二次函数综合应用
初步认识二次函数二次函数与其他函数的综合应用题
初步认识二次函数二次函数与其他函数的综合应用题初步认识二次函数与其他函数的综合应用题二次函数是高中数学中的重要内容之一,它在现实生活中的应用十分广泛。
本文将从初步认识二次函数开始,探讨二次函数与其他函数的综合应用题,旨在帮助读者更好地理解和应用二次函数。
一、初步认识二次函数二次函数的标准形式为f(x) = ax^2 + bx + c(a ≠ 0),其中a、b、c为常数,且a表示二次函数的开口方向和开口程度。
当a>0时,二次函数开口向上,称为正向开口;当a<0时,二次函数开口向下,称为负向开口。
b表示二次函数在横轴上的平移,c表示二次函数在纵轴上的平移。
二、二次函数的基本性质1. 零点和解析式二次函数的零点即方程f(x) = 0的解,可以通过求解二次方程ax^2+ bx + c = 0得出。
解析式可以利用求根公式或配方法得出,其中求根公式为x = (-b ± √(b^2 - 4ac)) / 2a。
2. 对称轴和顶点坐标二次函数的对称轴是x = -b/2a,当x = h时,函数值f(h)最大或最小,该点称为顶点,顶点坐标为(-b/2a, f(-b/2a))。
3. 函数图像和开口情况根据二次函数的a值,可以确定函数的开口方向和开口程度。
当a>0时,二次函数开口向上,a的绝对值越小,开口程度越大;当a<0时,二次函数开口向下,a的绝对值越小,开口程度越大。
三、二次函数与其他函数的综合应用题1. 求解方程假设小明去超市购买苹果和香蕉,苹果的单价为x元/个,小明购买了a个苹果。
香蕉的单价为y元/个,小明购买了b个香蕉。
若小明总共花费了m元,请问每个苹果和香蕉的单价分别是多少?解析:根据已知条件,我们可以列出方程组:a*x + b*y = m;m = 10。
将方程组转化为二次函数的形式,得到f(x, y) = ax + by - m 和 g(x, y) = m - 10。
求解方程组即求解二次函数f(x, y) = 0和g(x, y) = 0的交点,即可得到每个苹果和香蕉的单价。
中考数学 考点系统复习 第三章 函数 第七节 二次函数的综合应用
2.★(2022·连云港)如图,一位篮球运动员投篮,球沿抛物线 y=-0.2x2 +x+2.25 运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05 m,则他距篮筐中心的水平距离 OH 是 44 m.
重难点 2:二次函数的综合应用 如图,等腰梯形 ABCD 中,AB=4,CD=9,∠C=60°,动点 P 从点 C 出发沿 CD 方向向点 D 运动,动点 Q 同时以相同速度从点 D 出发沿 DA 方 向向终点 A 运动,其中一个动点到达端点时,另一个动点也随之停止运 动.
∴CE=1.5,DE=2.∴点D的纵坐标为-1.5, 令-12(x-4)2+12=-1.5, 解得x=4+3 3 ≈9.19或x=4-3 3 ≈-1.19(不合题意,舍去),∴ D(9.19,-1.5). ∴OC=9.19-2=7.19≈7.2(m). ∴OC的长约为7.2 m.
命题点2:二次函数的综合应用(近6年考查2次)
【分层分析】(3)令获得的周利润等于2 000元,列方程为--2(2x-(x8-5)2+ 2+42 4505=0=2 0200,结合w的函数图象可知x的取值范围为7078≤05≤)x2≤x≤1001,00 再0结00合物价部门规定该品牌宁夏特产的销售单价不得高于85元/kg即可
得到销售单价的取值范围.
段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所 示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为 飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年
北京冬奥会跳台滑雪标准台的起跳台的高度OA为66 m ,基准点K到起跳 台的水平距离为75 m,高度为h m (h为定值).设运动员从起跳点A起跳 后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).
2020年中考数学复习专题之二次函数的综合应用问题
二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。
(中考数学复习)第18讲-二次函数综合应用-课件-解析
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.
一次函数与二次函数的综合应用题
一次函数与二次函数的综合应用题一、引言在数学中,一次函数和二次函数是我们经常遇到的两种函数类型。
一次函数以y = ax + b的形式呈现,其中a和b是常数,而x是自变量。
二次函数则以y = ax^2 + bx + c的形式表达,其中a、b和c都是常数,而x依然是自变量。
本文将基于一次函数和二次函数,介绍它们在实际问题中的综合应用。
二、一次函数的综合应用1. 直线的运动一次函数可以应用于描述直线的运动情况。
假设有一个小车匀速地沿直线前进,设x表示时间(单位:秒),y表示小车距离起点的距离(单位:米),小车的速度为v(单位:米/秒)。
则可以建立起以下一次函数表示小车的位置:y = vx通过该函数,我们可以轻松计算在不同时间点小车的位置,并预测未来的移动情况。
2. 商品价格和销量的关系一次函数还可以应用于描述商品价格和销量之间的关系。
假设某商品的售价为p(单位:元),销量为s(单位:件),根据市场调研,得到以下一次函数表达式:s = -ap + b通过该函数,我们可以研究价格对销量的影响,并进行销售策略的调整。
三、二次函数的综合应用1. 抛体运动二次函数常用于描述抛体在空中的轨迹。
假设有一个物体以初速度v0竖直向上抛出,设x表示时间(单位:秒),y表示物体的高度(单位:米),加速度为g(单位:米/秒^2)。
则可以建立起以下二次函数表示物体的高度:y = -0.5gt^2 + v0t通过该函数,可以计算物体在不同时间点的高度,并分析物体的抛体运动规律。
2. 二次方程的解析二次函数也可以用于解决实际问题中的二次方程。
一个经典的例子是求解一个矩形地块的最大面积。
假设矩形地块的长度为x米,宽度为y米,已知周长为p米。
可以建立以下方程:2x + 2y = p根据周长的限制条件,我们可以得出以下表达式:x = (p-2y)/2,进而得到矩形地块的面积表达式:A = xy = (p-2y)y通过求解该二次函数的极值,即可得到矩形地块的最大面积。
中考数学复习第三单元函数第15课时二次函数的综合应用
中心为原点建立直角坐标系.
