2020高中数学 第二章 2.3.1 直线与平面垂直的判定检测 新人教A版必修2

合集下载

2019-2020学年新导学案同步人教A版数学必修2_第2章 点_直线_平面之2.3.1

2019-2020学年新导学案同步人教A版数学必修2_第2章  点_直线_平面之2.3.1
数 学 必 修 ② 人 教 版
返回导航
·
第二章 点、直线、平面之间的位置关系
3.直线和平面所成的角
(1)定义:一条直线和一个平面相交,但不和这个平面__垂__直____,这条直线
叫做这个平面的斜线,斜线和平面的___交__点___叫做斜足.过斜线上斜足以外的
一点向平面引垂线,过___垂__足___和__斜__足____的直线叫做斜线在这个平面上的射
一点,且SA=SB=SC.

(1)求证:SD⊥平面ABC;

必 修
(2)若AB=BC,求证:BD⊥平面SAC.

人 教

返回导航
·
·
第二章 点、直线、平面之间的位置关系
[解析] (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,所以△ADS≌△BDS,
人 教

返回导航
·
第二章 点、直线、平面之间的位置关系
1.直线l⊥平面α,直线m⊂α,则l与m不可能
(A)
A.平行
B.相交
C.异面
D.垂直
[解析] ∵直线l⊥平面α,∴l与α相交,
又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与
数 学
m不可能平行.



人 教

返回导航
·
②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角
即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.
(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面
内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些

必修2《2.3.1直线与平面垂直的判定》(新人教版)

必修2《2.3.1直线与平面垂直的判定》(新人教版)
A1B1CD内的射影就可以求出
A
1
直线A1B和平面A1B1CD所成
的角
D
B1
O
C
解:见板书
A
B
四:知识小结
1.直线与平面垂直的概念 2.直线与平面垂直的判定
(1)利用定义; 垂直于平面内任意一条直线 (2)利用判定定理.
即:线线垂直
线面垂直
3. 线面角的概念及范围: 0° ≤θ≤ 90°
五:作业 课本P67练习
生活中的线面垂直现象:
旗杆与底面垂直
塔与地面垂直
大桥的桥柱与水面垂直
军人与地面垂直
思 考 一条直线 与一个平面垂直
的意义是什么? A
C
C1
α
B
B1
如果直线 l 与平面内的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直, 记作 l .垂足平面的垂线 Nhomakorabeal
P
直线 l 的垂面
画法:画直线与平面垂直时,常把直线画成与
总结:如果两条平行直线中的一条垂直于一个平面,
那么另一条也垂直于这个平面。
三、直线和平面所成的角:
如图所示,一条直线PA和平面 相交,但不垂直,这
条直线叫这个平面的斜线,斜线和平面的交点A叫做斜足。
过斜线上斜足以外的一点P向平面引垂线PO ,过垂 足O和斜足A的直线AO叫做斜线在这个平面上的射影。
la
lb
a
l
b
abA
线不在多,相交就灵
l
b
Aa
作用: 判定直线与平面垂直. 记忆:线线垂直,则线面垂直
例1 如图
a
b
已知:a//b,a , 求证:b .
n m

