3数列的相关概念及简单表示-拔高难度-习题
【精品一轮 详解特训】2022届高考数学一轮复习 3 数列的概念及简单表示法

一、选择题1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n 2n +1B.n2n -1C.n 2n -3D.n2n +3解析:由已知得,数列可写成11,23,35,…,故通项为n2n -1.答案:B2.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( )A .4B .2C .1D .-2解析:在S n =2(a n -1)中,令n =1,得a 1=2;令n =2,得a 1+a 2=2a 2-2,所以a 2=4.答案:A3.数列{a n }的a 1=1,a =(n ,a n ),b =(a n +1,n +1),且a ⊥b ,则a 100等于( )A .-100B .100C.10099 D .-10099解析:a ·b =0,则na n +1+(n +1)a n =0,a n +1a n =-n +1n,a 2a 1·a 3a 2·…·a 100a 99=-21×32×43×…×10099=-100,∴a 100=-100.答案:A4.已知数列{a n }的前n 项和S n =kn 2,若对所有的n ∈N *,都有a n +1>a n ,则实数k 的取值范围是() A .k >0 B .k <1C .k >1D .k <0解析:本题考查数列中a n 与S n 的关系以及数列的单调性.由S n =kn 2得a n =k (2n -1),因为a n +1>a n ,所以数列{a n }是递增的,因此k >0.答案:A5.已知数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72C.92D.132解析:∵a n +a n +1=12,a 2=2,∴a 1=-32,∴S 21=a 1+a 2+…a 20+a 21=a 1+10×12=-32+5=72.答案:B6.若数列{a n }满足a 1=5,a n +1=a 2n +12a n +a n 2(n ∈N *),则其前10项和为( )A .50B .100C .150D .200解析:由a n +1=a n +122a n +a n 2得a n +12-2a n a n +1+a n 2=0,∴a n +1=a n ,即{a n }为常数列,S 10=10a 1=50.答案:A二、填空题7.数列{a n }对任意n ∈N *满足a n +1=a n +a 2,且a 3=6,则a 10等于________.解析:由已知,n =1时,a 2=a 1+a 2,∴a 1=0;n =2时,a 3=a 2+a 2=6,∴a 2=3; n =3时,a 4=a 3+a 2=9;n =4时,a 5=a 4+a 2=12;n =5时,a 6=a 5+a 2=15;…n =10时,a 10=a 9+a 2=27.答案:278.根据下图5个图形及相应点的个数的变化规律,猜测第n 个图中有________个点.解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n -1)×n +1=n 2-n +1.答案:n 2-n +19.若数列{a n }满足,a n +1=⎩⎪⎨⎪⎧2a n 0≤a n ≤1a n -1a n >1且a 1=67,则a 2008=________. 解析:a 2=2a 1=127,a 3=a 2-1=57,a 4=2a 3=107,a 5=a 4-1=37, a 6=2a 5=67,a 7=2a 6=127,∴此数列周期为5,∴a 2008=a 3=57. 答案:57三、解答题10.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3…·a n =n 2,求a 3+a 5的值. 解:由a 1·a 2·a 3·…·a n =n 2,∴a 1a 2=4,a 1a 2a 3=9,∴a 3=94, 同理a 5=2516.∴a 3+a 5=6116. 11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2.当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1). 由于a 1也适合于此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a =S =6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2. 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧ 6,n =12·3n -1+2,n ≥212.设函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式;(2)判断数列{a n }的单调性. 解:(1)由已知得log 22a n -log 2a n2=2n , ∴a n -1a n =2n ,即a n 2-2na n -1=0. 解得a n =n ±n 2+1. ∵0<x <1,即0<2a n <1=20, ∴a n <0,故a n =n -n 2+1(n ∈N *). (2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 而a n <0,∴a n +1>a n ,即数列{a n }是关于n 的递增数列。
数列知识点归纳总结及题型

数列知识点归纳总结及题型
数列是数学中的一个重要概念,它涉及到许多知识点和题型。
以下是数列知识点的归纳总结和常见题型的解答方法。
1. 数列的概念:按一定次序排列的一列数叫做数列。
数列中的每个数都叫这个数列的项。
数列的一般形式:,,,,,,简记作。
2. 数列的通项公式:如果数列的第 n 项与 n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
3. 数列的分类:按数列项数是有限还是无限分:有穷数列和无穷数列;按数列项与项之间的大小关系分:单调数列 (递增数列、递减数列)、常数列和摆动数列。
4. 数列的前项和与通项的关系:已知数列的前 n 项和,求数列的通项公式。
5. 数列的常见题型:数列求和、数列求解、数列排序、数列类比等。
6. 数列的函数特征:数列实质上是定义域为正整数集 (或它的有限子集) 的函数当自变量从 1 开始依次取值时对应的一系列函数值。
7. 数列的图像表示:数列可以用图像来表示,每个图像都是由一组数据点构成的。
数列的图像可以反映数列的性质和规律。
综上所述,数列是数学中的一个重要概念,它在数学解题中有着广泛的应用。
掌握数列的概念、通项公式、分类、前项和与通项的关系、常见题型、函数特征和图像表示等知识点,对于解决数列问题有
很大的帮助。
高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。
人教A版数学高三数列的概念与简单表示法精选试卷练习(含答案)3

a2 a5 a8 93 ,若对任意 n N* ,都有 Sn Sk 成立,则 k 的值为 (
)
试卷第 1页,总 8页
A. 22
B. 21
C. 20
D.19
6.已知函数
f
x
(3
{ a
x
6
a
)
x
3,(x (x 7)
7)
,若数列
an
满足
an
f
(n), (n N )
,且
对任意的正整数 m, n, (m n) 都有 (m n)(am an ) 0 成立,那么实数 a 的取值范围
则 an ____________.