高
频
考
向
探
究
(2)王师傅在水池内维修(wéixiū)设备期间,喷水管意外
喷水,为了不被淋湿,身高1.8米的王师傅站立时
必须在离水池中心多少米以内?
图15-6
1
(2)当 y=1.8 时,1.8=- (x-3)2+5,
第九页,共四十页。
基
础
知
识
巩
固
高
频
考
向
探
究
题组二 易错题
【失分点】
忽略实际问题(wè在水池中央垂直于水面安装一个花形柱子OA,O恰在水面
中心,安置(ānzhì)在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径
落下,且在过OA的任一平面上,抛物线形状均如图15-5①所示.如图②,建立直角坐标系,水
∴y 与 x 之间的函数关系式为
1
- 2 + 2(0 ≤ ≤ 2),
y=
1
2
2
2 -4 + 8(2 < ≤ 4).
由函数关系式可看出 A 中的函数图象与所求的分段函数对应.故选 A.
第六页,共四十页。
基
础
知
识
巩
固
高
频
考
向
探
究
2.如图 15-3,坐标平面上有一顶点为 A 的抛物
[答案(dáàn)] B
直角坐标系.
高
频
考
向
探
究
(3)经检修评估(pínɡ ɡū),游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,
初中二次函数综合应用难题
初中二次函数综合应用难题
以下是一个初中二次函数综合应用的难题:
问题:某公司生产纸箱,每个纸箱的底面是一个正方形,侧面是一个等腰直角三角形。
已知纸箱的高度为8厘米,底面边长为x厘米。
根据生产经验,每个纸箱的材料成本(即底面和侧面的总面积)与底面边长的平方成正比,比例系数为0.25。
如果一个纸箱的材料成本为80平方厘米,求纸箱的底面边长x。
解答:
首先,我们需要确定纸箱的底面和侧面的面积。
底面的面积为正方形的面积:底面面积= x^2
侧面的面积为等腰直角三角形的两个等腰直角边的乘积的一半:侧面面积= 1/2 * x * x
纸箱的总面积为底面和侧面的面积之和:总面积= x^2 + 1/2 * x * x
根据题目中给出的比例系数,纸箱的材料成本与底面边长的平方成正比,我们可以设置一个比例关系:
(纸箱的材料成本)/(底面边长的平方)= 0.25
根据题目中给出的纸箱的材料成本为80平方厘米,我们可以代入这些值,得到以下方程:
80 / x^2 = 0.25
可以进行等式的变形:
80 = 0.25 * x^2
进一步变形得到:
320 = x^2
对方程两边取平方根,得到:
x = √320
化简计算得到:
x ≈ 17.89
因为底面边长的单位是厘米,所以最后的答案为17.89 厘米。
因此,纸箱的底面边长约为17.89 厘米。
二次函数的综合应用
二次函数的综合应用一、二次函数与几何图形问题例一:(2019 吉林中考)如图,抛物线y=(x-1)²+k与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C(0,-3)。
P为抛物线上一点,横坐标为m,且m>0。
(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求ΔABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m 的函数解析式,并写出自变量m 的取值范围!②当h=9时,直接写出ΔBCP的面积.二、二次函数与销售问题例一:(2020 湖北中考)某款旅游纪念品很受游客喜爱,每个纪念品进价40元,规定销售单价不低于44元且不高于52元,某商户在销售期间发现,当销售单价定价为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个,现商家决定提价销售,设每天销售量为y个,销售单价为x元。
(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)将纪念品的销售单价定位多少元时,商家每天销售纪念品获得的利润w最大?最大利润是多少元?(3)该商户从每天的利润中提出200元做慈善,为了保证捐款后每天剩余利润不低于2200元,求销售单价x的取值范围。
三、二次函数与增长率问题例一:为积极响应国家“旧房改造”工程,该市推出《加快推进就放改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设。
(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4,32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?四、二次函数与行程问题例一:(2019 江西中考)蜗牛A和蜗牛B分别从相距120厘米的甲水坑和乙水坑以相同的速度同时相向而行,相遇后,两只蜗牛继续前进,蜗牛A的速度不变,蜗牛B每分钟比原来多走1厘米,结果蜗牛B到达甲水坑后蜗牛A还需10分钟才能到达乙水坑,求两只蜗牛原来的速度是多少?五、二次函数与动点问题例一:(2019秋惠州期末)如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于C 点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;六、二次函数与阅读理解型问题(新定义题型)例一:(2019 )在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,恒有点(x,y1)和点(x,y2)关于点(x,x)成中心对称(此三个点可以重合),由于对称中心(x,x)都在直线y=x上,所以称这两个函数为关于直线y=x的“相依函数”.例如:y=3/4*x和y=5/4*x为关于直线y=x的“相依函数”。
二次函数的应用的综合应用题
二次函数的应用的综合应用题某公司制造商品并销售,该公司的成本和收入可以用二次函数来建模。
已知该公司的成本函数为C(x) = 0.2x^2 + 800x + 10000(其中x表示产量,C(x)表示成本),收入函数为R(x) = -0.3x^2 + 1000x(其中x 表示产量,R(x)表示收入)。
现在我们要针对该模型进行一系列综合应用题的分析和求解。
1. 确定最小产量以确保盈利。
首先,我们需要确定最小产量以确保公司盈利。
公司的盈利可以通过收入减去成本来计算。
盈利函数P(x)可以表示为:P(x) = R(x) - C(x)= (-0.3x^2 + 1000x) - (0.2x^2 + 800x + 10000)= -0.5x^2 + 200x - 10000为了确保公司盈利,盈利函数P(x)需要大于零。
因此,我们可以求解以下不等式来确定最小产量:-0.5x^2 + 200x - 10000 > 0对该不等式进行求解,我们可以得到x的取值范围。
在此范围内,最小的整数值将是确保公司盈利的最小产量。
2. 确定最大产量以达到最大盈利。
要确定最大产量以达到最大盈利,我们需要计算盈利函数P(x)的顶点。
顶点对应于盈利函数的最大值,表示最大的盈利。
盈利函数P(x)是一个二次函数,二次函数的顶点可以通过以下公式计算:x = -b / (2a)对于盈利函数P(x)来说,a=-0.5,b=200。
代入上述公式,我们可以计算得到最大盈利对应的产量x。
3. 计算最大盈利。
在确定最大产量之后,我们可以将该产量代入盈利函数P(x)中,计算得到最大盈利的具体金额。
P(x) = -0.5x^2 + 200x - 10000将最大产量代入上述公式,即可得到最大盈利。
4. 讨论产量对盈利的影响。
通过对盈利函数P(x)的分析,我们可以观察到产量x对盈利的影响。
当产量增加时,盈利也随之增加,但增加的幅度可能会递减。
这是因为盈利函数P(x)是一个二次函数,它的图像是一个开口向下的抛物线。
部编人教版九年级数学上册3 二次函数在学科内的综合应用(课件)
解:(1)令y=0,得x2-(2m-1)x+m2+3m+4=0,
Δ=(2m-1)2-4(m2+3m+4)=-16m-15.