人教A版必修2第二章2.2.1《直线与平面的判定》精选题高频考点(含答案)-1

人教A版必修2第二章2.2.1《直线与平面的判定》精选题高频考点(含答案)-1

人教A 版必修2第二章2.2.1《直线与平面的判定》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .2.如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面 3.若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为( )A .10B .20C .8D .44.在长方体1111ABCD A B C D -中,11AD DD ==,AB =E ,F ,G 分别是AB ,BC ,1CC 棱的中点,P 是底面ABCD 内一个动点,若直线1D P 与平面EFG 平行,则1BB P V 面积最小值为( )A B .1 C D .125.如图,正方体1111ABCD A B C D 中,E ,F ,G ,H 分别为所在棱的中点,则下列各直线中,不与平面1ACD 平行的是( )A .直线EFB .直线GHC .直线EHD .直线1A B 6.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为3,线段B 1D 1上有两个动点E ,F 且EF =1,则当E ,F 移动时,下列结论中错误的是( )A .AE ∥平面C 1BDB .四面体ACEF 的体积不为定值C .三棱锥A ﹣BEF 的体积为定值D .四面体ACDF 的体积为定值7.下列四个正方体图形中,A B ,为正方体的两个顶点,M N P ,,分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .②④C .②③D .①④ 8.已知直线m 与平面α,则下列结论成立的是A .若直线m 垂直于α内的两条直线,则m α⊥B .若直线m 垂直于α内的无数条直线,则m α⊥C .若直线m 平行于α内的一条直线,则//m αD .若直线m 与平面α无公共点,则//m α9.如图,在正方体1111ABCD A B C D -中,M ,N 分别是11,BC CD 的中点,则下列说法错误的是( )A .MN ∥平面ABCDB .MN ∥ABC .MN ⊥ACD .MN ⊥CC 1 10.如图,在四面体ABCD 中,点P ,Q ,M ,N 分别是棱AB ,BC ,CD ,AD 的中点,截面PQMN 是正方形,则下列结论错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =CDD .异面直线PM 与BD 所成的角为45°11.设l 为直线,α,β是两个不同的平面,下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β12.已知m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若αβ∥,m α⊂,n β⊂,则m n P ;②若m αP ,m n P ,则n αP ;③若m ,n 是异面直线,则存在α,β,使m α⊂,n β⊂,且αβ∥;④若α,β不垂直,则不存在m α⊂,使m β⊥.其中正确的命题有( ).A .1个B .2个C .3个D .4个 13.设平面αβ∥,A α∈,B β∈,C 是AB 的中点,当点,A B 分别在平面,αβ内运动时,则所有的动点C ( )A .不共面B .当且仅当,A B 分别在两条直线上移动时才共面C .当且仅当,A B 分别在两条给定的异面直线上移动时才共面D .不论,A B 如何移动,都共面14.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中( )A .AB CD ∥ B .AB CD 平面∥C .CD GH ∥ D .AB GH ∥ 15.如图所示,在三棱台111ABC A B C -中,点D 在11A B 上,且1AA BD ∥,点M 是111A B C △内(含边界)的一个动点,且有平面BDM P 平面1A C ,则动点M 的轨迹是( )A .平面B .直线C .线段,但只含1个端点D .圆16.以下命题中真命题的个数是( )①若直线l 平行于平面α内的无数条直线,则直线l αP ;②若直线a 在平面α外,则a P α;③若直线,a b b α⊂∥,则a P α;④若直线,a b b α⊂∥,则a 平行于平面α内的无数条直线.A .1B .2C .3D .4 17.如图,已知正方体1111ABCD A B C D -,E 、F 分别是1BC 、BD 的中点,则至少过正方体3个顶点的截面中与EF 平行的截面个数为( ).A .2B .3C .4D .5 18.已知直线l ,m ,平面α,β,γ,则下列条件能推出l ∥m 的是( ) A .l ⊂α,m ⊂β,α∥βB .α∥β,α∩γ=l ,β∩γ=mC .l ∥α,m ⊂αD .l ⊂α,α∩β=m19.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值;③棱A 1D 1始终与水面所在平面平行;④当容器倾斜如图所示时,BE ·BF 是定值.其中正确的个数是( )A .1B .2C .3D .420.如图,几何体111A B C ABC -是一个三棱台,在1A 、1B 、1C 、A 、B 、6C 个顶点中取3 个点确定平面α,αI 平面111A B C m =,且//m AB ,则所取的这3个点可以是( )A .1A 、B 、CB .1A 、B 、1C C .A 、B 、1CD .A 、1B 、1C二、填空题 21.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)如果直线//a b ,那么a 平行于经过b 的任何平面.(______)(2)如果直线a 与平面α满足//a α,那么a 与α内的任何直线平行.(______) (3)如果直线a b ,和平面α满足//a α,//b α,那么//a b .(______)(4)如果直线a b ,和平面α满足//a b ,//a α,b α⊄,那么//b α.(______) 22.如图,透明塑料制成的长方体ABCD ﹣A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题: ①有水的部分始终呈棱柱形;②没有水的部分始终呈棱柱形;③水面EFGH 所在四边形的面积为定值;④棱A 1D 1始终与水面所在平面平行;⑤当容器倾斜如图(3)所示时,BE•BF 是定值.其中所有正确命题的序号是 ____.23.如图,已知在长方体1111ABCD A B C D -中,1 3, 4,5AB AD AA ===,点E 为1CC 上的一个动点,平面1BED 与棱1AA 交于点F ,给出下列命题:①四棱锥11B BED F -的体积为20;②存在唯一的点E ,使截面四边形1BED F 的周长取得最小值;③当E 点不与C ,1C 重合时,在棱AD 上均存在点G ,使得CG P 平面1BED ④存在唯一一点E ,使得1B D ⊥平面1BED ,且165CE = 其中正确的命题是_____________(填写所有正确的序号)24.α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是________(填上所有正确命题的序号).①若α∥β,m ⊂α,则m ∥β; ②若m ∥α,n ⊂α,则m ∥n ; ③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β; ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. 25.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中正确的序号是_____.①AC ⊥BE ②EF ∥平面ABCD ③△AEF 的面积与△BEF 的面积相等.④三棱锥A ﹣BEF 的体积为定值26.如图,底面是平行四边形的四棱锥P ABCD -中,E PD ∈,F PC ∈,且:5:2PE ED =,若//BF 平面AEC ,则PF FC=______.27.如图,在矩形ABCD 中,4AB =,2AD =,E 为边AB 的中点.将三角形ADE 沿DE 翻折,得到四棱锥1A DEBC -.设线段1A C 的中点为M ,在翻折过程中,有下列三个命题: ①总有//BM 平面1A DE ;②三棱锥1C A DE -体积的最大值为3; ③存在某个位置,使DE 与1A C 所成的角为90o .其中正确的命题是______.(写出所有..正确命题的序号)28.如图,P 是平行四边形ABCD 所在平面外一点,E 为PB 的中点,O 为AC ,BD 的交点,则图中与EO 平行的平面有______.29.如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)①,⊥AC BD②,AC BD=③截面PQMN,//AC④异面直线PM与BD所成的角为45o.30.如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为.M N Q为所在棱的31.如图,在下列四个正方体中,A、B为正方体的两个顶点,,,中点,则在这四个正方体中,直线AB与平面MNQ平行的是________.①②③④.32.以下四个正方体中,点M为四等分点,其余各点为顶点或者中点,其中四点共面的有____.①②③④33.已知l 、m 是两条直线,α是平面,若要得到“l ∥α”,则需要在条件“m ⊂α,l ∥m ”中另外添加的一个条件是______.34.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.35.正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在1CC 上,若//EF 平面1AB C ,则EF =_____.36.如图,1111ABCD-A B C D 为正方体,下面结论中正确的是_______.(把你认为正确的结论都填上)①11A C ⊥平面1BD ;②1BD ⊥平面1ACB ;③1BD 与底面11BCC B ;④过点1A 与异面直线AD 与1CB 成60︒角的直线有2条.37.如图所示,正方体1111ABCD A B C D -的棱长为1,,M N 为线段BC ,1CC 上的动点,过点1,,A M N 的平面截该正方体的截面记为S ,则下列命题正确的是______①当0BM =且0CN 1<<时,S 为等腰梯形;②当,M N 分别为BC ,1CC 的中点时,几何体11A D MN 的体积为112; ③当M 为BC 中点且34CN =时,S 与11C D 的交点为R ,满足116C R =; ④当M 为BC 中点且01CN 剟时,S 为五边形;⑤当13BM =且1CN =时,S 的面积3. 38.如图所示,在几何体ABCDE 中,四边形ABCD 是平行四边形,G F ,分别是BE DC ,的中点,则GF ___________平面ADE .39.如图(1)所示,已知正方形ABCD 中,E F ,分别是AB ,CD 的中点,将ADE V 沿DE 折起,如图(2)所示,则BF 与平面ADE 的位置关系是________.40.下列三个命题在“_______”处都缺少同一个条件,补上这个条件使其构成真命题(其中,l m 为直线,,αβ为平面),则此条件是__________.①____l m m α⎫⎪⎬⎪⎭P P l α⇒P ;②____m l m α⊂⎫⎪⎬⎪⎭P l α⇒P ;③____l m m α⊥⎫⎪⊥⎬⎪⎭l α⇒P三、解答题41.如图,三棱锥P −ABC ,侧棱PA =2,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD ⊥DB ,且DB =1.(1)求证:AC//平面PDB ;(2)求二面角P −AB −C 的余弦值;(3)线段PC 上是否存在点E 使得PC ⊥平面ABE ,如果存在,求CE CP 的值;如果不存在,请说明理由.42.如图几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===.(1)求证://BE 平面PDA ;(2)求PA 与平面PBD 所成角的大小.43.如图所示,PA ⊥平面ABCD ,ABCD 为正方形,PA AB a ==,E 、F 、G 分别为PA 、PD 、CD 的中点.(1)求证:直线//PB 平面FEG ;(2)求直线PB 与直线EG 所成角余弦值的大小.44.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,1PA AD AB ===,2BC =.()1若PB 的中点为E ,求证://AE 平面PCD ;()2若90PAB ∠=︒,求二面角B PD C --的余弦值.45.如图,在多面体ABCDEF 中,已知ABCD 是边长为2的正方形,BCF ∆为正三角形,4EF =且//EF AB ,EF FB ⊥,G ,H 分别为BC ,EF 的中点.(1)求证://GH 平面EAD ;(2)求三棱锥F BCH -的体积.46.已知四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,2PA PD AD ===,点E ,F 分别是PD ,AB 的中点.(1)求证://AE 平面PFC ;(2)若CF 与平面PCD AB 的长. 47.如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,//BC AD ,BA AD ⊥,224AE AD AB BC ====.(1)求证://CF 平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.48.如图所示,在四棱锥P ABCD -中,//AD BC ,90ADC PAB ︒∠=∠=,12BC CD AD ==.在平面P AD 内找一点M ,使得直线//CM 平面P AB ,并说明理由.49.如图,在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证://AB 平面11A B C ;50.如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B 和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)若二面角A′﹣MN﹣C为直二面角,求λ的值.参考答案1.A2.A3.B4.A5.C6.B7.D8.D9.B10.C11.B12.B13.D14.C15.C16.A17.D18.B19.C20.C21.× × × √22.①②④⑤23.①②④24.①④25.①②④26.3 227.①②28.平面P AD、平面PCD29.①③④30.431.②③④32.②33.l α⊄34.平行3536.①②④37.①②38.平行.39.平行40.l α⊄41.(Ⅰ)见解析;(Ⅱ)−√217;(Ⅲ)见解析. 42.(1)见解析(2)6π43.(1)见证明(2)344.()1证明见解析;()12.345.(1)见解析;(2)346.(1)证明见解析,(2)2a =47.(1)见解析(2)2348.AD 的中点M (M ∈平面P AD )为所求的一个点,详见解析 49.证明见解析50.(1)见解析(2)λ=。

