平面基本性质
平面的基本性质
∴过不共线的三点A,B,C有一个平面 (公理3)
∵B∈ ,C∈ ∴a (公理1)
∴过点A和直线a有一个平面
(唯一性)
又由公理3,经过不共线的三点A、B、C的平面
只有一个 ∴经过a和平点面的A基本的性质平面只有一个.
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直 线 a bC 有 且 只 有 一 个 平 面 , 使 得 a, b.
平面的基本性质
一.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的 平面形象,数学中的平面概念是现实平面加以抽 象的结果。
二.平面的特征:
观察思考
平面没有大小、厚薄和宽窄,平面在空间是 无限延伸的。
三.平面的表示方法:
平面可以用小写的希腊字母或大写的英文字 母表示,也可以用三个或三个以上字母表示。
察 思
问题2 如图,两个平面只有一个公共点,是吗? 考
?
问题3 照相机架为什么只有三只脚?自行车只用
一只撑脚?
平面的基本性质
公理一:如果一条直线上的两点在一个平面内, 那么这条直线上的所有点都在这个平面内
BAAB
B A α
l
如果直线l 上所有点都在平面α内就说直线l在平 面α内,或者说平面α经过直线l,否则,就说直 线l在平面α外 应用:
平面的基本性质
推论3.两条平行直线唯一确定一个平面。
βA
Ba b
C
数学语言表示:
直 线 a//b 有 且 只 有 一 个 平 面 , 使 得 a, b.
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三条都不在同一平 面内,有它们中的两条来确定平面,可以确定多少个平面。
高三数学一轮复习 9.43 平面的基本性质及空间的两条直线课件 理 大纲人教版
1.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ) A.5部分 B.6部分 C.7部分 D.8部分 答案:C
2.如图,正方体ABCD—A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中 点.那么,正方体的过P、Q、R的截面图形是( )
A.三角形
B.四边形
C.五边形
D.六边形
答案:C
4.下列各图是正方体和正四面体,P、Q、R、S分别是所在棱的中点,过四 个点共面的图形是________.(写出符合要求序号)
解析:在④选项中,可证Q点所在棱与PRS平行,因此,P、Q、R、S四 点不共面.可证①中PQRS为梯形;③中可证PQRS为平行四边形;②中 如图取A1A与BC的中点分别为M、N,可证明PMQNRS为平面图形,且 PMQNRS为正六边形. 答案:①②③
2.利用公理2可证明点共线,线共点等问题.
3.求异面直线所成的角,是要将异面直线问题转化为相交直线所成的锐角或直角, 可通过余弦定理解三角形,而作辅助线主要是作已知直线的平行线, 具体可利用平行四边形对边平行,三角形或梯形的中位线与底边平行等,而 对两条异面直线的判定可根据“连结平面外一点和平面内一点的直线与平面 内不经过此点的直线是异面直线”. 这个结论是对异面直线直接判定的重要依据,也是求异面直线成角作辅助线 的 重要依据之一,也可利用向量的夹角求异面直线所成的角.
解法二:以D为空间坐标原点,如图,建立空间直角坐标系,则D1(0,0,2),
F(1,0,0),O(1,1,0),E(0,2,1),∴FD1=(-1,0,2),OE=(-1,1,1),∴FD1·OE
=3,∴cos θ=
,
即两条异面直线D1F与OE所成角的余弦值为
.
平面的基本性质与推论
如果点A , 点B , 那么直线AB
C 练习1、下列说法正确的是_____
A:任何三点不一定都在同一平面内 B:平面与平面可以只有唯一的一个公共点 C:若点A∈平面α,点A∈平面β,点B∈平 面α,点B∈平面β,则α∩β=AB D: 若A∈平面α,B∈平面α,C∈平面α, 则α是唯一确定的
点A在平面内,记作 A 点A不在平面内,记作 A
直线l在平面内,记作 l 直线l不在平面内,记作 l 平面与平面相交于直线a, 记作 a 直线l和直线m相交于点A, 记作 l m A 简记作l m A
基本性质1:如果一条直线上的两点在一个平面 内,那么这条直线上的所有点都在这个平面内。
不共线的三点确定一个平面。
R
平面ABC α
A Q P C
B
基本性质3:如果不重合的两个平面有一个公共 点,那么它们有且只有一条过这个点的公共直线。 两个平面相交 两个平面的交线 注意:
α β
P
a
2.平面的基本性质的推论: 推论1:经过一条直线和直线外一点,有且只有一
个平面.
B A C
推论2:经过两条相交直线,有且只有一个平面.
1.平面的基本性质:
点和直线的基本性质: (1)连接两点的线中,线段最短 (2)过两点有一条直线,并且只有一条直线。 基本性质1:如果一条直线上的两点在一个平面 内,那么这条直线上的所有点都在这个平面内。 直线在平面内 或平面经过直线 B
A α 作用:可以判断一条直线是否在一个平面内。
基本性质2:经过不在同一直线的三点有且只有 一个平面。
A B C
推论3:经过两条平行直论:
已知两条直线相交,过其中任意一条直线上 的一点作另一条直线的平行线,这些平行线是否 都共面? A
平面的基本性质
三、平面的基本性质:
公理1 : 如果一条直线的两点在一个平面内,那么这条
直线上所有点都在这个平面内
A l, B l, A , B l
A•
•B
l
想一想:这个公理有什么作用?
1.检验物体的表面是否平整 2.判断一条直线是否在一个平面内
3.判断点是否在一个平面内
P l且P l
•A
B•
•C
想一想:哪些现象可以用来说明公理3?
1、三脚的板凳才能坐稳! 2、两块合铁和一把锁才能固定门! 3、照相机的支架是三条腿!
A, B, C不共线 A, B, C确定一平面
练习
1.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C1 , A1B, BC1 ,分别记作、、 ,试用适当的符号填 空.
小结:
1、平面的概念及表示方法。
2、平面的基本性质(三个公理)及其作用。
作业:
预习公理的推论1、2、3
/ 博王时彩计划软件
敢咯 那 那时候别早咯 奴婢那就服侍您歇息吧 ”菊香の前半句话王爷还没什么在意 壹听到她那那后半句话 气得差点儿上去给她壹巴掌!自从他决定回怡然居之后 壹直在 搜肠刮肚地选择用啥啊样の委婉词语来与淑清告别 既别能太伤她の心 又能够安然脱身 结果还别等他想出法子来呢 那各可恶の菊香 竟然是哪壶别开提哪壶 直接就要来服侍 他歇息!真是要将他活生生气死!第壹卷 第899章 清白既然菊香已经红口白牙地提出来服侍他安歇就寝事宜 被逼到绝境之中没处躲没处藏の王爷只好硬着头皮开口道: “爷那壹遭被吵醒 也睡别着咯 打算回去看看书 您家主子还病着 爷看书会影响她养病 那 爷那就走咯 服侍您家主子好好休息 ”菊香唱咯壹晚上の独角戏 最终还是没能将 他留下 淑清本就是在病中 再见他竟是那般绝情 别禁悲从心来 壹晚上都没什么开口の她终于忍别住喊咯壹声:“爷!”然后她就再也说别出来壹句话 只是用壹双眼睛泪汪 汪地望向他 见病中の淑清如此楚楚可怜の样子 就那么走开实在是太过残忍 于是 狠别下心来の他只好又坐回床侧 替她掖咯掖被角 好言相劝道:“别哭咯 那还病着呢 又得 哭坏咯身子!就是有些风寒 没什么啥啊大碍 好好养着 按时喝药 另外 现在天凉咯 别总去院子里 有啥啊事情让菊香去做 爷要是过来 自会让秦顺儿传话 您那么去等 能等 来啥啊?还别是把身体弄坏咯?”“爷 妾身就是忍别住想去看看 都快壹各月没什么见到您咯 那心里实在是别踏实 ”“您の心思 爷自然晓得 只是……”只是啥啊呢?他别 想让淑清更伤心 没什么说出口 于是他就那么靠在床边 陪着淑清 而淑清因为本身就在病中 又喝咯药 经过壹晚上の折腾 终于体力渐渐别支 耗咯将近壹各时辰 也就渐渐地 睡咯下去 见淑清终于睡安稳咯 他才如释重负般地悄悄起身 出咯烟雨园 他犹豫咯壹下 回朗吟阁还是怡然居?回怡然居肯定是要搅咯水清の睡眠 她の睡眠壹直很差 睡眠别 好就导致精神差 所以身子才会那么赢弱 形成咯壹各恶性循环の老大难问题 可是回朗吟阁の话 他是跳进黄河也洗别清咯 他可以指天发誓 秦顺儿可以亲口作证 但是水清完 全可以别相信!她又没什么亲眼见到他在朗吟阁 她凭啥啊相信?他跟她打咯九年の交道 她有の时候极明事理 以壹各知书达礼大家闺秀の形象卓而别群 可是有些时候 她竟 然也会蛮别讲理 与壹般妇人别无两样 特别是对待他の那些诸人们の时候 在他用“燕子诗”向她真情告白时候 她竟然用“小檐日日燕飞来”嘲讽奚落他 让他陷入百口莫辩 の被动局面 虽然事后他别停地向她解释 啥啊“秋来只为壹人长” 啥啊“壹汀烟雨杏花寒” 水清统统壹概别予理会 最后将她逼急咯 竟然给他来咯壹各“息燕归檐静 飞花 落院闲” 彻底逃跑咯!任他再教上悠思上百句燕子诗 终是没什么挽回她の心 那各时候她还只是凭空想象他那些莫须有の“朝憎莺百啭、夜妒燕双栖”の罪名 就敢蛮别讲理 胡搅蛮缠 而现在 已经有咯菊香那各确凿の人证物证 他还怎么可能抵赖得掉?第壹卷 第900章 温暖 在打扰水清睡眠和证明自己清白那壹对矛盾问题の反复权衡之下 他终 于选择咯回怡然居 他怕她又从他の掌心逃跑咯 以前她の每壹次逃跑 都是他姑息纵容の结果 也是担心将她逼得太紧咯 原本他在水清心目中の形象就别佳 若是追她追得太紧 再在她印象中留下壹各无耻好色之徒の恶名 更是要弄巧成拙 导致两各人关系更加恶化 无可奈何之下 每壹次他都眼睁睁地看着她从他の掌心中溜走 任由她绝决地离去 却是 壹丁点儿都别敢对她用强 当然 除咯在香山 那壹次 他是真真地被她气着咯 第壹次对她动用咯武力 而现在 当他品尝到如此甜美の爱情之后 再也别想将风筝の线放得太长 他怕自己手中の那根线 禁别住狂风暴雨の袭击而折断 徒留追悔莫及 虽然只是短短の十三天 却让他有壹种前二十多年都白活咯の感觉 从前 诸人对他而言只是诸人 而现在 他既将水清当作自己の诸人 更将
平面的基本性质
三、平面的基本性质: 平面的基本性质:
公理1:如果一条直线的两点在一个平面内 那么这条直线上 公理 如果一条直线的两点在一个平面内,那么这条直线上 如果一条直线的两点在一个平面内 的所有点都在这个平面内. 的所有点都在这个平面内 这时我们说直线在平面内或平面经过直线. 注 : ①这时我们说直线在平面内或平面经过直线 ②符号表示:若A∈l, B∈l,A∈α, B∈α, 则 l ⊂ α . 符号表示 若 ∈ ∈ ∈ ∈ 是借用集合的符号,点 不在直线 不在直线l上 直线 直线l不 ③∈, ⊂ 是借用集合的符号 点A不在直线 上,直线 不 内记作什么? 在平面α内记作什么 A∉l l⊄α ∉ ⊄ 作用: 判断直线在平面内的依据 直线在平面内的依据. ④作用 判断直线在平面内的依据
α
A B
公理2:如果两个平面有一个公共点 那么它们还有其它公 公理 如果两个平面有一个公共点,那么它们还有其它公 如果两个平面有一个公共点 共点,这些公共点的集合是一条直线 这些公共点的集合是一条直线. 共点 这些公共点的集合是一条直线 对于不重合的两个平面,只要它们有公共点 只要它们有公共点,它们就是相 注: ①对于不重合的两个平面 只要它们有公共点 它们就是相 交的位置关系,交集是一条直线 且交线有且只有一条.) α 交集是一条直线.(且交线有且只有一条 交的位置关系 交集是一条直线 且交线有且只有一条 符号表示:若 ∈ ②符号表示 若P∈α, P∈ β ,则 α ∩ β =l且P∈l . ∈ 且 ∈ A 作用:判断两个平面相交的依据 找两个平面的交线, 判断两个平面相交的依据,找两个平面的交线 ③作用 判断两个平面相交的依据 找两个平面的交线, 证明点共线或线共点的依据。 证明点共线或线共点的依据。 公理3:经过不在同一条直线上的三点有且只有一个平面 经过不在同一条直线上的三点有且只有一个平面. 公理 经过不在同一条直线上的三点有且只有一个平面 注: ①过一点、两点或一直线上的三点都可以有无数个平面, 过一点、两点或一直线上的三点都可以有无数个平面 过不在同一直线上的四点不一定有平面. 过不在同一直线上的四点不一定有平面 ②“有 是说明图形存在,即存在性 只有一个” 即存在性;“ ②“有”是说明图形存在 即存在性 “只有一个”说明图 形唯一,即唯一性 本定理强调的是存在和唯一两方面. 即唯一性;本定理强调的是存在和唯一两方面 形唯一 即唯一性 本定理强调的是存在和唯一两方面 符合某一条件的图形既然存在且只有一个,说明图形 ③符合某一条件的图形既然存在且只有一个 说明图形 是确定的,因此 有且只有一个” 因此“ 确定”是同义词; 是确定的 因此“有且只有一个”和“确定”是同义词 过不共线三点A、 、 的平面又可记为 平面ABC”; 的平面又可记为“ ④过不共线三点 、B、C的平面又可记为“平面 ” 作用:确定平面的依据 证明两个平面重合的依据. 确定平面的依据.证明两个平面重合的依据 ⑤作用 确定平面的依据 证明两个平面重合的依据
高中数学的必修二数学平面的基本性质知识点
高中数学的必修二数学平面的基本性质知识点平面的基本性质教学目标1、知识与能力:(1)巩固平面的基本性质即四条推断出公理和三条推论.(2)能使用公理和推论进行解题.2、过程与方法:(1)体验在空间确定一个平面的过程与方法;(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。
3、情感成见与价值观:培养学生认真观察的态度,慎密思考的习惯,提高学生审美能力和空间想象的能力。
教学重点平面的三条基本性质即三条推论.教学难点准确运用三条公理和推论解题.教学过程一、问题情境问题1:空间共点的三条直线二维能确定几个平面?空间互相对角线平行的三条直线呢?问题2:如何判断办公桌的四条腿内则的底端是否在一个平面内?二、温故知新公理1一处如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有两个一个公共设施点,那么它们还有其它公用点,这些公共点的集合是经过这个公共给定点的一条直线.公理3经过不在同一条直线上的三点,有且只有一个平面.推论1经过一条直线和这条直线外的一点,有且只有一个平面.推论2经过两条直角直线,有且只有一个平面.推论3经过两条平行平行线,有且只有一个平面.公理4(平行公理)平行于同一条直线的两条直线互相平行.把作出以上各公理及推论进行对比:三、数学运用基础训练:(1)已知:;求证:直线AD、BD、CD共面.证明:——公理3推论1——公理1同理可证,,直线AD、BD、CD共面【解题反思1】1。
逻辑要严谨2.书写要规范3.证明共面的步骤:(1)确定平面——公理3及其3个推论(2)证线“归”面(线在面内如:)——公理1(3)作出结论。
变式1、如果直线两两交汇,那么这三条直线是否共面?(口答)变式2、已知空间不共面的二点,过其中任意三点可以三维空间确定一个平面,由这四个一两个点能确知几个平面?变式3、四条线段顺次首尾连接,所得的图形一定是平面曲面图形吗?(口答)(2)已知直线满足:;求证:直线证明:——公理3推论3——公理1直线共面提高训练:已知,求证:四条直线在同一平面内.思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。
平面的基本性质:三个公理,三个推论.
资源信息表14.1 (2)平面及其基本性质——三个公理三个推论一、教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理1确定直线在平面上;公理2明确两平面相交于一直线;公理3及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三个公理,三个推论.四、教学过程设计一、讲授新课(一)公理1如果直线l上有两个点在平面α上,那么直线l在平面α上.(直线在平面上)用集合语言表述:,,,A l B l A B l ααα⊂∈∈∈∈⇒≠ (二)公理2如果不同的两个平面α、β有一个公共点A ,那么α、β的交集是过点A 的直线l .(平面与平面相交)用集合语言表述:l A l A ∈=⋂⇒⋂∈且βαβα (三)公理3和三个推论公理3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”用集合语言表述:A ,B ,C 不共线=>A ,B ,C 确定一个平面 推论1:一条直线和直线外的一点确定一个平面. 证明:设A 是直线l 外的一点,在直线l 上任取两点B 和C ,由公理3可知A ,B 和C 三点能确定平面α.又因为点,B C α∈,所以由公理1可知B ,C 所在直线l α⊂≠,即平面α是由直线l 和点 A 确定的平面.用集合语言表述:,A l A l α∉⇒确定平面 推论2:两条相交的直线确定一个平面. 用集合语言表述:,a b A a b α⋂=⇒确定平面 推论3:两条平行的直线确定一个平面. 用集合语言表述://,a b a b α⇒确定平面 (四)例题解析例1如图,正方体1111ABCD A BC D -中,E ,F 分别是111,B C BB 的中点,问:直线EF 和BC 是否相交?如果相交,交点在那个平面内?解:111111E B C E B C EF B C F B B F B C ∈⇒∈⎫⇒⊂⎬∈⇒∈⎭≠平面平面平面 又1BC B C ⊂≠平面,则直线EF 和BC 共面; 1111//EF BC BC B C EF BC EF B C E ⎫⎪⇒⎬⎪⋂=⎭与共面与相交 设直线EF 和BC 相交于点p ,则p 在直线BC 上,即点P 在平面ABCD 上.1D 1C 1B 1A DCBA FE[说明]利用公理1确定直线在平面内.例2 如图,若,,,a b c a b P αβαχβχ⋂=⋂=⋂=⋂=,求证:直线C 必过点P.解:a P b P P c P c c αββαχβχχβχβχ⋂=⎫⎫∈⎧⎪⎪⋂=⇒⇒∈⋂⎬⎨⎪⇒∈∈⎬⎩⎪⋂=⎭⎪⎪⋂=⎭[结论]三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定1个或3个平面.所以四点可以确定1个或3个或无数个平面.[说明]公理3的简单应用.例4空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面? 解:三条直线相交于一点可以确定1个或3个平面; 四条直线相交于一点可以确定1个、4个或6个平面. [说明]推论2的简单应用.例5 如图,AB//CD ,,AB E CD F αα⋂=⋂=,求作BC 与平面α的交点.解:连接EF 和BC ,交点即为所求BC 与平面 的交点.(公理3和公理2)[说明]推论3的简单应用.三、课堂小结1.公理1:确定直线在平面内;2.公理2:平面与平面相交于一直线;3.公理3和三个推论确定平面的条件;四、课后作业练习14.1(1)2 练习14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象——平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.αFBCDEA公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.。
平面的基本性质(3课时)
(3)相交两平面:
β B α α A
β B A
α β a A 图2 α a β B
四.用数学符号来表示点、线、面之间的位置关系: 用数学符号来表示点、 面之间的位置关系: (1)点与直线的位置关系: (1)点与直线的位置关系: 点与直线的位置关系 记为: 点A在直线a上: 记为:A∈a 在直线a 记为: 点B不在直线a上: 记为:B∈a 不在直线a (2)点与平面的位置关系: (2)点与平面的位置关系: 点与平面的位置关系 记为: 点A在平面α内: 记为:A∈α 在平面α 记为: 点B不在平面α上: 记为:B∈ α 不在平面α
可以用来检验某一个面是否为 (2)公理 可以用来检验某一个面是否为 )公理1可以用来 平面,检验的方法为: 平面,检验的方法为:把一条直线在面内 旋转,固定两个点在面内后, 旋转,固定两个点在面内后,如果其他点 也在面内,则该面为平面。 也在面内,则该面为平面。
将一把直尺置于桌面上, 将一把直尺置于桌面上,通过是否漏光 就能检查桌面是否平整. 就能检查桌面是否平整.
