第02章 静电场(2)
电磁学02静电场中的导体与介质
A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
第02章 静电场分析(图片版)
则认为,在该处有一点电荷。 当带电体的尺寸<< 研究点到带电体的距离时,则可认 为带电体是一电量为q的点电荷。
第二节 库仑定律与电场强度
• 库仑定律
由实验得到的库仑定律是静电 场理论的基础,它给出了源点对 场点电荷的作用力。
q ' q (r r ) F (r ) 4 0 r r 3
第三节 真空中静电场的基本规律
• • • • • 静电场的基本方程 电位 真空 介质 无限空间 有限空间 能量
描述静电场的变量
(r ) 电荷密度——源变量 E (r ) 电场强度——场变量 D(r ) 电位移——场变量
(C / m 2 )
产生原因:电介质内 束缚电荷在外电场力 作用下发生位移,由 麦克斯韦通过实验证 实
E
l
束缚电荷
无极分子
q
点偶极子
电偶极矩 p ql
• 电介质的极化强度
p P = lim V 0 V
C/m
2
• 例:一个半径为a的均匀极化介质球,极化强度是 P0 ez ,求极 化电荷分布
• 电介质中的基本方程(高斯定理、介电常数) 真空中:
E =0
• 介电常数
实验证明:P e 0 E
由于E在顶面底面均无分量,即对两个面的通量 为零由高斯定理得: q 2 rhE er , 其中q h h
1
arLeabharlann bl b 又U E dr ln a 2 a 2U 即:l = 则E =er
b
ln b / a
U , D= E, 即可求得We r ln(b / a)
若闭合曲面内有多个点电荷,则
• 例题:真空中,假设在半径为a的球体内均匀分布着密度为 0 的电荷,试求任意点的电场强度。
第二章作业题解答
第二章静电场习题解答2-1.已知半径为F = Cl的导体球面上分布着面电荷密度为A = p s0 cos的电荷,式中的炖0为常数,试计算球面上的总电荷量。
解取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到2用打Q =护= J j p50cos OrsmOd Od(p(S) 0 0In x=j j psQSefsinGded00 0In n=PsF j J cos ageded(p0 0丸=sin20d0 = 0o2-2.两个无限人平面相距为d,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解对于单一均匀带电无限人平面,根据对称性分析,计算可得上半空间和卞半空间的电场为常矢量,且大小相等方向相反。
由高斯定理,可得电场大小为E = ^-2e0对于两个相距为的d无限大均匀带电平面,同样可以得到E] = E“耳=E3题2-2图因此,有2-3.两点电荷q、= 8C和q2 = -4C ,分别位于z = 4和),=4处,求点P(4,0,0)处的电场强度。
解根据点电荷电场强度叠加原理,P点的电场强度矢量为点Si和Si处点电荷在P处产生的电场强度的矢量和,即E r = Qi 弘 | ① R?4T V£0/?/ 4TT£0R] = r — r L = 4e v — 4e., R 、= J 4-0 " + 0-4 ~ = 4>/2 R 2 =r —r 2 =4e v -4e v , R 2 = J 4-0 ' + 0-4 ' = 4>/22-7. 一个点电荷+q 位于(-a, 0,0)处,另一点电荷-2q 位于(a,0,0)处,求电位等于零的 面;空间有电场强度等于零的点吗?解根据点电荷电位叠加原理,有々)=丄]鱼+鱼4矶丄忌」式中Rj =r-r L = x-\-a e v + ye v +e. R i = yl x + a 2 + r+^2 R 2 =r-r 2 = x ~a e v + ),e y+e r R? — yj x — ci + )r +代入得到式中代入得到心孟 _______ 1^x + a)2+ y 2+ z 22JaS+b+z 2(3x+d )(x+3a ) + 3),+3z ,=0根据电位与电场强度的关系,有电位为零,即令简化可得零电位面方程为要是电场强度为零,必有E x = 0, E y = 0, E : = 0一 (x+ d)[(x + d)2 + y 2 + ^2p + 2(—d)[(—d)2+ y 2 + 疋 -)^(x+n)2 + y 2 + z 2 2 +2y^(x-a)2 + y 2+ z 2丄-z[(x + d)2 + + 疋 2+2z[(x-d)2 +)*此方程组无解,因此,空间没有电场强度为零的点。
静电力与电场强度
静电场能量分布 示意图
静电场中的电场能量 密度分布呈现出特定 的形态,这种能量分 布对电场强度和电荷 分布情况具有重要影 响。通过分析能量分 布,可以更加深入地 理解静电场中的能量 变化规律。
● 06
第6章 静电力的应用
静电助力
01 电荷受力情况
描述静电力在电场中对电荷的作用
02 电场方向
静电力的方向与电场强度的关系
静电力与电场强度
汇报人:XX
2024年X月
第1章 静电学基础 第2章 静电场的数学描述 第3章 静电场中的电介质 第4章 静电场与导体 第5章 静电场中的能量 第6章 静电力的应用 第7章 电场强度与静电力
目录
● 01
第1章 静电学基础
静电学简介
静电学是研究静电力与电场强度的学科,涵盖了 电荷、电介质、电场等基本概念。在静电学中, 我们探讨带电体间相互作用产生的静电力以及描 述电荷周围空间中电力作用的电场。
极化度
极化度高的电介质响应电 场更强 低极化度的电介质极化效 果较弱
介电损耗
损耗小的电介质电容性能 较好 高损耗的电介质能量损耗 较大
介质击穿强度
击穿强度高的电介质抗击 穿能力强 低击穿强度的电介质易发 生击穿
介电常数
高介电常数的电介质响应 电场更显著 低介电常数的电介质影响 较小
● 04
第四章 静电场与导体
导体的电荷分布
在静电平衡时,导体 内部的电荷为自由电 子,这些电子会位于 导体表面上,导致导 体内部电场为零。
静电平衡条件
导体内部电 场为零
在静电平衡状态 下,导体内部的
电场强度为零
外部电场垂 直导体表面
静电平衡时,外 部电场与导体表
静电场与电势的计算
电势的测量
电势的测量 方法
包括直接电势测 量和间接电势测
量
电势实验数 据处理
对测得的电势数 据进行整理和分
析
电势测量的 仪器
使用电位差计等 设备进行测量
静电场与电势的相关实验
静电场与电势之间存在着密切的关系,在实验中 可以设计一系列相关实验来研究它们之间的作用 机制。实验需要注意实验步骤的正确性和注意事 项的遵守,以保证实验结果的准确性。对实验结 果进行分析和讨论可以深入探究静电场与电势的 关联性。
静电场与电势的计算
汇报人:XX
2024年X月
目录
第1章 静电场的基础知识 第2章 静电势的概念与计算 第3章 高级电势理论与实验 第4章 电场能与场能 第5章 静电场与电势的相关实验 第6章 静电场的工程应用 第7章 总结与展望
● 01
第1章 静电场的基础知识
电荷的性质
电荷是物质固有的属 性,分为正电荷和负 电荷。根据电荷之间 的相互作用,可以分 为静电力和静电场。 电荷守恒定律指出, 在一个封闭系统中, 电荷的总量保持不变。
02 电场能在电路中的应用
通过电场能驱动电路运行
03 电场能与电子束流
利用电场能控制电子束流的方向
电场能的应用场景比较
电容器中的电场能
存储电荷 用于电路的储能
电路中的电场能
驱动电流 传输能量
电子束流控制
调节束流密度 定向束流运动
● 05
第五章 静电场与电势的相关 实验
静电场的测量
静电场的测量是通过 测量电荷周围的电场 强度来实现的。测量 方法包括电荷在感应 电荷上受力的方法和 在空间不同位置测量 场强的方法。静电场 测量需要使用电场计 等仪器。测量数据的 处理需要进行准确分 析和计算。
电动力学总结
(3)无限大均匀线性介质中点电荷
Q 4 r