高一数学人教A版必修2课件:2.3.1直线与平面垂直的判定 教学课件

高一数学人教A版必修2课件:2.3.1直线与平面垂直的判定 教学课件

[ 思路分析]
(1) 求线面角的关键是找出直线在平面内的射影,为此须找出
过直线上一点的平面的垂线. (2) 中过 A1 作平面 BDD1B1 的垂线,该垂线必与 B1D1、BB1垂直,由正方体的特性知,直线A1C1满足要求.
[ 解析]
(1)∵直线 A1A⊥平面 ABCD, ∴∠A1CA 为直线 A1C 与平面 ABCD 所
∵∠ABC=90°,∴AB⊥BC.
又AB∩PA=A,∴BC⊥平面PAB. (2)∵BC⊥平面PAB,AE⊂平面PAB,∴BC⊥AE.
∵PB⊥AE,BC∩PB=B,∴AE⊥平面PBC.
(3)∵AE⊥平面PBC,PC⊂平面PBC, ∴AE⊥PC.∵AF⊥PC,AE∩AF=A,∴PC⊥平面AEF.
返回导航
返回导航
第二章 点、直线、平面之间的位置关系
命题方向2 ⇨直线与平面所成的角
在正方体 ABCD-A1B1C1D1 中, 导学号 09024474
(1)求直线 A1C 与平面 ABCD 所成的角的正切值; (2)求直线 A1B 与平面 BDD1B1 所成的角.
返回导航
第二章 点、直线、平面之间的位置关系
又 BB1∥AA1,∴CD⊥BB1, 又 AA1⊂平面 ABB1A1,BB1⊂平面 ABB1A1, ∴CD⊥平面 ABB1A1.
返回导航
第二章 点、直线、平面之间的位置关系
[ 错因分析]
错解中 AA1 和BB1 是平面 ABB1A1 内的两条平行直线,不是相交
直线,故不满足直线与平面垂直的判定定理的条件.
第二章 点、
线面垂直的判定方法:
(1)证明线面垂直的方法
①线面垂直的定义.
②线面垂直的判定定理. ③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直 于这个平面. ④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一 个平面.

高中数学第二章点直线平面之间的位置关系2.3.1直线与平面垂直的判定课件新人教A版必修2

高中数学第二章点直线平面之间的位置关系2.3.1直线与平面垂直的判定课件新人教A版必修2

错解:因为F,G分别为棱B1B,C1C的中点,所以BC∥FG. 因为BC⊥AB,BC⊥B1B,且B1B∩AB=B, 所以BC⊥平面A1ABB1. 又因为B1E⊂平面A1ABB1, 所以BC⊥B1E, 即FG⊥B1E. 同理A1D1⊥B1E,所以B1E⊥平面A1FGD1. 纠错:本题的错误在于只证明了直线和平面内的两条平行直线垂直,不符
(2)求直线A1B和平面BB1C1C所成的角的正弦值.
(2)解:作 A1F⊥DE,垂足为 F,连接 BF. 因为 A1E⊥平面 ABC,所以 BC⊥A1E. 因为 BC⊥AE,所以 BC⊥平面 AA1DE.所以 BC⊥A1F,所以 A1F⊥平面 BB1C1C. 所以∠A1BF 为直线 A1B 和平面 BB1C1C 所成的角.
(1)证明:A1D⊥平面A1BC;
(1)证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以 A1E⊥AE. 因为AB=AC,所以AE⊥BC. 故AE⊥平面A1BC. 连接DE,由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B, 从而DE∥A1A且DE=A1A, 所以AA1DE为平行四边形. 于是A1D∥AE. 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.
和这个平面所成的角.
锐角
(2)一条直线垂直于平面,称它们所成的角是 直角 ;一条直线在平面内或 一条直线和平面平行,称它们所成的角是 0° 的角,于是,直线与平面 所成的角θ 的范围是0°≤θ ≤90°.
自我检测
1.(线面垂直的性质)已知直线a⊥平面α ,直线b∥平面α ,则a与b的关系为
(B ) (A)a∥b
在 Rt△A1NB1 中,sin∠A1B1N= A1N = 1 ,因此∠A1B1N=30°.所以,直线 A1B1 与平面 BCB1 所成的角为 A1B1 2

人教A版数学必修二第二章第十四课时同步练习2.3直线、平面垂直的判定及其性质测试卷

人教A版数学必修二第二章第十四课时同步练习2.3直线、平面垂直的判定及其性质测试卷

2.3直线、平面垂直的判定与性质( 时间50分钟总分100分)班级_______________ 姓名______________ 分数_____________一、选择题(每小题5分,共40分)1.两异面直线在平面α内的射影----------------------------------------------------------()A.相交直线B.平行直线C.一条直线与—个点D.以上三种情况均有可能2.若两直线a与b异面,则过a且与b垂直的平面----------------------------------()A.有且只有—个B.可能存在也可能不存在C.有无数多个D.—定不存在3.在空间,下列哪些命题是正确的()①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④垂直于同—个平面的两条直线互相平行.A.仅②不正确B.仅①、④正确C.仅①正确D.四个命题都正确4.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l--()A.必相交B.必为异面直线C.垂直D.无法确定5.下列命题①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;③若平面的两条斜线互相平行,则它们在同一平面内的射影也平行;其中,正确的命题有---------------------------------------------------------------------()A.1个B.2个C.3个 D. 0个6.在下列四个命题中,假命题为----------------------------------------------------------()A.如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直B.垂直于三角形两边的直线必垂直于第三边C.过点A垂直于直线a的所有直线都在过点A垂直于a的平面内D.如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面7.已知P是四边形ABCD所在平面外一点且P在平面ABCD内的射影在四边形ABCD 内,若P到这四边形各边的距离相等,那么这个四边形是---------------------()A.圆内接四边形B.矩形C.圆外切四边形D.平行四边形8.在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC的距离等于()2C.35D.45A.5B.5二、填空题(每小题4分,共20分)9.如果直线l、m与平面α、β、γ满足:l=β∩γ,l⊥α,m α和m⊥γ,现给出以下四个结论:①α∥γ且l⊥m;②αγ且m∥β③αβ且l⊥m;④αγ且l⊥m;其中正确的为“________”.(写出序号即可)10.在空间四面体的四个面中,为直角三角形的最多有____________个.11.如图,正方形ABCD ,P 是正方形平面外的一点,且P A ⊥平面A BCD 则在△P AB 、△PBC 、△PCD 、△P AD 、△P AC 及△PBD 中,为直角三角形有_________个.12.给出以下四个命题(1)两条平行直线在同一平面内的射影一定是平行直线;(2)两条相交直线在同一平面内的射影一定是相交直线;(3)两条异面直线在同一平面内的射影—定是两条相交直线;(4)一个锐角在平面内的射影一定是锐角.其中假命题的共有_________个.13.若一个直角在平面α内的射影是一个角,则该角最大为______.三、解答题(40分)14.(10分)已知直线a ∥平面α,直线b ⊥平面α,求证:a ⊥b .15.(20分)在三棱锥P ABC -中,侧面PAC 与面ABC 垂直,3PA PB PC ===. (1) 求证:AB BC ⊥;(2) 设AB BC ==,求AC 与平面PBC 所成角的大小.16.(10分)在四面体ABCD 中,已知棱AC 1,求二面角 B CD A --的余弦值。