当Δ>0时,方程有两个不相等的实数根,
即-16m-15>0,
∴m<-
15 ,
16
此时二次函数的图象与x轴有两个交点;
当Δ=0时,方程有两个相等的实数根,
即-16m-15=0,∴m=-
3
9
3
解∴当得a点=Q的83 坐或标a=为0((-舍去52 ,),58∴)或Q2((
1 12 2
,- 7 ,- 78
8
). )时,Q,
A,C,N四点能构成平行四边形.
①当点Q1在y轴左侧时,由四边形AQ1CN 为平行四边形,得AC与Q1N互相平分, 则点Q1与点N关于原点(0,0)对称,而
而N( 4a ,- a ),A(0,a),C(0,-a),
故+Qa,2 (得343a-,7a-=3 -73a
).将点Q2的坐标代入y=-x2-2x 16 a2- 8 a+a,
∴A(0,a).
由y=-(x+1)2+1+a,得M(-1,1+a).
(2)将△NAC沿着y轴翻折,若点N的对称点P恰好落在抛 物线上,AP与抛物线的对称轴相交于点D,连接CD, 求a的值及△PCD的面积.
设直线MA对应的函数解析式为y=kx+b,
将点A(0,a),M(-1,1+a)的坐标分别代入
得
解:∵抛物线y=x2-3x+
5 4
与x轴相交于A,B两点,
与y轴相交于点C,
∴令y=0,得x= 1 或x= 5 ,
2
2
∴A( 1 ,0),B( 5 ,0);
2
令x=0,得y=
5 4
2025年中考数学总复习+题型7 二次函数的综合应用++++课件+
将点B的坐标代入上式得2 =3 (2-m),
解得m= ,
则点F'( ,3
),点D( ,0),则BD+BF最小值为DF'=
+ ( ) =2 .
30
6.(2024·德阳中考)如图,抛物线y=x2-x+c与x轴交于点A(-1,0)和点B,与y轴交于点C.
15
【针对训练】
3.(2024·广元中考)在平面直角坐标系xOy中,已知抛物线F:y=-x2+bx+c经过点
A(-3,-1),与y轴交于点B(0,2).
(1)求抛物线的函数解析式;
(2)在直线AB上方抛物线上有一动点C,连接OC交
AB于点D,求 的最大值及此时点C的坐标;
(3)作抛物线F关于直线y=-1上一点的对称图象F',抛物线F与F'只有一个公共点E(点
(2)如图2,在BC上方的抛物线上有一动点P(不与B,C重合),过点P作PD∥AC,交BC
于点D,过点P作PE∥y轴,交BC于点E.在点P运动的过程中,请求出△PDE周长的最
大值及此时点P的坐标.
10
【解析】(1)将点A(-1,0),B(3,0)代入y=ax2+bx+3,
= −
−+=
2
(3)如图②,M是点B关于抛物线的对称轴的对称点,Q是抛物线上的动点,它的横坐
标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E,设△BEQ和△BEM的面积分别为
1
S1和S2,求 的最大值.
二次函数的综合应用
设自变量 ; 建立函数表达式 ; 决这类问题的一般步骤是: 第一步: _________ 第二步: ________________ 确定自变量取值范围 配方法 求出 顶点坐标公式 或________ 第三步: __________________;第四步:根据_____________
最值(在自变量的取值范围内).
解:(1)从上往下依次填:1000-10x;-10x2+1300x-30000. (2)由题意,得-10x2+1300x-30000=10000, 解得 x1=50,x2=80. 答:玩具销售单价为 50 元或 80 元时,可获得 10000 元销售利润. 1000-10x≥540, (3)根据题意,得 解得 44≤x≤46. x≥44, ∵利润 w=-10x2+1300x-30000=-10(x-65)2+12250, ∴a=-10<0,对称轴为直线 x=65, ∴当 44≤x≤46 时,y 随着 x 增大而增大. ∴当 x=46 时,w 最大,w 最大值=8640 元. 答:商场销售该品牌玩具获得的最大利润为 8640 元.
解:(1)w=xq-p=-2x2+140x-500. (2)当 x=25 时,w=1750(元). (3)w=-2(x-35)2+1950,∴当 x=35 时,利润最大,为 1950 元.
7.某农场拟建两间矩形饲养室,一面靠墙(墙足够长),中间用一道墙隔 开,并在如图所示的三处各留 1 m 宽的门.已知计划中的材料可建墙体(不包 括门)总长为 27 m,则能建成的饲养室总占地面积最大为多少?