三条直线相交于一点, 三条直线相交于一点,用其中的两条确定 可以确定3个 平面,最多可以确定 平面,最多可以确定 个。
4条直线相交于一点时: 条直线相交于一点时: 条直线相交于一点时
)、4条直线全共面时 (1)、 条直线全共面时 )、 )、有 条直线共面时 (2)、有3条直线共面时 )、 )、每 条直线都确定 (c)、每2条直线都确定 )、 一平面时
A 反证法 D B C
填空题: 填空题
(1)三条直线相交于一点,用其中的两条确定平面, 三条直线相交于一点,用其中的两条确定平面, 最多确定的平面数是_______; 最多确定的平面数是 四条直线相交于一点呢?_____________ ?_____________。 四条直线相交于一点呢?_____________。
14.1 平面及其基本性质
二、典型习题
(一)概念的辨析 1.判断下列命题的真假,真的打“√”,假的打“×”
(1)可画一个平面,使它的长为4cm,宽为2cm。( )
(2)一条直线把它所在的平面分成两部分, 一个平面把空间分成两部分.
()
(3)一个平面的面积为20 cm2.
()
(4) 一条直线和任意一点确定一个平面
()
2、在下列命题正确的是(
• 2、习题14.1A组1 习题14.1B组1,2
• 3、画一个正方体
2.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形.
(2)l , m A
(3) l
思考题:
几位同学一次野炊活动,带去一张折叠方桌, 不小心弄坏了桌脚,有一生提议可将几根一样长的 木棍,在等高处用绳捆扎一下作桌脚(如图所示),
类比思考:
如果两个不重合的平面有公共点,其公共点有多少个?
如图,把三角板的一个角立 在课桌面上,三角板所在的 平面与桌面所在的平面是否 只相交于一点B?为什么?
BB
两相交平面的公共部分的特点:有无穷多点, 而且是直线。
公理2 如果两个平面有一个公共点,那么 它们有且只有一条经过这个点的公共直线.
P l, Pl
同理,P∈平面CBD. ∴P在平面ABD与平面CBD的交线BD上, 即B、D、P三点在同一条直线上.
题型: 证明多线共面
【例3】求证:两两相交且不共点的四条直线在同一平面内.
分析 由题知,四条直线两两相交且不共点,故有两种情况:一种是三条交 于一点,另一种是任何三条都不共点,故分两种情况证明. 要证明四线共面,先根据公理2的推论证两条直线共面,然后再证第三条直 线在这个平面内,同理第四条直线也在这个平面内,故四线共面.
第1讲平面及其基本性质讲义
平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。
平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。
平面的画法:在立体几何中,通常画平行四边形来表示平面。
一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。
例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。
高一数学讲义 第八章 空间直线与平面
高一数学讲义 第八章 空间直线与平面8.1平面及其基本性质几何里的平面与直线一样,是无限延伸的,我们不能把一个无限延伸的平面在纸上表现出来,通常用平面的一部分表示平面.例如,我们常用平行四边形表示平面(图8-1).但我们要把它想象成无限延展的.通常我们用一个希腊字母如:αβγ、、…来表示平面,也可以用表示平面的平行四边形的对角顶点的字母来表示,如平面AC .DCBAβα图81平面的基本性质公理l 如果一条直线上有两个点在同一个平面上,那么这条直线上所有的点都在这个平面上(即直线在平面上).公理2 如果两个平面存在一个公共点,那么它们所有公共点的集合是一条直线.公理3 不在同一直线上的三点确定一个平面(即经过不在同一直线上三点有且仅有一个平面). 在上述公理的基础上,可以得到以下三个推论: 推论1 一条直线和直线外一点确定一个平面.证明:如图8-2,在直线l 上任取两个点A B 、,则A B C 、、是不在同一直线上的三点,由公理3可知,经过此三点的平面有且仅有1个,设为平面α,则A B ∈、平面α,又A B 、在直线l 上,由公理1可知直线l 在平面α上.即经过直线l 和直线外一点的平面有且仅有一个.图82推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.例1.如图8-3,在正方体1111ABCD A B C D -中,点E F 、分别是棱1AA 、1CC 的中点.试画出过点1D E F 、、三点的截面.B 1C 1D 1A 1EHF GDCB A 图83解:连1D F 并延长1D F 与DC 的延长线交于点H ,联结1D E 并延长与DA 的延长线交于点G ,联结GH 与AB BC 、两条棱交于点B ,联结BE BF 、,则1BED F 就是过点1D E F 、、三点的截面.例2.如图8-4,在正方体1111ABCD A B C D -中,E F 、分别为1CC 和1AA 上的中点,画出平面1BED F 与平面ABCD 的交线.PF C E A DB A 1B 1D 1C 1图84解:在平面11AA D D 内,延长1D F ,1D F 与DA 不平行,因此1D F 与DA 必相交于一点,设为P ,则1P FD P DA ∈∈,. 又1FD ⊂平面1BED F ,AD ⊂平面ABCD 内,P ∴∈平面1BED F P ∈,平面ABCD .又B 为平面ABCD 与平面1BED F 的公共点,∴联结PB PB ,即为平面1BFD F 与平面ABCD 的交线.例3.已知E F G H 、、、分别是空间四边形ABCD (四条线段首尾相接,且联结点不在同一平面内,所组成的空间图形叫空间四边形).各边AB AD CB CD 、、、上的点,且直线EF 和HG 交于点P ,如图8-5,求证:点B D P 、、在同一条直线上.G DPF ECBA图85证明:如图直线EF 直线HG P =.P ∴∈直线EF .而EF ⊂平面ABD , P ∴∈平面ABD .同理,P ∈平面CBD ,即点P 是平面ABD 和平面CBD 的公共点.显然,点B D 、也是平面ABD 和平面CBD 的公共点,由公理2知,点B D P 、、都在平面ABD 和平面CBD 的交线上,即点B D P 、、在同一条直线上. 基础练习1.用符号语言表示下列语句(1)点A 在平面α内,但在平面β外;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 2.已知a b c 、、空间三条直线,且a b ∥与a b 、都相交,求证直线a b c 、、在同一个平面上. 3.怎样用两根细绳检查一张桌子的四条腿的下端是否在一个平面内?4.如图8-6所示,ABC △与111A B C △不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线111AA BB CC 、、交于一点.PC 1B 1A 1C BA图865.已知ABC △在平面α外,它的三边所在的直线分别交平面α于P Q R ,,三点,证明P Q R ,,三点在同一条直线上.6.画水平放置的正五边形的直观图. 8.2空间直线与直线之间的位置关系公理4 平行于同一条直线的两条直线平行(即平行线的传递性). 例1.如图8-7所示,设E F G H ,,,分别是空间四边形ABCD 的边AB BC CD DA ,,,上的点,且AE AH CF CGAB AD CB CDλμ====,,求证:F GH EDCBA图87(1)当λμ=时,四边形EFGH 是平行四边形; (2)当λμ≠时,四边形EFGH 是梯形. 证明:联结BD , 在ABD △中,AE AHAB ADλ==,EH BD ∴,∥且EH BD λ=. 在CBD △中,CF CGCB CDμ==,FG BD ∴,∥且FG BD μ=. EH FG ∴∥,∴顶点E F G H ,,,在由EH 和FG 确定的平面内. (1)当λμ=时,EH FG =,故四边形EFGH 为平行四边形; (2)当λμ≠时,EH FG ≠,故四边形EFGH 是梯形.等角定理 如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.证明:当两组平行直线在同一平面内,即为初中几何中的等角定理. 当它们不在同一平面时,如图8-8所示.a 1O 1B 1A 1BA Oba 图88设直线a b 、相交于点O ,直线11a b 、相交于点1O ,且11a a b b ,∥∥,在直线a b 、上分别任取点A B 、(异于点O ),在直线11a b 、上分别任取点11A B 、(异于点1O ),使得11OA O A =,11OB O B =,111AOB AO B ∠∠,分别是a b 、,与11a b 、所成的角. 1111OA O A OA O A =,∥ ∴四边形11OO A A 为平行四边形. 1111OO AA OO AA ∴=,∥.同理1111OO BB OO BB =,∥.1111BB AA BB AA ∴=,∥.四边形11BB A A 为平行四边形. 11AB A B ∴=,因此111AOB AO B △△≌. 111AOB AO B ∴∠=∠.在平面中两条直线的位置关系可以根据交点个数来判断:当两条直线仅有1个交点时.它们是相交的;当没有交点时它们是平行的.但在空间中两条直线没有交点却未必是平行的,如图8-9直线a 在平面α上,直线b 与平面α交于点P ,且P 不在直线b 上,那么直线a 与直线b 即不平行也不相交.此时直线a 与直线b 不能在同一平面内,我们称直线a 、b 是异面直线.baP图89在空间任取一点Q 过Q 分别作a b 、的平行线11a b 、,我们把11a b 、所成的锐角或直角称为异面直线a b 、所成的角.当所成的角为90︒时称异面直线a b 、相互垂直.此外,我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段长度,叫做两条异面直线的距离.例2.如图8-10,在正方体1111ABCD A B C D -中,判断下列直线之间的位置父系,并求出它们所成角的大小.A 2D 2B 2C 2D 1C 1B 1A 1D CBA图810(1)AC 与1BC ;(2)1B D 与1BC . 解:(1)AC 与1BC 是异面直线. 11AA CC ∥且11AA CC =,∴四边形11AA C C 为平行四边形,即11AC AC ∥.11AC B ∴∠为所求AC 与1BC 所成的角.易知11A C B △为等边三角形,即11π3AC B ∠=(2)1B C 与1BC 是异面直线如图8-10:在原正方体下方补一个相同大小的正方体11112222A B C D A B C D -中121B C BC ∥,12DB C ∴∠为所求1B D 与1BC 所成的角.设正方体的棱长为a ,在12DB C △中,112212π2DB B C DC DB C ==∴∠=,,,. 例3.空间四边形ABCD中,2AB BD AD BC CD =====,32AC =,延长BC 到E ,使BC CE =,取BD 中点F ,求异面直线AF 与DE 的距离和他们所成的角.F ED BA图811解:(1)2AB AD BD === ∴三角形ABD 为等边三角形 F 为BD 中点,AF BD ∴⊥,即AF FD ⊥90BC CD CE BDE DF DE ===∴∠=︒∴⊥, DF 长即为异面直线AF DE ,的距离,又112DF BD ==,AF ∴与DE 的距离为1.(2)联结CF F C ,,分别是BD ,BF 的中点, FC ∴平行且等于12DE ,AFC ∴∠即为异面直线AF 与DE 所成的角. 在等边三角形ABD中,AF == 在直角三角形BDE中,12CF DE ==. 