人教版高中数学必修二 第2章 2.3 2.3.1 直线与平面垂直的判定

人教版高中数学必修二 第2章   2.3   2.3.1 直线与平面垂直的判定

2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定学习目标核心素养1.了解直线与平面垂直的定义.(重点)2.理解直线与平面垂直的判定定理,并会用其判断直线与平面垂直.(难点)3.理解直线与平面所成角的概念,并能解决简单的线面角问题.(易错点)1.通过学习直线与平面垂直的判定,提升直观想象、逻辑推理的数学素养.2.通过学习直线与平面所成的角,提升直观想象、数学运算的数学素养.1.直线与平面垂直定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直文字语言一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言3.直线和平面所成的角有关概念对应图形斜线与平面α相交,但不和平面α垂直,图中直线P A斜足斜线和平面的交点,图中点A射影过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影,图中斜线P A在平面α上的射影为AO直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角.规定:一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角取值范围[0°,90°]有直线”“无数条直线”?[提示]定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABCC[由线面垂直的判定定理知OA垂直于平面OBC.]2.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.平行B.垂直C.相交不垂直D.不确定B[一条直线和三角形的两边同时垂直,则其垂直于三角形所在平面,从而垂直第三边.]3.在正方体ABCD-A1B1C1D1中,直线AB1与平面ABCD所成的角等于________.45°[如图所示,因为正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以AB即为AB1在平面ABCD中的射影,∠B1AB即为直线AB1与平面ABCD所成的角.由题意知,∠B1AB=45°,故所求角为45°.]直线与平面垂直的判定【例1】如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,AC,BD⊂平面ABC,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,SD,AC⊂平面SAC,所以BD⊥平面SAC.证线面垂直的方法:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直,也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为N.求证:AN⊥平面PBM.[证明]设圆O所在的平面为α,∵P A⊥α,且BM⊂α,∴P A⊥BM.又∵AB为⊙O的直径,点M为圆周上一点,∴AM⊥BM. 由于直线P A∩AM=A,∴BM⊥平面P AM,而AN⊂平面P AM,∴BM⊥AN.∴AN与PM、BM两条相交直线互相垂直.故A N⊥平面PBM.直线与平面所成的角[探究问题]1.若图中的∠POA是斜线PO与平面α所成的角,则需具备哪些条件?[提示]需要P A⊥α,A为垂足,OA为斜线PO的射影,这样∠POA就是斜线PO与平面α所成的角.2.空间几何体中,确定线面角的关键是什么?[提示]在空间几何体中确定线面角时,过斜线上一点向平面作垂线,确定垂足位置是关键,垂足确定,则射影确定,线面角确定.【例2】在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[证明](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O(见题图),在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt △A 1BO 中,A 1O =12A 1C 1=12A 1B , ∴∠A 1BO=30°,即A 1B 与平面BDD 1B 1所成的角为30°.在本例正方体中,若E 为棱AB 的中点,求直线B 1E 与平面BB 1D 1D所成角的正切值.[解] 连接AC 交BD 于点O ,过E 作EO 1∥AC 交BD 于点O 1,易证AC ⊥平面BB 1D 1D ,∴EO 1⊥平面BB 1D 1D ,∴B 1O 1是B 1E 在平面BB 1D 1D 内的射影, ∴∠EB 1O 1为B 1E 与平面BB 1D 1D 所成的角. 设正方体的棱长为a , ∵E 是AB 的中点,EO 1∥AC , ∴O 1是BO 的中点,∴EO 1=12AO =12×2a 2=2a4, B 1O 1=BO 21+BB 21=⎝ ⎛⎭⎪⎫2a 42+a 2=3a 22, ∴tan ∠EB 1O 1=EO 1B 1O 1=2a 43a 22=13.求斜线与平面所成角的步骤:(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.1.线线垂直和线面垂直的相互转化:2.证明线面垂直的方法:(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直A[若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m 不可能平行.]2.垂直于梯形两腰的直线与梯形所在平面的位置关系是()A.垂直B.相交但不垂直C.平行D.不确定A[因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理知,直线与平面垂直.选A.]3.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°A[∠ABO即是斜线AB与平面α所成的角,在Rt△AOB中,AB=2BO,所以cos∠ABO=12,即∠ABO=60°. 故选A.]4.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D. [证明]如图,连接AC,∴AC⊥BD,又∵BD⊥A1A,AC∩AA1=A,AC,A1A⊂平面A1AC,∴BD⊥平面A1AC,∵A1C⊂平面A1AC,∴BD⊥A1C.同理可证BC1⊥A1C.又∵BD∩BC1=B,BD,BC1⊂平面BC1D,∴A1C⊥平面BC1D.。

2.3.2平面与平面垂直的判定(人教A版必修2第二章)2020-2021学年高二下学期数学课时作业

2.3.2平面与平面垂直的判定(人教A版必修2第二章)2020-2021学年高二下学期数学课时作业

课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则()A.α⊥βB.α∥βC.α与β相交D.以上都有可能2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为()A.30°B.60°C.90°D.120°3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC4.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为()A.90°B.60°C.45°D.30°5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定6.如图所示,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是9.如图所示,在△ABC 中,AD ⊥BC ,△ABD 的面积是△ACD 的面积的2倍.沿AD 将△ABC 翻折,使翻折后BC ⊥平面ACD ,此时二面角B -AD -C 的大小为.10.如图,四棱锥P -ABCD 的底面是边长为a 的正方形,PB ⊥平面ABCD .(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积.11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .12.若P 是等边三角形ABC 所在平面外一点,且P A =PB =PC ,D ,E ,F 分别是AB ,BC ,CA 的中点,则下列结论中不正确的是( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面P AE ⊥平面ABCD .平面PDF ⊥平面ABC13.在二面角α-l -β中,A ∈α,AB ⊥平面β于点B ,BC ⊥平面α于点C ,若AB =6,BC=3,则二面角α-l-β的平面角的大小为()A.30°B.60°C.30°或150°D.60°或120°14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF⊥PC;(2)试问,当点E在线段AB上移动时,二面角P-EB-C的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则(D)A.α⊥βB.α∥βC.α与β相交D.以上都有可能解析:因为b⊂β,c⊂β,a⊥b,a⊥c,若b,c相交,则a⊥β,从而α⊥β.又α∥β或α与β相交时,可以存在a⊥b,a⊥c,所以选D.2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为(B)A.30°B.60°C.90°D.120°解析:m,n所成的角等于二面角α-l-β的平面角.3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有(D)A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADB C .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC解析:⎭⎪⎬⎪⎫AD ⊥BCAD ⊥BD BC ∩BD =B ⇒⎭⎪⎬⎪⎫AD ⊥平面DBC AD ⊂平面ADC ⇒平面ADC ⊥平面DBC .4.如图所示,在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,则二面角B -P A -C 的大小为( A)A .90°B .60°C .45°D .30°解析:∵P A ⊥平面ABC ,∴P A ⊥AB ,P A ⊥AC ,∴∠BAC 即为二面角B -P A -C 的平面角.又∠BAC =90°,所以二面角B -P A -C 的平面角为90°.5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是( D )A .相等B .互补C .相等或互补D .不确定解析:举例如下:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90°,所以这两个二面角不一定相等或互补.6.如图所示,在三棱锥D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论中正确的是( C)A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE解析:因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC .同理有DE ⊥AC ,BE ∩DE =E ,所以AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .故选C.7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是垂直.解析:因为PB=PC,E是BC的中点,所以PE⊥BC,同理AE⊥BC,又AE∩PE=E,所以BC⊥平面P AE.又BC⊂平面ABC,所以平面P AE⊥平面ABC.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是面面垂直的判定定理.解析:如图,因为OA⊥OB,OA⊥OC,OB⊂β,OC⊂β,且OB∩OC=O,根据线面垂直的判定定理,可得OA⊥β.又OA⊂α,根据面面垂直的判定定理,可得α⊥β.9.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD 将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为60°.解析:由已知得,BD=2CD.翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD ⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.10.如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD.(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积. 解:(1)证明:∵PB ⊥平面ABCD ,AD ⊂平面ABCD ,∴PB ⊥AD . ∵AD ⊥AB ,且AB ∩PB =B ,∴AD ⊥平面P AB .又∵AD ⊂平面P AD , ∴平面P AD ⊥平面P AB .(2)由(1)的证明知,∠P AB 为平面PDA 与平面ABCD 所成的二面角的平面角,即∠P AB =60°,∴PB =3a .∴V P -ABCD =13·a 2·3a =3a 33. 11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN ,又MN ∩A ′M =M ,∴CD ⊥平面A ′MN .∴CD ⊥A ′N . ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .12.若P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,则下列结论中不正确的是(D)A.BC∥平面PDF B.DF⊥平面P AEC.平面P AE⊥平面ABC D.平面PDF⊥平面ABC解析:∵P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,∴DF∥BC,又∵DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A正确.∵P A=PB=PC,△ABC为等边三角形,E是BC中点,∴PE⊥BC,AE⊥BC.∵PE∩AE =E,∴BC⊥平面P AE.∵DF∥BC,∴DF⊥平面P AE,故B正确.∵BC⊥平面P AE,BC⊂平面ABC,∴平面P AE⊥平面ABC,故C正确.设AE∩DF=O,连接PO.∵O不是等边三角形ABC的重心,∴PO与平面ABC不垂直,∴平面PDF与平面ABC不垂直,故D错误.13.在二面角α-l-β中,A∈α,AB⊥平面β于点B,BC⊥平面α于点C,若AB=6,BC =3,则二面角α-l-β的平面角的大小为(D)A.30°B.60°C.30°或150°D.60°或120°解析:∵AB⊥β,∴AB⊥l.∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB即为二面角α-l-β的平面角或其补角.∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB =60°,∴二面角大小为60°或120°.14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足DM⊥PC(或BM⊥PC等)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)解析:连接AC,则BD⊥AC.由P A⊥底面ABCD,可知BD⊥P A,所以BD⊥平面P AC,所以BD⊥PC,所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF ⊥PC ;(2)试问,当点E 在线段AB 上移动时,二面角P -EB -C 的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.解:(1)证明:因为EF ⊥PF ,EF ⊥FC ,又由PF ∩FC =F ,所以EF ⊥平面PFC . 又因为PC ⊂平面PFC ,所以EF ⊥PC .(2)是定值.由(1)知,EF ⊥平面PFC ,所以平面BCFE ⊥平面PFC ,如图,作PH ⊥FC ,则PH ⊥平面BCFE ,作HG ⊥BE ,连接PG ,则BE ⊥PG ,所以∠PGH 是这个二面角的平面角,设AF =x ,则0<x ≤1,因为∠PFC =60°,所以FH =x 2,PH =32x ,易求GH =334x ,所以tan ∠PGH =PH GH =23,所以二面角P -EB -C 的大小是定值.。

