高等数学A2练习一

合集下载

高等数学习题及解答(1)

高等数学习题及解答(1)

一般班高数作业(上)第一章 函数1、试判断以下每对函数是不是同样的函数,并说明原因: (2) y sin(arcsin x) 与(6) yarctan(tan x) 与 y x ;(4)y x ;(8)y x 与 y x2;y f ( x) 与 xf ( y) 。

解:判断两个函数的定义域和对应法例能否同样。

(2) y sin(arcsin x) 定义域不一样,所以两个函数不一样;(4) y x 2x ,两个函数同样;(6) y arctan(tan x) 定义域不一样,所以两个函数不一样;(8) yf (x) 与 xf ( y) 定义域和对应法例都同样,所以两个函数同样。

2、求以下函数的定义域,并用区间表示:x 211(2) yx;(7) y ex x;(3) y 2 xarcsinln 1x解:(2) x [ 2,0) ;(3) x [1 e 2 ,0) (0,1 e 2 ] ;(7) x(0, e)(e,) 。

1 。

1 ln xf (x)x 2 1, x 03、设 1x 2, x ,求 f ( x) f ( x) 。

解:按 x 0 , x 0 , x 0 时,分别计算得, f (x)0 x 0f ( x)x 。

2 04、议论以下函数的单一性(指出其单增区间和单减区间) :(2) y4xx2;(4) y x x 。

解:(2) y 4xx24 ( x 2) 2单增区间为 [0,2] ,单减区间为 [ 2,4] 。

(4) yx x2x x 0) 。

0 x ,定义域为实数集,单减区间为 ( ,5、议论以下函数的奇偶性:(2)f ( x) x x2 1 tanx ;(3)f (x) ln( x2 1 x);(6) f ( x) cosln x ;1 x, x 0 (7) f (x)x, x 0。

1解:(2)奇函数;(3)奇函数;( 6)非奇非偶函数;( 7)偶函数。

6、求以下函数的反函数及反函数的定义域:2x), D f ( ,0) ;() f ( x) 2x 1, 0 x 1()。

高等数学练习题(附答案)

高等数学练习题(附答案)

高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。

因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。

3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。

因此,该说法是错误的。

4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。

因此,该说法是错误的。

=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。

因此,该说法是错误的。

四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。

高等数学A2复习题(2018-new)

高等数学A2复习题(2018-new)

高等数学A (2)复习题一、空间解析几何1. 设→→→→+-=k j i a 2,→→→→-+=k j i b 3, 求:(1) 与→a ,→b 均垂直的单位向量;(2) )()23(b a b a ρρρ⨯•-→;(3) 向量→a 的方向余弦。

2. 已知三角形的顶点为A )2,1,3(-、B )2,2,4(、C )3,0,1(,求此三角形的面积。

3. 已知 →→→→+-=k j i a 3,→→→→+-=k j i b 2,计算以→a ,→b 为邻边的平行四边形的面积。

4. 平行四边形ABCD 的两边为b a AB ϖρ2+=→--,3AD a b =-u u ur r r ,其中2,3==b a ρρ,并且a b ⊥r r ,求:(1)b a ρρ+;(2) 平行四边形ABCD 面积。

5. 求由yOz 平面上曲线 223y z -= 绕Oz 轴旋转一周所得的曲面方程。

6. 求过点)2,3,1(-且平行于平面132=-+z y x 的平面方程。

7. 求点)2,2,1(0-P 与平面11435=-+z y x 的距离。

8. 求直线 41112:1--==+z y x L 与 22221:2-=-+=z y x L 的夹角。

9. 求过点)5,3,2(-且与平面 13=+y x 垂直的直线方程。

10. 求过点),,(4120-P 且与直线 ⎩⎨⎧=---=-+-022012z y x z y x l : 平行的直线方程。

11. 求平面1x z -=与xOy 平面的夹角。

12. 求过点)3,2,1(且与直线223032+12=0x y z x y z ++-=⎧⎨-+⎩垂直的平面方程。

二、多元函数微分学1.求极限 (1)x xyy x sin lim)2,0(),(→;(2)xyxy y x 11lim)0,0(),(-+→;(3)2222)0,0(),(cos 1)(limyx y x y x +-+→;(4)y x y x xye xy +→+)1ln(lim )0,1(),(;(5)2222)0,0(),(1sin)(limy x y x y x ++→。

高等数学(题)

高等数学(题)

《大学数学》第一章函数作业(练习一)一、填空题1.函数x x x f -+-=5)2ln(1)(的定义域是 。

2.函数392--=x x y 的定义域为 。

3.已知1)1(2+=-x e f x ,则)(x f 的定义域为4.函数1142-+-=x x y 的定义域是 .5.若函数52)1(2-+=+x x x f ,则=)(x f.二、单项选择题1. 若函数)(x f y =的定义域是[0,1],则)(ln x f 的定义域是( ) .A . ),0(∞+B . ),1[∞+C . ]e ,1[D . ]1,0[2. 函数x y πsin ln =的值域是)(.A . ]1,1[-B . ]1,0[C . )0,(-∞D . ]0,(-∞3.设函数f x ()的定义域是全体实数,则函数)()(x f x f -⋅是( ). A.单调减函数; B.有界函数;C.偶函数;D.周期函数4.函数)1,0(11)(≠>+-=a a a a x x f xx ( ) A.是奇函数; B. 是偶函数;C.既奇函数又是偶函数;D.是非奇非偶函数。

5.若函数221)1(xx x x f +=+,则=)(x f ( ) A.2x ; B. 22-x ; C.2)1(-x ; D. 12-x 。

6.设1)(+=x x f ,则)1)((+x f f =( ).A . xB .x + 1C .x + 2D .x + 37. 下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y =8.设函数⎩⎨⎧>≤=0,00,cos )(x x x x f ,则)4(π-f =().A .)4(π-f =)4(πf B .)2()0(πf f = C .)2()0(π-=f f D .)4(πf =229. 若函数1)e (+=x f x ,则)(x f = ( ) .A . 1e +xB . 1+xC . 1ln +xD . )1ln(+x10. 下列函数中=y ( )是偶函数.A . )(x fB . )(x fC . )(2x fD . )()(x f x f --三、解答题1.设⎩⎨⎧<<≤≤=e 1ln 10)(x x x xx f ,求:(1) )(x f 的定义域; (2) )0(f ,)1(f ,)2(f 。