25.已知数列
an
满足
a1
2 , an1
1
1 an
,则 a2019
_____.
26.已知数列 3,33,333,3333,…则通项 an _________.
27.已知数列{
an
}对任意的
n∈N*,都有
an
∈N*,且
an1
=
3an 1,an为奇数
an 2
ai a2i 100 的 i 的最小值为______.
34.数列{an} 中,若 a1 3 , an1 an ( n N* ),则数列{an} 的通项公式 an _____.
35.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数;1, 1,2,3,5,8,13, ,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样
的一列数所组成的数列
ห้องสมุดไป่ตู้
an
为“斐波那契数列”.那么 a12
a22
a32
a42
高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。
通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。
本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。
1. 数列的定义与性质数列是按照一定顺序排列的一组数。
其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。
数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。
设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。
解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。
1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。
设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。
解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。
2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。
下面分别介绍等差数列和等比数列的求和公式。
2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。
其中,a1为首项,an为末项,n为项数。
数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
数列知识点归纳总结例题

数列知识点归纳总结例题数列是数学中一个重要的概念,它由一组按照特定规律排列的数字所构成。
数列在数学的多个领域中都有应用,比如代数、几何、概率等。
本文将对数列的知识点进行归纳总结,并通过一些例题来帮助读者更好地理解数列的概念和应用。
一、数列的定义数列是由一系列有序的数字所构成的集合,这些数字按照特定的规律排列。
一般来说,数列可以用公式 an 表示,其中 n 表示数列中的第几个数字,an 表示第 n 个数字的值。
二、等差数列等差数列是指数列中的两个相邻数字之间的差保持恒定。
对于等差数列,我们可以通过以下公式来表示第 n 个数字的值:an = a1 + (n-1)d其中,a1 为数列的首项,d 为公差,n 表示第几个数字。
例题一:已知一个数列的首项为3,公差为2,求该数列的第10项的值。
解:根据等差数列的公式,可以得到:a10 = 3 + (10-1)*2= 3 + 9*2= 3 + 18= 21因此,该数列的第10项的值为21。
三、等比数列等比数列是指数列中的两个相邻数字之间的比保持恒定。
对于等比数列,我们可以通过以下公式来表示第 n 个数字的值:an = a1 * r^(n-1)其中,a1 为数列的首项,r 为公比,n 表示第几个数字。
例题二:已知一个数列的首项为2,公比为3,求该数列的第4项的值。
解:根据等比数列的公式,可以得到:a4 = 2 * 3^(4-1)= 2 * 3^3= 2 * 27= 54因此,该数列的第4项的值为54。
四、斐波那契数列斐波那契数列是一个特殊的数列,它的前两个数字是1,从第三个数字开始,每个数字都是前两个数字的和。
斐波那契数列可以通过以下递推公式来表示:an = an-1 + an-2其中,a1 = 1,a2 = 1。
例题三:求斐波那契数列的前10项的和。
解:首先列出斐波那契数列的前10项:1, 1, 2, 3, 5, 8, 13, 21, 34, 55然后将这些数字相加:1 + 1 +2 +3 + 5 + 8 + 13 + 21 + 34 + 55 = 143因此,斐波那契数列的前10项的和为143。
数列概念与简单表示法(全面知识点+精选例题+习题附答案)精编材料pdf版

一、数列的概念与简单表示法1.数列的相关概念定义:按照一定顺序排列的一列数叫数列.(例如:1,3,5,7,9…).项与项数:数列中每一个数叫做数列的项,排在第一位的叫做第一项(通常叫首项),以此类推,排在第n 位的叫做数列的第n 项. 表示:数列一般形式可以写成:123,,,,,,n a a a a 简记为{}n a .2.数列的分类按照数列中项数有限和无限分为:有穷数列,无穷数列. 按照数列的项的变化趋势分类:递增数列(1n n a a +>);递减数列(1n n a a +<);常数列(1n n a a +=);摆动数列(1n a +与n a 随着n 的变化大小关系不确定).例如:1,3,5,7,9…(无穷递增数列),10,7,4,1,-2,…,-14(有穷递减数列),2,2,2,2,…(常数列),1,-1,1,-1,1…(摆动数列). 3.数列与函数的关系数列可以看成以正整数*N (或它的有限子集{1,2,,}n )为定义域的函数()n a f n =,当自变量从小到大依次取值时,所对应的一列函数值. 4.数列的表示方法通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.例如:1,3,5,7,9…可表示为21n a n =-,n ∈*N .注意:①不是所有的数列都能写出它的通项公式;②对于一个确定的数列,通项公式不一定唯一.直接列出:123,,,,,.n a a a a图像表示:在平面直角坐标系中,数列可以用一群孤立的点(,)n n a 表示.递推公式:给出数列的第一项(或前几项),再给出后面的项用前面的项来表示的式子,这种表示数列的方法叫递推公式法. 例如:数列{}n a 中,有11a =,111n n a a -=+,根据此递推公式,我们就可以依次写出数列中的每一项. 5.n a 与n S 的关系数列前n 项和记为n S ,则1231n n n S a a a a a -=+++++,11231n n S a a a a --=++++,两式相减,得1n n n a S S -=-,由于n 只能取正整数,当1n =时1n S -不存在,不能使用上式,但当1n =时很明显有11a S =,故我们得到通项n a 与前n 项和n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ .3练习题:21n-1(2)=+,则220是这个数列的(n n2n答案解析:,n,99,999,再把这个数列的每一项乘以5,得到令11n na a +≥,解得6n ≤ 即6n ≤时,1n n a a +≥,6n >时,1n n a a +< 故6a 或7a 最大. 答案:6或7 15解析:函数对称轴为297.254-=-,n ∈*N ,故7n =时最大,带入得7108a =. 答案:B16解析:由题意可知1n n a a +>,即22(1)(1)n n n n λλ+++>+ 解得21n λ>--恒成立,21n --在1n =时取得最大值3- 故3λ>-. 答案:D17解析:54554(21)(21)321616a S S =-=---=-=. 答案:16 18解析:1n n S n =+,则443431413120a S S =-=-=++,420a ∴=. 答案:C19解析:1n =时,113214a S ==+-=2n ≥时,221321[3(1)2(1)1]61n n n a S S n n n n n -=-=+---+--=-此式不适合1n =时取值.答案:4(1)61(2)n n a n n =⎧=⎨-≥⎩.数学浪子整理制作,侵权必究。
