 1 00 1 0 0 1 1 (A)1 0 0 . (B)1 0 1 . (C) 1 0 0 .(D)1 0 0 1 0 1 0 0 10 1 10 0 1的任意两个非零矩阵,则必有(12)设A,B 为满足AB=OB 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关 B 的列向量组线性相关1),数u 满足P{X u } ,若P{X x},则x 等于(A) U_.2(B) U .1I(C) u 」. ~2-(D) U 1(14)设随机变量X 1,X 2, 0.令Y 丄 X i ,则n i 1(13)设随机变量 X 服从正态分布 N(0,1),对给定的(0,X n ( n 1)独立同分布,且其方差为飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?1F(x, )1x0, x 1,x 1,注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,数 x n 收敛.n 1(20)(本题满分9分) 设有齐次线性方程组(1 a)X 1X 2X n 0, 2x 1 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,并求出其通解9分)试问a 取何值时,该方程组有非零解, (21)(本题满分33的特征方程有一个二重根,求 a 的值,并讨论5(22)(本题满分9 分)求:(I )二维随机变量(X,Y)的概率分布;(23)(本题满分9分) 设总体X 的分布函数为其中是曲面z 1(z 0)的上侧.(18)(本题满分 11 分)设有方程x nnx 10,其中 n 为正整数.证明此方程存在惟一正实根X n ,并证明当 1时,级(19)(本题满分 12 分)设z=z(x,y)是由x 2 6xy 10y 22yzz 2 18 0确定的函数,求zz(x, y)的极值点和极值.设矩阵A 11A 是否可相似对角化.设A,B 为随机事件,且P(A) 右P(BA) 3‘P (AB)-,令XA发生, 0, A 不发生;Y 1, B 发生,0, B 不发生.(II ) X 和Y 的相关系数 XY -其中未知参数1,X!,X2, ,X n为来自总体X的简单随机样本,求: (I)的矩估计量;(II)的最大似然估计量.3 022004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为 y x 1 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由y (Inx)1,得x=1,可见切点为(1,0),于是所求的切线方程为xy 0 1 (x 1),即 y x 1.1【评注】本题也可先设切点为 (x 0,|n x 0),曲线y=lnx 过此切点的导数为 y— 1,得x 0 1,x x 0x 0由此可知所求切线方程为 y0 1(x1),即yx1.本题比较简单,类似例题在一般教科书上均可找到xx1 2(2) 已知 f (e ) xe ,且 f(1)=0,则 f(x) = (In x).2【分析】 先求出f (X )的表达式,再积分即可.【详解】令e x t ,则x lnt ,于是有ln tr, ln xf (t),即f (x)t x 积分得f(x)In x, 1 2dx (ln x) C .利用初始条件 f(1)=0,得C=0,故所求函数为 f(x)x 2丄仲x)2. 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分223 (3)设L 为正向圆周x y 2在第一象限中的部分,则曲线积分 L xdy 2ydx 的值为 -【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分 2 2【详解】 正向圆周x y2在第一象限中的部分,可表示为x 、 2 cos , 小y -2sin ,:0222si n 2【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参于是Lxdy 2ydx o 2 [一 2 cos 2 cos2 2sin ■- 2 sin ]d9数法化为定积分计算即可【分析】欧拉方程的求解有固定方法,作变量代换x e t 化为常系数线性齐次微分方程即可【详解】令xe t ,则 dy dy dt e 电1 dydx dt dxdt x dtd 2y 1 dy 1 d 2y dt 1[d 2 x 2[dt y dy F dt ]dx 2x 2 dt x dt 2dx 代入原方程,整理得d 2y c dy2y 0,.2 3 - dtdt解此方程,得通解为y tqe c 2e2tC1C22・2x x【评注】 本题属基础题型,也可直接套用公式,令 x e t ,则欧拉方程【详解】 已知等式两边同时右乘 A ,得ABA *A 2BA *A A ,而 A 3,于是有3AB 6B A ,即(3A 6E)B A ,再两边取行列式,有3A 6E||B A 3,1而3A 6E 27,故所求行列式为 B(4)欧拉方程2d 2y x dx 24x2y 0(x 0)的通解为y 纟乌dx x x可化为2 axd 2y dx 2cy f (x),2眷貉哼cy 讪.(5)设矩阵A2 1 01 2 0,矩阵B 满足ABA * 2BA * E ,其中A *为A 的伴随矩阵, 0 0 1E 是单位矩阵,则B【分析】可先用公式A *AA E 进行化简【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵A ,一般均应先利用公式A A AA * AE 进行化简.(6)设随机变量X 服从参数为 的指数分布,则P{X , DX } = 1 .e【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可1【详解】 由题设,知DX 冷,于是一1XP{X DX} = P{X -}ie X dx【评注】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算 二、选择题(本题共8小题,每小题 把所选项前的字母填在题后的括号内)一个的高阶无穷小,则正确的排列次序是4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,(7 )把x0时的无穷小量Xcost 2dt,2xtan 、tdt,0 ':X 30 si nt dt ,使排在后面的是前(A)(B)(C)(D)【分析】 先两两进行比较,再排出次序即可【详解】 lim — x 0 tan 一tdt lim 卫厂 x 0cost 2dt 0limtanx 2x 2cosx0,可排除 (C),(D)选项,【评注】 limx 0limx 0=-lim 4 x 0x3sint dt_0 ___________X 2 tan )t dt3 2sin x 2 ,可见 lim2x tanx是比低阶的无穷小量,故应选 (B).本题是无穷小量的比较问题,也可先将 ,,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) 0,则存在0,使得 (A) f(x)在(0,)内单调增加. (B) f(x)在(,0)内单调减少.