三角形AFC 中,由余弦定理得2221cos 22AF FC AC AFC AF FC +-∠==⨯⨯.60AFC ∴∠=︒,即异面直线AF 与DF 成60︒角. 基础练习 1.从止方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为__________.2.如图8-12,已知三棱锥S ABC -中,90ABC ∠=︒,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E F 、,求证:EF SC ⊥.SGF E CBA 图8123.已知a b 、是两条异面直线,直线a 上的两点A B 、的距离为6.直线b 上的两点C D 、的距离为8,AC BD 、的中点分别为M N 、且5MN =,见图8-13.求异面直线a b 、所成的角.图813bMNO aDCBA4.已知四面体S ABC -的所有棱长均为a .求: (1)异面直线SC 、AB 的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.5.如图8-14,等腰直角三角形ABC中,90A BC DA AC DA AB ∠=︒=⊥⊥,,,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.图814FE D CBA6.如图8-15,在正三角形ABC 中,D E F ,,分别为各边的中点,G H I J ,,,分别为AF AD BE DE ,,,的中点.将ABC △沿DE EF DF ,,折成三棱锥以后,求GH 与IJ 所成角的度数.I JH GFEDCB A 图8157.长方体1111ABCD A B C D -中,143AB AA AD ===,,则异面直线1A D 与11B D 间的距离为__________.8.空间两条异面直线a b 、所成角α,过空间一定点O 与a b ,所成角都是θ的直线l 有多少条? 8.3空间直线与平面空间中直线l 与平面α的位置关系,按照它们交点的个数分成以下三种情况:若直线l 与平面α没有公共点,那么称直线l 与平面α平行,记作l α∥;若直线l 与平面α仅有一个公共点,那么直线l 与平面α是相交的;若直线l 与平面α有1个以上的公共点,由公理1可知直线l 在平面α上.我们将直线与平面平行和相交统称为直线在平面外.直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 例1.已知:ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上任取一点G ,过G 和AP 作平面交平面BDM 于GH .求征:AP GH ∥. 证明:如图8-16.联结AC 交BD 于O ,联结MO ,G HPOMD CBA图816ABCD 是平行四边形O ∴是AC 中点,又M 是PC 中点, AP OM ∴∥,又OM ⊂面BM DPA ∴∥平面BM D (线面平行判定定理)又PA ⊂平面PAHG ,且面PAHG 平面BMD GH =, PA GH ∴∥(线面平行的性质定理)例2.正方体1111ABCD A B C D -中,E G 、分别是BC 、11C D 的中点如图8-17.求证:EG ∥平面11BB D D .D C 1A 1C图817证明:取BD 的中点F ,联结FF 、1D F .E 为BC 的中点,EF ∴为BCD △的中位线,则EF DC ∥,且12EF CD =.G 为11C D 的中点,1D G CD ∴∥且112D G CD =,1EF D G ∴∥且1EF D G =, ∴四边形1EFD G 为平行四边形,∴1D F EG ∥,而1D F ⊂平面11BDD B ,EG ⊄平面11BDD B , ∴EG ∥平面11BDD B .直线l 与平面α相交,且与平面内所有直线都垂直,称直线l 垂直于平面α,记作l α⊥.直线l 称为平面α的垂线,l 与平向α的交点称为垂足.直线和平面垂直判定定理 如果直线l 与平面α内两条相交直线a b 、都垂直,那么直线与平面垂直. 证明:设直线a b O =,直线c 为平面α上任意一条直线 (1)当直线l 与直线c 都经过点O 时在直线l 上点O 的两侧分别取点P Q 、使得OP OQ =,在平面α上作一条直线,使它与a b c 、、分别交于点A B C 、、联结PA PB PC QA QB QC 、、、、、(见图8-18). acb αO QB A P图818OA 垂直平分PQ ,PQ QA ∴=. 同理PB QB =. PA QA PB QB AB AB ===,,, PAB QAB PC QC ∴∴=,△△≌.PQ c ∴⊥,即l c ⊥.(2)若直线l 与直线c 不都经过点O ,则过O 引l 与直线c 的平行线1l 与直线1c ,由(1)可知11l c ⊥.由等角定理可知l c ⊥.综上所述,l α⊥.直线和平面垂直性质定理 如果两条直线同垂直于一个平面,那么这两条直线平行.过空间一点P 有且仅有一条直线l 和一个平面α垂直,反之过一点P 有且仅有一个平面α与直线l 垂直,垂足Q 称为点P 在平面α上的射影,线段PQ 的大小称为点P 到平面α的距离.若一条直线与一个平面平行,则这条直线上任意一点到平面的距离,叫做这条直线到平面的距离. 若一条直线与一个平面α相交且不垂直,称直线l 与平面α斜交,直线l 为平面α的斜线,交点称为斜足.平面的斜线与其在平面上的射影所成的角称为直线与平面所成的角.最小角定理 斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角. 例3.已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 证明:过直线l 上任意两点A B ,分别引平面α的垂线AA ,′BB ′,垂足分别为A B ,′′(见图8-19).βαB'A'B A图819AA BB αα⊥⊥,′′ AA BB ∴∥′′设经过直线AA ′和BB ′的平面为A B ββα=,′′l l A B α∴∴,∥∥′′AA BB ∴′′是平行四边形 AA BB ∴=′′即直线l 上各点到平面的距离相等例4.如图8-20,已知正方形ABCD 的边长为4,E F ,分别是边AB AD ,的中点,GC 垂直于ABCD 所在的平面,且2GC =,求点B 到平面EFG 的距离.OSGH F E DCBA图820证明:联结DB AC ,,设DB AC O = E F ,分别为AB AD ,中点DB EF ∴∥;又DB ⊄平面EFG , BD ∴∥平面EFG .∴点B 到平面EFG 的距离就是DB 到平面EFG 的距离. ∴即点O 到平面X O 的距离.设EF AC H =,在平面CHG 中,作OS GH ⊥ DB AC ⊥,又EF BD ∥ EF AC ∴⊥又GC ⊥面ABCD ,GC EF ∴⊥ EF ∴⊥面CHG EF OS ∴⊥,又OS GH ⊥ OS ∴⊥面EFG ∴OS 即为O 点到平面EFG 的距离,即为所求 直角三角形HSO 与直角三角形HGC 相似 SO HOGC GH∴=,又124GC HO AC GH =====,2SO ∴= ∴B 到平面EFG的距离为11. 例5.相交成60︒的两条直线AB AC ,和平面α所成的角分别为30︒和45︒,求这两条斜线在平面α内的射影所成的角.解:如图8-21,作平面AO ⊥平面A ,垂足为O ,O CBA图821则30ABO ∠=︒,45ACO ∠=︒,设AO h =,则2AB h =,AC =,BO =,CO h =, 在三角形ABC 中,根据余弦定理有22222(2))cos606BC h h h =+-⨯⨯︒=-.同理,在三角形BOC 中,令BOC θ∠=,则有22222)cos 4cos BC h h h θθ=+-⨯⨯=-.222264cos h h θ∴-=-.cos θ∴=,θ∴=. 三垂线定理 在平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图8-22,直线PM 为平面α的斜线,M 为斜足,Q 为P 在平面α内的射影,a 为平面α内一条直线,且a MQ ⊥.求证:a PM ⊥.图822ab a PQM证明:过点M 作的a 平行线b ,则b MQ b PQ ⊥⊥, 即b ⊥平面PMQ ,MQ ⊆平面PMQ 所以b PM a b ⊥,∥,即a PM ⊥.类似地,我们也可以证明:三垂线的逆定理 在平面内的一条直线,如果和平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 基础练习1.如果三个平面αβγ、、两两相交于三条交线a b c 、、,讨论三条交线的位置关系,并证明你的结论. 2.在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11ABC D 均成30︒角,求这样的直线条数3.已知空间四边形ABCD P Q ,、分别是ABC △和BCD △的重心,求证:PQ ∥平面ACD .4.在棱长为a 正方体1111ABCD A B C D -中, (1)求证:11B D CD ⊥; (2)求证:1B D ⊥平面1ACD ; (3)求点D 到平面1ACD 的距离.5.正方体1111ABCD A B C D -中,求1B D 与平面11ABC D 所成角的大小.6.正方体ABCD A B C D -′′′′的棱长为a ,则异面直线CD ′与BD 间的距离等于__________. 7.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE BD 、上各取一点P Q 、.且AP DQ =.求证:PQ ∥面BCE .8.如图8-23,已知AOB ∠在平面M 上,P 为平面外一点,满足POA ∠POB =∠θ=(θ为锐角),点P 在平面上的射影为Q .P OQFE AM 图823(1)求证点Q 在AOB ∠的平分线OT 上;(2)讨论POA ∠、POQ ∠、QOA ∠之间的关系.9.若直线l 与平面α成角π3,直线a 在平面α内,且和直线l 异面,则l 与a 所成角的取值范围是多少? 10.如图8-24,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,,,ABH HBC ABC θαβ∠=∠=∠=,求证:cos cos cos βαθ=⋅. αθβH D CB Aα图82411.如图8-25,平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M .连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.N MBA HSα图825(1)求证:NH SB ⊥;(2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线?12.如图8-26,在正方体1111ABCD A B C D -中,EF 为异面直线1A D 与AC 的公垂线,求证:1EF BD ∥.FE D CBAD 1C 1B 1A 1图82613.如图8-27所示,90BAC ∠=︒.在平面α内,PA 是α的斜线,60PAB PAC ∠=∠=︒.求PA 与平面α所成的角.B αA CMO NP图8278.4空间平面与平面的位置关系空间两个平面根据交点的个数可以分为:若两个平面没有交点则称两个平面互相平行;若两个平面有交点则称两个平面是相交的.平行于同一平面的两个平面互相平行,分别在两个平行平面上的直线是异面或平行的.两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推论 如果一个平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,那么这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 例1.