人教版高三数学必修三知识点:数列的概念与简单表示法

人教版高三数学必修三知识点:数列的概念与简单表示法1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
3数列的相关概念及简单表示-拔高难度-讲义

数列的相关概念及简单表示知识讲解一、数列的概念概念:按照一定次序排列起来的一列数叫做数列,它可以有限,也可以无限二、数列的通项定义:数列中的每个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,…,第n 项.数列的一般形式可以写成:123n a a a a ,,,,,或简记为{}n a ,其中n a 是数列的第n 项,又称为数列的通项.三、数列的通项公式定义:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个函数式()n a f n =来表示,则称这个公式为这个数列的通项公式.四、数列的递推公式定义:如果已知数列的第一项,且从第二项开始的任一项n a 与它的前一项1n a -间的关系可以用一个 公式来表示,那么这个公式就叫这个数列的递推公式.例如,1112(2)n n a a a n -==-,≥.给出递推公式和初始值的数列是一个确定的数列,所以递推公式也是给出数列的一种方法,即递推法.五、数列的前n 项和定义:123n n S a a a a =++++.数列的前n 项和构成了一个新的数列{}n S ,且11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.六、根据数列的通项公式判定数列的单调性方法1.确认单调性:已知)(n f a n =,若)(x f 的单调性可以确定,则}{n a 的单调性可以确定。
(含参慎用)2.比较法①作差比较法:*1,0{}n n n n N a a a +>∈-=⇒<递增数列为常数列递减.②作商比较法(对于各项符号相同的数列)数列递减常递增数列为}{1,0,1*n nn n a a a a N n ⇒<=>>∈+.典型例题一.选择题(共10小题)1.(2018•新昌县校级模拟)已知数列{a n},{b n}的通项公式为:,,在数列{a n}中存在连续的k(k>1,k∈N*)项和是数列{b n}中的某一项,则k的取值集合为()A.{k|k=2α,α∈N*}B.{k|k=3α,α∈N*}C.{k|k=2α,α∈N*}D.{k|k=3α,α∈N*} 2.(2018•安徽模拟)删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,这个数列的第2018项是()A.2062 B.2063C.2064 D.20653.(2017•玉林一模)已知数列{a n}中a n=(n∈N*),将数列{a n}中的整数项按原来的顺序组成数列{b n},则b2018的值为()A.5035 B.5039C.5043 D.50474.(2016秋•永州期末)已知函数,,>>,,数列{a n}满足,且{a n}是单调递增数列,则实数a的取值范围是()A.(1,3)B.(2,3)C.,D.,5.(2016秋•吉安期末)已知函数f(x)=,,>,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4)D.(1,4)6.(2017秋•浦东新区期中)使数列,,,前项积大于的自然数n的最小值为()A.8 B.9C.10 D.117.(2017春•宿州期中)已知数列{a n}满足a1=4,a n+1=a n+2n,设b n=,若存在正整数T,使得对一切n∈N*,b n≥T恒成立,则T的最大值为()A.1 B.2C.4 D.38.(2017秋•福州期中)(理)在数列{a n}中,对任意n∈N*,都有=k(k 为常数),则称{a n}为“等差比数列”.下面对“等差比数列”的判断:①k不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为a n=a•b n+c(a≠0,b≠0,1)的数列一定是等差比数列.其中正确的个数为()A.1 B.2C.3 D.49.(2017秋•宜昌期中)已知函数f(x)=,,>(a>0,且a≠1),若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.(1,3)B.(0,1)C.,D.(2,3)10.(2016•温州二模)数列{a n}是递增数列,且满足a n+1=f(a n),a1∈(0,1),则f(x)不可能是()A.f(x)=B.f(x)=2x﹣1C.f(x)=D.f(x)=log2(x+1)二.填空题(共4小题)11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n}.可以推测:b2012是数列{a n}中的第项.12.(2018•中山市一模)高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110个,设x∈R,用[x]表示不超过x的最大整数,并用{x}=x﹣[x]表示x的非负纯小数,则y=[x]称为高斯函数,已知数列{a n}满足:,,,则a2017=.13.(2018•上海模拟)已知函数f(x)=,,>,记a n=f(n)(n∈N*),若{a n}是递减数列,则实数t的取值范围是.14.(2016秋•抚顺期末)定义:称为n个正数p1,p2,…,p n的“均倒数”,若数列{a n}的前n项的“均倒数”为,则数列{a n}的通项公式为.三.解答题(共1小题)15.(2016•丰台区一模)已知数列{a n}是无穷数列,a1=a,a2=b(a,b是正整数),,.(Ⅰ)若a1=2,a2=1,写出a4,a5的值;(Ⅱ)已知数列{a n}中,求证:数列{a n}中有无穷项为1;(Ⅲ)已知数列{a n}中任何一项都不等于1,记b n=max{a2n﹣1,a2n}(n=1,2,3,…;max{m,n}为m,n较大者).求证:数列{b n}是单调递减数列.。
高中 数列的概念及简单表示法 知识点+例题 全面

解析由题意知,a1+a2+…+a10=-1+4-7+10-…+(-1)10×(3×10-2)
=(-1+4)+(-7+10)+…+[(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.
4.若Sn为数列{an}的前n项和,且Sn= ,则 等于_______.