(C) 对任意的 x (0,)有 f(x)>f(0)(D)对任意的 x ( ,0)有 f(x)>f(0)【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除 (A),(B)选项,再利用导数的定义及极限的保号性进行分析即可•【详解】 由导数的定义,知f(0) lim f(x) f(0)0,x 0 x根据保号性,知存在 0,当x (,0) (0,)时,有f(x) f(0)x即当 x (,0)时,f(x)<f(0);而当 x (0,)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论 (9) 设 a n 为正项级数,下列结论中正确的是n 12(C)若级数a n 收敛,则limn a “0.nn 1(E)若级数n1a n 发散,则存在非零常数,使得^m na n* "]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项1 2又取a n ----------------- ,则级数a n 收敛,但lim n a “nUnn1 n【评注】 本题也可用比较判别法的极限形式,a1 lim na n lim n0,而级数发散,因此级数a n 也发散,故应选(B).n n1n 1nn 1n【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被积函数中不含有(A)若lim na n =0,则级数na n 收敛.n 1(B )若存在非零常数,使得lim na nn,则级数a n 发散•n 1【详解】 取a n1 nln n,则 lim na n =0,但na nn 111n ln n发散,排除(A),(D);,排除(C),故应选(B).(10) 设f(x)为连续函数,F(t) (A)2f(2). (B) f(2).t t1 dy y f(x)dx ,贝U F (2)等于(C) -(2).(D)0.变量 t.【详解 】 交换积分次序,得t t t x tF(t) 1dy y f(x)dx = 1[1 f(x)dy]dx 1 f(x)(x 1)dx于是,F (t) f(t)(t 1),从而有 F (2)f(2),故应选(B).评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x: b(x)[ a(x) f(t)dt] f [b(x)]b (x) f[a(x)]a(x)a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上 .( 11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为0 1 0 0 1 0 0 1 0 0 1 1 (A)1 0 0. (B)1 0 1. (C) 1 0 0. (D) 10 0 1 0 10 0 11 10 0 1[ D ]分析 】 本题考查初等矩阵的的概念与性质,对 A 作两次初等列变换,相当于右乘两个相应的初等 矩阵, 而 Q 即为此两个初等矩阵的乘积 详解 】由题设,有0 1 01 0 0A 1 0 0B , B 0 1 1C ,0010 0 10 1 0 10 00 1 1 于是,A 1 0 0 0 1 1A 1 0 0 C.0 0 1 0 0 10 0 1可见, 应选 (D). 评注 】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关, (E) A 的列向量组线性相关, (F)A 的行向量组线性相关, (D) A 的行向量组线性相关,【详解1】 设A 为m n 矩阵,B 为n s 矩阵,则由AB=O 知,r(A) r(B) n .又 A,B 为非零矩阵,必有 r(A)>0,r(B)>0. 可见 r(A)<n, r(B)<n, 即 A 的列向量组线性相关, B 的行向量组线 性相关,故应选 (A).【详解 2】 由 AB=O 知, B 的每一列均为 Ax=0 的解,而 B 为非零矩阵,即 Ax=0 存在非零解,可见 A 的列向量组线性相关 .B 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关B 的列向量组线性相关【分析 】A,B 的行列向量组是否线性相关,可从 零解进行分析讨论 .A,B 是否行(或列)满秩或 Ax=0 (Bx=0 )是否有非同理,由AB=O知,B T A T O,于是有B T的列向量组,从而B的行向量组线性相关,故应选(A).【评注】AB=O是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O r(A) r(B) n;2) AB=O B的每列均为Ax=0的解.(13)设随机变量X服从正态分布N(0,1),对给定的(0 1),数u满足P{X u } ,若P{X x} ,则x等于(A) u_2(B) u1 -2(C) u L~2(D) u1(A) Cov(X n Y) (B) Cov(X「Y)Cov(X1, X i) 1Cov(X1,X1) 1 Cov(X1,X i)n i 1 n n i 2【分析】此类问题的求解,可通过u的定义进行分析, 也可通过画出草图, 直观地得到结论【详解】由标准正态分布概率密度函数的对称性知,P{XP{X x} P{X x} P{X x} P{X x} 2P{X x}即有P{X x}1,可见根据定义有x2本题【评注】A,故应选(C).u相当于分位数,直观地有2(14)设随机变量X1,X2, ,X n( n 1)独立同分布,且其方差为nX i,则n i 1(C) D(X1 Y) (D)【分析】本题用n方差和协方差D(X1 Y)-n的运算性质直接计算即可,注意利用独立性有:Cov(X1,X i) 0,i 2,3, n.【详解】Cov( X1,Y)(x) (e 2)= -DX 11 2.n n本题(C),(D)两个选项的方差也可直接计算得到:如2n 3n2 nn 2 2n 22n(15) (本题满分12分)$ (b a). e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明In 2 b In 2 a24In x ,则e【证法1】 对函数2In x 在[a,b ]上应用拉格朗日中值定理,设(t)平,则(t),当t>e 时,0, 所以(t)单调减少,从而2 (e ),即In In e~2e2~~2,e故 In 2 b In 2 a 4(b a).所以当 即当e(x) (x) x>e 时, 2 .x e 时,In x 2 -xJ In x 2 2x(x)0,4_2 , e (x)单调减少,从而当(x)单调增加.e 2时,【评注】 D(X iY) D(^X 1n-X 2 n^X n ) n(1 n)2 n 2n 1 22nD(X in 1 Y) D( X 1n 1 X n )n(n 1)2 2nn 1 22~n2o2设 e a b e ,证明 In b In ab.【证法2】(x)因此当e x e 2时,(b)(a),v 0解得C v 0,两端积分得通解 v Cek —tm,代入初始条件v即 ln 2beln 2a4 ~~2a,故In 2 b ln 2 af (b e a).【评注】 本题也可设辅助函数为(x) 2 2 42In x In a 2 (x a),e a x e 或 e(x) ln 2 b ln 2 x$(b x),e x b2e ,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可 【详解1】 由题设,飞机的质量 m=9000kg ,着陆时的水平速度 v 0 700km/h .从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得dvm kv . dt dv dx dx dt所以,飞机滑行的最长距离为 1.05km.dvvdx ,又史dt由以上两式得dx 积分得x(t) x(t)m .dv ,k mv k m (v0 kC. 由于v(0)V 0, x(0)0,故得C — v °,从而k当 v(t)0时, v(t)). x(t)mv °k9000 700 66.0 101.05(km).