易错警示 易错易混点:确定实际问题中的最值与自变量的取值范围 【例题】 某商品的进价为 40 元, 售价为每件 50 元, 每个月可卖出 210 件;如果每件商品的售价涨 1 元,那么每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 之间的函数表达式,并直接写出自变量的取值范围. (2)每件商品的售价定为多少元时,每个月获得利润最大?最大的月利润 是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以 上结论请你直接写出售价在什么范围时,每个月的利润不低于 2200 元?
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
二次函数与根与系数关系综合运用
二次函数与根与系数关系综合运用二次函数是数学中一种重要的函数类型,其表达式可以写成:$y=ax^2+bx+c$,其中$a, b, c$为常数,且$a\neq0$。
二次函数的图像是一个抛物线,其根的数量取决于判别式$S=b^2-4ac$的正负性。
一、根与系数的关系根据二次函数的定义,我们可以推导出根与系数之间的关系。
1.虚根的情况若判别式$S=b^2-4ac$小于零,则二次函数的图像与$x$轴没有交点,即方程$ax^2+bx+c=0$无实根。
此时,方程的根为复数。
2.重根的情况若判别式$S=b^2-4ac$等于零,则二次函数的图像与$x$轴有一个交点,即方程$ax^2+bx+c=0$有一个实根。
此时,方程的根为重根。
3.两个不同实根的情况若判别式$S=b^2-4ac$大于零,则二次函数的图像与$x$轴有两个交点,即方程$ax^2+bx+c=0$有两个不同实根。
此时,方程的根为实数。
二、根与系数的综合应用根与系数的关系在实际问题中有着广泛的应用,下面我们来看几个例子:例1:已知二次函数$y=ax^2+bx+c$的图像上有两个交点$(1,3)$和$(-2,7)$,求该二次函数的表达式及其判别式。
解:由已知条件可得两个方程:\[a+b+c=3 \quad...(1)\]\[4a-2b+c=7 \quad...(2)\]将(1)式左右两边乘以2,再与(2)式相减可以解得:\[-4b+3a=1 \quad...(3)\]解得$a=\frac{5}{3}, b=-\frac{7}{6}$。
将$a, b$的值代入(1)式或(2)式中,可以解得$c=\frac{7}{3}$。
所以该二次函数的表达式为:\[y=\frac{5}{3}x^2-\frac{7}{6}x+\frac{7}{3}\]判别式$S=(-\frac{7}{6})^2-4(\frac{5}{3})(\frac{7}{3})=\frac{49}{36}-\frac{140}{27}=-\frac{23}{108}<0$。
二次函数与反比例函数二次函数与反比例函数的综合应用
二次函数与反比例函数二次函数与反比例函数的综合应用随着数学的发展,二次函数与反比例函数的综合应用在现实生活中扮演着重要的角色。
本文将探讨二次函数与反比例函数的基本概念,并通过实际案例来说明它们在应用中的价值。
二次函数是一种以x的平方为最高次的多项式函数。
它的一般形式为:y=ax^2+bx+c,其中a、b和c为常数,且a不等于0。
二次函数的图像通常呈现为一条抛物线,其开口的方向取决于a的正负。
反比例函数,也被称为倒数函数,是指两个变量之间的关系满足乘积为常数的特性。
反比例函数的一般形式为:y=k/x,其中k为常数。
二次函数与反比例函数的综合应用可以广泛应用于物理学、经济学和工程学等实际领域。
下面将分别介绍它们在这些领域中的应用。
一、物理学中的应用二次函数在物理学中常用于描述抛体运动的轨迹。
例如,当一个物体被抛出时,它的运动轨迹可以用一个二次函数来表示。
其中,抛物线的开口方向与抛出的物体的初速度和抛出角度有关。
反比例函数在物理学中也有着重要的应用,特别是在描述压力和容积之间的关系时。
根据波义耳定律,一个封闭系统中的气体压力与其容积成反比。
因此,我们可以使用反比例函数来表示它们之间的关系,从而帮助我们理解气体的性质和行为。
二、经济学中的应用二次函数在经济学中被广泛应用于成本函数和利润函数的建模。
在生产过程中,成本往往与生产规模和产量呈二次函数关系。
通过分析二次函数的图像和性质,经济学家可以研究如何最大化利润或最小化成本,从而为企业的经营决策提供依据。
反比例函数在经济学中的一个重要应用是供求关系的建模。
根据经济学原理,供求关系可以用反比例函数来表示。
市场上的物品价格往往与供给量和需求量成反比。
通过解析反比例函数,经济学家可以预测市场价格的变化趋势,并为政府和企业的决策提供参考。
三、工程学中的应用二次函数在工程学中常用于描述材料的应力-应变关系。
通过对材料的试验数据进行拟合,可以得到二次函数模型,从而推导出材料的力学性质和特点。
二次函数与指数函数的综合运用
二次函数与指数函数的综合运用在数学中,二次函数与指数函数是两个重要的概念。
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$为常数,而指数函数的一般形式为$g(x) = a \cdot b^x$,其中$a$和$b$为常数。
本文将探讨二次函数与指数函数的综合运用。
一、函数的图像和性质1. 二次函数的图像和性质二次函数$f(x) = ax^2 + bx + c$的图像为抛物线。
当$a>0$时,抛物线开口向上;当$a<0$时,抛物线开口向下。
抛物线的最高点或最低点称为顶点,顶点坐标为$(-\frac{b}{2a},f(-\frac{b}{2a}))$。
若$a \neq 0$,则二次函数的对称轴为直线$x = -\frac{b}{2a}$。
2. 指数函数的图像和性质指数函数$g(x) = a \cdot b^x$中,$a$为垂直方向上的变化量,$b$为底数。
当$a>0$且$0<b<1$时,指数函数会下降;当$a>0$且$b>1$时,指数函数会上升。
指数函数没有最高点或最低点,其图像在$x$轴的右侧无限接近于$x$轴。
指数函数$g(x)$的特点是必经过点$(0,1)$。