点电荷在均匀介质中 的空间电势分布(Q 为自由电荷)
Q 产生的电势 Q P产生的电势
f
Qf
4 0 r
P
QP
4 0 r
(QP
(0
1)Qf
)
( 4) 连续f 分 布P 电 荷Q 4 f 0 (Q r PP ) 4 VQ f4 (rx )d 0 rV
机动 目录 上页 下页 返回 结束
值关系表达式*
nˆ D
nˆ nˆ nˆ
B 0
E H
0α
其它边值关系*
Ñ Ñ sLPM rrddSrLrsVJrMpddVSr nrnrPr2M r2Pr1 M r1prM
r
s Jf
dSr d dt
dVnr
V
rr J2 J1
f
t
7.电磁场的能量和能流 单位体积的能量 --- 能量密度
Ñ r r r r L B • d l0S rJ • d S r
安培环路定律*
旋度方程 B0J
uv
磁场的散度方程 B0
法拉第电磁感应定律
Ñ LiE rird lrdd t Bd dt(S其 B r中 dS r B EriSB rd S Brtr)
Ei 0 感生电场是有旋无源场
rr r
总电场为: ErESEi r B r
)
r
2 2
f (r) 0
g ( ) a 1s in a 2c o s
r r f (r) 有两个线性无关解 、
单值性要求 (0)(2),只能取整数,令 n
( r ,) r n ( A n s in n B n c o s n ) r n ( C n s in n D n c o s n ) n 1
电磁场与电磁波第二章课后答案
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可 以从简。
重要公式真空中静电场方程:qE d SE d l 0积分形式: SlEE 0微分形式:已知电荷分布求解电场强度:1(r )1,E (r )(r );(r )d V4|rr|V 02, E (r ) V 4 (r 0 )( | r r r r ) 3 |dV qE d S 3,高斯定律S1介质中静电场方程:E d l0积分形式:D d S qS l 微分形式:DE0线性均匀各向同性介质中静电场方程:qE d SE d l0积分形式:S l微分形式:EE0静电场边界条件:1,E1t E2t。
对于两种各向同性的线性介质,则D 1tD t2122,D2n D1ns。
在两种介质形成的边界上,则D 12nnD对于两种各向同性的线性介质,则E2n1 12nE3,介质与导体的边界条件:e n E0;e n DS若导体周围是各向同性的线性介质,则SSE;n n静电场的能量:221Q1 孤立带电体的能量:WQe2C2离散带电体的能量:n1W e Qi12ii111分布电荷的能量:WVSledddSlVSl2221静电场的能量密度:DEwe2对于各向同性的线性介质,则we 12E2电场力:库仑定律:Fqq4r2 e rd We常电荷系统:Fq常数d ldWeF常电位系统:常数d l题解2-1若真空中相距为d的两个电荷q1及q2的电量分别为q及4q,当点电荷q位于q1及q2的连线上时,系统处于平衡状态,试求q的大小及位置。
第二章 静电场
第二章 静电场习题2.1真空中有一密度为2πnC/m 的无限长电荷沿y 轴放置,另有密度分别为0.1nC/m 2和-0.1nC/m 2的无限大带电平面分别位于z =3m 和z =-4m 处。
求点P (1,7,2)的电场强度E。
z=-4xyz z=3τO图2.1题意分析: 题目中给出了3个不同类型电荷的位置与大小,计算空间中一点的电场强度E。
可以先分别计算每个电荷在场点产生的电场强度,然后采用叠加原理得出总的场强。
考虑平面电荷与直线电荷的电场共同产生电场,选用用直角坐标系进行计算比较合适,如图2.1所示,对圆柱坐标系中计算出的直线电荷电场,需要转换成直角坐标下的形式,再进行矢量叠加求总电场。
解:(1)计算无限大平板在P 点产生的电场强度在计算无限大平板在P 点产生的电场强度时,建立图2.1所示的直角坐标系,则位于z =3m 处的无穷大带电平板在P 点产生的电场强度1σE为:Ze E 021.01εσ-= (1)位于z =-4m 的无穷大带电平板在P 点产生的电场强度为:Ze E 021.02εσ-= (2)因此,2个无穷大带电板在P点产生的合成场强1E为:Ze E11.0ε-=(3)(2)计算无穷长直电荷产生的电场强度对于圆柱坐标系中位于z 轴上的长直电荷产生的电场强度至于场点的ρ坐标有关,其电场强度的表达式为:ρρπετe E02-=z=-4xyz z=3τO z'ρO'图2.2因此图2.2中所示在沿y 轴放置的无穷长线电荷产生的电场2E 为:ρρπετe E022-= 式中22x z ρ=+z x e zx z e zx x e 2222+++=ρ∴()z x z x e z e x zx e z x ze z x x z x E++=⎪⎪⎭⎫ ⎝⎛++++=2202222220211122επεπ所以,P 点(1,7,2)的电场强度E为:()m V e e e e e E E E Z x Z x Z /88.3359.2225111.00021+=++-=+=εε习题2.2如题图2.3所示球形电容器中,对半地填充有介电常数分别为1ε和2ε两种均匀介质,两介质交界面是以球心为中心的圆环面。
工程电磁场-基本概念
1
1 2 0
C1
100 ,
得 C1
100
1 2 0
代入 C1 和 C2
x2
1
100 x
(V)
20
20
d
x
1
E
dx
ex
0
100
2
0
e
x
(V m)
第三章 恒定电场的基本原理
1、体电流密度的定义式 2、电流密度与电场强度的关系 3、电源中电场强度的表达式 4、电荷守恒原理的表达式 5、导电媒质分界面衔接条件的标量表达式 6、恒定电场边界条件的分类
量为
场点坐标 (r,, z)是不变量,源点坐标 (0,, z) 中 z 是变量,统一用θ表
示
总的电场强度 若为无限长直导线
习题 2-1
(3)静电场环路定理
由电位计算电场强度,是求梯度的运算,也就是求微分 的运算
在静电场中,任意一点的电场强度E 的方向总是沿着
电位减少最快方向,其大小等于电位的最大变化率。
有些金属或化合物当温度降到某一临界数值
后, ,变为超导体, J E 不再适用。
3、电源中电场强度的表达式
作用于单位电荷上的局外电场力定义为局外电
场强度,记为 Ee 。 电源中总的电场强度 ET EC Ee 。
在电源以外的区域,只存在库仑电场。
总的电场强度 ET EC 。
4、电荷守恒原理的表达式
1、体电流密度的定义式
将单位时间内流过某个面积 S 的电荷量
定义为穿过该面积的电流,用 I 表示 I lim q dq t0 t dt
电流的单位是安(培)(A)。1 安=1 库秒。 电荷在空间体积中运动,形成体电流。
库仑定律讲解及习题(含答案)
第1章静电场第02节 库仑定律[知能准备]1.点电荷:无大小、无形状、且有电荷量的一个点叫 .它是一个理想化的模型.2.库仑定律的内容:真空中两个静止点电荷之间的相互作用力跟它们电荷量的 成正比,跟它们的距离的 成反比,作用力的方向在它们的 .3.库仑定律的表达式:F = 221r q q k ; 其中q 1、q 2表示两个点电荷的电荷量,r 表示它们的距离,k 为比例系数,也叫静电力常量, k = 9.0×109N m 2/C 2.[同步导学]1.点电荷是一个理想化的模型.实际问题中,只有当带电体间的距离远大于它们自身的线度以至于带电体的形状和大小对相互作用力的影响可以忽略不计时,带电体方可视为点电荷.一个带电体能否被视为点电荷,取决于自身的几何形状与带电体之间的距离的比较,与带电体的大小无关.2.库仑定律的适用范围:真空中(干燥的空气也可)的两个点电荷间的相互作用,也可适用于两个均匀带电的介质球,不能用于不能视为点电荷的两个导体球.例1半径为r 的两个相同金属球,两球心相距为L (L =3r),它们所带电荷量的绝对值均为q ,则它们之间相互作用的静电力FA .带同种电荷时,F <22L q kB .