【详解2】 根据牛顿第二定律,得 dv m — dtkv ,所以dv±dt. m【详解】取1为xoy 平面上被圆x 2 y 2 1所围部分的下侧,记 为由 与1围成的空间闭区域,(17) (本题满分12分) 计算曲面积分2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中是曲面z 1 x 2 y 2(z 0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直 接投影法求解即可.jkt故 v(t)v 0e m .飞机滑行的最长距离为v(t)dtmv ° ekmv ° k1.05( km).或由dr上t v °e m,知x(t)t0v 0e上tmdtItm1),故最长距离为当t时,kv ox(t)m1.05(km).【详解3】 根据牛顿第二定律,d 2x m —亏dt 2dx k , dtd 2x dt 2k dx dt其特征方程为解之得m0, 2C 2edxx0,v --t 01 t 0dtkC 2 emV 0,得C 1C 2x(t) mv 0Atm).所以, 时,x(t)mv 0 1.05(km).k飞机滑行的最长距离为1.05km.【评注】本题求飞机滑行的最长距离, 可理解为t 或v(t)0的极限值,这种条件应引起注意•由 mv 0t 0C 1 Jkt m3 3 2I 2x dydz 2y dzdx 3(z 1)dxdy13 3 22x dydz 2y dzdx 3(z 1)dxdy.1由高斯公式知3 3 22x dydz 2y dzdx 3(z 1)dxdy122 1 1 r 2 2=6 d dr (z r )rdz3322x dydz 2y dzdx 3(z1 )dxdy 3dxdy 3x 2 y 2 1故123【评注】 本题选择 1时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在 1上直接投影积分时,应注意符号(1取下侧,与z 轴正向相反,所以取负号).(18) (本题满分11分) 设有方程x nnx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数x n 收敛.n 1【分析】利用介值定理证明存在性,利用单调性证明惟一性 .而正项级数的敛散性可用比较法判定 .【证】记 f n (x)x n nx 1.由f n (O) 1 0, f n (1) n 0,及连续函数的介值定理知,方程x n nx 10存在正实数根x n (0,1).当x>0时,f n (x) n x n 1 n 0,可见f n (x)在[0,)上单调增加,故方程x n nx 1 0存在惟一正实数根 X n ・由x n nx1 0与 X n0知1 X :11 0 X n,故当1 时,0 X n(-).n nn 而正项级数1丄收敛, 所以当1时,级数x n 收敛n 1nn 1【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要2 26( x y z)dxdydz=121[1r(1 r 2) 22、2 r 3(1 r 2)]dr1(9, 3, 3)i ,C2z2x2z2z(9, 3, 3)(9, 3, 3)基本概念清楚,应该可以轻松求证 (19) (本题满分12分)设z=z(x,y)是由x 2 6xy 10y 2 2yz z 218 0确定的函数,求z z(x, y)的极值点和极值【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然 后用二阶偏导确定是极大值还是极小值,并求出相应的极值2 2 2因为 x 6xy 10y 2yz z 18 0,所以2x 6y 2^z 2z^0,x x6x 20 y 2z 2y-^ 2z —z 0. y y故 x 3y , z y.x 9, x 9, y 3, 或 y 3, z 3z3.类似地,由【详解】—0, x —0 yx 3y 0, 3x 10y z 0,将上式代入x 26xy 10y 2 2yz z 218 0,可得由于22 2— 2(上)2x x2z2z2x2z2yx y2z2z0,202— 2二 y y2y- 2z 2y2(二)2 y22z z y 0,2所以 A—z x1 B2 z1,C2z5 (9,3,3)6,x y(9,3,3)2y(9,3,3)3,21 1 故 AC B 236,又A6z(9,3)=3.6xxx y0 ,从而点(9,3)是z(x,y)的极小值点,极小值为21 1 可知AC B 0,又A0 ,从而点(-9,-3)是z(x,y)的极大值点,极大值为366z(-9, -3)= -3.【评注】本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程•(20) (本题满分9分) 设有齐次线性方程组(1 a)x 1 X 2 X n 0, 2捲 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】本题是方程的个数与未知量的个数相同的齐次线性方程组, 可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵 A 作初等行变换,有1 a 1 1 1 1 a 1 11A2 2 a 2 2 2a aBnnnn ana 0 0 a当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为X i X 2x n 0,由此得基础解系为1( 1,1,0,,0)T,2( 1,0,1, ,0)Tj , n 1 (1,0,0,,1)T ,于是方程组的通解为x k 1 1 k n 1 n 1,其中k 1, ,k n1为任意常数.当a 0时,对矩阵B作初等行变换, 有1 a 11 1a n(n 1)0 0 0 B2 1 0 022 1n 00 1n0 01可知an(n 2 1)时,r(A) n 1 n ,故方程组也有非零解,其同解方程组为2%X20, 3%X3,n^X n0 ,由此得基础解系为(1,2, ,n)T,于是方程组的通解为x k ,其中k为任意常数. 【详解2】方程组的系数行列式为1 a 1 12 2 a 2An n n当A 0,即a=0或a n(n 1)时,方程组有非零解2当a=0时,对系数矩阵A作初等行变换,有1 1 11 1 1112 2 220 000An n n n0 00 00故方程组的同解方程组为x1x2X n 0,由此得基础解系为1 ( 1,1,0, ,0)T,2 ( 1,0,1,,0)T,,n 1(1,0,0, ,1)T于是方程组的通解为x k1 1 k n 1 n 1 ,其中k1, , k n 1为任意常数a2卫时,对系数矩阵A作初等行变换,有1 a111 1 a 1112 A 2 a222a a00n n n n a na 00a(a 3)a n112 3E A1 4 31a 511 0 =(2) 14 31a52 (2) 0 14 3 1a522 16 18 3a 0,解得 a= -2.1 a 1 1 1 0 0 0 02 1 0 0 2 1 0 0 n 01n 01故方程组的同解方程组为2% x 2 0,3x 1 X 30,n% x 0,由此得基础解系为(1,2, ,n)T ,于是方程组的通解为x k ,其中k 为任意常数【评注】 矩阵A 的行列式 A 也可这样计算:1 a 1 1 1 1 1 11 1 1 1 1 A2 2 a 2 2 2 =aE +2 22,矩阵2 2 2 2的nnnn an n nn n n nn特征值为0,,0, n(n °,从而A 的特征值为a,a, ,a n(n 1),故行列式 A (a n(n 1))a n 1.2 2 2(21) (本题满分9分)1 23设矩阵A 1 43的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.1 a 5【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可•【详解】 A 的特征多项式为(2)( 2 8 18 3a).2是特征方程的二重根,则有323a2时,A的特征值为2, 4,4,矩阵4E-A= 103秩为2,故4对应的线性无关32113的特征向量只有一个,从而A不可相似对角化求:(I)二维随机变量(X,Y)的概率分布;(II) X和Y的相关系数XY-【分析】先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I) 由于P(AB) P(A)P(BA) 2,P(B)P(AB) 1 P(AB) 6'所以,P{X1,Y1}1 P(AB)—,12P{X1,Y0}P(AB) P(A)P(AB)1 6P{X0,Y1}P(AB) P(B)P(AB)1 12,1 当a= -2时,A的特征值为2,2,6,矩阵2E-A=12 32 3的秩为1,故2 32对应的线性无关的特征向量有两个,从而A可相似对角化.