吉林大学作业及答案-高数A2作业答案

吉林大学作业及答案-高数A2作业答案

高等数学作业AⅡ答案吉林大学公共数学教学与研究中心2018年3月第一次作业学院 班级 姓名 学号一、单项选择题1.下列反常积分收敛的是( C ). (A )⎰∞+2d ln x xx; (B )⎰∞+2d ln 1x xx ; (C )⎰∞+22d )(ln 1x x x ;(D )⎰∞+2d ln 1x xx .2.下列反常积分收敛的是( D ) A .0cos d x x +∞⎰B .221d (1)x x -⎰C .01d 1x x +∞+⎰D .321d (21)x x +∞-∞+⎰3.设)(x f 、()g x 在],[b a 上连续,则由曲线)(x f y =,()y g x =,直线b x a x ==,所围成平面图形的面积为( C ).(A )[()()]d ba f x g x x -⎰;(B )[|()||()|]d baf xg x x -⎰;(C )|()()|d b af xg x x -⎰; (D )[()()]d b af xg x x -⎰.4.设曲线2y x =与直线4y =所围图形面积为S ,则下列各式中,错误的是 ( C ).(A )2202(4)d S x x =-⎰;(B )402d S y y =⎰; (C )2202(4)d S x y =-⎰;(D )402d S x x =⎰.5.设点(,sin )A x x 是曲线sin (0)y x x π=≤≤上一点,记()S x 是直线OA (O 为原点)与曲线sin y x =所围成图形的面积,则当0x +→时,()S x 与( D ).(A )x 为同阶无穷小; (B )2x 为同阶无穷小; (C )3x 为同阶无穷小; (D )4x 为同阶无穷小.6.设0()()g x f x m <<<(常数),则由(),(),,y f x y g x x a x b ====所围图形绕直线y m =旋转所形成的立体的体积等于( B ).(A )π(2()())(()())d ba m f x g x f x g x x -+-⎰;(B )π(2()())(()())d bam f x g x f x g x x ---⎰;(C )π(()())(()())d bam f x g x f x g x x -+-⎰;(D )π(()())(()())d bam f x g x f x g x x ---⎰.二、填空题 1.已知反常积分⎰∞+0d e 2x x ax 收敛,且值为1,则=a 12-.2.摆线1cos sin x ty t t =-⎧⎨=-⎩一拱(02π)t ≤≤的弧长 8 .3.2d 25x x +∞-∞=+⎰π5. 4.反常积分0d (0,0)1mnx x m n x+∞>>+⎰,当,m n 满足条件1n m ->时收敛. 5.由曲线22,y x x y ==围成图形绕x 轴旋转一周所形成的旋转体体积为 3π10. 三、计算题1.用定义判断无穷积分0e d 1e xxx -∞+⎰的收敛性,如果收敛则计算积分值.解: 000e d(1e )d 1e 1e [ln(1e )]ln 2xxx x x x -∞-∞-∞+=++=+=⎰⎰ 则该无穷积分收敛. 2.判断反常积分的收敛性:13sin d x x x+∞⎰解:33sin 1x xx≤Q而131x +∞⎰收敛. 13sin d xx x+∞∴⎰收敛.3.已知22lim 4e d xx a x x a x x x a +∞-→∞-⎛⎫= ⎪+⎝⎭⎰,求a 的值. 解:()21e lim lim e e1xa ax a a x a x x a a a x a x x a a x ----→∞→∞⋅⎛⎫- ⎪-⎛⎫⎝⎭=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭. 222222222222222222224e d 2de 2e 4e d 2e 2de 2e 2e 2e d 2e 2e e (221)e .x xaaxx aaa xaa xx aaa a x aa x x x x x xa x a x xa a a a +∞+∞--+∞+∞--+∞--+∞+∞---+∞----=-=-+=-=-+=+-=++⎰⎰⎰⎰⎰由已知222e (221)e a a a a --=++,即(1)0a a +=.所以0a =或1a =-.4.求连续曲线π2cos d x y t t -=⎰的弧长.解:由cos 0x ≥可知ππ22x -≤≤. 因此所求弧长为 π22π21d s y x -'=+⎰()π22021cos d x x =+⎰π2022cos d 42xx ==⎰.5.计算由x 轴,曲线1-=x y 及其经过原点的切线围成的平面图形绕x 轴旋转所生成立体体积.解:设切点为00(,)x y ,则过切点的切线方程为0001()21Y y X x x -=--令0,0X Y ==,得002,1x y ==.2212211π12π(1)d 32πππ.362x V x xx x =⨯⨯--⎛⎫=-=- ⎪⎝⎭⎰6.在第一象限内求曲线21y x =-+上的一点,使该点处的切线与所给曲线及两坐标轴所围成的图形面积为最小,并求此最小面积.解:设所求点为(,)x y ,则过此点的切线方程为2()Y y x X x -=-.由此得切线的x 轴截距为212x a x+=,y 轴截距为21b x =+.于是,所求面积为12031()(1)d 21112.4243S x ab x xx x x =--+=++-⎰令2211()32411130,4S x x x x x x x ⎛⎫'=+- ⎪⎝⎭⎛⎫⎛⎫=-+= ⎪⎪⎝⎭⎝⎭解得驻点13x =.又因为3131126043x S x x =⎛⎫⎛⎫''=+> ⎪ ⎪⎝⎭⎝⎭,所以13x =为极小值点,也是最小值点.故所求点为12,33⎛⎫ ⎪⎝⎭,而所求面积为12(233)93S ⎛⎫=- ⎪⎝⎭.7.在曲线2(0)y x x =≥上某点A 处作一切线,使之与曲线以x 轴所围图形的面积为112,试求: (1)切点A 的坐标;(2)过切点A 的切线方程;(3)由上述所围平面图形绕x 轴旋转一周所围成旋转体体积. 解:设切点00(,)A x y ,则切线方程为:20002()y x x x x -=-,得切线与x 轴交点为0,02x ⎛⎫⎪⎝⎭.由02200011d 2212x x x x x -⋅⋅=⎰,得01x =.∴切点为(1,1)A ,切线方程:21y x =-1222011()d 13230V x x πππ=⋅-⋅⋅⋅=⎰.8.半径为r 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中提出,问需作多少功?解:取球浮出水面后球心为原点建立坐标系,则22d ()d ()r y y g r y ωπρ=-⋅⋅+224()()d 43rr g r y r y ygr ωπρπρ-=⋅-+=⎰第二次作业学院 班级 姓名 学号一、单项选择题1. 平面10x y z +--=与22230x y z +-+=的关系( A ). (A )平行,但不重合; (B )重合;(C )垂直;(D )斜交.2.平面1=z 与曲面14222=++z y x ( B ). (A )不相交;(B )交于一点; (C )交线为一个椭圆;(D )交线为一个圆.3.方程z y x =-4222所表示的曲面为( C ). (A )椭球面; (B )柱面; (C )双曲抛物面; (D )旋转抛物面.4.曲面2222x y z a ++=与22(0)x y zax a +=>的交线在xoy 平面上的投影曲线是( D ).(A )抛物线;(B )双曲线;(C )椭圆;(D )圆.5.设有直线182511:1+=--=-z y x L 与⎩⎨⎧=+=-326:2z y y x L ,则L 1与L 2的夹角为( C ).(A )π6; (B )π4; (C )π3; (D )π2. 6.设有直线⎩⎨⎧=+--=+++031020123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( C ).(A )平行于π; (B )在π上; (C )垂直于π; (D )与π斜交.二、填空题1.设,a b 均为非零向量,且||||+=-a b a b ,则a 与b 的夹角为π2. 2.设向量x 与向量2=-+a i j k 共线,且满足18⋅=-a x ,则=x (6,3,3)-- .3.过点(1,2,1)M -且与直线2,34,1x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面是 340x y z --+= .4.若||3=a ,||2=b ,且a ,b 间夹角为34θπ=,则||+=a b 5,||⨯=a b 3 .5.xoz 平面上的曲线1x =绕z 轴旋转一周所形成的旋转曲面方程为221x y +=. 6.曲线⎩⎨⎧=-+--=032622z y y x z 在xoy 面上的投影曲线方程为222300x y y z ⎧+--=⎨=⎩.7.若直线L 平行于平面π:3260x y z +-+=,且与已知直线132:241x y zL -+==垂直,则L 的方向余弦(cos ,cos ,cos )αβγ为 65585,,25525⎛⎫- ⎪⎝⎭ .三、计算题 1.