2.3.1 直线与平面垂直的判定的评课记录

2.3.1 直线与平面垂直的判定的评课记录

2.3.1 直线与平面垂直的判定的评课记录(本课选自人民教育出版社A版教材必修2第二章2.3.1节)戴志强:本节课教学设计自然、流畅,浑然一体。

陈老师先从实际背景中让学生感知直线与平面垂直的形象,进而通过设计“观察直立于地面的旗杆及它在地面的影子”三个系列问题来引导学生思考、分析,从中抽象概括出直线与平面垂直的概念,紧接着通过折纸实验探究直线与平面垂直的判定定理,然后是直线与平面垂直判定定理的初步应用。

整个设计浑然一体。

下面,我重点谈谈直线与平面垂直的概念教学。

本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,是直线与平面相交位置关系学习的起始课。

陈老师首先让学生再现直线与平面的几种位置关系,然后让学生举出日常生活中所见的直线与平面相交的实例,再展示图片,提供现实原型让学生直观感知直线与平面相交的特殊情形(直线与平面垂直)这种位置关系。

言语简练、设计贴切。

这种联系现实世界引入概念的方式有助于学生将客观现实材料和数学知识融为一体,实现“概念的数学化”。

在直线与平面垂直的概念教学中,陈老师十分重视概念的辨析。

在学生概括出直线与平面垂直的概念后,为使学生牢牢把握住这个概念的核心词:“任意一条”,陈老师提出了一个问题让学生辨析:定义中的“任意一条”四个字能否用“无数条”来替换?为什么?通过反例,学生领悟了:尽管直线l与平面α内的无数条直线都垂直,但直线l不一定与平面α垂直,定义中的“任意一条”四个字不能用“无数条”来替换。

进一步,陈老师又不适时机提问:“任意一条”四个字可用什么词来替换?(学生回答:“所有”或“每一条”),从而深化对“任意一条”的理解,凸现定义中的核心词。

这个细节处的设计很“出彩”。

同时,陈老师通过设问:如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?,以此来说明定义既是判定方法,同时又是一个性质,还是线线垂直的一种判定方法。

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

【人教A版】高中数学必修二第2章:2.3.1直线与平面垂直的判定(盐池高中)

垂足
平面 的垂线
l
直线 l 的垂面
P
对定义的认识
①“任何”表示所有.
②直线与平面垂直是直线与平面相交的一种特殊情况,在 垂直时,直线与平面的交点叫做垂足.

等价于对任意的直线
,都有
利用定义,我们得到了判定线面垂直的最基本方法,同时 也得到了线面垂直的最基本的性质.
直线与平面垂直 除定义外,如何判断一条直线与平面垂直呢?
解析:(1)如图 23,∵PO⊥平面 ABC, ∴PA 、PB、PC 在平面 ABC 上的射影分别是 OA、OB、OC. 又∵PA =PB=PC,∴OA=OB=OC. ∴O 是△ ABC 的外心.
图 23
图 24
(2)如图 24,∵PO⊥平面 ABC,
∴PA 在平面 ABC 上的射影是 OA.
∵BC⊥PA ,∴BC⊥OA. 同理可证 AC⊥OB, ∴O是△ ABC 的垂心.故填垂心.
4-1.P 为△ABC 所在平面外一点,O 为 P 在平面 ABC 上的 射影.
(1)若 PA =PB=PC,则 O 是△ABC 的_外__心__; (2)若 PA ⊥BC,PB⊥AC,则 O 是△ABC 的_垂__心__; (3)若 P 到△ABC 三边的距离相等,且 O 在△ABC 内部,则 O 是△ABC 的_内__心___; (4)若 PA 、PB、PC 两两互相垂直,则 O 是△ABC 的垂__心___.
斜线与平面所成的角θ的取值范围 是:______________
线面所成的角 关键:过斜线上一点作平面的垂线
斜线
斜足
A α
射影
P
线面所成角 (锐角∠PAO)
O
1.如图:正方体ABCD-A1B1C1D1中,求: (1)A1C1与面ABCD所成的角 (2) A1C1与面BB1D1D所成的角

高一数学必修二2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定导学案(解析版)

高一数学必修二2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定导学案(解析版)

2.3.1直线与平面垂直的判定 2.3.2平面与平面垂直的判定一、课标解读(1)使学生掌握直线和平面垂直的定义及判定定理; (2)使学生掌握直线和平面所成角的概念(3)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(4)使学生掌握两个平面垂直的判定定理及其简单的应用;(5)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

二、自学导引问题1:(1)请同学们观察图片,说出旗杆与地面、树干与地面的位置有什么关系?(2)请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系? (3)思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?有什么生活实例能验证这一关系呢?直线与平面垂直的定义:用符号语言表示为:问题2:如图,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上,(BD 、DC 与桌面接触).观察并思考:①折痕AD 与桌面垂直吗?DCBA②如何翻折才能使折痕AD 与桌面所在的平面垂直? 直线与平面垂直的判定定理:用符号语言表示为:问题3:直线与平面所成角的概念?问题4:怎样作出二面角的平面角?问题5:平面与平面垂直的定义?问题6:两个平面互相垂直的判定方法有哪些? 三、典例精析例1 已知两两垂直所在平面外一点,是PC PB PA ABC P ,,∆,H 是ABC ∆ 的垂心.求证:⊥PH 平面ABC变式训练1 如图所示,ABC PA O C O AB 平面上的一点,为圆的直径,为圆⊥, F CP AF E BP AE 于于⊥⊥,.求证:AEF BP 平面⊥例2 如图所示,已知 60,90=∠=∠=∠CSA BSA BSC ,又SC SB SA ==. 求证:平面SBC ABC 平面⊥变式训练2 如图所示,在四面体ABCD 中,AC CD CB AD AB a BD =====,2 =a ,求证:平面BCD ABD 平面⊥._ C例3 如图所示,已知的斜线,是平面内,在平面ααOA BOC ∠且AOCAOB ∠=∠=60,a OC OB OA ===,a BC 2=,求所成的角与平面αOA .变式训练3 如图所示,在矩形ABCD 中,3,33==BC AD ,沿着对角线BD 将BCD ∆折起,使点C 移到'C 点,且'C 点在平面ABD 上的射影O 恰在AB 上.(1)求证:D AC BC ''平面⊥(2)求直线AB 与平面D BC '所成角的正弦值四、自主反馈1. 如图BC 是Rt ⊿ABC 的斜边,过A 作⊿ABC 所在平面α 垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是 ( )A .4个B .6个C .7个D .8个2.下列说法正确的是 ( ) A .直线a 平行于平面M ,则a 平行于M 内的任意一条直线 B .直线a 与平面M 相交,则a 不平行于M 内的任意一条直线C .直线a 不垂直于平面M ,则a 不垂直于M 内的任意一条直线D .直线a 不垂直于平面M ,则过a 的平面不垂直于M3.直三棱柱ABC —A 1B 1C 1中,∠ACB =90°,AC =AA 1=a ,则点A 到平面A 1BC 的距离是 ( )A.aB. 2aC.22a D. 3a 4.已知PA 、PB 、PC 是从点P 发出的三条射线,每两条射线的夹角都是60︒,则直线PC 与平面PAB 所成的角的余弦值为 。