若2不是特征方程的二重根,则18 3a为完全平方,从而18+3a=16,解得a【评注】n阶矩阵A可对角化的充要条件是: 对于A的任意k i重特征根i,恒有n r( i E A) 而单根一定只有一个线性无关的特征向量•(22) (本题满分9分)1设A,B为随机事件,且P(A) -,P(B A)43,P(AB)1, A发生,0, A不发1, B发生,P{X 0,Y 0} P(AB) 1 P(A B)=1 P(A) P(B) P(AB)(或P{X 0,Y 0}故(X,Y)的概率分布为i 1 1 丄2),12 6 12 3【评注】本题尽管难度不大,但考察的知识点很多,综合性较强•通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意(23)(本题满分9分)设总体X的分布函数为1,X1,X2, ,X n为来自总体X的简单随机样本,求:(I) 的矩估计量;(II) 的最大似然估计量•【分析】先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可【详解】X的概率密度为——X 1,X 1,40, X「(I)由于则EXX01Y013151P——P一—446611351-,EY DX DY=——,E(XY)=46163612'(II) X, Y的概率分布分别为故Cov(X,Y) E (XY) EX EY —,从而24XYCov(X,Y) 1515F(x,)x0,1,1其中未知参数f(x,)1,X i 1(i 1,2, ,n),(X 1X 2 X n )0,其他 n1) In X i , i 1dInL()d故的最大似然估计量为 nnIn X ii 1难度不大,但计算量比较大,实际做题时应特别注意计算的准确性 EX Xf (X ; )dX X — 1 X T dx 令X ,解得 1 1,所以参数 的矩估计量为(II )似然函数为两边对求导,得 令dInL( ) 0,可得 d nn, In x ii 1L() f (X i ; 当x i1(i 1,2, ,n)时, L( 0,取对数得 lnL()n In In X i ,【评注】本题是基础题型,。
2004年高考试题——数学(全国1)及答案
2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212s i n 41)c o s s i n1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年数学全国卷1
2004年高考试题全国卷Ⅰ 理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA 于是有所以θ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AEEG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x aa x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004—数一真题、标准答案及解析
全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x x xx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有α 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+=222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(tt t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于梅花香自苦寒来,岁月共理想,人生齐高飞!第 - 21 - 页 共 21 页 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
2004考研数一真题及解析
2004年全国硕士研究生入学考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2004年普通高等学校招生全国统一考试数学试卷湖北卷理
2004年普通高等学校招生全国统一考试(理工类)(湖北卷)数学(理工类)(湖北卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)与直线042=+-y x 的平行的抛物线2x y =的切线方程是(A )032=+-y x(B )032=--y x(C )012=+-y x (D )012=--y x(2)复数ii 31)31(2++-的值是(A )-16 (B )16(C )41-(D )i 4341- (3)已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为(A )21x x+ (B )212x x +-(C )212x x + (D )21x x +-(4)已知,,为非零的平面向量. 甲:则乙,:,=⋅=⋅(A )甲是乙的充分条件但不是必要条件 (B )甲是乙的必要条件但不是充分条件 (C )甲是乙的充要条件(D )甲既不是乙的充分条件也不是乙的必要条件(5)若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+b aa b 中,正确的不等式有(A )1个(B )2个(C )3个(D )4个(6)已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为(A )59(B )3(C )779 (D )49(7)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为(A )41 (B )21(C )2 (D )4(8)已知数列{na }的前n 项和),,2,1]()21)(1(2[])21(2[11 =+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{nx }、{n y }使(A )}{,n n n n x y x a 其中+=为等差数列,{ny }为等比数列(B )}{,n n n n x y x a 其中+=和{ny }都为等差数列(C )}{,n n n n x y x a 其中⋅=为等差数列,{ny }都为等比数列(D )}{,n n n n x y x a 其中⋅=和{ny }都为等比数列(9)函数1)(2++=x ax x f 有极值的充要条件是(A )0>a (B )0≥a (C )0<a(D )0≤a(10)设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是(A )P Q(B )Q P(C )P=Q(D )PQ=(11)已知平面 所成的二面角为80°,P 为 、外一定点,过点P 的一条直线与、所成的角都是30°,则这样的直线有且仅有(A )1条 (B )2条 (C )3条(D )4条(12)设 是某港口水的深度y (米)关于时间t (时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数 的图象可以近似地看成函数的图象.