答案30
解析当n≥2时,an=Sn-Sn-1= - = ,所以 =5×6=30.
4.数列的通项公式
如果数列 的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
5.数列 的前n项和
已知数列{an}的前n项和Sn,则an=
[例1]数列: , , , , 的一个通项公式是__________________.
[巩固1]数列 , , , , 的一个通项公式为
又a1=1也满足上式,
故数列{an}的一个通项公式为an=2×3n-1-1.
方法二(迭代法)
an+1=3an+2,
即an+1+1=3(an+1)=32(an-1+1)=33(an-2+1)=…=3n(a1+1)=2×3n(n≥1),
所以an=2×3n-1-1(n≥2),
又a1=1也满足上式,
故数列{an}的一个通项公式为an=2×3n-1-1.
8.已知{an}是递增数列,且对于任意的n∈N*,an=n2+λn恒成立,则实数λ的取值范围是________.
答案(-3,+∞)
解析因为{an}是递增数列,所以对任意的n∈N*,
都有an+1>an,即(n+1)2+λ(n+1)>n2+λn,整理,
得2n+1+λ>0,即λ>-(2n+1).(*)
因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.
数列知识点归纳总结及题型

数列知识点归纳总结及题型数列是数学中一个重要的概念,也是高中数学中的重点内容之一。
它主要研究数字序列和它们之间的关系,包括等差数列、等比数列、递推数列等。
下面对数列知识点进行归纳总结:1. 数列的定义:数列是按照一定规律排列起来的一串数。
2. 数列的表示方法:通项公式、递推公式、等差数列、等比数列等。
3. 等差数列:若一个数列从第二项开始,每一项与它的前一项之差相等,则称这个数列为等差数列。
等差数列的通项公式为an=a1+(n-1)d。
4. 等比数列:若一个数列从第二项开始,每一项与它的前一项之比相等,则称这个数列为等比数列。
等比数列的通项公式为an=a1*q^(n-1)。
5. 递推数列:递推数列是根据已知的一些项的值求出其后继项的一类数列。
6. 数列的性质:有限数列具有有限项、无限数列具有无限项;等差数列中任意三项都可以构成一个等差数列;等比数列中任意三项都可以构成一个等比数列。
7. 数列求和公式:等差数列的前n项和为Sn=[n(a1+an)]/2;等比数列的前n项和为Sn=a1*(q^n-1)/(q-1)。
下面对数列考试题型进行归纳总结:1. 求某个位置上的项数或值。
2. 判断一个数列是等差数列还是等比数列,然后求出通项公式。
3. 求等差数列或等比数列的前n项和。
4. 通过已知的一些项的值来求递推数列的后继项。
5. 应用数列知识解决实际问题,如财务上的利润、收益等问题。
以上就是数列知识点和考试题型的总结。
在学习数列时,需要掌握基本概念和性质,熟练掌握求解各种类型的数列题目,才能够应对各种考试题型。
高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)

高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)1.已知数列{}n a 的通项公式为2n a n kn =-,且{}n a 单调递增,则实数k 的取值范围是( ) A.(,2]-∞B.(,2)-∞C.(,3]-∞D.(,3)-∞2.22,24,…,则162( ) A.第8项B.第9项C.第10项D.第11项3.已知在数列{}n a 中,11a =,123n n a a +=+,则n a 等于( ) A.123n -+B.123n ++C.123n --D.123n +-4.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.55.已知数列{}n a 满足32111232n n a a a a n ++++=-,则n a =( ) A.112n-B.312n - C.12nD.2nn 6.已知数列{}n a 的前n 项和为()*n S n ∈N ,且2n S n λ=+.若数列{}n a 为递增数列,则实数λ的取值范围为( ) A.(,1)-∞B.(,2)-∞C.(,3)-∞D.(,4)-∞7.《周髀算经》是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,…,生数皆终,万物复苏,天以更远作纪历”,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90~100),其余19人的年龄依次相差一岁,则年龄最小者的年龄为( ) A.65B.66C.67D.688.已知数列{}n a 的前n 项和为112321 ,,0,3,2,1(3)22n n n n n n a aS a a a a n a a +--∈===⋅=++N .若100m a =,则m =( )A.50B.51C.100D.1019.若数列{}n a 满足12211,1,n n n a a a a a ++===+,则称数列{}n a 为斐波那契数列.1680年卡西尼发现了斐波那契数列的一个重要性质:211(1)(2)n n n na a a n -+-=-≥.在斐波那契数列{}n a 中,若k 满足22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,给出下列结论:①k 可以是任意奇数;②k 可以是任意正偶数:③若k 是奇数,则k 的最大值是999;④若k 是偶数,则k 的最大值是500.其中正确结论的序号是( )A.①④B.②③C.①②D.③④10.已知集合{}{}1*21*3,,1333,n n A x x n B x x n --==∈==++++∈N N ∣∣.将A B ⋃的所有元素从小到大排列构成数列{}n c ,其前n 项和为n T ,则下列命题中真命题的个数为( ) ①202320222021c c c =+; ②{}2212n n c c --是等比数列;③使503n T >成立的n 的最小值为100; ④112ni ic =<∑恒成立. A.4B.3C.2D.111.在斐波那契数列{}n a 中,11a =,21a =,()122n n n a a a n --=+>.已知n S 为该数列的前n 项和,若2020S m =,则2022a =_____________.12.已知数列{}n a 中,11a =,()*12n n a a n +=∈N ,则数列{}n a 的通项公式为n a =___________.13.数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1=a ___________. 14.已知数列{}n a 满足12a =,且31122(2)234n n a a a a a n n-++++=-≥,则{}n a 的通项公式为_______________.15.已知正项数列{}n a 的前n 项和为n S ,11a =,2211n n n S a S λ++=-,其中λ为常数.(1)证明:12n n S S λ+=+.(2)是否存在实数λ,使得数列{}n a 为等比数列?若存在,求出λ;若不存在,请说明理由.参考答案1.答案:D解析:∵数列{}n a 中()2*n a n kn n =-∈N ,且{}n a 单调递增,10n n a a +∴->对于*n ∈N 恒成立,即()22(1)(1)210n k n n kn n k +-+--=+->对于*n ∈N 恒成立. 21k n ∴<+对于*n ∈N 恒成立,即3k <.故选D.2.答案:B22(2),3(2),4(2),…,由此可归纳该数列的通项公式为()*(2)n n ∈N .又9162(2),所以1629项.故选B.3.答案:D解析:由123n n a a +=+,得()1323n n a a ++=+,且134a +=,则{}3n a +是以4为首项,2为公比的等比数列,则1342n n a -+=⨯,所以123n n a +=-. 4.答案:C解析:因为数列{}n a 中,m n m n a a a +=,令1m =,则112n n n a a a a +==,所以数列{}n a 是首项为2,公比为2的等比数列,则11122k k k a a ++=⋅=.