平行四边形ABCD 和平行四边形ABEF 不在同一平面内,M ,N 分别为对角线AC ,BF 上的点,且AM ACFN FB=.求证:MN ∥平面BEC .证明:如图8-28,在平行四边形ABCD 中,过M 作MP BC ∥交BC 于P ,联结PN .FP MNEDCBA图828AM AP AC AB =,又AM AC FN BF =,即AM FNAC BF=. ,AP FN PN AF BE AB BF∴=∴∥∥. 又MP BC ∥,∴平面MPN ∥平面CBE . 又MN ⊂平面MPN , MN ∴∥平面BEC .例2.如图8-29所示,平面α平面β,点A C α∈、,点B D β∈、,AB a =是α、β的公垂线,CD 是斜线.若AC BD b ==,CD c =,M 、N 分别是AB 和CD 的中点.图829(1)求证:MN β∥;(2)求MN 的长. 证明:(1)联结AD ,设P 是AD的中点,分别联结PM 、PN . M 是AB 的中点,PM BD ∴∥.又,PM ββ⊂∴∥. 同理N 是CD 的中点,PN AC ∴∥. AC α⊂,PN α∴∥.,,PN PM P αβ=∥PMN β∴∥. MN ⊂平面PMN ,MN β∴∥. (2)分别联结MC MD 、.1,,2AC BD b AM BM a ====又AB 是αβ、的公垂线,90CAM DBM ∴∠=∠=︒,Rt Rt ACM BDM ∴≌△△,CM DM ∴=,DMC ∴△是等腰三角形. 又N 是CD 的中点,MN CD ∴⊥.在Rt CMN △中,MN =一般地,当两个平面相交时,它们的交线l 将各平面分割为两个半平面,由两个半平面αβ、及其交线l 组成的空间图形叫做二面角(dihedral angle ),记作l αβ--.交线l 称之为二面角的棱,两个半平面αβ、叫做二面角的面.如果αβ、上分别有点P Q 、,那么二面角l αβ--也可以记作P l Q --.为了刻画二面角的大小,我们在棱l 上任取一点O ,在面αβ、上分别作棱l 的垂线OM 、ON ,则[](0,π)MON θ∠=∈称为二面角l αβ--的平面角.若π2α=,则称平面αβ⊥. 两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.例3.如图8-30,在空间四边形SABC 中,SA ⊥平面ABC ,AB BC ⊥,DE 在平面SAC 内,DE 垂直平分SC ,且分别交AC ,SC 于D ,E ,又SA AB =,SB BC =,求以BD 为棱,以BDE 和BDC 为面的二面角的大小.E DCBAS图830解:SB SC =,且E 为SC 的中点,BE SC ∴⊥. 又DE 垂直平分SC ,SC ∴⊥面,BDE SC BD ∴⊥. 又BD ⊥平面SAC ,,,BD DE BD DC ∴⊥⊥EDC ∴∠即为E BD C --的平面角.设SA a =,则,,AB a SB ==SA ⊥面ABC ,BC AB ⊥.,SB BC SC ∴⊥∴为等腰直角三角形SBC的斜边,又BC =,2,,cos ,30SC a AC SCA SCA ∴==∠=∴∠=︒. DE SC ⊥,∴在直角三角形EDC 中,60EDC ∠=︒,即为所求.例4.已知:如图8-31所示,平行四边形ABCD中,AB =AD BD ==,沿BD 将其折成一个二面角A BD C --,若折后AB CD ⊥.63223DCBA图831(1)求二面角A BD C --的大小;(2)求折后点C C 到平面ABD 的距离.解:(1)在平行四边形ABCD中AB =AD BD ==.222AB AD BD ∴=+ ,AD BD BC BD ∴⊥⊥. 作AH ⊥平面BDC ,联结DH (见图8-32).HEDCB A图832AD BD ⊥,由三垂线定理逆定理得DH BD ⊥, ∴ADH ∠是二面角A BD C --的平面角.联结BH,AB DC ⊥,由三垂线定理逆定理, 得BH DC ⊥,设垂足为E ,在直角三角形ABC中,2BD BC BE DC ⋅===,DE ∴ 三角形DHB 与三角形DBE 相似,DH DEDB BE∴=,即DE BD DH BE ⋅=在直角三角形ADH中,1cos 2DH ADH AD ∠===,π3ADH ∴∠=. 即二面角--A BD C 的大小为π3. (2)由对称性,C 到平面ABD 的距离等于A 到平面ABD 的距离. AH ⊥平面BCD ,∴点A 到平面BCD 的距离即是线段AH 的长, 直角三角形ADH中,sin 3AH AD ADH =⋅∠==, ∴点C 到平面ABD 的距离为3. 例5.如图8-33,已知A B 、在平面α上,点C 是平面外一点,且在平面α上的射影为D ,且A B D、、三点不共线,二面角C AB D --的大小为θ,求证:cos DABCABS S θ=.αM DCBA图833证明:过点D 作DM 垂直AB ,垂足为M ,联结CM . 因为,CD AB αα⊥⊆,所以CD AB ⊥,又AB DM ⊥,因此AB ⊥平面CDM ,即AB CM ⊥. 所以CMD ∠为二面角--C AB D 的平面角. 在直角三角形CDM △中有cos cos ABDCBDS DM CMD CM S θ=∠==. 例6.如图8-34,已知两异面直线,a b 所成的角为θ,它们的公垂线段AA ′的长度为d .在直线,a b 上分别取点,E F ,设,A E m AF n ==′,求EF .A'βnb a m F G A图834解:设经过b 且与AA ′垂直的平面为α,经过a 和AA ′的平面为β,c αβ=;则c a ∥,因而b ,c 所成角为θ,且AA c ⊥′;又,AA b AA a ⊥∴⊥′′, 根据两个平面垂直的判定定理,βα⊥. 在平面β内作EG c ⊥,则EG AA =′. 并且根据两个平面垂直的性质定理,EG α⊥ 联结FG ,则EG FG ⊥.在直角三角形EFG 中,222EF EG FG =+AG m =,三角形AFG 中,2222cos FG m n mn θ=+-;又22ED d =,22222cos EF d m n mn θ∴=++-,因此EF =1.已知平面αβ∥,AB ,CD 为夹在,αβ间的异面线段,E 、F 分别为AB CD 、的中点. 求证:,EF EF αβ∥∥.2.如果αβ∥,AB 和AC 是夹在平面α与β之间的两条线段,AB AC ⊥,且2AB =,直线AB 与平面α所成的角为30︒,求线段AC 长的取值范围.3.如图8-35,已知正方体1111ABCD A B C D -中,E F 、分别为1AB AA 、的中点.求平面1CEB 与平面11D FB 所成二面角的平面角的正弦值.CB E AF D 1C 1B 1A 1图8354.如图8-36,点A 在锐二面角MN αβ--的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为45︒,与面β所成的角大小为30︒,求二面角MN αβ--的大小.NM APβα图8365.正方形ABCD 边长为4,点E 是边CD 上的一点,将AED △沿AE 折起到1AED 的位置时,有平面1ACD ⊥平面ABCE ,并且11BD CD ⊥.(1)判断并证明E 点的具体位置; (2)求点D ′到平面ABCE 的距离.6.在正三角形ABC 中,E F P 、、分别是AB AC BC 、、边上的点,满足12AE EB CF FA CP PB ===∶∶∶∶,如图8-37.将AEF △沿EF 折起到1A EF △的位置,使二面角1A EF B --成直二面角,联结1A B 、1A P ,如图8-38.A BP FEC图837CEF P BA 图838(1)求证:1A E ⊥平面BEP ;(2)求直线1A E 与平面1A BP 所成角的大小;(3)求二面角1B A P F --的大小(用反三角函数表示).7.如图8-39,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --′.C'DCB A图839(1)指出这个二面角的面、棱、平面角; (2)若二面角C AD C --′是直二面角,求C C ′的长; (3)求AC ′与平面C CD ′所成的角; (4)若二面角C AD C --′的平面角为120︒,求二面角A C C D --′的平面角的正切值. 8.在棱长为a 的正方体中.求异面直线BD 和1B C 之间的距离.9.设由一点S 发出三条射线,,,,SA SB SC ASB BSC ASC αβθαβθ∠=∠=∠=、、、、均为锐角,且cos cos cos θβθ⋅=.求证:平面ASB ⊥平面BSC .10.如图8-40,矩形ABCD ,PD ⊥平面ABCD ,若2PB =,PB 与平面PCD 所成的角为45︒,PB 与平面ABD 成30︒角,求:PF EDCBA图840(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角C PB D --的余弦值. 11.如图8-41,线段PQ 分别交两个平行平面αβ、于A B 、两点,线段PD 分别交αβ、于C D 、两点,线段QF 分别交αβ、于F E 、两点,若9PA =,12AB =,12BQ =,ACF △的面积为72.求BDE △的面积.βαAB Q ED CPF图84112.如图8-42,已知正方形ABCD .E F 、分别是AB CD 、的中点.将ADE △沿DE 折起,如图8-43所示,记二面角A DE C --的大小为θ(0πθ<<).FEDCBA图842F EDCBA 图843(1)证明BF ∥平面ADE ;(2)若ACD △为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.13.在矩形ABCD 中,已知1,AB BC a ==,PA ⊥平面ABCD ,且1PA =. (1)在BC 边上是否存在点Q ,使得PQ QD ⊥,说明理由;(2)若BC 边上有且仅有一个点Q ,使PQ QD ⊥,求AD 与平面PDQ 所成角的弦值; (3)在(2)的条件下,求出平面PQD 与平面PAB 所成角的大小.14.两个平行平面α和β将四面体ABCD 截成三部分.已知中间一部分的体积小于两端中任一部分的体积,点A 和B 到平面α的距离分别为30和20.而点A 和C 到平面β的距离分别为20和16,两个截面中有一个是梯形,点D 到平面α的距离小于24.求平面α和β截四面体所得的截面面积之比. 8.5空间向量及其坐标表示我们把具有大小和方向的量叫做向量.同向且大小相等的两个向量是同一个向量或相等的向量,大小相等方向相反的两个向量是互为负向量,大小为0的向量称为零向量.对空间任意两个向量a b 、.作OA a OC AB b ===,,则O A B 、、三点共面,见图8-44.因此,空间任意两个向量都可以用在同一平面内的两条有向线段表示.与平面向量运算一样,我们可以定义空间向量的加法、减法与数乘运算如下:a图844OB OA AB a b =+=+; CA OA OC a b =-=-;0000a a a λλλλλλ⎧>⎪⎪>⎨⎪<⎪⎩方向相同,大小,,方向相同,大小,为为- 与平面向量类似,在空间两个向量的方向相同或相反,则称他们为共线向量或平行向量,共线向量所在直线平行或重合.类似我们可以验证空间向量的加法与数乘运算满足如下规律: (1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++ (3)数乘分配律:()a b a b λλλ+=+类似地,可以定义两个向量的夹角和向量的数量积:cos a b a b θ⋅=,其中θ为两个向量的夹角,[]0πa b θ∈,,、表示向量a b 、的大小 当π2θ=时称两个向量垂直记作a b ⊥. 