求过直线1212:102x y z L --+==-,且平行于直线221:212x y zL +-==--的平面π的方程.解:过L 的平面束为:22(1)0x z y λ+-+-=即(2,,1)λ=n ,由n 与(2,1,2)=--S 垂直,有420,2λλ--== ∴ 所求平面为2240x y z ++-=.2.求点(2,1,3)到直线11321x y z+-==-的距离. 解:(3,2,1)=-s 设0(2,1,3),(1,1,0)M M - 则00(3,0,3)6126i =⨯=--MM S MM j k ∴ 0||621||7d ⨯==S MM S3.求曲面220x y z +-=与平面10x z -+=的交线在Oxy 平面上的投影曲线. 解:因为曲线220,10x y z x z ⎧+-=⎨-+=⎩ 在Oxy 平面上投影就是通过曲线且垂直于Oxy 平面的柱面与Oxy 平面的交线,所以,只要从曲线的两个曲面方程中消去含有z 的项,则可得到垂直于Oxy 平面的柱面方程.由220,10x y z x z ⎧+-=⎨-+=⎩消去z ,得到关于Oxy 平面的投影柱面2210x y x +--=,于是得到在Oxy 平面上的投影曲线为2210,0.x y x z ⎧+--=⎨=⎩4.求过平面02=+y x 和平面6324=++z y x 的交线,并切于球面4222=++z y x 的平面方程.解:过L 平面束为4236(2)0x y z x y λ++-++=. 即(42)(2)360x y z λλ++++-=. 由222|6|2(42)(2)3λλ-=++++得2λ=-则所求平面为2z =.5.设有直线210:210x y z L x y z ++-=⎧⎨-++=⎩,平面π:0x y +=,求直线L 与平面π的夹角;如果L 与π相交,求交点.解:L 的方向向量(1,2,1)(1,2,1)(4,0,4)=⨯-=-S而(1,1,0)=n ∴ ||41sin ||||2422θ⋅===⋅S n S n ,∴ 6πθ=将y x =-代入L 方程.解得111,,222x y z =-==∴ 交点111,,222⎛⎫- ⎪⎝⎭.6.向量a 与x 轴的负向及y 轴、z 轴的正向构成相等的锐角,求向量a 的方向余弦. 解:依题意知ππ,,02αθβθγθθ⎛⎫=-==<< ⎪⎝⎭, 因为222cos cos cos 1αβγ++=,即222cos ()cos cos 1πθθθ-++=, 所以23cos 1θ= 或 3cos 3θ=. 故333cos ,cos ,cos 333αβγ=-==.第三次作业学院 班级 姓名 学号一、单项选择题1.()220lim ln x y xy x y →→+=( B ).(A )1; (B )0; (C )12; (D )不存在.2.二元函数()()()()()22,,0,0,,0,,0,0xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点)0,0(处( D ).(A )不连续,偏导数不存在; (B )连续,偏导数不存在; (C )不连续,偏导数存在;(D )连续,偏导数存在.3.设22(,)(1)(2)f x y y x x y =-+-,在下列求(1,2)x f 的方法中,不正确的一种是( B ).(A )因2(,2)2(1),(,2)4(1)x f x x f x x =-=-,故1(1,2)4(1)|0x x f x ==-=; (B )因(1,2)0f =,故(1,2)00x f '==;(C )因2(,)2(1)(2)x f x y y x y =-+-,故12(1,2)(,)0x x x y f f x y ====;(D )211(,2)(1,2)2(1)0(1,2)lim lim 011x x x f x f x f x x →→---===--.4.设函数(,)f x y 在点00(,)P x y 的两个偏导数x f '和y f '都存在,则( B ). (A)00(,)(,)lim(,)x y x y f x y →存在; (B) 00lim (,)x x f x y →和00lim (,)y y f x y →都存在;(C) (,)f x y 在P 点必连续; (D) (,)f x y 在P 点必可微.5.设22(,),2zz f x y y∂==∂,且(,0)1,(,0)y f x f x x ==,则(,)f x y 为( B ).(A )21xy x -+; (B )21xy y ++; (C )221x y y -+; (D )221x y y ++. 二、填空题1.0011limx y xyxy →→--= 1/2 .2. 设函数44z x y =+,则(0,0)x z '= 0 .3.设22),(y x y x y x f +-+=,则=')4,3(x f 2/5,=')4,3(y f 1/5 . 4.设xz xy y=+,则d z = 21d d x y x x y y y ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭. 5.设函数(,)()()()d x yx y u x y f x y f x y g t t +-=++-+⎰,其中f 具有二阶导数,g 具有一阶导数,则2222u ux y∂∂-=∂∂ 0 .三、计算题1.设()0,1y z x x x =>≠,证明12ln x z zz y x x y∂∂+=∂∂. 证明:因为1,ln y y z zyx x x x y-∂∂==∂∂,所以 12ln y y x z zx x z y x x y∂∂+=+=∂∂. 2.讨论函数2222222,0,(,)0,0x xyx y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩的连续性..解一:当(),p x y 沿y 轴(x=0)趋于0(0,0)时, 2222limlim0x y y x xyx y y →→→+==+ 当(),p x y 沿y x =,趋于0(0,0)时,222220002lim lim 12x x y x x xy x x y x→→=→+==+∴()00lim,x y f x y →→不存在 ∴不连续解二:当(),p x y 沿y kx =趋于0(0,0)时,()()222222200011lim lim11x x y kx k x x xyk x y k k x →→=→+++==+++ 与k 有关,∴不连续 3.设(1)y z xy =+,求d z .()()11211y y z y xy y y xy x--∂=⋅+⋅=+∂ 解一:取对数()ln ln 1z y xy =+()1ln 11z x xy y z y xy ∂⋅=++⋅∂+,∴()()1ln 11y z xy xy xy y xy ⎡⎤∂=+++⎢⎥∂+⎣⎦ 解二:()()()()ln 1ln 1e,e ln 111yy xy y xy z x xy y xy y xy ++⎡⎤∂∂==⋅++⋅=+⎢⎥∂+⎣⎦ ∴()()()12d 1d 1ln 1+xy d 1y y x z y xy x xy y xy -⎡⎤=++++⎢⎥+⎣⎦ 4.求2e d yzt xz u t =⎰的偏导数.t220e d e d xz yzt u t t =-+⎰⎰22x z e uz x∂=-⋅∂ 22y e z uz y∂=⋅∂ 2222x y e e z z ux y z∂=-⋅+⋅∂ 5.设222r x y z =++,验证:当0r ≠时,有2222222r r r x y z r∂∂∂++=∂∂∂.证明:22222r x xx rx y z ∂==∂++ 222223xr x rr x r x r r -⋅∂-==∂,同理:2222222323,r r y r r z y r z r ∂-∂-==∂∂∴()2222222222233322r x y x r r r r x y z r r r-++∂∂∂++===∂∂∂ 6.设222222221()sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩,问在点(0,0)处,(1)偏导数是否存在? (2)偏导数是否连续? (3)是否可微?解:(1)2201()sin(0,0)(0,0)()(0,0)limlim 0x x x x f x f x f xx∆→∆→∆+∆-∆'===∆∆,2201()sin(0,0)(0,0)()(0,0)limlim 0y y y y f y f y f yy∆→∆→∆+∆-∆'===∆∆,故函数在点(0,0)处偏导数存在. (2)当 (,)(0,0)x y ≠时, 222222222112(,)2sin()cos ()x x f x y x x y x y x y x y -'=++⋅+++2222221212sincos x x x y x y x y=-+++, 又 22222200121lim (,)lim(2sincos )x x x y y x f x y x x y x y x y→→→→'=-+++, 当(,)x y 沿x 轴趋于(0,0)时,上式222121lim(2sincos )x y x x x x y →==-+ 不存在, 故偏导数(,)x f x y '在点(0,0)不连续.由函数关于变量,x y 的对称性可知,(,)y f x y '在点(0,0)不连续。