下面的函数中,最能近似表示表中数据间对应关系的函数(A)(B)(C)(D)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)设随机变量的概率分布(14)将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有种.(以数字作答)(15)设A、B为两个集合,下列四个命题:①A B对任意②A B③A B A B ④A B存在其中真命题的序号是 .(把符合要求的命题序号都填上)(16)某日中午12时整,甲船自A处以16km/h的速度向正东行驶,乙船自A的正北18km处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是km/h.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知的值.(18)(本小题满分12分)如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D1E⊥平面AB1F时,求二面角C1-EF-A的大小(结果用反三角函数值表示).(19)(本小题满分12分)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问的夹角取何值时的值最大?并求出这个最大值.(20)(本小题满分12分)直线的右支交于不同的两点A、B.(I)求实数k的取值范围;(II)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k 的值;若不存在,说明理由.(21)(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)(22)(本小题满分14分)已知(I)已知数列极限存在且大于零,求(将A用a表示);(II)设(III)若都成立,求a的取值范围.。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A. i +1B. i --1C. i 31+D. i 31-- 2. 不等式21≥-xx 的解集为( ) A. )0,1[- B. ),1[∞+-C. ]1,(--∞D. ),0(]1,(∞+--∞3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A. )6,3(-B. )6,3(-C. )3,6(-D. )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A. 1或5B. 6C. 7D. 95.若函数log )(=x x f aA.42中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( )A. 510B. 515C.54 D.32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB =6,AD =4,31=AA 。
2004级《高等数学》(I)期末考试试卷(A)
2004级《高等数学》(I )期末考试试卷(A)答案及评分标准一、填空题(本题共8小题,每小题3分,满分24分):1.=-+--→45215lim 22x x x x 81.2. =--⎰+→xdt e x t x cos 1)1(lim 001. 3. 设⎪⎩⎪⎨⎧≤+>+=0,0,sin )1ln()(222x b x x x x x f 在0=x 处连续,则=b 1. 4. 曲线16213123+++=x x x y 在点)1,0(处的切线方程是16+=x y . 5. 设x cos 为)(x f 的一个原函数,则=⎰dx x xf )(C x x x +-sin cos .6. ⎰-=+2223sin )sin (cos ππtdt t t 32. 7. =⎰∞+-022dx xe x 1.8. 若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b )4,2,4(--.二、求解下列各题(本题共4小题,每小题6分,满分24分):1. 求极限()x x x cos ln 1203sin 1lim +→.解 ()()x x x x x e x 3s i n 1ln cos ln 1lim cos ln 120203sin 1lim +→→=+ (2分)()x x x x x x x x x cos ln )3(lim cos ln 3sin lim 3sin 1ln cos ln 1lim 202020→→→==+ (4分) ,18cos sin 18lim 0-=-=→xxx x (5分) ()18cos ln 1203sin 1lim -→=+∴e x x x (6分)2. 求由参数方程⎩⎨⎧==tb y t a x sin cos 所确定的函数的二阶导数22dx y d . ,cot sin cos t ab t a t b dx dy -=-= (3分) ta b t a t a b dx y d 32222sin sin csc -=-= (6分) 3. 设x x y cos =,求dy .解 ,ln cos x x e y = (2分))cos ln sin (ln cos xx x x e y x x +-=' (5分) )cos ln sin (cos xx x x x x +-= (6分) 4. 求由方程0=-+e xy e y 所确定的隐函数y 的导数dx dy . 解 方程两边对x 求导得0='++'y x y y e y (4分))0(≠++-=∴y ye x e x y dx dy (6分) 三、求解下列各题(本题共4小题,每小题6分,满分24分): 1. 求⎰++3011dx x x . (或令t x =+1)解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分) 35)1(3233023=++-=x (6分) 2. 求⎰-+102)2()1ln(dx x x . 解 dx x x x x x dx x dx x x ⎰⎰⎰-⋅+--+=-+=-+1001010221112)1ln(2)1ln()2()1ln( (3分) dx x x ⎰⎪⎭⎫ ⎝⎛-++-=102111312ln (4分) 2ln 3121ln 312ln 10=-+-=x x (6分)3. 设⎩⎨⎧≤<-≤≤=21,210,)(2x x x x x f ,求⎰20)(dt t f . 解 ⎰⎰⎰-+=2110220)2()(dt t dt t dt t f (3分) 65)2(2131212=--=t (6分) 4. 证明方程0111304=+--⎰xdt t x 在区间)1,0(内有唯一实根.解 ⎰+--=x dt t x x f 041113)(设, (1分) 则)(x f 在]1,0[上连续,且-=<-=2)1(,01)0(f f 011104>+⎰dt t ,由零点定理, 至少)1,0(∈∃ξ使0)(=ξf . (3分)又0113)(4>+-='x x f ,故)(x f 至多有一个零点, (5分) 综上所述,方程0111304=+--⎰x dt t x 在区间)1,0(内有唯一实根. (6分)四、求解下列各题(本题共4小题,每小题6分,满分24分):1.