带异种电荷时,F >22Lq k C .不论带何种电荷,F =22Lq k D .以上各项均不正确 解析:应用库仑定律解题时,首先要明确其条件和各物理量之间的关系.当两带电金属球靠得较近时,由于同种电荷互相排斥,异种电荷互相吸引,两球所带电荷的“中心”偏离球心,在计算其静电力F 时,就不能用两球心间的距离L 来计算.若两球带同种电荷,两球带电“中心”之间的距离大于L ,如图1—2—1(a )所示,图1—2—1 图1—2—2则F < 22Lq k ,故A 选项是对的,同理B 选项也是正确的. 3.库仑力是矢量.在利用库仑定律进行计算时,常先用电荷量的绝对值代入公式进行计算,求得库仑力的大小;然后根据同种电荷相斥,异种电荷相吸来确定库仑力的方向.4.系统中有多个点电荷时,任意两个点电荷之间的作用力都遵从库仑定律,计算多个电荷对某一电荷的作用力应先分别计算每个电荷对它的库仑力,然后再用力的平行四边形定则求其矢量和.例2 如图1—2—2所示,三个完全相同的金属球a 、b 、c 位于等边三角形的三个顶点上.a 和c 带正电,b 带负电,a 所带电荷量的大小比b 的小.已知c 受到a 和b 的静电力的合力可用图中有向线段中的一条来表示,它应是A .F 1B .F 2C .F 3D .F 4解析:根据“同电相斥、异电相吸”的规律,确定电荷c 受到a 和b 的库仑力方向,考虑a 的带电荷量大于b 的带电荷量,因为F b 大于F a ,F b 与F a 的合力只能是F 2,故选项B 正确.例2 两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m 1和m 2,带电荷量分别是q 1和q 2,用绝缘线悬挂后,因静电力而使两悬线张开,分别与铅垂线方向成夹角θ1和θ2,且两球同处一水平线上,如图1—2—3所示,若θ1=θ2,则下述结论正确的是A.q1一定等于q 2B.一定满足q 1/ m 1=q 2/ m 2C.m 1一定等于m 2D.必须同时满足q 1=q 2, m 1= m 2图1—2—3解析:两小球处于静止状态,故可用平衡条件去分析.小球m 1受到F 1、F 、m 1g 三个力作用,建立水平和竖直方向建立直角坐标系如图1—2—4所示,此时只需分解F 1.由平衡条件得:0sin 11221=-θF rq q k0cos 111=-g m F θ所以 .21211gr m q kq tg =θ 同理,对m 2分析得:.22212gr m q kq tg =θ 图1—2—4 因为21θθ=,所以21θθtg tg =,所以21m m =. 可见,只要m 1= m 2,不管q 1、q 2如何,1θ都等于2θ.所以,正确答案是C.讨论:如果m 1> m 2,1θ与2θ的关系怎样?如果m 1< m 2,1θ与2θ的关系又怎样?(两球仍处同一水平线上) 因为.21211gr m q kq tg =θ .22212gr m q kq tg =θ 不管q 1、q 2大小如何,两式中的221gr q kq 是相等的. 所以m 1> m 2时,1θ<2θ, m 1< m 2时,1θ>2θ.5.库仑定律给出了两个点电荷作用力的大小及方向,库仑力毕竟也是一种力,同样遵从力的合成和分解法则,遵从牛顿定律等力学基本规律.动能定理,动量守恒定律,共点力的平衡等力学知识和方法,在本章中一样使用.这就是:电学问题,力学方法.例3 a 、b 两个点电荷,相距40cm ,电荷量分别为q 1和q 2,且q 1=9 q 2,都是正电荷;现引入点电荷c ,这时a 、b 、c 三个电荷都恰好处于平衡状态.试问:点电荷c 的性质是什么?电荷量多大?它放在什么地方?解析:点电荷c 应为负电荷,否则三个正电荷相互排斥,永远不可能平衡.由于每一个电荷都受另外两个电荷的作用,三个点电荷只有处在同一条直线上,且c 在a 、b 之间才有可能都平衡.设c 与a 相距x ,则c 、b 相距(0.4-x),如点电荷c 的电荷量为q 3,根据二力平衡原理可列平衡方程:a 平衡: =2214.0q q k 231x q q kb 平衡: .)4.0(4.0232221x q q k q q k -=c 平衡: 231x q q k =.)4.0(232x q q k - 显见,上述三个方程实际上只有两个是独立的,解这些方程,可得有意义的解: x =30cm 所以 c 在a 、b 连线上,与a 相距30cm ,与b 相距10cm .q 3=12161169q q =,即q 1:q 2:q 3=1:91:161 (q 1、q 2为正电荷,q 3为负电荷) 例4 有三个完全相同的金属球A 、B 、C ,A 带电荷量7Q ,B 带电荷量﹣Q ,C 不带电.将A 、B 固定,然后让C 反复与A 、B 接触,最后移走C 球.问A 、B 间的相互作用力变为原来的多少倍?解析: C 球反复与A 、B 球接触,最后三个球带相同的电荷量,其电荷量为Q′=3)(7Q Q -+=2Q .A 、B 球间原先的相互作用力大小为F =./77222221r kQ rQ Q k r Q Q k =⋅= A 、B 球间最后的相互作用力大小为F′=kQ′1Q′2/r 2=222/4/22r kQ r Q Q k =⋅⋅即 F′= 4F /7.所以 :A 、B 间的相互作用力变为原来的4/7.点评: 此题考查了中和、接触起电及电荷守恒定律、库仑定律等内容.利用库仑定律讨论电荷间的相互作用力时,通常不带电荷的正、负号,力的方向根据“同种电荷相互排斥,异种电荷相互吸引”来判断.如图1—2—5所示.在光滑绝缘的水平面上的A 、B 两点分别放置质量为m 和2m 的两个点电荷Q A 和Q B .将两个点电荷同时释放,已知刚释放时Q A 的加速度为a ,经过一段时间后(两电荷未相遇),Q B 的加速度也为a ,且此时Q B 的速度大小为v ,问:(1) 此时Q A 的速度和加速度各多大?(2) 这段时间 内Q A 和Q B 构成的系统增加了多少动能? 解析:题目虽未说明电荷的电性,但可以肯定的是两点电荷间的作用力总是等大反向的(牛顿第三定律).两点电荷的运动是变加速运动(加速度增大).对Q A 和Q B 构成的系统来说,库仑力是内力,系统水平方向动量是守恒的.(1) 刚释放时它们之间的作用力大小为F 1,则:F 1= m a .当Q B 的加速度为a 时,作用力大小为F 2,则:F 2=2 m a .此时Q A 的加速度a′=.222a mma m F == 方向与a 相同. 设此时Q A 的速度大小为v A ,根据动量守恒定律有:m v A =2 m v ,解得v A =2 v ,方向与v 相反.(2) 系统增加的动能 E k =kA E +kB E =221A mv +2221mv ⨯=3m 2v 6.库仑定律表明,库仑力与距离是平方反比定律,这与万有引力定律十分相似,目前尚不清楚两者是否存在内在联系,但利用这一相似性,借助于类比方法,人们完成了许多问题的求解.[同步检测]1.下列哪些带电体可视为点电荷A .电子和质子在任何情况下都可视为点电荷B .在计算库仑力时均匀带电的绝缘球体可视为点电荷C .带电的细杆在一定条件下可以视为点电荷D .带电的金属球一定不能视为点电荷2.对于库仑定律,下面说法正确的是A .凡计算真空中两个静止点电荷间的相互作用力,就可以使用公式F = 221rq q k ; B .两个带电小球即使相距非常近,也能用库仑定律C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D .当两个半径为r 的带电金属球心相距为4r 时,对于它们之间相互作用的静电力大小,只取决于它们各自所带的电荷量3.两个点电荷相距为d ,相互作用力大小为F ,保持两点电荷的电荷量不变,改变它们之间的距离,使之相互作用力大小为4F ,则两点之间的距离应是A .4dB .2dC .d/2D .d/44.两个直径为d 的带正电的小球,当它们相距100 d 时作用力为F ,则当它们相距为d 时的作用力为( )A .F /100B .10000FC .100FD .