高等数学A2选择判断题

高等数学A2选择判断题

向量的运算3. 在长方体ABCD —A 1B 1C 1D 1中,下列关于AC 1→的表达式中错误的是( )A. AA A B A D 11111→+→+→B. AB DD D C →+→+→111C. AD CC D C →+→+→111D. 121111()AB CD A C →+→+→ 答案B 知识点:向量的线性运算4. 如图所示,已知空间四边形每条边和对角线长都等于a ,点E 、F 、G 分别是AB 、AD 、DC 的中点,则a 2是下列哪个向量的数量积?( )A. 2BA AC →→·B. 2AD BD →→· C. 2FG CA →→·D.2EF CB →→·D答案B 知识点:数量积5.设向量214(,,)a =-与向量12(,,)b k =平行,则( )k = A. 12- B.12C. 1D. 1- 答案A 知识点:两向量平行的判定方法 6. 已知114(,,)a =-,122(,,)b =-,则( )a b ⋅=A. 9B. 9-C. 8D. 8- 答案B 知识点:用坐标表示向量的数量积7. 与向量131(,,)和102(,,)同时垂直的向量是( )A. 310(,,)-B. 613(,,)--C. 402(,,)-D. 010(,,) 答案B 知识点:向量积的定义及运算 8.若向量,a b 满足||||||a b a b +=+,则必有( )A. a b ⊥B. 10||,||a b ==C. 1||||a b ==D. ||||a b a b ⋅= 答案D 知识点:向量加法的运算9.设2,c a b d ka b =+=+,其中12||,||,a b a b ==⊥,则当( )k =时c d ⊥. A. 2- B. 2 C. 3 D. 3- 答案A 知识点:向量垂直的判定方法10.与向量211(,,)a =-共线且与a 的数量积是3的向量b 是( ) A. 11122(,,)- B. 11122(,,)-- C. 11122(,,) D. 11122(,,)- 答案D 知识点:向量共线的判定及数量积运算11. 设,,a b c 均为非零向量, a 与非零向量()()c a b a b c ⋅-⋅的关系是( ).A. 不平行也不垂直B.平行不相等C. 垂直D. 相等 答案C 知识点:向量之间关系的判定12.设三向量,,a b c 满足关系式a b a c ⋅=⋅,则( ). A.必有0a b c ==或 B.必有0a b c =-= C.当0a ≠时必有b c = D. 必有()a b c ⊥- 答案D 知识点:数量积运算规律13.,,a b c 为两两不共线的共面向量,且a b ⊥,则c 必等于( ). A. ||||a c b c a b a b ⋅⋅+ B. ||||a cb ca b a b ⋅⋅+ C.22a c b c a b a b ⋅⋅+ D. 22a cb ca b a b⋅⋅+ 答案C 知识点:向量积运算规律14.若,a b 共线,且,b c 共线,则a 与c ( ).A. 一定共线;B. 一定不共线;C. 当0b ≠时,共线;D. 以上结论都不正确. 答案C 知识点:向量共线的判定15.设向量,a b 为非零向量,且a b ⊥,则必有( ). A. ||||||a b a b +=+; B. ||||||a b a b -=-; C. ||||a b a b +=-; D a b a b +=-. 答案C 知识点:向量的加减运算16.设一条直线与三个坐标面的夹角分别为, , λμν,则222c o s c o s c o s λμν++=( )。

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学07~08高数A2期末试卷(含答案)