二、二次函数与指数函数综合运用的例子1. 二次函数与指数函数图像的交点考虑以下二次函数和指数函数:二次函数:$f(x) = 2x^2 + x - 1$指数函数:$g(x) = 3 \cdot 2^x$要找到它们的图像交点,即求解$f(x) = g(x)$。
将函数代入方程,得到$2x^2 + x - 1 = 3 \cdot 2^x$。
上述方程的解可以通过数值方法或图像分析得到。
在此不对解的具体求法进行讨论。
2. 二次函数与指数函数的最值问题考虑以下二次函数和指数函数:二次函数:$f(x) = -x^2 + 3x + 2$指数函数:$g(x) = 2 \cdot 3^x$要求解二次函数$f(x)$的最值,我们可以通过找到顶点的坐标来得到。
二次函数与二元二次方程的解法与应用的综合考察
二次函数与二元二次方程的解法与应用的综合考察二次函数和二元二次方程是数学中的重要概念,它们在各个领域有着广泛的应用。
本文将综合考察二次函数和二元二次方程的解法及其在实际问题中的应用。
一、二次函数的解法及应用二次函数是形如y=ax²+bx+c的函数,其中a、b、c为常数且a≠0。
它的图像是抛物线,对于给定的函数,我们可以通过以下方法求解其解:1. 直接法:当已知二次函数的方程形式时,可以直接利用求根公式:x=(-b±√(b²-4ac))/(2a)来求解。
这种方法适用于一元二次方程的解法。
2. 图像法:二次函数的图像是一个抛物线,根据图像的性质可以获取函数的解。
当抛物线开口向上时,方程有最小值;当抛物线开口向下时,方程有最大值。
可以通过求最值来获取解。
这种方法适用于二次函数的解析几何问题。
二次函数在现实生活中有广泛的应用。
例如,抛物线的运动轨迹可以用二次函数来描述,我们可以通过二次函数来解析抛物线运动的问题;在经济学中,需求曲线和供应曲线可以用二次函数来表示,通过求解二次函数可以得到市场的均衡价格和数量。
二、二元二次方程的解法及应用二元二次方程是形如ax²+by²+cxy+dx+ey+f=0的方程,其中a、b、c、d、e、f为常数且a、b不全为0。
它的解是同时满足方程的两个未知数x和y的值。
求解二元二次方程可以通过以下几种方法:1. 分离变量法:将二元二次方程中的变量分离,化为两个一元二次方程,然后求解一元二次方程,最后得到二元二次方程的解。
这种方法适用于方程中某些项含有相同的未知数的倍数。
2. 消元法:通过消除方程中的y,或者通过消除方程中的x,将二元二次方程化为一元二次方程进行求解。
这种方法需要灵活运用消元原理,将方程进行简化。
二元二次方程的应用非常广泛,尤其在几何和物理问题中。
例如,在几何中,通过二元二次方程可以描述圆与直线的交点问题;在物理学中,通过二元二次方程可以描述抛物线轨迹的运动问题,如炮弹的飞行轨迹、投掷物的抛射运动等。
二次函数应用(综合应用)附答案
页眉内容二次函数应用(能力提高)一、选择题:1、二次函数y=x 2-(12-k)x+12,当x>1时,y 随x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )92、下列四个函数中,y 的值随着x 值的增大而减小的是( ) (A )x y 2=(B )()01>=x xy (C )1+=x y (D )()02>=x x y 3、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则 ( ) (A ) ac+1=b (B ) ab+1=c (C )bc+1=a (D )以上都不是4、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<15、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-146、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) (A )()1232+-=x y (B ) ()1232-+=x y (C ) ()1232--=x y (D )()1232++=x y7、(3)已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过()A.一、二、三象限B.一、二、四象限 C .一、三、四象限 D.一、二、三、四象限 8、若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9、已知二次函数222)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值时,x 的值为 ( ) (A )b a + (B )2b a + (C )ab 2- (D )2ba - 10、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )11、10. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小;C A y xO④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①②③④B. ①②④C. ①③④D. ②④ 12、已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5二、填空题:11、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
二次函数综合阅读应用题