所以()()1011101111210122212212k k k k k k k a a a a +++++++-+++==-=--,则1111552222k k ++-=-,所以4k =,故选C. 5.答案:D 解析:32111232n n a a a a n ++++=-①,当2n 时,31211112312n n a a a a n --++++=--②,则①-②得,1111222n n n n a n -=-=,故(2)2n n n a n =.当1n =时,112a =,也符合2n n na =,故选D. 6.答案:B解析:当1n =时,111a S λ==+;当2n 时,221(1)21n n n a S S n n n λλ-==+---=--.则120n n a a --=>,所以当2n 时,数列{}n a 为递增数列.若数列{}n a 为递增数列,只需21a a >,即31λ>+,所以2λ<.故选B.7.答案:B解析:设年龄最小者的年龄为n ,年龄最大者的年龄为([90,100])m m ∈,所以(1)(18)1520n n n m ++++++=,所以191349n m +=,所以134919m n =-,所以90134919100n -,所以14565661919n ,因为年龄为正整数,所以66n =,故选B.8.答案:D 解析:因为3412122a a a a ⋅=++,所以45a =,同理可得564,7a a ==.令2(3)2nn n a b n a -=+,则11n n b b +=,因为31b =,所以3452 1,2n n n b b b b a a -======+,则有21202(1)2 2 , 32(1)21k k a k k a k k -=+-=-=+-=+,故(1)n n a n =+-.若(1)100m m a m =+-=,则101m =.故选D. 9.答案:B解析:由211(1)(2)n n n na a a n -+-=-≥可得212111(21)(21)1357(1)(21)kkk i i i i i i a ai a k +++==-⋅--=-+-++--∑∑.若k 为偶数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-+--=-∑∑,此时22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,即999k -≤,k 无最大值,所以②正确,④错误;若k 为奇数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-++-=∑∑,此时22111(21)(21)999k ki i i i i i a a i a ++==--≤-∑∑,即999k ≤,此时k 的最大值为999,所以①错误,③正确.故选B. 10.答案:B解析:设1*3,n n a n -=∈N ,则数列{}n a 是首项为1、公比为3的等比数列,其前n 项和213113332n n n B --=++++=.因为111a B ==,且当2n ≥时,131332n n n --<<, 所以把A B ⋃的所有元素从小到大排列为122334455,,,,,,,,,B a B a B a B a B ,所以212131,32n n n n n n c B c a -+-====.对于①,1221213131322n n nn n n c c c +-+--+=+==,取1011n =,有202320222021c c c =+,故①正确.对于②,因为2213123212n nn n c c ---=-⨯=是常数,所以{}2212n n c c -- 是以1为首项、1为公比的等比数列,故②正确.对于③,易知49503a =,则数列{}n c 的前98项和()()98235012349T a a a B B B B =++++++++()234912350234950B B B B a a a B B B B =++++++++=++++()5123505014931073333224-=⨯+++-=<,前99项和515050509998999850310731531093424T T c T B --⨯-=+=+=+=>,故使得503n T >成立的n 的最小值为99,故③错误.对于④,因为当2n ≥时,0n n B a >>,所以11113n n n B a -<=, 所以2121122311111111111112122333333nn nn i i n n c B B B a a a -=+⎛⎫⎫⎛⎛⎫⎛⎫=+++++++<+++++++=-< ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭⎭∑,又因为21211112n n i i i i c c -==<<∑∑,所以112ni ic =<∑恒成立,故④正确.11.答案:1m +解析:由已知,得123a a a +=,234a a a +=,…,202020212022a a a +=,以上各式相加,得1234202020222a a a a a a +++++=,即220202022a S a +=.又21a =,2020S m =,所以20221a m =+.12.答案:12n -解析:易知0n a ≠,由()*12n n a a n +=∈N ,可得12n na a +=, 所以当2n ≥时,12nn a a -=, 所以()113211221122222n n n n n n n a a a a a a a a a a -----=⨯⨯⨯⨯=⨯⨯⨯⨯=个, 所以()122n n a n -=≥. 因为当1n =时也满足上式,所以数列{}n a 的通项公式为()1*2n n a n -=∈N . 13.答案:7解析:令()2n k k *=∈N ,则有()22261k k a a k k *++=-∈N , 2468101214165,171,942=,a a a a a a a a ∴+=+=+=+,∴前16项的所有偶数项和 517294192S =+++=偶,∴前16项的所有奇数项和 54092448S =-=奇,令()21n k k *=-∈N ,则有()212164k k a a k k *+--=-∈N .()()()211315375k a a a a a a a a +∴-=-+-+-+ ()2121281464k k a a k +-+-=++++-=()(264)(31)2k k k k k *+-=-∈N ,()211(31)k a k k a k *+∴=-+∈N ,31517192,10,24,44a a a a a a a ∴=+=+=+=+ 1111131151,70,102,140a a a a a a a =+=+=+,∴前16项的所有奇数项和13 S a a =+++奇151182102444701021408a a a =+++++++=+392448=. 17a ∴=.14.答案:1n a n =+解析:依题意数列{}n a 满足12a =,且31122234n n a a a a a n-++++=-①. 当2n =时,1222a a =-,23a =, 3112122341n n n a a aa a a n n -++++++=-+②, ②-①得11n n n a a a n +=-+,121n n a n a ++=+ 则()112n n a n n a n-+=≥, 所以13211221132112n n n n n a a a a n n a a n a a a a n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅=+-, 1a ,2a 都符合上式.所以{}n a 的通项公式为1n a n =+. 故答案为:1n a n =+. 15.答案:(1)见解析 (2)存在,1λ=.解析:(1)11n n n a S S ++=-,2211n n n S a S λ++=-,()2211n n n n S S S S λ++∴=--,()1120n n n S S S λ++∴--=.0n a >,10n S +∴>,120n n S S λ+∴--=,12n n S S λ+∴=+.(2)12n n S S λ+=+, 122n n S S n λ-∴=+≥(), 两式相减,得1(22)n n a a n +≥=. 212S S λ=+,即2112a a a λ+=+, 21a λ∴=+,由20a >,得1λ>-.若{}n a 是等比数列,则2132a a a =,即22(1)(1)λλ+=+,得1λ=. 经检验,1λ=符合题意.故存在1λ=,使得数列{}n a 为等比数列.。