浙江理工大学2007~2008学年第二学期高等数学A 期终试题(A )卷班级 学号 姓名 一、 选择题(每小题4分,满分28分)1、函数2222),(y x y x y x f +-= 在点)1,1(处的全微分)1,1(df 为 ( )(A) 0 (B) dy dx + (C) dx 4 (D) dy dx -2 2、设L 是从A (1,0)到B (-1,2)的直线段,则()Lx y ds +⎰= ( )(B)(C) 2 (D) 03、方程234sin 2y y x '''+=+的特解为 ( )(A)1(cos 2sin 2);2y x x =-+ (B) 31cos 222y x x =- (C)31sin 222y x x =- (D)311cos 2sin 2.222y x x x =--4、设)(x f 在),0(+∞上有连续的导数,点A )2,1(,B )8,2(在曲线22x y =上。

L为由A 到B 的任一曲线,则=++-⎰dy x xy f x dx x y f x y xy L])(1[)](22[22223( )。

(A) 20, (B) 30, (C) 35, (D) 40。

5、 设b 为大于1的自然数,对幂级数∑∞=1n bnnx a,有a a a nn n =+∞→1l i m,(1,0≠>a a ),则其收敛半径=R ( )。

(A) a , (B) a1, (C)ba , (D)ba1。

6、下列级数收敛的是 ( )(A) ∑∞=1sin n n π; (B )∑∞=1100!n n n ; (C )∑∞=+12)11ln(n n ; (D )∑∞=+-12)11(21)1(n n n nn . 7、已知曲线)(x f y =过原点,且在原点处的法线垂直于直线)(,13x y y x y ==-是微分方程02=-'-''y y y 的解,则=)(x y ( )(A )x xe e--2 (B )x x e e 2-- (C )x x e e 2-- (D )x x e e --2二、填空题(每小题4分,满分20分)1、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值, 则常数a = 。

高等数学(II-1)

高等数学(II-1)

单项选择题1、函数的间断点是()。

A、2、下列结论中不正确的是()。

A、在处连续,则一定在处可微3、下列麦克劳林公式正确的是( )。

A、4、设,则()。

D、5、若,则的取值范围是()。

A、6、当时,下列变量中为无穷小量的是()C、7、设, 当从变到时,函数的增量为( ) 。

B、8、骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。

D、骆驼的体重9、函数在点处取得极大值,则必有()。

D、10、( ) 。

B、11、在定义区间的最小值是()。

D、不存在12、( )。

C、413、若是上的连续偶函数,则( ) 。

C、14、定积分值的符号为()。

C、等于零15、曲线所围平面图形的面积为( )。

B、16、= ( ) 。

A、17、设函数,则该函数( )。

B、在两端点处取值不相等,因此不满足罗尔定理的条件18、( )。

B、19、函数在区间上满足罗尔定理的( )。

C、20、 d( )= C、21、若,则下列式子一定成立的有()。

C、22、设在上有定义,函数在点处左、右极限都存在且相等是函数在点处连续的( )。

C、必要条件23、( ) D、24、()是函数的原函数。

D、25、积分的值为()。

C、026、函数,则()。

A、27、若,则()。

C、128、函数在处的导数等于( )。

D、429、若对任意,有,则()。

D、对任意,有(是任意常数)30、设,则=( ) B、31、()。

D、32、若,下列各式正确的是( )。

C、33、是()的一个原函数。

B、34、当时,下列函数是无穷小是( )。

C、35、设,则=( )。

B、36、下列说法正确的是()。

B、若在不可导,则在不连续37、( ) C、138、( )。

B、139、若函数在点连续,则在点( )。

D、有定义40、当=()时,函数,在处连续。

B、141、三次曲线在处取极大值,点是拐点,则()。

B、42、函数导数不存在的点是( )。

C、43、幂函数的定义域是( )。

高数下册练习题

高数下册练习题

高等数学(第二册)练习题1一、选择题1、函数()y x f z ,=在()0,0y x 处的偏导数x z 、y z 存在是函数()y x f z ,=在该点连续的 ( )A.充分条件 B.必要条件 C.充要条件 D.既非充分又非必要条件 2、微分方程x e y y y y x 342=-'-''是( )A. 二阶线性微分方程 B.二阶齐次微分方程C.二阶非齐次线性微分方程 D.二阶非齐次非线性微分方程3、下列说法中不正确的是( )A. 若0=⋅b a ,则向量b a ,垂直 B. 若0 =⨯b a , 则向量b a,平行C. 若平面π过x 轴,则平面π方程的形式为:0=++D Cz ByD. 若平面垂直与x 轴,则平面方程的形式为0=+D x ;4、设⎪⎭⎫⎝⎛+=x y xF xy z ,其中()u F 为可微函数,则=∂∂+∂∂y z yx z x ( ) A.xz y + B. xy z + C. yz x + D.xy z - 5、设二重积分()⎰⎰=+Ddxdy y x 2( )其中D 是区域(){}20,11,≤≤≤≤-y x y x A.5 B.6 C.7 D.86、无穷级数()∑∞=-113n nn n x 的收敛半径( ) A. 3 B. 0.3 C. 32 D. 31 7、若∑∞=-1)5(n n nx a在x=3处收敛,则它在x=-3处( ) A 发散 B 条件收敛 C 绝对收敛 D 不能确定二、填空题1.二阶齐次线性微分方程0106=+'+''y y y 的通解是__________; 2、函数xy e z =的全微分_______________ 3、交换二次积分I 的积分次序,=I ()=⎰⎰--dy y x f dx x 21011,_____________ ; 4、过点()2,0,1-且与平面012752=+-+z y x 垂直的直线方程__________ ;5、以点()2,3,1-为球心,2为半径的球面方程_________________ ;6、函数x e y =的麦克劳林级数_____________________________ 。

《高等数学》练习题库及答案,DOC(word版可编辑修改)

《高等数学》练习题库及答案,DOC(word版可编辑修改)
A、B、eC、-eD、-e—1 12、下列有跳跃间断点 x=0 的函数为()
A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()

高等数学A2学习通课后章节答案期末考试题库2023年

高等数学A2学习通课后章节答案期末考试题库2023年

高等数学A2学习通课后章节答案期末考试题库2023年1.不是一阶线性微分方程。

( )参考答案:对2.微分方程的通解是 (为任意常数)。

( )参考答案:对3.任意微分方程都有通解。

( )参考答案:错4.函数是微分方程的解。

( )参考答案:错5.是方程的( ),其中,为任意常数。

参考答案:通解6.微分方程的阶数是( )。

参考答案:27.是( )阶微分方程。

参考答案:38.微分方程的通解中包含了它所有的解。

( )参考答案:错9.微分方程是( )阶微分方程。

参考答案:210.若微分方程的解中含有任意常数,则这个解称为通解. ( )参考答案:错11.是一阶线性微分方程。

( )参考答案:错12.的通解中应含( )个独立常数。

参考答案:313.在空间直角坐标系中,方程表示的曲面是( )参考答案:椭圆抛物面14.函数在点处沿曲面在点处的外法线方向的方向导数( ).参考答案:;15.三道题,题号是从2开始的,依次对应答案上的2,3,4题。