试确定a 的值,使函数x x a x f 3sin 31sin )(+=在3π处取得极值,指出它是极大值还是极小值,并求出此极值. 解 x x a x f 3c o s c o s)(+=' (1分) 201233cos 3cos )3(=⇒=-=+='a a a f 令πππ, (3分) 又x x a x f 3sin 3sin )(--='',0)3(<''πf , (5分) 3)3(=∴πf 为极大值. (6分)2.求抛物线22x y =与21x y +=所围图形的面积,及该图形绕y 轴旋转一周所成的旋转体的体积.解 由⎪⎩⎪⎨⎧+==2212x y x y 得交点)2,1(-,)2,1( (2分) 34)1(2)21(21022102=-=-+=⎰⎰dx x dx x x A , (4分) 2)1(2)21(21022102πππ=-=-+=⎰⎰dx x x dx x x x V . (6分)3.求过点)1,2,1(0-M 且与直线11122-=-=-+z y x 垂直相交的直线方程. 解 过点)1,2,1(0-M 且与直线11122-=-=-+z y x 垂直的平面方程为 0)1()2()1(2=++---z y x ,即 012=++-z y x , (2分)令t z y x =-=-=-+11122,得t z t y t x -=+=--=,1,22, 代入平面方程得32-=t ,求得平面与直线的交点为)32,31,32(-M , (4分) )35,35,35(0--=MM , 取)1,1,1(--=, 所求直线方程为 111211+=--=--z y x (6分) 4.已知 ,2,1,tan 40==⎰n dx x u n n π,证明:(1) 1+≥n n u u ;(2) 当2>n 时,112-=+-n u u n n ; (3) {}n u 收敛,并求其极限. 证明 (1))4,0(tantan 1π∈≥+x x x n n , (1分) 140140,tan tan +即n n n n u u dx x dx x ≥≥∴⎰⎰+ππ (2分)(2)=+-2n n u u ⎰⎰-+40240tan tan ππdx x dx x n n dx x x dx x x n n n )tan 1(tan )tan (tan 2402240+=+=⎰⎰--ππ (3分) x d x x d x x n n t a n t a n s e c t a n 4022402⎰⎰--==ππ 402tan 11πx n n --=11-=n (4分) (3)1,0+≥≥n n n u u u 且 ,即{}n u 单调减少有下界,故{}n u 收敛, (5分)设a u n n =∞→lim ,则由112-=+-n u u n n 两边取极限得 0,02=∴=a a ,即0lim =∞→n n u (6分)五、(本题满分4分)设)(x f 在区间],[b a 上连续,在区间),(b a 内0)(<''x f ,证明对一切),(b a x ∈,都有ab a f b f a x a f x f -->--)()()()(. 证明 设a b a f b f a x a f x f x F -----=)()()()()(, 2)())()(())(()(a x a f x f a x x f x F ----'=', (2分) 又设))()(())(()(a f x f a x x f x g ---'=,则0))(()(<-''='a x x f x g ,于是)(x g 单调减少,则),(b a x ∈时,0)()(=<a g x g ,从而0)(<'x F ,则)(x F 单调减少,故),(b a x ∈时,0)()(=>b g x F ,即有a b a f b f a x a f x f -->--)()()()( (4分)。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A . i +1B . i --1C . i 31+D . i 31-- 2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[∞+-C . ]1,(--∞D . ),0(]1,(∞+--∞3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A . )6,3(-B . )6,3(-C . )3,6(-D . )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A . 1或5B . 6C . 7D . 95.若函数log )(=x f aA .42ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 ( ) A . 510 B . 515C .54 D .32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( ) A . 03=--y x B . 032=-+y xC . 01=-+y xD . 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A . 必要而不充分条件B . 充分而不必要条件C . 充要条件D . 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
2004年普通高等学校招生全国统一考试数学(理工类)(福建卷)
2004年普通高等学校招生全国统一考试数学(理工类)(福建卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数10)11(ii +-的值是( )A.-1B.1C.-32D.32 2.tan15°+cot15°的值是 ( )A.2B.2+3C.4D.334 3.命题p:若a 、b ∈R,则|a |+|b|>1是|a +b|>1的充分而不必要条件; 命题q:函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则 ( )A.“p 或q ”为假B.“p 且q ”为真C.p 真q 假D.p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是 ( )A.33B.32C.22D.23 5.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β;③若α∩β=n,m ∥n,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( )A.0B.1C.2D.36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 ( )A.2426C AB.242621C A C.2426A AD.262A7.已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b,则a 与b 的夹角是( )A.6πB.3πC.32π D.65π 9.若(1-2x )9展开式的第3项为288,则)111(lim 2n n xx x +++∞→ 的值是( )A.2B.1C.21D.5210.