与平向向量类似有下列性质成立: (1)0a b a b ⊥⇔⋅=. (2)2a a a =⋅. (3)()()ab a b λλ⋅=⋅.(4)a b b a ⋅=⋅. (5)()()()a b c a b a c ⋅+=⋅+⋅.例1.A B C D 、、、为空间不共面的四点,以A B C D 、、、四点为顶点的线段围成一个空间四面体,若AC BD BC BD ==,,求证AB CD ⊥.图845DBA解:BC AC AB BD AD AB =-=-,, BC BD =, 22BC BD ∴=.2()()BC BC BC AC AB AC AB =⋅=-⋅- 222AC AC AB AB =-⋅+.同理2222BD AD AD AB AB AD AC =-⋅+=,, AD AB AC AB ∴⋅=⋅即()AD AC AB -⋅=0.即CD AB ⋅=0,AB CD ∴⊥.通常我们将可以平移到同一个平面的向量,叫做共面向量.对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定是共面向量.如上例中a b c 、、中任意两个共面,但a b c 、、却不共面.下面讨论三个向量共面的条件.已知a b 、为不共线的向量,而a b c 、、三个向量共面,则表示可以将它们平移到同一个平面上.由平面向量唯一分解定理.存在实数()λμ,满足c a b λμ=+.反之,若存在实数对()λμ,满足c a b λμ=+,对空间任意一点O 作111OA a OB b OA a A B b λμ====,,,,则1111OB OA A B a b c λμ=+=+=即c 可以平移到O A B 、、三点所在平面上,因此a b c 、、共面.由此可得a b c 、、共面的充要条件是:存在实数对()λμ,满足c a b λμ=+.例2.求证:任意三点不共线的四点A B C D 、、、共面的充要条件是:对空间任意点O 有:OD xOA yOB zOC =++(其中1x y z ++=).证明:A B C D 、、、共面的充要条件是存在实数对()λμ,满足AD AB AC λμ=+(见图8-46).图846()()OD OA AD OB OA OC OA μμ∴-==-+-, (1)OD OA OB OC λμλμ∴=--++.令1x λμ=--,y z λμ==,,则OD xOA yOB zOC =++(其中1x y z ++=).定理 如果三个向量a b c 、、不共面,那么对于空间任意向量P ,存在唯一的实数对()x y z ,,满足:P xa yb zc =++证明:如图8-47,过空间任意点O 作OA a OB b OC c OP P ====,,,, 图847P过点P 作1PP OC ,∥交平面OAB 于点1P ;则11P OP OP PP ==+. 11PP OC PP zc z ∴=∈R ,,∥. 在平面AOB 中存在z ,y ∈R ,满足1OP xOA yOB =+, 因此有11P OP OP PP xOA yOB zOC ==+=++. 若存在111()()x y z x y z ≠,,,,也满足:111P x a y b z c =++, 则有111P xa yb zc x a y b z c =++=++. 111()()x y z x y z ≠,,,,,不妨设1x x ≠,1111y y z za b c x x x x --∴=+--.a b c ∴、、共面,矛盾.由此定理可知,如果三个向量a b c 、、,那么所有空间向量均可以由a b c 、、唯一表示,此时我们称(a b c 、、)为空间向量的一个基底,a b c 、、都叫做基本向量.如果空间的一个基底的三个基向量互相垂直,且大小为1,则称这个基底为单位正交基底,常用(i j k 、、)表示.在空间选定一点O 和一个单位正交基底(i j k 、、),以O 点为坐标原点,分别以i j k 、、的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系O xyz -,那么对于任意向量P ,存在唯一的实数对(x y z ,,)满足:P OP xi y j zk ==++,简记为()P x y z =,,,此时称点P 的坐标为()x y z ,,,见图8-48.图848若111()OA a x y z ==,,,222()OB b x y z ==,,,则 121212()a b x x y y z z +=+++,,,121212()BA OA OB a b x x y y z z =-=-=---,,,111()a x y z λλλλ=,,.例3.在直三棱柱111A B C ABC -中,π2BAC ∠=,11AB AC AA ===.已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD EF ⊥,求线段DF 的长度的取值范围解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,则112211(00)(01)0101(00)(01)22F t t E G D t t ⎛⎫⎛⎫<<<< ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,.所以12111122EF t GD t ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,,.因为GD EF ⊥,所以1221t t +=,由此推出2102t <<.又12(0)DF t t =-,,,21DF t =1DF <.例4.已知四边形ABCD 和ABEF 是两个正方形,它们所在的平面互相垂直,M AC ∈,N BF ∈,且AM FN =,见图8-49.求证:不论M 在AC 上何处,直线MN 不可能同时垂直AC 和BF .MNFEDCBA图849证明:设BA a BE b BC c BN t BF ====⋅,,,, 则()(1)()BN t a b AM t c a =⋅+=--, 于是()(1)()(1)MN BN BM t a b t c a a tb t c ⎡⎤⎡⎤=-=+---+=--⎣⎦⎣⎦, 假设MN 同时垂直AC 和BF ,则00.MN AC MN BF ⎧⋅=⎪⎨⋅=⎪⎩,由题设,知00a b b c ⋅=⋅=,, 由2(1)()(1)MN AC tb t c c a t c ⎡⎤⋅=--⋅-=-⋅⎣⎦,得10t -=即1t =.由2(1)()0MN BF tb t c a b t b ⎡⎤⋅=--⋅+=⋅=⎣⎦得0t =,矛盾!所以,MN 不可能同时垂直AC 和BF .基础练习1.如图8-50,OA a OB b OC c ===,,,M N P 、、分别为AB 、BC 、CA 的中点,试用a b c 、、表示下列向量:OM MN AN ,,.图8502.已知空间三点(202)A -,,,(212)B -,,,(303)C -,,.设a AB b AC ==,,是否存在实数k ,使向量ka b +与2ka b -互相垂直,若存在,求k 的值;若不存在,说明理由.。
立体几何常见结论
立体几何常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上.(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3)。
证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2。
空间直线。
(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点。
⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等。
(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。
(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图)。
(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内。
直线与平面的关系
一、平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈L ,B ∈L=>L α A ∈α,B ∈α公理1作用:判断直线是否在平面内公理2:过不在一条直线上的三点,有且只有一个平面。
推论1: 经过一条直线及直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理2作用:确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据 二、空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 异面直线:不在同一个平面内的两条直线。
异面直线既不相交也不平行。
异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过这点的直线是异面直线。
这个定理是判定空间两条直线是异面直线的理论依据。
LA· αCB ·A· αP ·αLβ共面直线5 注意点:(1)直线所成的角θ∈(0, ]。
(2)条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;(3)直线互相垂直,有共面垂直与异面垂直两种情形;(4)计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
三、空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2直线、平面平行的判定及其性质线面平行的判定定理1、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
第3课时直线与平面平行
第3课时 直线、平面的平行关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. (4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.空间中两直线的位置关系 (1)空间中两直线的位置关系 ⎩⎪⎨⎪⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝ ⎛⎦⎥⎤0,π2.(3)平行公理:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.直线与平面、平面与平面之间的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况. (2)平面与平面的位置关系有平行、相交两种情况. 4.直线与平面平行的判定定理和性质定理5.平面与平面平行的判定定理和性质定理(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)若直线a与平面α内无数条直线平行,则a∥α.(×)(4)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(5)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(6)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(7)设l为直线,α,β是两个不同的平面,若l∥α,l∥β,则α∥β.(×)(8)两个不重合的平面只能把空间分成四个部分.(×)(9)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.(×)(10)两两相交的三条直线最多可以确定三个平面.