参考答案:9.7方向导数与梯度作业答案.pdf16.函数的极值参考答案:极小值 ,极小值17.设有连续的一阶偏导数,又函数分别由下列两式确定=( )参考答案:.18.10.3作业(1).docx参考答案:10.3(一)作业及答案.docx19.设,其中由所围成,则=( ).参考答案:;20.的值为( ).其中区域为: .参考答案:;21.已知函数,,都是对应二阶非齐次线性方程的解,,,是任意常数,则下列判断正确的是( )参考答案:是原方程的通解22.作业10.3(二).docx参考答案:作业10.3(二)及答案.docx23.11.3作业.pdf参考答案:11.3作业及答案.pdf24.()参考答案:每题6分,共计48分25.函数的极值是( )参考答案:极大值为10,无极小值26.若函数,则( )参考答案:-127.点关于平面的对称点是( ).参考答案:;28.对于曲面,下列叙述错误的是( ).参考答案:是由在面上母线绕轴旋转而成;29.在点的某邻域有连续的偏导数及是在该点可微的( ).参考答案:充分条件但非必要条件30.设向量,则=( )参考答案:331.直线和平面的关系为( ).参考答案:平行。

高数A(2)综合测试1

高数A(2)综合测试1

高等数学(A2)综合测试(一)(时间:120分钟)一、填空题(24分)1 21. 设442u x y x y =+−,则22________.u x ∂=∂ 2. 设函数在点(1,1,1)沿的方向导数u xyz =(2,1,1)l =G (1,1,1)u l ∂=∂【 】.323. 曲面上点(1,-2,1)处的切平面方程为222321x y z ++=222___________________.u x∂=∂ 4. 若级数收敛,则.1(21)n n u ∞=−∑lim ____________n n u →∞=5. 设曲线L 是沿逆时针方向的圆周 则224,x y +=Lxdy ydx −∫v = 。

6. 下列级数收敛的是【 】.A. n ∞=B. 21(1)5n n n n∞=−+∑ C. n n ∞= D. 111nn n ∞=⎛⎞+⎜⎟⎝⎠∑ 7. 已知平面区域D :,01,a x b y ≤≤≤≤又()1,D yf x d σ=∫∫ 则()b af x dx =∫【 】.A. 1B. 2C. 0D. 0.58. 设L 为圆周则223,x y +=∫v = . 二、解答下列各题(56分)1. 设 求2222,sin ,x y z u e z x y ++==,u u x y ∂∂∂∂. 2. 设函数2ln sin 2yz y u x y e =++,求全微分. du 3. 求由方程33z x 1yz −=所确定的隐函数(,)z z x y =在点(2,1,1)处的全微分.4. 设,,xy x z f e y −⎛⎞=⎜⎝⎠⎟ 且f 具有二阶连续偏导数,求22,z z xx ∂∂∂∂. 5. 计算(D,x σ+∫∫其中D: 221x y +≤.6. 计算,其中由zdv Ω∫∫∫Ω2z x 2y =+及平面1z =所围成的闭区域.7. 计算222(1)(2),Lx y dx x x y dy −+++∫L :从沿上半圆(4,0)A y =的一段圆弧.(0,0)O 8. 计算其中Σ是曲面,zdxdy Σ∫∫22z x 2y =+介于0z =及1z =之间的部分的外侧.三、解答下列各题(20分)1. 判定级数21(1)3nn n n ∞=−∑的敛散性,如果收敛,是绝对收敛还是条件收敛? 2. 求幂级数1n n x n ∞=∑的收敛域及和函数()s x ,并计算和11(3)n n n ∞=−∑. 3. 将函数21()2f x x x =−−展开为x 的幂级数. 4. 设(),0f x x x π=≤≤,将()f x 展开为正弦级数,(1)求的值;(2)记1sin n n b n ∞=∑x 2b 1()sin n n s x b ∞==∑nx ,则()s π= .。

高等数学试题及答案 (1)

高等数学试题及答案 (1)

《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2ln 2x x x dx C =+⎰B )、sin cos tdt tC =-+⎰C )、2arctan 1dx dx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11cos 2y -B )、11cos 2x - C )、22cos y - D )、22cos x- 14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D 14. A 15. B二.填空题1. 21e 2. 2π3. C x+1 4. 412x x + 5. (0,0) 三.判断题1. T2. F3. F4. T5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。

2012年9月份考试高等数学(II-2)第一次作业.docx

2012年9月份考试高等数学(II-2)第一次作业.docx

2012年9月份考试高等数学(II-2)第一次作业一、单项选择题(本大题共90分,共 30 小题,每小题 3 分)1. 下列阶数最高的微分方程是()。

A. B.C. D.2. 在空间直角坐标系中,点 A(1,-2,3) 在:()A. 第五卦限B. 第八卦限C. 第三卦限D. 第四卦限3. 下列方程表示抛物面的是()A. x2+y2+z2=1B. x+y+z=1C. x+y2+z2=0D. x2-y2+z2=04. 方程x=2在空间表示( )A. yoz坐标面。

B. 一个点。

C. 一条直线。

D. 与yoz面平行的平面。

5. 微分方程x(y')2-2yy'+x=0是()的。

A. 2阶B. 3阶C. 不能确定D. 1阶6. 下列二重积分的性质不正确的是()A.B.C.D.7. 已知点 M(1,-4,8) ,则向量的方向余弦为()A.B.C.D.8. 设,若则()A. x=0.5 y=6B. x=-0.5 y=-6C. x=1 y=-7D. x=-1 y=-39. 点( 4 , -3 , 5 )到 oy 轴的距离为 ()A.B.C.D.10. 若limn→∞u n=0,则级数u n∞n=1()A. 一定发散B. 一定条件收敛C. 可收敛也可发散D. 一定绝对收敛11. 收敛级数加括号后所成的级数()A. 收敛但级数和改变B. 发散C. 收敛且级数和不变D. 敛散性不确定12. 级数的敛散性为( )A. 收敛B. 不能确定C. 可敛可散D. 可敛可散=5,则C=()13. 函数x2-y2=C初始条件y|x=0A. 0B. 25C. 1D. -2514. 微分方程y'+y=0的通解是()A. y=3sin x-4cos xB. y=Ce-x(C是任意常数)C. y= Ce x(C是任意常数)D. y=3sin x-4cos x+515. 设 u=a-b+2c,v=-a+3b-c . 则用 a,b,c 表示 2u-3v 为:()A. 5a +11b+7cB. 5a -1b+7cC. 5a -1b-7cD. 5a -1b+7c16. 设a为常数,则级数 ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性与a的值有关17. 点 A(1,-1,0) 的位置特征是()A. A 位于 yOz 平面B. A位于xOy平面C. A位于z轴D. A位于x轴18. 微分方程的通解为()。