新人教A版高中数学教材目录【很全面】

新人教A版高中数学教材目录【很全面】

新人教A版高中数学教材目录【很全面】(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”2.“边角边”3.“角边角”4.“角角角”思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

高一数学人教A版必修2课件:2.3.1直线与平面垂直的判定 教学课件

高一数学人教A版必修2课件:2.3.1直线与平面垂直的判定 教学课件

数学必修② · 人教A版第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1 自主预习学案2 互动探究学案3 课时作业学案自主预习学案一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停走动,这个影子忽前忽后、忽左忽右,但无论怎样,人始终与影子相交于一点,并始终保持垂直.你承认这个事实吗?为什么?1.直线与平面垂直定义如果直线l与平面α内的____________直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的_______,平面α叫做直线l的_______.它们唯一的公共点P叫做_________.任意一条垂线垂面垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直[归纳总结](1)定义中的“任任任任任任”任任任任任“任任任任”任任任任任任“任任任任任”任任任任任任(2)任任任任任任任任任任任任任任任任任任任任任任任(3)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任2.判定定理文字语言一条直线与一个平面内的两条________直线都垂直,则该直线与此平面垂直图形语言符号语言 l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,__________⇒l ⊥α 作用判断直线与平面垂直相交 a ∩b =P[归纳总结]直线与平面垂直的判定定理告诉我们:可以通过直线间的垂直任任任任任任任任任任任任任任任任任任任“任任任任任任任任任任”.任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任3.直线和平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面______,这条直线叫做这个平面的斜线,斜线和平面的______叫做斜足.过斜线上斜足以外的一点向平面引垂线,过_______和______的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的______,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于______;一条直线和平面平行,或在平面内,我们说它们所成的角等于______.因此,直线与平面所成的角的范围是____________. 垂直 交点 垂足 斜足 锐角 90° 0° [0°,90°][解析] ∵直线l ⊥任任α任∴l 任α任任任任∵m ⊂α任∴l 任m 任任任任任任任任任任任任任任任任任任任任l ⊥m .任l 任m 任任任任任任1.直线l ⊥平面α,直线m ⊂α,则l 与m 不可能导学号 09024468() A .平行 B .相交 C .异面 D .垂直A2.直线l 与平面α内的无数条直线垂直,则直线l 与平面α的关系是导学号 09024469( )A .l 和平面α相互平行B .l 和平面α相互垂直C .l 在平面α内D .不能确定[解析] 如下图所示,直线l 和平面α相互平行,或直线l 和平面α相互垂直或直线l在平面α内都有可能.故选D .D3.(2016~2017·福州高二检测)在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC的距离是导学号09024471()A.5B.25C.35D.4 5[解析]取BC的中点D,∵AB=AC,∴AD⊥BC. 又∵P A⊥平面ABC,∴P A⊥BC.又P A∩AD=D,∴BC⊥平面P AD,∴BC⊥PD.∵在△ABC中,AB=AC=5,BC=6,∴AD=4,∴PD=P A2+AD2=4 5.故选D.D互动探究学案命题方向1⇨线面垂直的判定如图,P为△ABC所在平面外一点,P A⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:导学号 09024472(1)BC⊥平面P AB;(2)AE⊥平面PBC;(3)PC⊥平面AEF.[思路分析]本题是证线面垂直问题,要多观察题目中的一些“垂直”关系,看是否可利用.如看到PA⊥平面ABC,可想到PA⊥AB、PA⊥BC、PA⊥AC,这些垂直关系我们需要哪个呢?我们需要的是PA⊥BC,联系已知,问题得证.[解析](1)∵PA⊥平面ABC任BC⊂任任ABC任∴PA⊥BC.∵∠ABC任90°任∴AB⊥BC.任AB∩PA任A任∴BC⊥任任PAB.(2)∵BC⊥任任PAB任AE⊂任任PAB任∴BC⊥AE.∵PB⊥AE任BC∩PB任B任∴AE⊥任任PBC.(3)∵AE⊥任任PBC任PC⊂任任PBC任∴AE⊥PC.∵AF⊥PC任AE∩AF任A任∴PC⊥任任AEF.『规律方法』线面垂直的判定方法:(1)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(2)利用直线与平面垂直的判定定理判定直线与平面垂直的步骤:任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(3)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任〔跟踪练习1〕如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC所在平面外一点,且SA=SB=SC.导学号 09024473(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[解析](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD,又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC,由(1)知SD⊥BD,又因为SD∩AC=D,所以BD⊥平面SAC.命题方向2⇨直线与平面所成的角在正方体ABCD-A1B1C1D1中,导学号 09024474(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[思路分析](1)求线面角的关键是找出直线在平面内的射影,为此须找出过直线上一点的平面的垂线.(2)中过A1作平面BDD1B1的垂线,该垂线必与B 1D1、BB1垂直,由正方体的特性知,直线A1C1满足要求.[解析](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O,在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt△A1BO中,A1O=12A1C1=12A1B,∴∠A1BO=30°.即A1B与平面BDD1B1所成的角为30°.『规律方法』求线面角的方法:(1)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(2)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任〔跟踪练习2〕如图,在三棱柱ΑΒC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.导学号 09024475(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.[解析] (1)取BC 任任任E 任任任A 1E 任DE 任AE 任任任任任A 1E ⊥任任ABC 任任任A 1E ⊥AE 任任任AB 任AC 任任任AE ⊥BC 任任AE ⊥任任A 1BC 任任D 任E 任任任B 1C 1任BC 任任任任任DE ∥B 1B 任DE 任B 1B 任任任DE ∥A 1A 任 任任任任任A 1AED 任任任任任任任任A 1D ∥AE 任任任任AE ⊥任任A 1BC 任任任A 1D ⊥任任A 1BC .(2)作A 1F ⊥DE ,垂足为F ,连接BF .因为A 1E ⊥平面ABC ,所以BC ⊥A 1E .因为BC ⊥AE ,所以BC ⊥平面AA 1DE .所以BC ⊥A 1F ,A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 与平面BB 1C 1C 所成的角.由AB =AC =2,∠CAB =90°,得EA =EB = 2.由∠A1EA =∠A 1EB =90°,得A 1A =A 1B =4,A 1E =14.由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72.所以sin ∠A 1BF =78.逻辑推理不严密致误如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,D 是AB的中点,连接CD.求证:CD⊥平面ABB1A1.导学号 09024476[错解]∵AA1⊥平面ABC,CD⊂平面ABC,∴CD⊥AA1.又BB1∥AA1,∴CD⊥BB1,又AA1⊂平面ABB1A1,BB1⊂平面ABB1A1,∴CD⊥平面ABB1A1.[错因分析]错解中AA1任BB1任任任ABB1A1任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任[正解]∵AA1⊥任任ABC任CD⊂任任ABC任∴CD⊥AA1.任AC任BC任D任AB任任任任∴CD⊥AB.∵AB⊂任任ABB1A1任AA1⊂任任ABB1A1任AB∩AA1任A任∴CD⊥任任ABB1A 1 .[警示]任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任.〔跟踪练习3〕如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =1,AA 1=2,∠B 1A 2C 1=90°,D 为BB 1的中点.求证:AD ⊥平面A 1DC 1. 导学号09024477[错解] 在三棱柱中,∵AA 1⊥平面ABC ,∠B 1A 1C 1=90°,∴AD ⊥A 1C 1;又从图可知AD ⊥平面BCC 1B 1,∴AD ⊥C 1D ,∴AD ⊥平面A 1DC 1.[辨析]前半部分任任任任任任任任任任任任任AD⊥A1C1任任任任任任任任任任任任任任AD⊥任任BCC1B1任任任任任任任任任任任任任[分析]任任任C1A1⊥任任ABB1A1任任AD⊥C1A1任任任任任ABB1A1任任任任任任任任AD⊥A1D.[证明]∵AA1⊥任任ABC任任任A1B1C1∥任任ABC任∴AA1⊥任任A1B1C1.∴A1C1⊥AA1.任∠B1A1C1任90°任∴A1C1⊥A1B1.而A1B1∩AA1=A,∴A1C1⊥平面AA1B1B,AD⊂平面AA1B1B,∴A1C1⊥AD.由已知计算得AD=2,A1D=2,AA1=2. ∴AD2+A1D2=AA21,∴A1D⊥AD.∵A1C1∩A1D=A1,∴AD⊥平面A1DC1.1.线线垂直和线面垂直的相互转化(2016~2017·湖南张家界高一期末)如图,在棱长均为1的直三棱柱ABC-A1B1C1中,D是BC的中点.导学号 09024478(1)求证:AD⊥平面BCC1B1;(2)求直线AC1与平面BCC1B1所成角的正弦值.[解析](1)证明:直三棱柱ABC任A1B1C1任任BB1⊥任任ABC任∴BB1⊥AD任∵AB任AC任D任BC任任任任∴AD⊥BC.任BC∩BB1任B任∴AD⊥任任BCC1B 1 .(2)解:连接C1D.由(1)AD⊥平面BCC1B1,则∠AC1D即为直线AC1与平面BCC1B1所成角.在Rt△AC1D中,AD=32,AC1=2,sin∠AC1D=ADAC1=64,即直线AC1与平面BCC1B1所成角的正弦值为64.〔跟踪练习4〕如图,四边形ABCD 为矩形,AD ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE .求证:AE ⊥BE .导学号 09024479[证明] ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE .又AE ⊂平面ABE ,∴AE ⊥BC .∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BF ⊂平面BCE ,BC ⊂平面BCE ,BF ∩BC =B ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .2.关于垂直的存在型探索性问题在矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD ,且P A =1,边BC 上是否存在点Q ,使得PQ ⊥QD ?为什么?导学号 09024480[思路分析] 关键是将PQ ⊥QD 转化为DQ ⊥AQ ,再使DQ ⊥AP 即可,但AD =BC =a 是变化的,故需对a 进行讨论.[解析]∵PA⊥平面ABCD任∴PA⊥QD.任任BC任任任任任Q任任任QD⊥AQ任任任QD⊥任任PAQ任任任QD⊥PQ.任任任ABCD任任任AD任a<2任任任任BC任任AD任任任任任任任任任任任任任Q任任AQ⊥DQ.∴任a≥2任任任任任任Q任任任PQ⊥QD.[点评]任任任任任任任任任任任任任任AD任任任任任任BC任任任任任任任任Q任任任任任[解析] 三角形的两边任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任.1.如果一条直线垂直于一个平面内的:导学号 09024481①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边. 则能保证该直线与平面垂直( )A .①③B .①②C .②④D .①④A2.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为导学号 09024482()A.223B.23C.24D.13[解析]∵AA1⊥平面A1B1C1D1,∴∠AC1A1为直线AC1与平面A1B1C1D1所成角,∵AA1=1,AB=BC=2,∴AC1=3,∴sin∠AC1A1=AA1AC1=13.D3.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有____.导学号 09024483[解析]∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC.∴△P AB、△P AC为直角三角形.∵BC⊥AC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AC,BC⊥PC.∴△ABC、△PBC为直角三角形.44.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱P A⊥平面ABCD,E、F分别是AB、PC的中点,P A=AD.求证:EF⊥平面PCD.导学号 09024484[解析] 如图,取PD 的中点H ,连接AH 、HF .∴FH 12CD ,∴FH AE ,∴四边形AEFH 是平行四边形, ∴AH ∥EF .∵底面ABCD 是矩形,∴CD ⊥AD .又∵P A⊥底面ABCD,∴P A⊥CD,P A∩AD=A,∴CD⊥平面P AD.又∵AH⊂平面P AD,∴CD⊥AH.又∵P A=AD,∴AH⊥PD,PD∩CD=D,∴AH⊥平面PCD,又∵AH∥EF,∴EF⊥平面PCD.课时作业学案。