以上结论都不对图13—1—55.两个带正电的小球,放在光滑绝缘的水平板上,相隔一定的距离,若同时释放两球,它们的加速度之比将A .保持不变B .先增大后减小C .增大D .减小6.两个放在绝缘架上的相同金属球相距d ,球的半径比d 小得多,分别带q 和3q 的电荷量,相互作用的斥力为3F .现将这两个金属球接触,然后分开,仍放回原处,则它们的相互斥力将变为A .OB .FC .3FD .4F7.如图1—2—6所示,大小可以不计的带有同种电荷的小球A 和B 互相排斥,静止时两球位于同一水平面上,绝缘细线与竖直方向的夹角分别为α和β卢,且α < β, 由此可知A .B 球带电荷量较多B .B 球质量较大C .A 球带电荷量较多D .两球接触后,再静止下来,两绝缘线与竖直方向的夹角变为α′、β′,则仍有α ′< β′ 8.两个质量相等的小球,带电荷量分别为q 1和q 2,用长均为L 的两根细线,悬挂在同一点上,静止时两悬线与竖直方向的夹角均为30°,则小球的质量为 . 9.两个形状完全相同的金属球A 和B ,分别带有电荷量q A =﹣7×108-C 和q B =3×108-C ,它们之间的吸引力为2×106-N .在绝缘条件下让它们相接触,然后把它们又放回原处,则此时它们之间的静电力是 (填“排斥力”或“吸引力”),大小是 .(小球的大小可忽略不计)10.如图1—2—7所示,A 、B 是带等量同种电荷的小球,A 固定在竖直放置的10 cm 长的绝缘支杆上,B 平衡于倾角为30°的绝缘光滑斜面上时,恰与A 等高,若B 的质量为303g ,则B 带电荷量是多少?(g 取l0 m /s 2)[综合评价] 1.两个带有等量电荷的铜球,相距较近且位置保持不变,设它们带同种电荷时的静电力为F 1,它们带异种电荷时(电荷量绝对值相同)的静电力为F 2,则F 1和F 2的大小关系为:A .F 1=F 2 D .F 1> F 2 C .F 1< F 2 D .无法比较2.如图1—2—8所示,在A 点固定一个正点电荷,在B 点固定一负点电荷,当在C 点处放上第三个电荷q 时,电荷q 受的合力为F ,若将电荷q 向B 移近一些,则它所受合力将A .增大 D .减少 C .不变 D .增大、减小均有可能.图1—2— 6 图1—2—7图1—2—9图1—2—83.真空中两个点电荷,电荷量分别为q 1=8×109-C 和q 2=﹣18×109-C ,两者固定于相距20cm 的a 、b 两点上,如图1—2—9所示.有一个点电荷放在a 、b 连线(或延长线)上某点,恰好能静止,则这点的位置是A .a 点左侧40cm 处B .a 点右侧8cm 处C .b 点右侧20cm 处D .以上都不对.4.如图所示,+Q 1和-Q 2是两个可自由移动的电荷,Q 2=4Q 1.现再取一个可自由移动的点电荷Q 3放在Q 1与Q 2连接的直线上,欲使整个系统平衡,那么 ( )A.Q 3应为负电荷,放在Q 1的左边 B 、Q 3应为负电荷,放在Q 2的右边C.Q 3应为正电荷,放在Q 1的左边 D 、Q 3应为正电荷,放在Q 2的右边.5.如图1—2—10所示,两个可看作点电荷的小球带同种电,电荷量分别为q 1和q 2,质量分别为m 1和m 2,当两球处于同一水平面时,α >β,则造成α >β的可能原因是:A .m 1>m 2B .m 1<m 2C q 1>q 2D .q 1>q 26.如图1—2—11所示,A 、B 两带正电小球在光滑绝缘的水平面上相向运动.已知m A =2m B ,A v =20v ,B v =0v .当两电荷相距最近时,有A .A 球的速度为0v ,方向与A v 相同B .A 球的速度为0v ,方向与A v 相反C .A 球的速度为20v ,方向与A v 相同D .A 球的速度为20v ,方向与A v 相反.7.真空中两个固定的点电荷A 、B 相距10cm ,已知q A =+2.0×108-C ,q B =+8.0×108-C ,现引入电荷C ,电荷量Qc =+4.0×108-C ,则电荷C 置于离A cm ,离Bcm 处时,C 电荷即可平衡;若改变电荷C 的电荷量,仍置于上述位置,则电荷C 的平衡状态 (填不变或改变),若改变C 的电性,仍置于上述位置,则C 的平衡 ,若引入C 后,电荷A 、B 、C 均在库仑力作用下平衡,则C 电荷电性应为 ,电荷量应为 C .8.如图1—2—12所示,两相同金属球放在光滑绝缘的水平面上,其中A 球带9Q 的正电荷,B 球带Q 的负电荷,由静止开始释放,经图示位置时,加速度大小均为a ,然后发生碰撞,返回到图示位置时的加速度均为 .9.如图1—2—13所示,两个可视为质点的金属小球A 、B 质量都是m 、带正电电荷量都是q ,连接小球的绝缘细线长度都是l ,静电力常量为k ,重力加速度为g .则连结A 、B 的细线中的张力为多大? 连结O 、A 的细线中的张力为多大?图1—2—10 图1—2—11 图1—2—12图1—2—1310.如图1—2—14所示,一个挂在丝线下端的 带正电的小球B 静止在图示位置.固定的带正电荷的A 球电荷量为Q ,B 球质量为m 、电荷量为q ,θ=30°,A 和B 在同一水平线上,整个装置处在真空中,求A 、B 两球间的距离.第二节 库仑定律知能准备答案:1.点电荷 2.乘积 平方 连线上同步检测答案:1.BC 2.AC 3.C 4.D 5.A 6.D 7.D 8.221/3gl q kq 9.排斥力,3.8×107-N 10.106-C综合评价答案:1.C 2. D 3.A 4. A 5.B 6. A 7. 10/3, 20/3, 不变,不变,负,8×910-8.16a/99.mg lq k +222mg 10.mg kQq 3 图1—2—14。
电磁学(梁灿彬)第二章导体周围的静电场
电像法可以用来求解导体周围的静电场,并给出导体表面的电荷分布和电场强度。
静电场中的高斯定理和环路定理
CATALOGUE
03
环路定理表明在静电场中,电场强度沿任意闭合路径的线积分等于零,也就是说,电场线没有起点也没有终点,它们形成闭合的曲线或直线。
总结词
环路定理是静电场的另一重要定理,它表明在静电场中,电场强度沿任意闭合路径的线积分等于零。这意味着电场线没有起点也没有终点,它们形成闭合的曲线或直线。这个定理可以用公式表示为:∮E·dl = 0。
电场强度与导体表面的电荷密度成正比
02
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
电场线与导体表面垂直
03
随着距离的增加,电场强度逐渐减小。
电场强度随距离的增加而减小
电像法是一种通过引入虚拟电荷来描述静电场的数学方法。
在电像法中,虚拟电荷的位置和大小是根据静电平衡条件和电场线与导体表面垂直的条件来确定的。
CATALOGUE
02
导体内部无电荷
导体内部任意位置均无电荷分布,电荷只分布在导体的表面。
电场线与导体表面垂直
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
导体表面电场强度与导体表面的电荷密度成正比
导体表面的电荷密度越大,导体表面的电场强度越大。
01
导体表面的电荷密度越大,导体表面的电场强度越大。
01
电子设备中的隔直、旁路和耦合作用
电容器在电子设备中可以起到隔离直流信号的作用,同时也可以旁路掉不需要的交流信号,实现不同电路之间的耦合。
02
调谐和滤波
利用电容器的充放电特性,可以调整电路的频率响应,从而实现调谐和滤波的功能。
电磁学第二篇课后习题
-σ
0 20 20
电势差 U 为 Ed : d 0
根 据 电 容 的 定 义 式 ,则 有 : C Q S0 S U d d 0
§2-3 电容器及其电容
2)圆柱形电容器
设带电,则有:
E 2 0r
U E d r R2 dr
l
R1 2 0r
ln R2 2 0 R1
C Q L /( ln R2 )
2-1 静电场中的导体
2:在静电平衡时,导体内部无净电荷, 电荷只分布在导体的表面上.