高数A(Ⅱ)总复习一 (微分方程、级数)

高数A(Ⅱ)总复习一 (微分方程、级数)

1 x

x ( x 1) e dx c

1 x x c ( xe c) e x x
f (1) = e 代入,得 c = 0
∴ f (x) = ex
SHIJIAZHUANG TIEDAO UNIVERSITY
高等数学(A)I
2. 二阶常系数非齐次线性微分方程 y"- 4y' + 3y= 4xe3x 的
高等数学(A)I
1. 解微分方程 xf ( x) f ( x) (x 1)e x , f (1) e.
解:
1 x 1 x P( x) , Q( x) e x x
∴ 通解为
f ( x)
1 dx e x
1 dx x 1 x x e e d x c x
高等数学(A)I
6. 任意项级数的比值判别法 和根值判别法
un 1 ∑un为任意项级数, lim ( 或 lim n | un | ) n un n
① ρ< 1 , 级数绝对收敛 ② ρ> 1 或为+∞, 级数发散 ③ ρ= 1 ,另行判定
SHIJIAZHUANG TIEDAO UNIVERSITY
n 1
SHIJIAZHUANG TIEDAO UNIVERSITY
*例. 级数 A. 收敛;
高等数学(A )I
n2
(1) n n (1)
n
的收敛性为 【 A 】 C. 不确定 ; D. A, B, C 都不对
( n 2, 3,...)
B. 发散 ;
1 1 1 解: S2n-1 = 1 3 4 56 (2n 1) (2n)

高等数学练习题(函数)

高等数学练习题(函数)

使所用材料最省?若底面单位面积的造价是侧面单位面积造价
的2倍,问怎样设计才能使造价最低?
练习题九
一、填空题:
1、D: 0 x 1, 0 y 1 dxdy

D
2、D:y 0, x 0, y 1 x dxdy

D
3、D:x2 y2 1
dxdy

D
4、D: y x, x 2, y 0 dxdy
x [ 3 , ]
22
B、 f ( x) ( x 4)2 x [2,4] D、 f ( x) | x | x [1,1]
2、f ( x) 2x2 x 1在[1,3]上满足拉格朗日中值定理条件的
A、
3 4
B、0
C、 3
4
D、1
3、若 x0 是 f ( x) 的极值点,则下列命题正确的是(
dx x
D、
xe xdx
0
1
4、 A、 1 x2 dx
B、 1
ln xdx x
5、 A、 0 e2xdx
B、 1 dx
1x
三、计算:
3
x x 1dx
0
C、 x cos xdx 0
D、
1
x x
2
dx
C、 1 dx 1x
D、
0
1
x x
2
dx
四、求下列各题中所给曲线及直线围成的平面图形面积
下列反常积分中收敛的是(