数列知识点总结带例题

数列知识点总结带例题一、数列的基本概念数列是按照一定顺序排列的一组数,其中每个数称为数列的项。
数列可以用数学符号表示为{an},其中an表示第n个项。
数列中的项可以是整数、有理数、无理数或复数。
数列中的项的顺序是有意义的,我们可以用自然数n表示数列中的项的位置。
如果数列中的每一项和它的后一项之比等于一个固定的常数r,那么这个数列称为等比数列;如果数列中的每一项和它的前一项之差等于一个固定的常数d,那么这个数列称为等差数列;如果数列中的每一项和它的前一项之比等于一个固定的常数q,那么这个数列称为等比数列;如果数列中的每一项和它的后一项之差等于一个固定的常数p,那么这个数列称为等差数列。
在数列中,第一个数称为首项,最后一个数称为末项,其中还有一些特殊的数列,例如递增数列、递减数列、周期数列等。
二、数列的常见类型1.等差数列等差数列是指数列中相邻两项之差都是相等的数列。
一般来说,等差数列的通项公式是an=a1+(n-1)d,其中a1为首项,d为公差。
等差数列的前n项和公式是Sn=(a1+an)n/2。
例题1:如果等差数列的首项为2,公差为3,求前10项的和。
解:首先根据等差数列的通项公式an=2+(n-1)3=3n-1,然后代入前10项的和公式Sn=(2+2n-1)n/2=5n^2-n,得到前10项的和为5*10^2-10=240。
2.等比数列等比数列是指数列中相邻两项的比值都是相等的数列。
一般来说,等比数列的通项公式是an=a1*r^(n-1),其中a1为首项,r为公比。
等比数列的前n项和公式是Sn=a1*(1-r^n)/(1-r)。
例题2:如果等比数列的首项为3,公比为2,求前5项的和。
解:首先根据等比数列的通项公式an=3*2^(n-1),然后代入前5项的和公式Sn=3*(1-2^5)/(1-2)=-93。
3.递增数列和递减数列递增数列是指数列中相邻两项的差值大于0的数列,递减数列是指数列中相邻两项的差值小于0的数列。
数列的概念及简单表示法知识点讲解+例题讲解(含解析)

数列的概念及简单表示法一、知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D 3.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2019·山东省实验中学摸底)已知数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),S n 为其前n 项和,则S 5的值为( ) A.57B.61C.62D.63解析 由条件可得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,a 5=2a 4+1=31,所以S 5=a 1+a 2+a 3+a 4+a 5=1+3+7+15+31=57. 答案 A5.(2018·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( )A.(-1)n +12B.cosn π2 C.cos n +12π D.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D6.(2019·天津河东区一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 ∵S n =a 1(4n -1)3,a 4=32,则a 4=S 4-S 3=32.∴255a 13-63a 13=32,∴a 1=12.答案 12考点一 由数列的前几项求数列的通项【例1】 (1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…,故其通项公式可以为a n =(-1)n·2n -32n . 答案 (1)C (2)a n =(-1)n ·2n -32n【训练1】 写出下列各数列的一个通项公式: (1)-11×2,12×3,-13×4,14×5,…; (2)12,2,92,8,252,…; (3)5,55,555,5 555,….解 (1)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n =(-1)n ×1n (n +1),n ∈N *.(2)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(3)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).考点二 由a n 与S n 的关系求通项【例2】 (1)(2019·广州质检)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________________.(2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)由log 2(S n +1)=n +1,得S n +1=2n +1, 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=2n , 所以数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1. ∴数列{a n }是首项为-1,公比为2的等比数列.∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63. 答案 (1)a n =⎩⎨⎧3,n =12n ,n ≥2 (2)-63【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项【例3】 (1)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n(2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.(4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.解析 (1)因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,a n -a n -1=ln n -ln(n -1)(n ≥2). 把以上各式分别相加得a n -a 1=ln n -ln 1,则a n =2+ln n ,且a 1=2也适合, 因此a n =2+ln n (n ∈N *).(2)由na n-1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1,又a 1也满足上式,所以a n =2n +1. (3)由a n +1=2a n +3,得a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n=a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列.∴b n =4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12=n +12. 所以a n =2n +1.规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.【训练3】 (1)(2019·山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. (2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.解析 (1)a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1, 则a n =2n -2+2n -3+…+2+1+n -1+a 1=1-2n -11-2+n -1+2=2n -1+n .(2)由a n +1=2n a n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.答案 (1)2n -1+n (2)2n (n -1)2考点四 数列的性质【例4】 (1)数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是( )A.310B.19C.119D.1060(2)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n -1,12<a n <1,a 1=35,则数列的第2 019项为________.