二次函数综合运用一、解答题1.根据以下素材,探索完成任务.素材1一圆形喷泉池的中央安装了一个喷水装置OA ,通过调节喷水装置OA 的高度,从而实现喷出水柱竖直方向的升降,但不改变水柱的形状.为了美观在半径为1.6米的喷泉池四周种植了一圈宽度均相等的花卉(图1中的阴影部分).素材2从喷泉口A 喷出的水柱成抛物线形,如图2是该喷泉喷水时的一个截面示意图,已知喷水口A 离地面高度为058.米,喷出的水柱在离喷水口水平距离为0.2米处离地面最高,高度为0.6米.问题解决任务1建立模型以点O 为原点,OA 所在直线为y 轴建立平面直角坐标系,根据素材2求抛物线的函数表达式.任务2利用模型为了提高对水资源的利用率,在欣赏喷泉之余也能喷灌四周的花卉,确定喷水口A 升高的最小值.任务3分析计算喷泉口A 升高的最大值为1.02米,为能充分喷灌四周花卉,请对花卉的种植宽度提出合理的建议.2.如果将运动员的身体看作一点,则她在跳水过程中运动的轨迹可以看作为抛物线的一部分.建立如图2所示的平面直角坐标系xOy ,运动员从点()0,10A 起跳,从起跳到入水的过程中,运动员的竖直高度()m y 与水平距离()m x 满足二次函数图1的关系.(1)在平时的训练完成一次跳水动作时,运动员甲的水平距离x 与竖直高度y 的几组数据如下表:水平距离()m x 0132竖直高度()m y 1010254根据上述数据,求出y 关于x 的关系式;(2)在(1)的这次训练中,求运动员甲从起点A 到入水点的水平距离OD 的长;(3)信息1:记运动员甲起跳后达到最高点B 时距水面的高度为()m n ,从到达到最高点开始计时,则她到水面的距离()m h 与时间()s t 之间满足25h t n =-+.信息2:已知运动员甲在达到最高点后需要1.4s 的时间才能完成极具难度的270C 动作.请通过计算说明,在(1)的这次训练中,运动员甲能否成功完成此动作?3.【综合探究】运用二次函数来研究植物幼苗叶片的生长状况在大自然里,有很多数学的奥秘.图1是一片美丽的心形叶片,图2是一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.【探究一】确定心形叶片的形状(1)如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数2441y ax ax a =-+++图象的一部分,且过原点,求抛物线的解析式及顶点D 的坐标;【探究二】研究心形叶片的宽度:(2)如图3,心形叶片的对称轴直线2y x =+与坐标轴交于A ,B 两点,抛物线与x 轴交于另一点C ,点C ,1C 是叶片上的一对对称点,1CC 交直线AB 于点G .求叶片此处的宽度1CC ;【探究三】探究幼苗叶片的长度(3)小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数2441y ax ax a =-+++图象的一部分;如图4,幼苗叶片下方轮廓线正好对应任务1中的二次函数.已知直线PD (点P 为叶尖)与水平线的夹角为45︒,求幼苗叶片的长度PD .探究汽车刹车性能“道路千万条,安全第一条”.刹车系统是车辆行驶安全重要保障,某学习小组研究了刹车性能的相关问题(反应时间忽略不计).素材1刹车时间:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的时间.刹车距离:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的距离.素材2汽车研发中心设计一款新型汽车,某兴趣小组成员记录了模拟汽车在公路上以某一速度匀速行驶时的刹车性能测试数据,具体如下:刹车后汽车行驶时间()s t1234刹车后汽车行驶距离()my27486372素材3该兴趣小组成员发现:①刹车后汽车行驶距离y(单位:m)与行驶时间t(单位:s)之间具有函数关系²y at bt=+(0a≠、a、b为常数);②刹车后汽车行驶距离y随行驶时间t的增大而增大,当汽车刹车后行驶的距离最远时,汽车完全停止.问题解决:请根据以上信息,完成下列任务.任务一:求y关于t的函数解析式.任务二:汽车司机发现正前方90m处有一个障碍物在路面,立刻刹车,判断该车在不变道的情况下是否会撞到障碍物?请说明理由.素材1如图1是某足球场的一部分,球门宽7m DE CF ==,高 2.5m CD EF ==.小梅站在A 处向门柱CD 一侧发球,点A 正对门柱CD (即AC CF ⊥),24m AC =,球射向球门的路线呈抛物线,且一直在AC 正上方.此次射门的侧面示意图如图2所示,当足球飞行的水平距离15m AB =时,球达到最高点Q ,此时球离地面4.5m .以点A 为原点,直线BA 为x 轴,建立平面直角坐标系.素材2如图3,距离球门正前方6m 处放置一块矩形拦网HGMN ,拦网面垂直于地面,且GH CF ∥(GH 足够长),拦网高4m HN =.任务1求足球运动的高度(m)y 与水平距离(m)x 之间的函数关系式.任务2未放置拦网时,判断此次射门球能否进入球门.若能进入,计算出足球经过C 点正上方时的高度;若不能进入,小梅不改变发球的方向,且射门路线的形状和最大高度保持不变,他应该带球向正后方至少移动多少米射门,才能让足球进入球门.任务3放置拦网后,小梅站在A 处,射门路线的形状和最大高度保持不变,只改变发球方向,使射向球门的路线在AF 正上方,判断足球能否越过拦网,在点E 处进入球门.注:上述任务中足球落在门柱边线视作足球进入球门.6.【项目式学习】项目主题:安全用电,防患未然.项目背景:近年来,随着电动自行车保有量不断增多,火灾风险持续上升,据悉,约80%的火灾都在充电时发生,某校九年级数学创新小组,开展以“安全用电,防患未然”为主题的项目式学习,对电动自行车充电车棚的消防设备进行研究.(1)图1悬挂的是8公斤干粉灭火器,图2为其喷射截面示意图,在AOB 中,OA OB =,喷射角60AOB ∠=︒,地面有效保护直径AB 为O 距离地面的高度OC 为________米;任务二:模型构建由于干粉灭火器只能扑灭明火,并不能扑灭电池内部的燃烧,在火灾发生时需要大量的水持续给电池降温,才能保证电池内部自燃熄灭,不会复燃.学校考虑给新建的电动自行车充电车棚安装消防喷淋头.(2)如图3,喷淋头喷洒的水柱最外层的形状为抛物线.已知学校的停车棚左侧靠墙建造,其截面示意图为矩形OABC ,创新小组以点O 为坐标原点,墙面OA 所在直线为y 轴,建立如图4所示的平面直角坐标系.他们查阅资料后,提议消防喷淋头M 安装在离地高度为3米,距离墙面水平距离为2米处,即3OA =米,2AM =米,水喷射到墙面D 处,且1OD =米.