1、 A、 exdx 0
2、
A、 1
1 x3

3、
A、 0 e xdx
B、2
x
1 ln
x
dx
C、
1 dx 0 1 x

高等数学A2(一) 教学大纲

高等数学A2(一)   教学大纲

高等数学A2(一)一、课程说明课程编号:130702X10课程名称(中/英文):高等数学A2(一)/Advanced Mathematics A2(Ⅰ)课程类别:必修学时/学分:80/5先修课程:无适用专业:理工类教材、教学参考书:基本教材:《高等数学》(上册),主编,2014.7,中南大学出版社主要参考书:《大学数学系列课程学习辅导与同步练习册》(高等数学上),2015.9,中南大学出版社二、课程设置的目的意义高等数学A2是高等院校理工类(非数学)专业理工科各专业学生必修的重要基础理论课,是研究自然科学和工程技术的重要工具,是学生提高文化素质和学习有关专业知识的重要基础.通过本课程的学习,要使学生获得:1、函数、极限与连续(不包括实数理论);2、一元函数微积分学;3、无穷级数(包括傅立叶级数);4、向量代数与空间解析几何;5、多元函数微积分学(不包括含参变量的积分);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础.高等数学A2的教学分为两部分,分别是高等数学A2(一)、高等数学A2(二).开设时间是大学第一学年,分两学期授课,总学时为80+80,学分为5+5.第一学期每周6学时(约14周);第二学期每周5学时(约16周).学习本课程的目的和任务:第一、使学生系统地获得大纲中所列基础知识、基本理论和基本运算技能,为学习后续课程和进一步深造奠定必要的数学基础;第二、通过各个教学环节逐步培养学生具有抽象概括问题的能力、空间想象能力、逻辑推理能力和自学能力,特别要培养学生具有熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力.三、课程的基本要求本课程基本要求的高低用不同词汇加以区分,对概念、理论,高要求用“理解”一词表述,低要求用“了解”一词表述;对方法、运算,高要求用“掌握”一词表述,低要求用“会”或“了解”表述.学生对高要求部分必须深入理解,牢固掌握,熟练应用.具体要求如下:第1章函数、极限与连续1.掌握基本初等函数的概念、性质及其图形, 掌握初等函数的概念;2.掌握极限四则运算法则;3.理解函数的概念,掌握函数的表示法, 会求函数值及定义域;4.会建立简单实际问题中的函数关系;5.了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限;6.了解无穷小、无穷大以及无穷小的阶的概念,了解无穷小的运算性质及阶的比较,会用等价无穷小求极限;7.理解函数在一点连续的概念,会判断函数在某一点(包括分段函数在分段点处)的连续性;8.了解函数间断点的概念,并会判断间断点的类型;9.了解反函数概念,会求简单函数的反函数;理解复合函数概念,会分析复合函数的复合过程;10.了解函数的奇偶性、单调性、周期性和有界性;11.了解极限的概念(对极限的ε-N,ε-δ定义在学习过程中逐步加深理解,对于给出ε求N或δ不作过多的要求);12.了解初等函数的连续性及闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质.第2章一元函数微分学1 掌握导数的概念及其几何意义,掌握可导性与连续性的关系,会求曲线在某点处的切线与法线方程;2.熟练掌握导数的基本公式,四则运算法则和复合函数求导方法;掌握初等函数一、二阶导数的求法;3.会求分段函数的导数,会求隐函数和参数式所确定的函数的一、二阶导数,以及反函数的导数;会用对数求导法求幂指函数及由积、商、幂所组成的函数的导数;4.了解高阶导数的概念, 会求简单函数的n阶导数;5.了解微分的概念,掌握微分运算法则和一阶微分形式不变性,以及可导与可微的关系,会求函数的微分;6.理解并会用Rolle定理、Lagrange中值定理和Cauchy中值定理,了解并会用Taylor定理;知道e x、sinx、cosx、ln(1+x)等函数的Maclourin展开式;7.熟练掌握用洛必达法则求未定式"0/0"与"∞/∞"型以及可化为这两种形式的未定式的极限;8.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明简单的不等式, 掌握函数的最大值和最小值的求法及其应用;9.了解曲线凹凸性与拐点的概念,会用导数判别曲线的凹凸性,会求拐点;会求曲线的渐近线,能描绘函数的图形;10.了解曲率和曲率半径的概念,并会计算曲率和曲率半径.第3章 一元函数积分学1.熟练掌握不定积分的基本公式、换元积分法和分部积分法; 2.熟练掌握定积分的换元积分法与分部积分法;3.掌握Newton- Leibniz 公式并能熟练地用此公式计算定积分; 4.理解原函数与不定积分的概念,掌握不定积分的性质;5.掌握简单的有理函数和三角函数有理式及简单无理函数的不定积分计算方法;6.理解定积分的概念、几何意义和基本性质;理解变上限的积分作为其上限的函数及其求导定理.7.掌握用定积分计算平面图形的面积、旋转体的体积、平行截面面积已知的立体体积和平面曲线的弧长;8.了解不定积分的几何意义 ;9.会计算无穷区间和无界函数的广义积分;10.知道用微元法将实际问题表达成定积分的方法;会用定积分表达并计算一些物理量(如功、水压力、引力、平均值等)的方法.第4章 无穷级数1.熟练掌握几何级数与p 级数的收敛与发散的条件;熟练掌握调和级数的敛散性及其应用;2.熟练掌握幂级数的收敛半径、收敛区间及收敛域的求法; 3.理解无穷级数收敛、发散及和的概念,了解无穷级数的基本性质及收敛的必要条件;4.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法; 5.掌握交错级数的莱布尼茨判别法; 6.掌握Maclaurin 展开式,会利用e x 、sinx 、cosx 、ln (1+x )、(1+x )m 的Maclourin 展开式将一些简单的函数间接展开成幂级数;7.理解幂级数收敛半径的概念; 8.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系; 9.了解函数项级数的收敛域及和函数的概念;10.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;11.了解函数展开为Taylor 级数的充分必要条件;12.了解Fourier 级数的概念和Drichillit 收敛定理,会将定义在[,]ππ-和[,]l l -上的函数展开为Fourier 级数,会将定义在[0,]π和[0,]l 的上的函数展开为正弦级数与余弦级数,会写出傅里叶级数和函数的表达式.四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定七、大纲撰写:大纲审核:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学 A2 练习一
一、选择题
y2 z2 1 1.方程 9 表示( 4 x2
) 。 (B) 椭圆柱面与平面 x 2 的交线 (D) 双曲柱面与平面 x 2 的交线
(A) 双曲柱面 (C) 双叶双曲面
2.已知 f ( x, y ) xy(1 x y ) ,则 f ( x, y ) 在第一象限内 ( x 0, y 0) 的驻点 为( ) 。
4.设 xy 2dx x 2 ydy 是 u( x, y ) 的全微分,则 u( x, y ) ( (A) (C)
) 。
y 0

y
0
Байду номын сангаас
x 2 ydy C
(B)

x 0
( xy x y )dx C
2 2
(D)
x 0 y 0
xy 2dx x 2 ydy C ( xy x y )dy C
0 x 是以 2 为周期的函数, s( x ) 是其傅里叶级数 x0

展开式的和函数,则 s( )
三、综合题
1.求二次曲面 x 2 y 2 2z 2 0 在点 (1,1, 1) 处的切平面和法线方程。 2.求 ( x 2 y 2 )dv ,其中 是由 x 2 y 2 3z 及平面 z 3 所围成的闭区域。

3.验证曲线积分 的值。
(2,1)
(1,0)
(2 xy y 4 3)dx ( x 2 4 xy 3 )dy 与路径无关,并计算积分
4. 计算 zdS ,其中 表示上半球面 x 2 y 2 z 2 4, z 0 。

5.求幂级数 nx n 的收敛域以及和函数。 6.判定级数 ( 1)n1
) 。
(D) 敛散性与 an 有关
二、填空题
1.已知两直线
x y 1 z 1 x 1 y 3 z 1 与 相互垂直,则 m 2 2 1 4 m 2

第 1

2.设 z( x, y ) e x y ,则
2
2z x y

3. 设平面区域 D 为半圆 x 2 y 2 R2 ( x 0) ,则将 f ( x , y )dxdy 化为极坐标系
n 1
n 1

1 n( n 1)
的敛散性,若收敛,指出是条件收敛还是绝对
收敛。 7 . 设 f ( x ) 是 以 2 为 周 期 的 周 期 函 数 , 它 在 [ , ] 上 的 表 达 式 为
, x 0, 4 ,将 f ( x ) 展开为傅里叶级数。 f ( x) , 0 x . 4
8.求由 xoy 平面与抛物面 z 4 x 2 y 2 所围立体的体积。
9.若正项数列 { xn } 单调上升且有上界,试证级数 (1
n 1

xn ) 收敛。 xn 1
D
下的累次积分结果为 4.已知平面曲线 L :
x2 y2 2 2 1, 其周长为 a , 则 L (3 x 4 y )ds 4 3
。 。
5.函数 f ( x )
1 的麦克劳林展开式为(写出其收敛域) x2

1 x2 , 6. 设 f ( x ) 1,
dx dy f ( x , y, z )dz
0 0
1
1

1 0 1 0
dx dx
1 y 0 1 x 0
dy dy
1 x y 0 1 x y 0
f ( x , y, z )dz f ( x , y, z )dz
dx dy
0
1
1 x y 0
f ( x , y, z )dz
2 2
5.下列级数中,收敛的是(
nn (A) n 1 n !
n 1
)。

(B)

n 1

1 n3 1
(C)
1 n 1 n

(D)
ln n
n 1

6. 若级数 an x n 在 x 2 处收敛,则此级数在 x 1 处( (A) 发散 (B) 条件收敛 (C) 绝对收敛
1 1 (B) ( , ) 3 3
1 3 (A) ( , ) 5 5
(C) (1,1)
(D) (1, 0)
3. 设 是由平面 x y z 1 与三个坐标面围成的区域, 则将 f ( x , y , z )dv 化为

累次积分结果为( (A) (C)
)。 (B) (D)

1 0 1 0
相关文档
最新文档