证明:反证法.
设导体内有一未被抵消的净电荷 q0
EdS
q0
0
s
0
于是面上的不能处处为零, 与静电平衡条件矛盾。
2-1 静电场中的导体
3:静电平衡时,导体表面附近的场强方 向处处与表面垂直,大小与该处导体表面 的电荷面密度成正比.
第二章 有导体时的静电场 静电平衡 封闭金属壳内外的静电场 电容器及其电容 带电体系的静电能
2-1 静电场中的导体
静电感应: 导体内的电荷因外电场的作用而重新 分布的现象叫静电感应。由于静电感 应而出现的电荷叫感应电荷。
静电感应现象演示
2-1 静电场中的导体 一.静电平衡
静电平衡状态: 导体内部和表面都没有电荷定向移动的状态。
§2-5 带电体系的静电能
二、电容器的静电能
将一电池与电容器相连,电池给电容器充
电。在某一瞬间,电容器带电量 q、极板间
电位差为 U 时,将电量 dq由电容器的负极移
到正极时,电源克服电场力作功绝对值为:
AQudq1 QqdqQ2
0
C0
2C
此值等于体系静电能的增加量。利用 QCU
可以得到: W 1 QU
库仑定律讲解及习题(附含答案解析)
第1章静电场第02节 库仑定律[知能准备]1.点电荷:无大小、无形状、且有电荷量的一个点叫 .它是一个理想化的模型. 2.库仑定律的内容:真空中两个静止点电荷之间的相互作用力跟它们电荷量的 成正比,跟它们的距离的 成反比,作用力的方向在它们的 .3.库仑定律的表达式:F = 221rq q k ; 其中q 1、q 2表示两个点电荷的电荷量,r 表示它们的距离,k 为比例系数,也叫静电力常量,k = 9.0×109N m 2/C 2.[同步导学]1.点电荷是一个理想化的模型.实际问题中,只有当带电体间的距离远大于它们自身的线度以至于带电体的形状和大小对相互作用力的影响可以忽略不计时,带电体方可视为点电荷.一个带电体能否被视为点电荷,取决于自身的几何形状与带电体之间的距离的比较,与带电体的大小无关.2.库仑定律的适用范围:真空中(干燥的空气也可)的两个点电荷间的相互作用,也可适用于两个均匀带电的介质球,不能用于不能视为点电荷的两个导体球.例1半径为r 的两个相同金属球,两球心相距为L (L =3r),它们所带电荷量的绝对值均为q ,则它们之间相互作用的静电力FA .带同种电荷时,F <22L q kB .带异种电荷时,F >22Lq k C .不论带何种电荷,F =22Lq k D .以上各项均不正确 解析:应用库仑定律解题时,首先要明确其条件和各物理量之间的关系.当两带电金属球靠得较近时,由于同种电荷互相排斥,异种电荷互相吸引,两球所带电荷的“中心”偏离球心,在计算其静电力F 时,就不能用两球心间的距离L 来计算.若两球带同种电荷,两球带电“中心”之间的距离大于L ,如图1—2—1(a )所示,图1—2—1 图1—2—2则F < 22Lq k ,故A 选项是对的,同理B 选项也是正确的.3.库仑力是矢量.在利用库仑定律进行计算时,常先用电荷量的绝对值代入公式进行计算,求得库仑力的大小;然后根据同种电荷相斥,异种电荷相吸来确定库仑力的方向.4.系统中有多个点电荷时,任意两个点电荷之间的作用力都遵从库仑定律,计算多个电荷对某一电荷的作用力应先分别计算每个电荷对它的库仑力,然后再用力的平行四边形定则求其矢量和.例2 如图1—2—2所示,三个完全相同的金属球a 、b 、c 位于等边三角形的三个顶点上.a 和c 带正电,b 带负电,a 所带电荷量的大小比b 的小.已知c 受到a 和b 的静电力的合力可用图中有向线段中的一条来表示,它应是A .F 1B .F 2C .F 3D .F 4解析:根据“同电相斥、异电相吸”的规律,确定电荷c 受到a 和b 的库仑力方向,考虑a 的带电荷量大于b 的带电荷量,因为F b 大于F a ,F b 与F a 的合力只能是F 2,故选项B 正确.例2 两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m 1和m 2,带电荷量分别是q 1和q 2,用绝缘线悬挂后,因静电力而使两悬线张开,分别与铅垂线方向成夹角θ1和θ2,且两球同处一水平线上,如图1—2—3所示,若θ1=θ2,则下述结论正确的是A.q 1一定等于q 2B.一定满足q 1/ m 1=q 2/ m 2C.m 1一定等于m 2D.必须同时满足q 1=q 2, m 1= m 2图1—2—3解析:两小球处于静止状态,故可用平衡条件去分析.小球m 1受到F 1、F 、m 1g 三个力作用,建立水平和竖直方向建立直角坐标系如图1—2—4所示,此时只需分解F 1.由平衡条件得:0sin 11221=-θF rq q k 0cos 111=-g m F θ所以 .21211gr m q kq tg =θ 同理,对m 2分析得:.22212gr m q kq tg =θ 图1—2—4 因为21θθ=,所以21θθtg tg =,所以21m m =. 可见,只要m 1= m 2,不管q 1、q 2如何,1θ都等于2θ.所以,正确答案是C.讨论:如果m 1> m 2,1θ与2θ的关系怎样?如果m 1< m 2,1θ与2θ的关系又怎样?(两球仍处同一水平线上)因为.21211gr m q kq tg =θ .22212gr m q kq tg =θ 不管q 1、q 2大小如何,两式中的221grq kq 是相等的.所以m 1> m 2时,1θ<2θ, m 1< m 2时,1θ>2θ.5.库仑定律给出了两个点电荷作用力的大小及方向,库仑力毕竟也是一种力,同样遵从力的合成和分解法则,遵从牛顿定律等力学基本规律.动能定理,动量守恒定律,共点力的平衡等力学知识和方法,在本章中一样使用.这就是:电学问题,力学方法.例3 a 、b 两个点电荷,相距40cm ,电荷量分别为q 1和q 2,且q 1=9 q 2,都是正电荷;现引入点电荷c ,这时a 、b 、c 三个电荷都恰好处于平衡状态.试问:点电荷c 的性质是什么?电荷量多大?它放在什么地方?解析:点电荷c 应为负电荷,否则三个正电荷相互排斥,永远不可能平衡.由于每一个电荷都受另外两个电荷的作用,三个点电荷只有处在同一条直线上,且c 在a 、b 之间才有可能都平衡.设c 与a 相距x ,则c 、b 相距(0.4-x),如点电荷c 的电荷量为q 3,根据二力平衡原理可列平衡方程:a 平衡: =2214.0q q k 231x q q kb 平衡: .)4.0(4.0232221x q q k q q k -=c 平衡: 231x q q k =.)4.0(232x q q k - 显见,上述三个方程实际上只有两个是独立的,解这些方程,可得有意义的解: x =30cm 所以 c 在a 、b 连线上,与a 相距30cm ,与b 相距10cm .q 3=12161169q q =,即q 1:q 2:q 3=1:91:161 (q 1、q 2为正电荷,q 3为负电荷) 例4 有三个完全相同的金属球A 、B 、C ,A 带电荷量7Q ,B 带电荷量﹣Q ,C 不带电.将A 、B 固定,然后让C 反复与A 、B 接触,最后移走C 球.问A 、B 间的相互作用力变为原来的多少倍?解析: C 球反复与A 、B 球接触,最后三个球带相同的电荷量,其电荷量为Q′=3)(7Q Q -+=2Q .A 、B 球间原先的相互作用力大小为F =./77222221r kQ rQ Q k r Q Q k =⋅= A 、B 球间最后的相互作用力大小为F′=kQ′1Q′2/r 2=222/4/22r kQ r Q Q k =⋅⋅即 F′= 4F /7.所以 :A 、B 间的相互作用力变为原来的4/7.点评: 此题考查了中和、接触起电及电荷守恒定律、库仑定律等内容.利用库仑定律讨论电荷间的相互作用力时,通常不带电荷的正、负号,力的方向根据“同种电荷相互排斥,异种电荷相互吸引”来判断.如图1—2—5所示.在光滑绝缘的水平面上的A 、B 两点分别放置质量为m 和2m 的两个点电荷Q A 和Q B .将两个点电荷同时释放,已知刚释放时Q A 的加速度为a ,经过一段时间后(两电荷未相遇),Q B 的加速度也为a ,且此时Q B 的速度大小为v ,问:(1) 此时Q A 的速度和加速度各多大?(2) 这段时间 内Q A 和Q B 构成的系统增加了多少动能? 