①求该水柱外层所在抛物线的函数解析式;②按照此安装方式,喷淋头M 的地面有效保护直径OE 为_______米;任务三:问题解决(3)已知充电车棚宽度OC 为7米,电动车电池的离地高度为0.2米,创新小组想在喷淋头M 的同一水平线AB 上加装一个喷淋头N ,使消防喷淋头喷洒的水柱可以覆盖所有电动车电池,喷淋头N 距离喷淋头M 至少________米.7.【背景素材】射击过程中,瞄准线和枪管并不是平行的,如图1,当瞄准线处于水平时,枪管略微上翘,子弹从枪膛中射出后,其飞行过程形成的轨迹(弹道轨迹)近似于抛物线,弹道轨迹与瞄准线有两个交点,分别称为第一归零点和第二归零点.射击靶靶面呈圆形,圆心即靶心,射击时,瞄准线对准靶心,且垂直于靶面,当靶心位于任意一个归零点时,子弹就能精准命中靶心,否则将偏离靶心.【探究思考】有一射击靶距甲种枪枪膛口水平距离为200m ,射击队员调整瞄准镜,使其水平对准靶心,并使靶心刚好位于第二归零点,此时弹道轨迹已确定,如图2,以瞄准线为x 轴,枪膛口竖直方向为y 轴建立平面直角坐标系,则子弹的飞行高度y (单位:m )与水平距离x (单位:m )满足函数关系()()5120010y x n x =---,已知点P 为该枪枪膛口,其低于瞄准线0.06m (即0.06m OP =).(1)求出n 的值,并解释点(),0N n 的实际意义.(2)在不调整弹道轨迹的情况下,把射击靶向前移动到与枪膛口的水平距离为120m 处,若射击靶半径为0.1m ,问子弹能否命中靶面?请说明理由.【理解应用】如图3,同上建立平面直角坐标系,已知乙种枪弹道轨迹恒不变,且其两个归零点坐标分别为()10,0A ,()85,0C ,点()15,0.05B 是弹道轨迹上一点,有一移动电子靶在距枪膛口水平距离75m 处启动加速,迎面驰来,在距枪膛口水平距离50m 处以10m/s 的速度开始匀速运动,当电子靶启动的同时,一队员开始水平瞄准靶心,瞄准后再连开两枪,随后都命中靶面,子弹落点分别位于靶心上方0.2m 和0.05m 处(该移动电子靶靶面半径大于0.2m ),从电子靶启动到命中第二枪共用时6s ,求这个队员瞄准靶心所用的时间.(子弹飞行所用时间忽略不计)8.阅读与思考下面是小涵同学的数学日记,请仔细阅读并完成相应的任务.⨯年⨯月⨯日星期六“用函数思想解决生活中的实际问题”五一假期,我班数学作业是“用函数思想解决生活中的实际问题”,并参与解决问题的全过200m的蔬菜种植基地,于是我也积极程.今天、爸爸计划在农村老家用60m栅栏围建一块5参与了基地的设计建设.在规划“蔬菜基地形状”时、爸爸根据实际情况将基地设计为矩形,以便分割区域进行种植.现遇到的问题是:是否存在满足上述条件的矩形呢?我想到了如下解决方法:办法一:利用一次函数与反比例函数图象解决.假设存在这样的矩形,设矩形相邻两边长分别为m x,m y,可得y与x的一次函数和反比例函数的表达式,再通过列表、描点、连线可得如图图象、两个函数的图象在第一象限内有交点,于是可以确定存在满足上述条件的矩形.办法二:利用二次函数表达式解决,假设存在这样的矩形、S=时,设矩形的其中一条边长为m x,矩形的面积为S,根据题意,可得到二次函数,当200通过判断方程是否有解即可确定是否存在这样的矩形.任务:(1)小涵同学解决矩形蔬菜基地问题中的“办法一”和“办法二”,主要体现的数学思想有______;(从下面选项中选出两个即可)A.方程思想B.统计思想C.函数思想D.数形结合思想(2)请你直接写出“办法一”中一次函数的表达式为:______,反比例函数的表达式为:______.(3)按照小涵日记中的“办法二”解决问题:是否存在满足上述所给条件的矩形?请说明理由.9.根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为6m ,绳子最高点为2m ,摇绳同学的出手高度均为1m ,如图2;(2)9名跳绳同学身高如右表.身高()m 1.70 1.73 1.75 1.80人数2241素材3:观察跳绳同学的姿态(如图3),发现:(1)跳绳时,人的起跳高度在0.25m 及以下较为舒适;(2)当长绳摇至最高处时,人正屈膝落地,此时头顶到地面的高度是身高的1920.问题解决任务1:确定长绳形状,请在图2中以长绳触地点为原点建立直角坐标系,并求出长绳摇至最高处时,对应抛物线的解析式.任务2:确定排列方案,该班班长决定:以长绳的触地点为中心,将同学按“中间高,两边低”的方式对称排列,同时保持0.45m的间距,请计算当绳子在最高点时,长绳是否会触碰到最边侧的同学.任务3:方案优化改进,据最边侧同学反映:由于跳起高度过高,导致不舒适,希望作出调整.班长给出如下方案:摇绳同学在绳即将触地时,将出手高度降低至0.85m.此时中段长绳将贴地形成一条线段(线段AB),而剩余的长绳则保持形状不变,如图4.请你通过计算说明,该方案是否可解决同学反映的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合应用
二次函数是初中数学中的重要内容之一,是历年中考的一个必考知识点,并且也是综合代数与几何的一个重要载体,它往往以中考压轴题的形势出现。
此类问题考查知识点多,综合性强,难度较大,能较好地考查学生综合应用能力与灵活应变能力,在解题思路上注意渗透数形结合、函数与方程、分类讨论和转化与化归等数学思想的运用。
本文就综合问题的分类归纳解析,以供读者参考。
一、用待定系数法求函数解析式
要确定函数解析式,就是要确定解析式中的待定系数(常数)。
由于二次函数的解析式有三种形式,即一般式:()20y ax bx c a =++≠,顶点式:()()2
0y a x h k a =-+≠,交点式:()()()120y a x x x x a =--≠,所以求二次函数解析式时,要根据已知条件的特点,选择适当形式,建立方程或方程组,简化计算过程。
例1.(北京市中考题)已知抛物线()20y ax bx c a =++≠与y 轴交于点A(0,3),与x 轴分别交于B(1,0)、C(5,0)两点,
(1) 求抛物线的解析式;
(2) 若点D 为线段OA 的一个三等分点,求直线DC 的解析式。
解:(1) 因为抛物线过A(0,3)、B(1,0)、C(5,0)三点,所以
有 3
02550
c a b c a b c =++=++= 解得 318
,,355
a b c ==-=.