如图,A 、B 、C 是表面积为48π的球面上三点,AB =2,BC =4,∠ABC =60°,O 为球心,则直线 OA 与截面ABC 所成的角是( ) A.arcsin 63B.arccos 63C.arcsin33 D.arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( ) A.f (sin6π)<f (cos 6π) B.f (sin1)>f (cos1)C.f (cos 32π)<f (sin 32π)D.f (cos2)>f (sin2)12.如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流 的没岸PQ(曲线)上任意一点到A 的距离 比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运 货物.经测算,从M 到B 、M 到C 修建公 路的费用分别是a 万元/km 、2a 万元/km, 那么修建这两条公路的总费用最低是( ) A.(27-2)a 万元 B.5a 万元C.(27+1) a 万元D.(23+3) a 万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 .x 11-+(x ≠0),14.设函数f(x)= a (x =0). 在x =0处连续,则实数a 的值为 .15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一 个无盖的正六棱柱容器.当这个正六棱柱容器的 底面边长为 时,其容积最大.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数f(x)=a ·b ,其中向量a =(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c =(m,n)(|m|<2π)平移后得到函数y =f(x)的图象,求实数m 、n 的值.18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.19.(本小题满分12分)在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=23,M、N分别为AB、SB的中点.(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N—CM—B的大小;(Ⅲ)求点B到平面CMN的距离.20.(本小题满分12分)某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?21.(本小题满分14分) 已知f(x)=222+-x ax (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.22.(本小题满分12分)如图,P 是抛物线C:y =21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q. (Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S,与y 轴交于点T,试求||||||||SQ ST SP ST的取值范围.2004年普通高等学校招生全国统一考试数学答案(理工类)(福建卷)一、1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.B 9.A 10.D 11.D 12.B 二、13.45 14.1/2 15.1,3 16.2/3三、17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2 x +6π)=-23. ∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π, 即x =-4π.(Ⅱ)函数y =2sin2x 的图象按向量c =(m,n)平移后得到函数y =2sin2(x -m)+n 的图象,即函数y =f(x)的图象.由(Ⅰ)得 f(x)=2sin2(x +12π)+1. ∵|m|<2π,∴m =-12π,n =1. 18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451.∴甲、乙两人至少有一人考试合格的概率为 P =1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P =P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取AC 中点D,连结SD 、DB. ∵SA =SC,AB =BC, ∴AC ⊥SD 且AC ⊥BD,∴AC ⊥平面SDB,又SB ⊂平面SDB, ∴AC ⊥SB.(Ⅱ)∵AC ⊥平面SDB,AC ⊂平面ABC, ∴平面SDB ⊥平面ABC.过N 作NE ⊥BD 于E,NE ⊥平面ABC, 过E 作EF ⊥CM 于F,连结NF, 则NF ⊥CM.∴∠NFE 为二面角N -CM -B 的平面角.∵平面SAC ⊥平面ABC,SD ⊥AC,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC,∴NE ∥SD.∵SN =NB,∴NE =21SD =2122AD SA -=21412-=2,且ED =EB. 在正△ABC 中,由平几知识可求得EF =41MB =21,在Rt △NEF 中,tan ∠NFE =EFEN=22,∴二面角N —CM —B 的大小是arctan22. (Ⅲ)在Rt △NEF 中,NF =22EN EF +=23, ∴S △CMN =21CM ·NF =233,S △CMB =21BM ·CM =23.设点B 到平面CMN 的距离为h, ∵V B -CMN =V N -CMB ,NE ⊥平面CMB,∴31S △CMN ·h =31S △CMB ·NE,∴h =CMNCMB S NE S ∆∆⋅=324.即点B 到平面CMN 的距离为324.解法二:(Ⅰ)取AC 中点O,连结OS 、OB.∵SA =SC,AB =BC, ∴AC ⊥SO 且AC ⊥BO.∵平面SAC ⊥平面ABC,平面SAC ∩平面 ABC =AC ∴SO ⊥面ABC,∴SO ⊥BO.如图所示建立空间直角坐标系O -x yz. 则A(2,0,0),B(0,23,0),C(-2,0,0), S(0,0,22),M(1,3,0),N(0,3,2). ∴AC =(-4,0,0),SB =(0,23,-22), ∵·=(-4,0,0)·(0,23,-22)=0, ∴AC ⊥SB.(Ⅱ)由(Ⅰ)得CM =(3,3,0),MN =(-1,0,2).设n =(x ,y,z)为平面CMN 的一个法向量, CM ·n =3x +3y =0,则 取z =1,则x =2,y =-6,MN ·n =-x +2z =0,∴n =(2,-6,1),又=(0,0,22)为平面ABC 的一个法向量, ∴cos(n ,)31. ∴二面角N -CM -B 的大小为arccos31. (Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,3,0),n =(2,-6,1)为平面CMN 的一个法向量, ∴点B 到平面CMN 的距离d ||n 324. 20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 2500-100.(Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2) =10n 2+10n -n 2500-100=10[n(n +1) - n 250-10]. 因为函数y =x (x +1) -x 250-10在(0,+∞)上为增函数, 当1≤n ≤3时,n(n +1) - n 250-10≤12-850-10<0; 当n ≥4时,n(n +1) - n 250-10≥20-1650-10>0. ∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.21.