解析:题目虽未说明电荷的电性,但可以肯定的是两点电荷间的作用力总是等大反向的(牛顿第三定律).两点电荷的运动是变加速运动(加速度增大).对Q A 和Q B 构成的系统来说,库仑力是内力,系统水平方向动量是守恒的.(1) 刚释放时它们之间的作用力大小为F 1,则:F 1= m a .当Q B 的加速度为a 时,作用力大小为F 2,则:F 2=2 m a .此时Q A 的加速度a′=.222a mma m F == 方向与a 相同. 设此时Q A 的速度大小为v A ,根据动量守恒定律有:m v A =2 m v ,解得v A =2 v ,方向与v 相反.(2) 系统增加的动能 E k =kA E +kB E =221A mv +2221mv ⨯=3m 2v 6.库仑定律表明,库仑力与距离是平方反比定律,这与万有引力定律十分相似,目前尚不清楚两者是否存在内在联系,但利用这一相似性,借助于类比方法,人们完成了许多问题的求解.[同步检测]1.下列哪些带电体可视为点电荷A .电子和质子在任何情况下都可视为点电荷B .在计算库仑力时均匀带电的绝缘球体可视为点电荷C .带电的细杆在一定条件下可以视为点电荷D .带电的金属球一定不能视为点电荷2.对于库仑定律,下面说法正确的是A .凡计算真空中两个静止点电荷间的相互作用力,就可以使用公式F = 221r q q k ; B .两个带电小球即使相距非常近,也能用库仑定律C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D .当两个半径为r 的带电金属球心相距为4r 时,对于它们之间相互作用的静电力大小,只取决于它们各自所带的电荷量3.两个点电荷相距为d ,相互作用力大小为F ,保持两点电荷的电荷量不变,改变它们之间的距离,使之相互作用力大小为4F ,则两点之间的距离应是A .4dB .2dC .d/2D .d/44.两个直径为d 的带正电的小球,当它们相距100 d 时作用力为F ,则当它们相距为d时图13—1—5的作用力为( )A.F/100 B.10000F C.100F D.以上结论都不对5.两个带正电的小球,放在光滑绝缘的水平板上,相隔一定的距离,若同时释放两球,它们的加速度之比将A.保持不变B.先增大后减小C.增大D.减小6.两个放在绝缘架上的相同金属球相距d,球的半径比d小得多,分别带q和3q的电荷量,相互作用的斥力为3F.现将这两个金属球接触,然后分开,仍放回原处,则它们的相互斥力将变为A.O B.F C.3F D.4F7.如图1—2—6所示,大小可以不计的带有同种电荷的小球A和B互相排斥,静止时两球位于同一水平面上,绝缘细线与竖直方向的夹角分别为α和β卢,且α < β,由此可知A.B球带电荷量较多B.B球质量较大C.A球带电荷量较多D.两球接触后,再静止下来,两绝缘线与竖直方向的夹角变为α′、β′,则仍有α ′< β′8.两个质量相等的小球,带电荷量分别为q1和q2,用长均为L的两根细线,悬挂在同一点上,静止时两悬线与竖直方向的夹角均为30°,则小球的质量为.9.两个形状完全相同的金属球A和B,分别带有电荷量qA =﹣7×108-C和qB=3×108-C,它们之间的吸引力为2×106-N.在绝缘条件下让它们相接触,然后把它们又放回原处,则此时它们之间的静电力是(填“排斥力”或“吸引力”),大小是.(小球的大小可忽略不计)10.如图1—2—7所示,A、B是带等量同种电荷的小球,A固定在竖直放置的10 cm长的绝缘支杆上,B平衡于倾角为30°的绝缘光滑斜面上时,恰与A等高,若B的质量为303g,则B带电荷量是多少?(g取l0 m/s2)[综合评价]1.两个带有等量电荷的铜球,相距较近且位置保持不变,设它们带同种电荷时的静电力为F 1,它们带异种电荷时(电荷量绝对值相同)的静电力为F2,则F1和F2的大小关系为:A.F1=F2D.F1> F2C.F1< F2D.无法比较2.如图1—2—8所示,在A点固定一个正点电荷,在B点固定一负点电荷,当在C点处放上第三个电荷q时,电荷q受的合力为F,若将电荷q向B移近一些,则它所受合力将A.增大D.减少C.不变D.增大、减小均有可能.图1—2—6图1—2—7图1—2—9图1—2—83.真空中两个点电荷,电荷量分别为q 1=8×109-C 和q 2=﹣18×109-C ,两者固定于相距20cm 的a 、b 两点上,如图1—2—9所示.有一个点电荷放在a 、b 连线(或延长线)上某点,恰好能静止,则这点的位置是A .a 点左侧40cm 处B .a 点右侧8cm 处C .b 点右侧20cm 处D .以上都不对.4.如图所示,+Q 1和-Q 2是两个可自由移动的电荷,Q 2=4Q 1.现再取一个可自由移动的点电荷Q 3放在Q 1与Q 2连接的直线上,欲使整个系统平衡,那么( )A.Q 3应为负电荷,放在Q 1的左边 B 、Q 3应为负电荷,放在Q 2的右边C.Q 3应为正电荷,放在Q 1的左边 D 、Q 3应为正电荷,放在Q 2的右边.5.如图1—2—10所示,两个可看作点电荷的小球带同种电,电荷量分别为q 1和q 2,质量分别为m 1和m 2,当两球处于同一水平面时,α >β,则造成α >β的可能原因是:A .m 1>m 2B .m 1<m 2C q 1>q 2D .q 1>q 26.如图1—2—11所示,A 、B 两带正电小球在光滑绝缘的水平面上相向运动.已知m A =2m B ,A v =20v ,B v =0v .当两电荷相距最近时,有A .A 球的速度为0v ,方向与A v 相同B .A 球的速度为0v ,方向与A v 相反C .A 球的速度为20v ,方向与A v 相同D .A 球的速度为20v ,方向与A v 相反.7.真空中两个固定的点电荷A 、B 相距10cm ,已知q A =+2.0×108-C ,q B =+8.0×108-C ,现引入电荷C ,电荷量Qc =+4.0×108-C ,则电荷C 置于离A cm ,离Bcm 处时,C 电荷即可平衡;若改变电荷C 的电荷量,仍置于上述位置,则电荷C 的平衡状态 (填不变或改变),若改变C 的电性,仍置于上述位置,则C 的平衡 ,若引入C 后,电荷A 、B 、C 均在库仑力作用下平衡,则C 电荷电性应为 ,电荷量应为 C .8.如图1—2—12所示,两相同金属球放在光滑绝缘的水平面上,其中A 球带9Q 的正电荷,B 球带Q 的负电荷,由静止开始释放,经图示位置时,加速度大小均为a ,然后发生碰撞,返回到图示位置时的加速度均为 .9.如图1—2—13所示,两个可视为质点的金属小球A 、B 质量都是m 、带正电电荷量都是q ,连接小球的绝缘细线长度都是l ,静电力常量为k ,重力加速度为g .则连结A 、B 的细线中的张力为多大? 连结O 、A 的细线中的张力为多大?图1—2—10 图1—2—11 图1—2—12图1—2—1310.如图1—2—14所示,一个挂在丝线下端的 带正电的小球B 静止在图示位置.固定的带正电荷的A 球电荷量为Q ,B 球质量为m 、电荷量为q ,θ=30°,A 和B 在同一水平线上,整个装置处在真空中,求A 、B 两球间的距离.第二节 库仑定律知能准备答案:1.点电荷 2.乘积 平方 连线上 同步检测答案:1.BC 2.AC 3.C 4.D 5.A 6.D 7.D 8.221/3gl q kq 9.排斥力,3.8×107-N 10.106-C综合评价答案:1.C 2. D 3.A 4. A 5.B 6. A 7. 10/3, 20/3, 不变,不变,负,8×910-8.16a/99.mg l q k +222mg 10.mgkQq 3 图1—2—14。
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁场与电磁波 第2章静电场
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
在交界面上不存在 时,E、D满足折射定律。
D 1 n D 2 n 1 E 1 c1 o 2 E s 2 c2 os
E 1 t E 2 t E 1 si1 n E 2 si2n
图2.3.3 分界面上E线的折射
t电位函数 表示分界面上的衔接条件
Ax Ay Az
对应静电场的基本方程 E 0 ,矢量 A 可以表示一个静电场。
能否根据矢量场的散度来判断该矢量场是否是静电场?