高中数学 2.32.3.3直线与平面垂直、平面与平面垂直的性质课件 新人教A版必修2

高中数学 2.32.3.3直线与平面垂直、平面与平面垂直的性质课件 新人教A版必修2

而 FE⊂平面 DEF,DE⊂平面 DEF,EF∩DE=E.

PB⊂平面 PGB,GB⊂平面 PGB,PB∩GB=B,
目 链

∴平面 DEF∥平面 PGB.
由(1)得 PG⊥平面 ABCD,而 PG⊂平面 PGB,
∴平面 PGB⊥平面 ABCD, ∴平面 DEF⊥平面 ABCD.
第三十四页,共42页。
PC=PC,
所以 Rt△PBC≌Rt△PAC,
栏 目

所以 AC=BC.

如图,取 AB 中点 D,连接 PD,CD,
则 PD⊥AB,CD⊥AB,又因为 PD∩CD=D,所以 AB⊥平
面 PDC,所以 AB⊥PC.
第三十七页,共42页。
跟踪 训练
(2)解析:作 BE⊥PC,垂足为 E,连接 AE.
目 链

(pàndìng)定理和性质定理间的相互联系.
第三页,共42页。
栏 目 链 接
第四页,共42页。
基础 梳理
1.直线与平面垂直的性质定理.
文字语言
垂直于同一个平面的两条直
平行线(_p_í_n_g_x_íng)




符号语言
a∥b
第五页,共42页。
基础 梳理
图形语言 栏 目 链 接
作用
①线面垂直⇒线线平行; ②作平行线
栏 目 链 接
(1)证明:BD⊥平面 PAC; (2)若 PA=1,AD=2,求二面角 BPCA 的正切值.
第二十九页,共42页。
跟踪
训练
证明:∵PA⊥平面 ABCD,∴PA⊥BD.
∵PC⊥平面 BDE,∴PC⊥BD.
又∵PA∩PC=P,BD⊄平面 PAD.