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:ϕ(1)=1-a -2≤0,① ⇔ ⇔-1≤a ≤1,ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:2a ≥0, 2a <0, ①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a <0⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.(Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两实根,x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:g(-1)=m 2-m -2≥0,②⇔g(1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.方法二: 当m =0时,②显然不成立; 当m ≠0时,m>0, m <0,②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0⇔ m ≥2或m ≤-2.所以,存在实数m,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.22. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y =21x 2, ① 得y '=x .∴过点P 的切线的斜率k 切= x 1,∵x 1=0不合题意,∴x 1≠0∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1), 方法一:联立①②消去y,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点x 0=221x x +=-11x , ∴y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y =x 2+2021x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +, 得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-11x , ∴x 1=-01x , 将上式代入②并整理,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y =x 2+2021x +1(x ≠0).(Ⅱ)设直线l :y =k x +b,依题意k ≠0,b ≠0,则T(0,b).分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'. y =21x 2 由 消去x ,得y 2-2(k 2+b)y +b 2=0. ③y =kx +by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +.当b>0时,||||||||SQ ST SP ST +=b 22)(2bb k +=b b k )(22+=b k 22+2>2; 当b <0时,||||||||SQ ST SP ST +=-b 22)(2b b k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>b b b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x b y -. 则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b =122212122121x x x x x x -⋅-⋅=-21x 1x 2. ∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -|1|21x x -||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南农业大学期末考试试卷(A 卷)
2004学年第1学期
高等数学(工科)考试时间:120分钟
一.填空题(每题3分,共21分) 1.设函数⎰=x
t
dt
e x
f 02
)(,则=
∆-∆-→∆x
x f x x f x )
()(lim
_____
2.曲线
2
)
2(1-=
x y 的水平渐近线是_____,垂直渐近线
是_____ 3.设
)
(x f 在区间[-1,2]上连续且平均值为6,则
=⎰
-2
1
)(dx x f _____
4.若当可导函数)(x f y =
在点0
x 处取得增量1.0=∆x 时,
对应的函数增量y ∆的线性主部为0.5,则
=
)(0/
x f _____
5.=⎪⎭⎫ ⎝⎛-∞→x x x
x
x 1sin sin lim _____
6.若
⎪⎩
⎪
⎨⎧=≠+=)
0()0()1ln()(2x k x x
x x f ,则当k =_____时,)(x f 在
0=x 处连续.
7.[]
=
-+
+⎰-2
22
2
4)1ln(sin
dx x x x _____
二.选择题(每题2分,共10分)
1.[-1,1]上满足罗尔定理条件的函数是( )
(A)x e (B)x ln (C)2
1x -
(D)2
11x
-
2.当0→x 时,无穷小)2cos 1(x -与2
x 比较是( ) (A)高阶的无穷小 (B)等价的无穷小 (C)非等价的同阶无穷小 (D)低阶的无穷小 3.曲线
t
t x t y s i n ,c o s 1-=-=当
2
π
=
t 时的切线方程是
( ) (A)22
+-
=π
x y (B)2
2
+-
-=π
x y
(C)22
++
=π
x y
(D)22
++
-=π
x y
4.与向量)
0,2,1(),2,1,0(-==b a 同时垂直的单位向量
( )
(A)只有k j i +--24 (B)只有()k j i +--2421
1
(C)有两个,即
()
k j i +--±24(D)有两个,即
()k j i +--±
2421
1
5.如果在),(b a 内有)()(//x x f ϕ=,则一定有( ) (A))()(x x f ϕ= (B)()()/
/
)()(⎰⎰
=dx x dx
x f ϕ
(C))()(x c x f ϕ= (D)c x x f +=)()(ϕ 三.计算题(每题6分,共48分)
1.x
x x x 3
sin
sin tan lim -→
2.x
x x x 212lim ⎪⎭
⎫
⎝⎛++∞
→
3.已知⎪⎩
⎪⎨⎧==t e y t e x t
t sin cos ,求22dx y
d
4.求与两平面3
4=-z
x 和152=--z y x 的交线平行且过
点(1,2,3)的直线方程. 5.⎰
--dx
x x 1
12
6.⎰+1
022)1(1
dx
x
7.设⎪⎩
⎪
⎨⎧<≥++=)
0()0(1
22
)(x e x x x x f x ,求⎰--5
1)1(dx x f
8.⎰∞-0
3
2
x
e
x
四.已知
bx
ax
y -=2
当
2
=x 时有极大值,又曲线
bx
ax
y -=2
与x 轴所围成的图形的面积为8,求b a ,之值.
(8分)
五.做一个圆锥形漏斗,其母线的长为20cm ,要使其体积最大,问其高应为多少?(7分) 六.设)(x f 在)0](,[b a b a <<上可导,且0
)()(=-a bf b af ,
证明在),(b a 内至少存在一点ξ,使得ξ
ξξ)
()(/
f f
=
(6分)。