2.3.2 分界面上的边界条件
1、 电位移矢量D的衔接条件 以分界面上点P作为观察点,作一
小扁圆柱高斯面( L 0)。
图2.3.1 在电介质分界面上应用高斯定律
根据 DdSq
V ' P d ' V S 'P e n d ' S 0
• 在均匀极化的电介质内,极化电荷体密度 p 0。
• 有电介质存在的场域中,任一点的电位及电场强度表示为
(r) 4 1 0 V '( r f r 'p )d' V S '( r f r 'p )d' S E (r ) 4 1 0 V '( f r p r )'3 r( r ')d' V S '( f r p r ) '3 r( r ')d' S
高中物理第2章静电场的应用第2节带电粒子在电场中的运动粤教版必修第三册
【解析】设电子射出偏转极板时的偏移距离为 y,偏转角为 θ,则 OP=y+Ltan θ,
又 y=21at2=21·edUm2vl02,tan θ=vv0y=vat0=meUv022dl . 在加速电场中的加速过程,由动能定理有 eU1=21mv02, 联立解得 y=4Ud2Ul21,tan θ=2UU21ld,故 OP=U2l(42dLU+1 l).
变速直线运动公式
功的公式及动能定理
可以是匀强电场,也可以是非
选择条件 匀强电场,静电力是恒力 匀强电场,电场力可以是恒力,
也可以是变力
例1 (2023年广州七十五中段考)人体的细胞膜由磷脂双分子层组
成,模型如图甲所示,双分子层之间存在电压(医学上称为膜电位).现研
究某小块均匀的细胞膜,厚度为d,膜内的电场可看作匀强电场,简化
【答案】B
【解析】因为离子在电场中做类平抛运动,故 y=12at2=12×Emq×vL0 2=2EmqLv202,由动能定理,Ek2-Ek1=W 电=Eqy,所以 Ek2=12mv02+E22mq2vL022, 由于 E、L、v0 都相同,但 q、m 不同,故离开偏转电场时的动能不相同, A 错误;离子做类平抛运动,故在偏转电场中的时间 t=vL0,因 L 和 v 都 相同,故时间相同,B 正确;
【答案】400 V
【解析】加速过程,由动能定理得 eU=21mv02,
①
进入偏转电场,电子在平行于板面的方向上做匀速运动 l=v0t,②
在垂直于板面的方向做匀加速直线运动.
加速度 a=mF=edUm′,
③
偏转距离 y=12at2,
④
能飞出的条件为 y≤2d,
⑤
联立①~⑤式解得 U′≤2Ul2d2=400 V,
第二章 静电场 镜像法
解:先考虑介质1 中的电势,设想将下半空间换成 与上半空间一样,并在z=-a处有Q的像电荷Q' 来代替分界面上极化电荷对上半空间场的影响。 则在Z>0的区域,空间一点的电势为
`1
1
4 1
(Q r
Q) r
(1)
1
4 1
x2
y2
Q (z
a)2
1 2
ez
3. 真空中有一半径R0的接地导体球,距球心 a > R0 处有一点电荷 Q,求空间各点电势。
解:(1)分析: 因导体球接地故球的电 势为零。根据镜象法原 则假想电荷应在球内。 因空间只有两个点电荷, 场应具有轴对称,故假 想电荷应在线上,即极 轴上。
1 [Q Q] 40 r r
这里要注意几点:
a) 唯一性定理要求所求电势必须满足原有电荷分布所满足的 Poisson’s equation or Laplace’s equation,即所研究空间的泊松方 程不能被改变(即自由点电荷位置、大小不能变)。因此,做替 代时,假想电荷必须放在所求区域之外。在唯一性定理保证下, 采用试探解,只要保证解满足泊松方程及边界条件即是正确解。
a=b
பைடு நூலகம்
由以上三式解得
所以
Q 1 2 Q 1 2
Q 2 2 Q 1 2
1
Q
4 1
1
1 2
x2 y2 (z a)2 1 2
2 2 (1 2 )
Q x2 y2 (z a)2
(8)
1
设电量为 Q,位置为(0,0,a )
电磁学答案第2章
第二章 导体周围的静电场2.1.1 证明:对于两个无限大带电平板导体来说: (1) 反; (2)同; 相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相 相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相 证: 斯 (1)选一个侧面垂直于带电板,端面分别在 A,B 板内的封闭圆柱形 面 E?dS E 侧?dS E A 内S E B 内 E 侧 dS 侧 E A 内 E R 内 .=E?dS 0 即:3 2 (2)在导体内任取一点 P , E p E p E 1 E 2 E 3 E 4 其中n?是垂直导体板向右的单位矢。
2.1.2两平行金属板分别带有等量的正负电荷 特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强 度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。
两板间的电场强度:E V d 160 1.6 105(伏/米) 3 0E 8.85 10 12 105 8.85 10 7(库 /米2) 根据上题结论: ,若两板的电位差为160伏 4; 2 3又由于A 板接地, 1 4 0 A 板所带电量: q 2S 8.85 10 7 3.6 10 4 3.2 10 10(库)2 3 8.85-(d x)(由A 板的电位得) 0 丄X 0 解以上方程组得出: Q(d x) 2 Sd B 板上感应电荷: Q B 2S 冬 d C 板上的感应电荷: Qx d Q c 5S x) Q(d x) Sd Qx Qx 4 Sd 5 Sd i 0 E nQ(d Sd 0 x)r AB Qx ?A C Sd 0 U i 0; U IVQ(dSd 0r)B 板所带电量: q 3S 8.85 10 7 .3.6 10 4 3.2 10 10(库)2.1.3三块平行放置的金属板 A,B,C 其面积均为S,AB 间距离为x,BC 间距离为 d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地 (如图),且A 导体所带电荷为Q 时,试求: ⑴B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由 B,C 接地: 5 6 0 4)S Q(由A 板的总电量得) (2)场强分布: 电位分布:Q XU 皿 ST (d x r)其中r 是场点到板A 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
式中 q 为闭合面 S 中的自由电荷,q 为闭合面S 中的束缚电荷。那么
令
D 0E P
S
( 0 E P ) d S q
,求得
D dS q
S
此处定义的D 称为电位移。可见,介质中穿过任一闭合面的电位移
的通量等于该闭合面包围的自由电荷,而与束缚电荷无关。上式又 称为介质中的高斯定律的积分形式,利用矢量恒等式不难推出其微 分形式为
各向异性的介质能否是均匀的?非均匀介质能否是各向同性的?