解析 (1)令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.(2)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35, ∴{a n }为周期数列且T =4, ∴a 2 019=a 504×4+3=a 3=25. 答案 (1)C (2)25【训练4】 (1)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020=________.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是________.解析 (1)∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 020=a 2=0.(2)由a n +1>a n 知该数列是一个递增数列,又通项公式a n =n 2+kn +4,所以(n +1)2+k (n +1)+4>n 2+kn +4,即k >-1-2n . 又n ∈N *,所以k >-3. 答案 (1)0 (2)(-3,+∞)三、课后练习1.(2019·山东新高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 018这2 018个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 018得1≤n ≤97,又n ∈N *,故此数列共有97项. 答案 B2.已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n =________.解析 假设第n 项为最大项,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1,即⎩⎪⎨⎪⎧(n +2)·⎝ ⎛⎭⎪⎫67n≥(n +1)·⎝ ⎛⎭⎪⎫67n -1,(n +2)·⎝ ⎛⎭⎪⎫67n ≥(n +3)·⎝ ⎛⎭⎪⎫67n+1,解得⎩⎨⎧n ≤5,n ≥4,即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 答案 4或53.(2019·菏泽模拟)已知数列{a n }的前n 项和为S n ,且满足S n =(-1)n·a n -12n ,记b n =8a 2·2n -1,若对任意的n ∈N *,总有λb n -1>0成立,则实数λ的取值范围为________.解析 令n =1,得a 1=-14; 令n =3,可得a 2+2a 3=18;令n =4,可得a 2+a 3=316,故a 2=14,即b n =8a 2·2n -1=2n . 由λb n -1>0对任意的n ∈N *恒成立, 得λ>⎝ ⎛⎭⎪⎫12n对任意的n ∈N *恒成立,又⎝ ⎛⎭⎪⎫12n≤12, 所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎫12,+∞4.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。
数列的概念及简单表示方法

= ()
+1
在数列 中,
=
且1
+2
= 2, 求数列 的通项公式
3、构造法:
形如+1 = +
在数列 中, 1 = 1, +1 =
2
3
+ 1,求数列 的通项公式
, +
若数列 的前项和为 :
1 , = 1
则 = ቊ
− −1 , ≥ 2
习题练习
求数列的通项公式
一、观察法:写出下面各数列的一个通项公式
(1)1,-3,5,-7,9,… = (−1)−1 × (2 − 1)
(2)9, 9,999,9999,… = 10 − 1
摆动数列
数列的函数特性
1、数列与函数的关系
数列可以看成一类特殊的函数 = (),定义域
为正整数集(或正整数集的有限子集),所以它的图
像是一系列鼓励的点,而不是连续不断的曲线。
2、数列的性质:单调性、周期性。
数列的前n项和 和通项 的关系
= 1 + 2 + 3 + ⋯ +
(或某一项)开始的任一项 与它的前一项n−1 (或前
几项)( ≥ 2)的关系可以用一个公式表示,那么这个公
式就叫做该数列的递推公式。
例如:+1 = + 2, 1 = 1
递推公式包括两部分:开头,递推关系;
通项公式可以直接求出数列的任意一项,递推公式不可以
直接求出;
递推公式、通项公式共同点:都可以确定一个数列,求出
子 =(), ∈ + 表达,这个式子叫做数列 的通项
公式。
数列的概念与简单表示法--(知识点+题型+培优)必修五同步--可编辑

数列-------概念与简单表示法一、 数列的概念与简单表示法 1、数列的概念⑴ 数列的定义:按照一定顺序排列的一列数称为数列。
数列中的每个数称为该数列的项。
数列中每一项都和它的序号有关。
数列的一般形式为 ,,,,21n a a a ,或者简记为}{n a ,其中n a 表示数列}{n a 的通项。
注:① 研究对象:“数”(与集合相区别)。
② 首项(第1项):数列中的排在第1位的数。
第2项 :数列中的排在第2位的数。
……通项(第n 项):数列中的排在第n 位的数。
③ 注意n a 与}{n a 含义的区别: n a :表示数列}{n a 中的第n 项。
}{n a :表示数列 ,,,,21n a a a ,简单记法。
④ 数列的项性质:对于任意一个数列}{n a ,其每一项与序号都有对应的关系,见下表:2、数列的通项公式:⑴ 数列的第n 项叫做数列的通项。
⑵ 如果数列}{n a 的第n 项n a 与序号n 之间的关系可以用一个式子来表示, 那么这个公式叫做这个数列的通项公式。
3、数列的递推公式: ⑴ 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项与它的前一项(或前几项)间的关系可以用一个式子来表示,即或,那么这个式子叫做数列{}n a 的递推公式。
4、数列的前n 项和:n nk ka a a a+++=∑= 211叫做数列{}n a 的前n 项和,记作n S数列的通项n a 与前n 项和n S 的关系:n a a a S +++= 21n⎩⎨⎧≥-==-)2()1(11n n S S n S a n n5、数列的分类:n a 1-n a )(1-=n n a f a ),(21--=n n n a a f a2、 数列的性质: 单调性,周期性,有界性⑴ 单调性:递增数列:*N n ∈∀,1+n a >na 递减数列:*N n ∈∀,1+n a <n a摆动数列:有大有小常数列:*N n ∈∀,1+n a =n a求数列的最大(小)项,一般先研究数列的单调性,可以用⎩⎨⎧≥≥+-11n n n n a a a a ()*,2N n n ∈≥或⎩⎨⎧≤≤+-11n n n n a a a a ()*,2N n n ∈≥求解,也可以转换为函数的最值问题或利用数形结合求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的相关概念及简单表示
一、选择题(共12小题;共60分) 1. 在数列 {a n } 中,a 1=1,a n =1+(−1)n a n−1
(n ≥2),则 a 5 等于 ( )
A. 3
2
B. 5
3
C. 8
5
D. 2
3
2. 若数列 {a n } 的前 4 项分别为 2,0,2,0,则这个数列的通项公式不可能是 ( )
A. a n =1+(−1)n+1
B. a n =1−cosnπ
C. a n =2sin 2
nπ2
D. a n =1+(−1)n−1+(n −1)(n −2)
3. 数列 {a n } 定义如下:a 1=1,当 n ≥2 时,a n ={1+a n 2,n 为偶数
1a n−1
,n 为奇数
,若 a n =1
4
,则 n 的值为
( )
A. 7
B. 8
C. 9
D. 10
4. 在数列 {a n } 中,a 4k−3=a 4k =1,a 4k−2=a 4k−1=−1(k ∈N ∗),有下列表达式: ① a n =√2cos (2n−1)π4(n ∈N ∗); ② a n =√2sin (2n+1)π
4
(n ∈N ∗);
③ a n =sin
nπ2
+sin
(n+1)π
2
(n ∈N ∗);
④ a n =(−1)n (n−1)2
(n ∈N ∗) .