∴抛物线的解析式是2318
355
y x x =
-+. (2) 依题知,OA 的三等分点分别为(0,1)、(0,2). 设直线DC 的解析式为y kx b =+
当点D 的坐标为(0,1)时,有
150
b k b =+= 解得 1b =,1
5
k =-
∴直线DC 的解析式为1
15
y x =-
+ 当点D 的坐标为(0,2)时,有
250
b k b =+= 解得 2b =,25
k =-
∴直线DC 的解析式为2
25
y x =-
+
二、从几何图形中建立函数关系
从几何图形中确定或建立函数关系式是数形结合的新题型,已构成中考命题的热点,主要是运用相似的性质、勾股定理、面积关系(或公式)等建立量与量的函数关系,几何图形中要建立两个量之间的关系,一般的方法和步骤是:
1、将题目中的几何量用含字母x 和y 的代数式表示,并将有关几何量通过添加辅助线等方法转化为我们熟悉的特殊图形中的量。
2、用特殊图形的特定性质和几何定理,写出满足含有字母x 、y 的方程,并用x 表示y ,并写出自变量的范围。
例2、(长春市中考题)如图1,正方形ABCD 的顶点A 、B 的坐标分别为(0、10)、(8、4),顶点C 、D 在第一象限,点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点E(4、0)出发,沿x 轴正方向以相同速度运动。
当点P 到达点C 时,P 、Q 两点同时停止运动,设运动时间为t 秒。
(1)求正方形ABCD 的边长;
(2)当点P 在边AB 上运动时,△OPQ 的面积S(平方单位)与时间t(秒)之间的函数图像为抛物线的一部分(如图2),求P 、Q 两点的运动速度;
(3)求(2)中的面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点F 的坐标; (4)若点P 、Q 保持(2)中的速度不变,则点P 沿着AB 边运动时,∠OPQ 的大小随着时间t 的增大而增大;沿着BC 边运动时,∠OPQ 的大小随着时间t 的增大而减小。
当点P 沿着这两边运动时,使∠OPQ=90º的点P 有 个。
(抛物线()2
0y ax bx c a =++≠的顶点坐标是 24,24b ac b a a ⎛⎫
-- ⎪⎝⎭
.)
O
解:(1) 过点B 作BF ⊥y 轴于点F,
由 A(0、10)、B(8、4) 得BF=8,AF=6. ∴ AB=10.
(2) 由图2可知,点P 从点A 运动到点B 用了10秒.
∵AB=10,10÷10=1. ∴P 、Q 两点的运动速度均为每秒1个单位. (3) 过点P 作P G ⊥y 轴于点G ,则P G ∥BF.
∴
.10
GA AP t
FA AB ==GA ,即6 ∴3.5GA t = ∴3
10.5
OG t =-
∵4,OQ t =+
∴113(4)(10)225S OQ OG t t =⋅⋅=+-. 219
20.105
t t ++3即S=- ∵19
195,3232()10
b a -=-=⨯-103≤
≤19且0, ∴当193
t =时, S 有最大值. 476331
,10,51555GP t OG t ==
=-=此时, ∴点P 的坐标为7631
(,).155
(4) 2.
三、如何求实际问题的最值(最值问题)
解此类问题通常分为两个步骤进行:先是根据实际问题的条件建立函数关系,二是在给定的自变量的取值范围内,利用二次函数的性质求出函数的最值.
例3.在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势.设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售,从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售. (1)试建立销售价y 与周次x 之间的函数关系式;
(2)若这种时装每件进价z 与周次x 之间的关系为2
1
(8)12(116)8
z x x =--+≤≤,且x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润是多少?
解:(1)依题意,可建立函数关系式为
20+2(x-1)(1≤x ≤6) 2x + 18(1≤x ≤6) y= 30(6≤x ≤11) 即 y= 30(6≤x ≤11)
30-2(x-11)(12≤x ≤16) -2x+52 (12≤x ≤16) (2)设销售利润为W ,则W=售价 - 进价,
21218(8)12(16)8x x x ++
--≤≤; 21
14(16)8x x +≤≤; 故W= 2
130(8)12(611)8x x +--≤≤; 即W= 21226(611)8
x x x -+≤≤;
21252(8)12(1216)8x x x -++--≤≤ ; 21
448(1216)8
x x x -+≤≤;
①当W=2
1148
x +时,∵x ≥0时,函数W 随x 增大而增大,
又1≤x ≤6, ∴当x=6时, W 有最大值,此时最大值为18.5; ②当W=
212268x x -+=21
(8)188
x -+时, ∵x ≥8时,函数W 随x 增大而增大, ∴当x=11时, W 有最大值,此时最大值为19.125; ③当W=
214488x x -+=21
(16)168
x -+时, ∵12≤x ≤16时,函数W 随x 增大而减小∴当x=12时, W 有最大值,此时最大值为18;
综上所述,该服装第11周出售时,每件销售利润最大,最大利润是19.125元. 四、存在性问题
存在性问题是指在一定条件下判断某种数学对象是否存在的问题。
解决此类问题的一般思路是:假设存在,运用条件、定理、性质等逆推,看与题中的条件是否相等。
例4.(海南省中考题)如下图,已知二次函数图像的顶点坐标是C(1、0),直线y=x+m 与该二次函数的图像交于A 、B 两点,其中A 点的坐标为 (3、4),B 点在y 轴上. (1) 求m 的值及这个二次函数的关系式;
(2) P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图像
交于E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;
(3) D 为直线AB 与这个二次函数图像对称轴的交点,在线段AB 上是否存在一点P ,使得四边形
DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由. y
解: (1) ∵点A (3、4)在直线y=x+m 上, ∴4=3+m ∴ m=1 设所求二次函数的关系式为 2
(1)y a x =-.
∵点A (3、4)在二次函数2(1)y a x =-的图像上, O C x ∴4=2(1)a x -, ∴1a =. ∴所求二次函数的关系式为 2(1)y x =-. 即 221y x x =-+. (2)设P 、E 两点的纵坐标分别为P y 和E y .
∴PE=h =P y -E y = 22(1)(21)3x x x x x +--+=-+. 即2
3h x x =-+(0<x<3). (3)存在.
假设存在点P ,使得四边形DCEP 是平行四边形,则必有PE=DC. ∵点D 在直线y=x+1上, ∴点D 的坐标为(1、2),
∴2
32x x -+=. 2
320x x -+=即. 解之,得12x =, 21x =(不合题意,舍去)
∴ 当点P 的坐标为(2、3)时,四边形DCEP 是平行四边形. 附:
作者通讯地址:海南省三亚市第二中学 符斌 邮编:572000。