发生极化以后,介质表面出现面分布的束缚电荷。若介质内部
是不均匀的,则极化产生的电偶极子的分布也是不均匀的,在介质 内部出现束缚电荷的体分布,因而出现体分布的束缚电荷。这种因
极化产生的面分布及体分布的束缚电荷又称为极化电荷。可以证明
这些极化电荷产生的电位为
2-4 介质的极化
导体中的电子通常称为自由电子,它们所携带的电荷称为自由 电荷。介质中的电荷是不会自由运动的,这些电荷称为束缚电荷。 在电场作用下,介质中束缚电荷发生位移,这种现象称为极化。 通常,无极分子的极化称为位移极化,有极分子的极化称为取向极
化。
求得
D 2n D 1n
q S
s
式中 s 为边界上存在的表面自由电荷的面密度。考虑到在两种介质 形成的边界上通常不可能存在表面自由电荷,因此
D 1n D 2n
此式表明,在两种介质边界上电位移的法向分量相等,或者说,电 位移的法向分量是连续的。 对于各向同性的线性介质,得
1 E 1n 2 E 2 n
导体的表面上。因为导体中不可能存在静电场,因此导体中的电位梯
度为零,这就意味着导体中电位不随空间变化。所以,处于静电平衡 状态的导体是一个等位体,导体表面是一个等位面。
既然导体中的电场强度为零,导体表面的外侧不可能存在电场强
度的切向分量。换言之,电场强度必须垂直于导体的表面,即
en E 0
外加场Ea
合成场Ea+ Es
介 质
二次场Es
极 化
介质极化以后,介质中出现很多排列方向大致相同的电 偶极子。为了衡量介质的极化程度,我们定义,单位体积中
电矩的矢量和称为极化强度,以 P 表示,即
P
N
pi
i1
V
p i为体积 V 中第 i 个电偶极子的电矩,N 为V 中电偶极子 式中
E, D 介质 导体
en
导体表面存在的表面自由电荷面密度为 en D S
或写为
En
S
式中 为导体周围介质的介电常数。 已知导体表面是一个等位面,因
n
En
,求得表面电位与电荷的关系为
n
S
考虑到导体中不存在静电场,因而极化强度为零。求得导体表面束缚电 荷面密度为
D1t D 2t
1
2
此式表明,在两种各向同性的线性介质形成的边界上,电位
移的切向分量是不连续的。
为了讨论电位移的法向分量变化规律,
en
2 1
D1
h S
D2
在边界上围绕某点作一个圆柱面,其高度 为h,端面为S。那么根据介质中的高
斯定律,得知电位移通过该圆柱面的通量
等于圆柱面包围的自由电荷,即
性与电场强度方向有关,因此,这类介质称为各向异性介质。
空间各点极化率相同(即介质参数与位置无关)的介质称为均 匀介质,否则,称为非均匀介质。 介质参数(极化率)与场强的大小无关称为线性介质,否则,
称为非线性介质。
因此,若极化率是一个正实常数,则适用于线性均匀且各向同 性的介质。若前述矩阵的各个元素都是一个正实常数,则适用于线 性均匀各向异性的介质。 极化率与时间无关的介质称为静止媒质,否则称为运动媒质。 介质的均匀与非均匀性、线性与非线性、各向同性与各向异性、 静止与运动分别代表完全不同的概念,不应混淆。
Px e 11 P y 0 e 21 P z e 31
e 12 e 22 e 32
e 13 E x e 23 E y e 33 E z
这就表明,介质的极化率与电场强度的方向有关,也就是极化特
此式表明,各向异性介质中,电位移的方向与电场强度的方向 不一定相同,电位移某一分量可能与电场强度的各个(或者某 些)分量有关。电位移和电场强度的关系与外加电场的方向有
关。此外,可以推知均匀介质的介电常数与空间坐标无关。线
性介质的介电常数与电场强度的大小无关。静止媒质的介电常 数与时间无关。
对于均匀介质,由于介电常数与坐标无关,因此获得
D
介质中微分形式的高斯定律表明,某点电位移的散度等于 该点自由电荷的体密度。 电位移也可用一系列曲线表示。曲线上某点的切线方向 等于该点电位移的方向,这些曲线称为电位移线,电位移线起
始于正的自由电荷,而终止于负的自由电荷,与束缚电荷无关。
已知各向同性介质的极化强度
P ε0 e E
E dl
l
2 1
E dl
3 2
E dl
4 3
E dl
1 4
E dl
为了求出边界上的场量关系,必须令 h 0,则线积分
3 2
E dl
1 4
E dl 0
为了求出边界上某点的场量关系,必须令 l 足够短,以 致于在l内可以认为场量是均匀的,则上述环量为
81
3.3 2.6
各向异性介质的电位移与电场强度的关系可以表示为
D x 11 D y 21 D 31 z
12 22 32
23
33
13 E x
Ey E z
缚电荷。
2-6 静电场的边界条件
两种介质的边界条件
由于媒质的特性不同,引起场量在两种媒质的交界面上发 生突变,这种变化规律称为静电场的边界条件。为了方便起见,
通常分别讨论边界上场量的切向分量和法向分量的变化规律。
4 1
E2 E1
2
1
l
et3 h
2
为了讨论边界上某点电场强度的切向分量的变化规律,围 绕该点且紧贴边界作一个有向矩形闭合曲线,其长度为l,高 度为h,则电场强度沿该矩形曲线的环量为
,求得
D ε 0 E ε 0 e E 0 (1 e ) E
令
0 (1 e )
则
D εE
式中 称为介质的介电常数。已知极化率 e 为正实数,因此,
一切介质的介电常数均大于真空的介电常数。
实际中经常使用介电常数的相对值,这种相对值称为相对 介电常数,以 r 表示,其定义为
E dl
2 1
E1 d l
4 3
E 2 d l E1t Δ l E 2 t Δ l
式中E1t 和 E2t 分别表示介质①和②中电场强度与边界平行的切向 分量。已知静电场中电场强度的环量处处为零,因此由上式得
E 1t E 2t
此式表明,在两种介质形成的边界上,两侧的电场强度的切向 分量相等,或者说,电场强度的切向分量是连续的。 对于各向同性的线性介质,得
q E dS
S
E
此外,对于均匀介质,前述电场强度及电位与自由电荷的关系式
仍然成立,只须将其中真空介电常数换为介质的介电常数即可。
介质中束缚电荷的分布特性
由于
P ( r ) ( r )
所以有
e 0 r P e 0 E e E D r 1 e e D 1 e 1 e
的数目。这里 V 应理解为物理无限小的体积。 实验结果表明,大多数介质在电场的作用下发生极化时,其 极化强度P 与介质中的合成电场强度 E 成正比,即
P 0eE
式中e 称为极化率,它是一个正实数。
显然,这类介质的极化强度与合成的电场强度的方向相同。
极化强度的某一坐标分量仅决定于相应的电场强度的坐标分量。 极化率与电场方向无关,这类介质称为各向同性介质。有些介 质并不是这样,其极化强度的某一坐标分量不仅与电场强度相 应的坐标分量有关,而且与电场强度的其他分量也有关。这类 介质的极化强度 P与电场强度 E 的关系可用下列矩阵表示
( r ) P ( r )
右式又可写为积分形式
q
P dS
SHale Waihona Puke 由此可见,任一块介质内部体分布的束缚电荷与介质块的表
面束缚电荷是等值异性的。
2-5 介质中的静电场
在介质内部,穿过任一闭合面 S 的电通应为
1 E dS ( q q )
腔中也不可能存在静电场。这就意味着封闭的导体腔可以屏蔽外部静电场,
则上述通量应为
D dS q
S
令 h 0 ,则通过侧面的通量为零,又考虑到 S 必须足够小,
D d S D 2 n S D1 n S
S
式中D1t 及 D2t 分别代表对应介质中电位移与边界垂直的法线分量。 边界法线的方向 en 规定为由介质①指向介质②。
Ea
无极分子
有极分子