其中可以作为该数列的通项公式的个数为 ( )
A. 1
B. 2
C. 3
D. 4 5. 在数列 {a n } 中,对于任意的 p,q ∈N +,有 a p+q =a p ⋅a q ,若 a 2=4,则 a 10= ( ) A. 64
B. 128
C. 504
D. 1024
6. 已知数列 {a n },a n =1
n (n+2)(n ∈N ∗),那么 1
120 是这个数列的 ( )
A. 第 9 项
B. 第 10 项
C. 第 11 项
D. 第 12 项
7. 有下列数组排成一排:(1
1),(21,12),(31,22,1
3),(41,32,23,1
4),(51,42,33,24,15
),⋯,如果把上述数组中的
括号都去掉会形成一个数列:11
,2
1
,1
2
,31
,2
2
,1
3
,41
,32
,2
3
,14
,51
,42
,3
3
,2
4
,1
5
,⋯,则此数列中的
第 2011 项是 ( )
A. 7
57
B. 6
58
C. 5
59
D. 4
60
8. 已知在平面直角坐标系中有一个点列:P 1(0,1),P 2(x 2,y 2),⋅⋅⋅,P n (x n ,y n )(n ∈N ∗) .若点
P n (x n ,y n ) 到点 P n+1(x n+1,y n+1) 的变化关系为 {y n+1=y n +x n ,
x n+1=y n −x n
(n ∈N ∗) ,则 ∣P 2013P 2014∣=
( )
A. 21004
B. 21005
C. 21006
D. 21007
9. 已知数列{a n}(n∈N∗)满足a n+1={2a n,n为奇数
a n+1,n为偶数
.设S n是数列{a n}的前n项和.若S5=
−20,则a1=( )
A. −23
9B. −20
31
C. −6
D. −2
10. 如下图所示的是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化
学键,按图中结构第n个图有化学键( )
A. 6n个
B. (4n+2)个
C. (5n−1)个
D. (5n+1)个
11. 数列{a n}满足a2=2,a n+2+(−1)n+1a n=1+(−1)n(n∈N∗),S n为数列{a n}的前n项和,
则S100=( )
A. 5100
B. 2550
C. 2500
D. 2450
12. 已知数列{n+2
n
}(n∈N∗),欲使它的前n项的乘积大于36,则n的最小值为( )
A. 7
B. 8
C. 9
D. 10
二、填空题(共5小题;共25分)
13. 在各项均为正数的数列{a n}中,对任意的m,n∈N∗,都有a m+n=a m⋅a n.若a6=64,则
a9=.
14. 已知数列{a n}满足a1=−2,a n+1=2+2a n
1−a n
,那么a5=.
15. 我们可以利用数列{a n}的递推公式a n={n,n为奇数时
a n
2
,n为偶数时
(n∈N+),求出这个数列各项的值,
使得这个数列中的每一项都是奇数,则a64+a65=.
16. 设数列{a n}的前n项和为S n,且S n=a1(4n−1)
3
,若a4=32,则a1=.
17. 若数列{a n}的通项公式是a n=(−1)n(2n+3),则a4+a7+a10=.
三、解答题(共5小题;共65分)
18. 已知数列{a n}的相邻两项a2k−1,a2k是关于x的方程x2−(3k+2k)x+3k⋅2k=0的两个根,
且a2k−1≤a2k(k∈N∗),求a1,a3,a5,a7.
19. 已知在数列{a n}中,a1=3,a10=21,通项a n是关于n的一次函数.
(1)求{a n}的通项公式并求a2011;
(2)若{b n}是由a2,a4,a6,a8⋯组成的,试归纳出{b n}的一个通项公式.
20. 数列{a n}中,a1=1,a n+1=1
2a n2−a n+c(c>1为常数,n∈N∗),且a3−a2=1
8
.
(1)求c的值;
(2)证明:a n<a n+1.
21. 函数f(n)={n(n∈N+,n为奇数),
f(n
2
)(n∈N+,n为偶数).
数列{a n}的通项a n=f(1)+f(2)+f(3)+⋯+
f(2n)(n∈N+).
(1)求a1,a2,a4的值;
(2)写出a n与a n−1的一个递推关系式(1+3+5+⋯+(2n−1)=4n−1).22. 已知各项都为正数的数列{a n}满足a1=1,a n2−(2a n+1−1)a n−2a n+1=0.
(1)求a2,a3;
(2)求{a n}的通项公式.。