(√)考点一平面的基本性质[例1](1)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数是()A.0B.1C.2 D.3解析:对于①,三点可能在一直线上,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,没有强调三点不共线,则两平面也可能相交,故④错误.答案:C(2)过同一点的4条直线中,任意3条都不在同一平面内,则这四条直线确定平面的个数为________.解析:由题意知这4条直线中的每两条都确定一个平面,因此,共可确定6个平面.答案:6[方法引航]空间平面的构成,可由点,可由线,也可由点和线;面与面的公共点在面的交线上.1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个是( )解析:选D.A ,B ,C 图中四点一定共面,D 中四点不共面.2.(2017·江西七校联考)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( ) A .相交或平行 B .相交或异面 C .平行或异面 D .相交、平行或异面解析:选D.依题意,直线b 和c 的位置关系可能是相交、平行或异面,故选D.考点二 直线与平面的平行关系[例2] (1)在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( ) A .BD ∥平面EFG ,且四边形EFGH 是平行四边形 B .EF ∥平面BCD ,且四边形EFGH 是梯形 C .HG ∥平面ABD ,且四边形EFGH 是平行四边形 D .EH ∥平面ADC ,且四边形EFGH 是梯形解析:如图,由题意得, EF ∥BD ,且EF =15BD . HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG ,又HG ⊂面BCD , ∴EF ∥平面BCD 且四边形EFGH 是梯形. 答案:B(2)(2016·高考全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.①证明MN ∥平面P AB ; ②求四面体N -BCM 的体积.解:①证明:由已知得AM =23AD =2,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,故四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .②因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A . 取BC 的中点E ,连接AE . 由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM=13·S △BCM ·P A 2=453. [方法引航] 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).1.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条.解析:如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.答案:62.如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .证明:(1)连接EC,∵AD∥BC,BC=12AD,∴BC綊AE,∴四边形ABCE是平行四边形,∴O为AC的中点.又∵F是PC的中点,∴FO∥AP,FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.(2)连接FH,OH,∵F,H分别是PC,CD的中点,∴FH∥PD,∴FH∥平面P AD.又∵O是BE的中点,H是CD的中点,∴OH∥AD,∴OH∥平面P AD.又FH∩OH=H,∴平面OHF∥平面P AD.又∵GH⊂平面OHF,∴GH∥平面P AD.考点三平面与平面平行的判定与性质[例3](1)(2017·山东济南模拟)平面α∥平面β的一个充分条件是() A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.答案:D(2)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.证明:①∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.②∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[方法引航] 1.面面平行的判定方法(1)利用定义:即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).2.面面平行的性质由面面平行,可得出线面平行,也可得出线线平行,但必须是这两个平行平面与第三个平面的交线.1.将本例(2)中条件改为已知H为A1C1的中点,过BC和H点的平面与A1B1交于点G,求证G为A1B1的中点.证明:因为在三棱柱中,面A1B1C1∥面ABC.面A1B1C1∩面BCHG=HG,面ABC∩面BCHG=BC,∴GH∥BC(面面平行性质)BC ∥B1C1.∴GH∥B1C1,H为A1C1的中点,∴G为A1B1的中点.2.在本例(2)条件下,若D1,D分别为B1C1,BC的中点,求证:(1)平面A1BD1∥平面AC1D.(2)若点N∈AD,求证:C1N始终平行面A1BD1.证明:(1)如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1. 又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.(2)由(1)可知,平面A1BD1∥平面AC1D.∵N∈AD,∴C1N⊂面AC1D.∴C1N∥面A1BD1.[方法探究]空间平行的转化与探索[典例](2017·河北石家庄模拟)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.(1)证明:平面AB1C∥平面DA1C1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.[解](1)证明:由棱柱ABCD-A1B1C1D1的性质,知AB1∥DC1,A1D∥B1C,AB1∩B1C =B1,A1D∩DC1=D,∴平面AB1C∥平面DA1C1.(2)存在这样的点P满足题意.如图,在C1C的延长线上取一点P,使C1C=CP,连接BP,∵B1B綊CC1∴BB1綊CP,∴四边形BB1CP为平行四边形,∴BP∥B1C,∵A1D∥B1C,∴BP∥A1D.又∵A1D⊂平面DA1C1,BP⊄平面DA1C1,∴BP∥平面DA1C1.[思维程序](1)线∥线⇒面∥面;棱柱性质⇒面的对角线平行⇒面∥面.(2)先找点P,再证明平行;平行四边形性质⇒BP∥B1C∥A1D.[高考真题体验]1.(2016·高考山东卷)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC .求二面角F -BC -A 的余弦值. 解:(1)证明:设FC 中点为I ,连接GI ,HI在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC . (2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意得B (0,23,0),C (-23,0,0), 所以BC→=(-23,-23,0), 过点F 作FM 垂直OB 于点M . 所以FM =FB 2-BM 2=3,可得F (0,3,3).故BF→=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎨⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1). 所以cos 〈m ,n 〉=m ·n |m |·|n |=77. 所以二面角F -BC -A 的余弦值为77.2.(2016·高考山东卷)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明:(1)因为EF∥DB,所以EF与DB确定平面BDEF.如图①所示连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.图①(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.图②3.(2014·高考陕西卷)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体A-BCD的体积;(2)证明:四边形EFGH是矩形.证明:(1)由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=CD =2,AD=1,∴AD⊥平面BDC,∴四面体的体积V=13×12×2×2×1=23.(2)∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.课时规范训练A组基础演练1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的() A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件答案:D2.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角解析:选A.若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b解析:选C.A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1C.2 D.3解析:选A.对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.5.已知直线a与平面α、β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:选D.设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a∥b,故存在唯一一条直线b与a平行.6.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=________.解析:∵平面ABCD ∥平面A 1B 1C 1D 1, ∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点, AP =a 3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a . 答案:223a7.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.解析:根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24. 答案:24或2458.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO . 解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别为DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,∴平面D 1BQ ∥平面P AO ,故Q 满足Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO . 答案:Q 为CC 1的中点9.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.证明:(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.10.如图,在三棱柱ABC-A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.解:法一:当AF=3FC时,FE∥平面A1ABB1.证明如下:在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.,∵B1E=3EC1,∴EG=34A1C1又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG,又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.法二:当AF=3FC时,FE∥平面A1ABB1.证明如下:在平面BCC1B1内过点E作EG∥BB1交BC于点G,∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1,∵B1E=3EC1,∴BG=3GC,∴FG∥AB,又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.B组能力突破1.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合解析:选C.如图,分别取另三条棱的中点A,B,C将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.2.正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确的命题是()A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1F是正方形D.AE∥平面BC1F解析:选D.由正方体的几何特征知,AE与平面BCC1B1不垂直,则AE⊥CG不成立;由于EG ∥A 1C 1∥AC ,故A 、E 、G 、C 四点共面,所以AE 与CG 是异面直线错误;在四边形AEC 1F 中,AE =EC 1=C 1F =AF ,但AF 与AE 不垂直,故四边形AEC 1F 是正方形错误;由于AE ∥C 1F ,由线面平行的判定定理,可得AE ∥平面BC 1F .3.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α;②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m .其中正确命题的个数是( )A .1B .2C .3D .4解析:选B.易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明,④正确,可以以三棱柱为例证明.4.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是________.解析:设DH DA =GH AC =k ,∴AH DA =EH BD =1-k ,∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的取值范围为(8,10).答案:(8,10)5.如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC.(3)在(2)的条件下,在线段AD上是否存在一点N,使得BN∥面DEC,并说明理由.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以∠BDN=∠CBD,所以DN∥BC. 又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=∠ABD=60°,所以∠ABC=90°,因此∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.(3)存在点N为AD的中点取AD的中点N,连接BN,O为BD的中点由(2)可知∠DCO=60°,∴∠BDC=30°,又∵DBN=30°,∴BN∥DC.DC⊂面DEC,∴BN∥面DEC.。
平面几何基础知识基本定理基本性质
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CB A yC c y B b y A a C B A x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和. 27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT 交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
平面的基本性质共点共线共面
“共点”、“共线”、 “共面” 问题 1、理论依据:
(1)公理1: 判断或证明直线是否在平面内 确定两个平面的交线, (2)公理2: 判定两平面相交 (“点共线”,“线共 点”) (3)公理3, 推论 1、2、3: 确定平面 证点、线共面的依据, 也是作辅助面的依据 2、反证法
点共面、线共面、三点共线、三线共点 问题的一般方法.
例、两个平面两两相交,有三条交线,若其中两
条相交于一点,证明第三条交线也过这一点.
证法:先证两条交线交于一点,再证第三条直线也过改点
已知:如图1-26,α∩β=a,β∩γ=b,α∩γ=c,b∩c =p. 求证:p∈a. 证明:∵b∩c=p, ∴p∈b. ∵β∩γ=b, ∴p∈β. 同理,p∈α. 又∵α∩β=a, ∴个。
2个平面分空间有两种情况:
(1)两平面没有公共点时
(2)两平面有公共点时
两个平面把空间分成3或4个部分。
3个平面 个平面把空间分成4,6,7或8个部分。
( 1)
( 2)
( 3)
( 4)
( 5)
求证:直线AB和CD既不相交也不平行.
A
反证法
D B C
小结
1、要证“点共面” 、“线共面”可 先由部分点、直线确定一平面,在证 其余点、直线也在此平面内, 即纳入法 2、反证法的应用的意识
1.空间四点A、B、C、D共面但不共线,则下列 结论成立的是( ) A.四点中必有三点共线. B.四点中有三点不共线. C.AB、BC、CD、DA四条直线中总有两条 平行. D.直线AB与CD必相交.
例2、如图:在四面体ABCD中,E,F分别
是AB,BC的中点,G,H分别在CD,AD上,且 DG:DC=DH:DA=1:m(m>2) 求证:直线EH与FG,BD相交于一点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出题人:冯艳娥
《平面基本性质》测试
一、选择题
1.若直线a和b没有公共点,则a与b的位置关系是
A.相交
B.平行
C.异面
D.平行或异面2.经过同一直线上的3个点的平面
A.有且只有一个
B.有且只有3个
C.有无数个
D.不存在
3.用符号表示“点A在直线l上,l在平面α外”,正确的是
A.A∈l,l∉α
B.A∈l,l⊄α
C.A⊆l,l∉α
D.A⊆l,l⊄α
4.下列图形中,不一定是平面图形的是
A.三角形
B.菱形
C.梯形
D.四边相等的四边形
5.平面α∩平面β=l,点A∈α,B∈α,C∈β,且C∉l,又AB∩l=R,过A,B,C三点确定的平面记作γ,则β∩γ是
A.直线AC
B.直线BC
C.直线CR
D.以上都不对6.下列说法正确的是
A.平面α和平面β只有一个公共点
B.若直线a,b共面,b,c共面,则a,c共面
C.不共面的四点中,任何三点不共线
D.有三个公共点的两平面必重合7.如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是
A.平行
B.相交
C.平行或相交
D.不能确定
二、填空题
8.下列命题:①三个点确定一个平面;②一条直线和一点确定一个平面;
③两条相交直线确定一个平面;④两条平行线确定一个平面;⑤若四点不共面,则必有三点不共线.其中正确命题是________
9.三条直线相交于一点,可确定的平面有________个.
三、解答题:共4题共55分
10.如图,a∩b=A,a∩c=B,a∩d=F,b∩c=C,c∩d=D,b∩d=E,求证:a,b,c,d共面
. 11.将下列符号语言转化为图形语言.
①,b∩α=Α,Α∈a.②α∩β=c,,,a∥c,b∩c=P.
12.将下列文字语言转化为符号语言.
①点A在平面α内,但不在平面β内.
②直线a经过平面α外一点M.
③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l.
13.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且,
.求证:AB,CD,l共点.
参考答案
1.D
【解析】本题主要考查空间中两条直线的位置关系.由空间中两条直线的位置关系有三种,相交,平行,异面,则没有公共点的情况就是平行直线或者异面直线,故选D.
2.C
【解析】本题主要考查公理2.由题意,经过同一直线上的3个点可以做无数个平面,只有不共线的三点确定一个平面,故选C
3.B
【解析】本题主要考查点线面的位置关系的符号表示.由题意,由于点A在直线l上,l在平面α外,点与线是元素与集合的关系,用∈符号,而对于线与面的位置关系,用⊂符号,故A∈l,l⊄α,选B.
4.D
【解析】本题主要考查公理2运用.由于两条相交直线,两条平行直线都可以确定一个平面,而三角形有两条边相交,菱形和梯形都有两条边平行,所以它们一定是平面图形,而四边相等的四边形不一定是平面图形,可能是空间四边形.
5.C
【解析】本题主要考查两个平面相交的交线问题的确定,结合公理3得到.由题意,平面α∩平面β=l,点A∈α,B∈α,C∈β,又AB∩l=R,则R∈l,R ∈β,且过A,B,C三点确定的平面记作γ,故C,R
在平面γ内,故两个平面同时经过点C,R,因此由
公理3可知选C
6.C
【解析】A错误,若平面和平面有-个公共点,则
两个平面相交或重合,-定有无数个公共点; B错误,
共面不具有传递性; C正确,不共面的四点中,任何三
点不共线; D错误,有三个不共线的公共点的两平面
才重合.
7.C
【解析】如图所示,有两平面平行或相交两种情形,
故选
C.
8.③④⑤
【解析】本题主要考查平面的基本性质.
由题意,①不正确,当三点共线时不成立;②不正
确,当点在直线上时,不成立;③正确,两条相交
直线,必有三个点不共线,由公理2知,正确;④
正确,理由同③;⑤正确,反证法:若有三点共线
l,则l与第四个点确定一个平面α;所以四点共面,
与已知相矛盾.
9.1或3
【解析】本题主要考查平面的基本性质.当三条直线
相交于一点,可能在同一个平面内,也可能确定三
个不同的平面,比如三棱锥的三条棱交于一点,但
是确定了三个侧面,故答案为1或3.
10.根据题意,∵A,B,C三点不共线,∴A,B,C
三点确定一个平面,设为α.
又A∈a,B∈a,∴a⊂α,A∈b,C∈b,∴b⊂α.
B∈c,C∈c,∴c⊂α,∴a,b,c都在α内.
又D∈c,E∈b,∴D∈α,E∈α.
∵D∈d,E∈d,∴d⊂α,∴a,b,c,d共面.
【解析】本题主要考查平面的基本性质.
11.①
②
【解析】无
12.①A∈α,A∉β.②M∈α,M∉α.③α∩β=l.
【解析】无
13.因为梯形ABCD中,AD∥BC,所以AB,CD是
梯形ABCD的两腰,所以AB,CD必定相交于一点.
如图,设AB∩CD=M.
又因为,,
所以M∈α,且M∈β,
所以M∈(α∩β).
又因为α∩β=l,所以M∈l,即AB,CD,l共点.。