高中数学第2章平面解析几何初步-两条直线平行与垂直的判定同步练习湘教版选择性必修第一册

高中数学第2章平面解析几何初步-两条直线平行与垂直的判定同步练习湘教版选择性必修第一册

2.3 两条直线的位置关系2.3.1 两条直线平行与垂直的判定A级必备知识基础练1.下列各组直线中,互相垂直的一组是()A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=02.(多选题)下列各直线中,与直线2x-y-3=0平行的是()A.2ax-ay+6=0(a≠0,a≠-2)B.y=2xC.2x-y+5=0D.2x+y-3=03.(多选题)(2022山东五莲高二期中)已知直线l:x-2y-2=0,()A.直线x-2y-1=0与直线l平行B.直线x-2y+1=0与直线l平行C.直线x+2y-1=0与直线l垂直D.直线2x+y-2=0与直线l垂直4.(2022四川成都七中高二入学测试)已知A(3,1),B(1,-2),C(1,1),则过点C且与线段AB平行的直线方程为()A.3x+2y-5=0B.3x-2y-1=0C.2x-3y+1=0D.2x+3y-5=05.如果直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A. B.aC.-D.-或不存在6.(2022河北唐山五十九中高二月考)已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),则AB边上的高所在直线的斜率为.7.若直线l1,l2的斜率是一元二次方程x2-7x+t=0的两根,若直线l1,l2垂直,则t= .8.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).(1)若∠A是直角,求实数n的值;(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.B级关键能力提升练9.已知点M(1,-2),N(m,2),若线段MN的垂直平分线的方程是+y=1,则实数m的值是()A.-2B.-7C.3D.110.(2022广州大学附属中学高二月考)已知直线l1过点A(-2,m)和点B(m,4),直线l2为2x+y-1=0,直线l3为x+ny+1=0.若l1∥l2,l2⊥l3,则实数m+n的值为()A.-10B.-2C.0D.811.(多选题)(2022山东济南山师附中高二期中)已知直线l1:x+my-1=0,l2:(m-2)x+3y+1=0,则下列说法正确的是()A.若l1∥l2,则m=-1或m=3B.若l1∥l2,则m=-1C.若l1⊥l2,则m=-D.若l1⊥l2,则m=12.(多选题)(2022湖北荆州高二期末)已知直线l1:3x+y-3=0,直线l2:6x+my+1=0,则下列表述正确的有()A.直线l2的斜率为-B.若直线l1垂直于直线l2,则实数m=-18C.直线l1倾斜角的正切值为3D.若直线l1平行于直线l2,则实数m=213.点M(1,2)在直线l上的射影是H(-1,4),则直线l的方程为,线段MH的垂直平分线的方程为.14.已知A(1,0),B(3,2),C(0,4),点D满足AB⊥CD,且AD∥BC,试求点D的坐标.15.若△ABC的顶点A的坐标为(2,3),三角形其中两条高所在的直线方程为x-2y+3=0和x+y-4=0,试求此三角形的边AB,AC所在直线的方程.C级学科素养创新练16.已知直线l1:x cos2α+y+2=0,若l1⊥l2,则直线l2的倾斜角的取值范围是()A. B.C. D.17.(多选题)(2022河北高二学情监测)已知直线l1:x sin α+y=0与直线l2:x+3y+c=0,则下列结论中正确的是()A.直线l1与直线l2可能相交B.直线l1与直线l2可能重合C.直线l1与直线l2可能垂直D.直线l1与直线l2可能平行参考答案2.3两条直线的位置关系2.3.1两条直线平行与垂直的判定1.C对于A,k1k2=≠-1,因此l1与l2不垂直;对于B,k1k2==-≠-1,因此l1与l2不垂直;对于C,k1k2==-1,因此l1⊥l2;对于D,k1k2==-≠-1,因此l1与l2不垂直.故选C.2.ABC与直线2x-y-3=0平行的直线都可以化为2x-y+m=0(m≠-3)的形式,因此选项A,B,C符合,故选ABC.3.ABD直线l:x-2y-2=0的斜率k=,在y轴上截距为-1.对于A,直线x-2y-1=0的斜率为,在y轴上截距为-,∴直线x-2y-1=0与直线l平行,故A正确;对于B,直线x-2y+1=0的斜率为,在y轴上截距为,∴直线x-2y+1=0与直线l平行,故B正确;对于C,直线x+2y-1=0的斜率为-,∴直线x+2y-1=0与直线l不垂直,故C错误;对于D,直线2x+y-2=0的斜率为-2,∴直线2x+y-2=0与直线l垂直,故D正确.故选ABD.4.B由题可知,k AB=,则过点C且与线段AB平行的直线的斜率为.又该直线过点(1,1),则该直线方程为y-1=(x-1),整理得3x-2y-1=0.5.D当a≠0时,由l1⊥l2得k1·k2=a·k2=-1,解得k2=-;当a=0时,l1与x轴平行或重合,则l2与y 轴平行或重合,故直线l2的斜率不存在.故直线l2的斜率为-或不存在.6.-由题可得k AB=.设AB边上高线的斜率为k,则k·k AB=-1,即k·=-1,解得k=-.所以AB边上的高所在直线的斜率为-.7.-1设直线l1,l2的斜率分别是k1,k2.因为k1,k2是一元二次方程x2-7x+t=0的两根,则k1·k2=t.又直线l1,l2垂直,所以k1·k2=-1.故可得t=-1.8.解(1)当n=2时,∠A不是直角,不合题意;当n≠2时,∵∠A是直角,∴k AB·k AC=-1,即=-1,解得n=.综上所述,实数n的值为.(2)∵直线l与△ABC的高AD垂直,∴直线l与直线BC平行或重合.∵B,C不重合,∴n≠0,∴直线l的斜率k=k BC==1,又直线l过坐标原点,∴直线l的方程为x-y=0.9.C由题知直线+y=1的斜率为-,则直线MN的斜率为2,即k MN==2,解得m=3.10.A由题意可得直线l1,l2,l3的斜率存在,分别设为k1,k2,k3.因为l1∥l2,所以k1=k2,即=-2,解得m=-8.因为l2⊥l3,所以k2·k3=-1,即(-2)×-=-1,解得n=-2.所以m+n=-8+(-2)=-10.故选A.11.AD若l1∥l2,则1×3-m(m-2)=0,解得m=3或m=-1,故A正确,B不正确;若l1⊥l2,则1×(m-2)+m×3=0,解得m=,故C不正确,D正确.故选AD.12.BD当m=0时,直线l2的斜率不存在,故A错误;当直线l1垂直于直线l2,则有3×6+1×m=0,解得m=-18,故B正确;由题知,直线l1的斜率为-3,故倾斜角的正切值为-3,故C错误;当直线l1平行于直线l2,则-3=-,且3≠-,解得m=2,故D正确.故选BD.13.x-y+5=0x-y+3=0由题得,k MH==-1.又点M在直线l上的射影是点H,则直线l与直线MH垂直,所以直线l的斜率为k=1.故直线l的方程为y-4=x+1,整理得x-y+5=0.由于线段MH的垂直平分线过MH的中点.由题知,线段MH的中点为(0,3),且垂直平分线的斜率等于直线l的斜率,所以垂直平分线的方程为y-3=x,整理得x-y+3=0.14.解设D(x,y),则k AB==1,k BC==-,k CD=,k DA=.因为AB⊥CD,AD∥BC,所以k AB·k CD=-1,k DA=k BC,即解得故点D的坐标为(10,-6).15.解因为点A的坐标不满足所给的两条高所在直线的方程,所以所给的两条直线方程是过顶点B,C的高所在直线的方程.又所给两条直线的斜率分别为,-1,若k AB=-2,则k AC=1,则直线AB的方程为y-3=-2(x-2),整理得2x+y-7=0,直线AC的方程为y-3=x-2,整理得x-y+1=0.同理,若k AC=-2,则k AB=1,则直线AC的方程为2x+y-7=0,直线AB的方程为x-y+1=0.16.C当cos2α≠0时,k1=-.∵l1⊥l2,∴k1·k2=-1,∴k2=.∵0<cos2α≤1,∴k2=.设l2的倾斜角为θ,θ∈[0,π),则tanθ≥,∴≤θ<;当cos2α=0时,直线l1的斜率为0,倾斜角为0.∵l1⊥l2,∴l2的倾斜角θ=.综上,直线l2的倾斜角的取值范围为.故选C.17.ABD由题知,直线l1:x sinα+y=0的斜率为k1=-sinα,过定点(0,0),直线l2:x+3y+c=0斜率为k2=-,过点(-c,0).若直线l1与直线l2相交,则sinα≠,而-1≤sinα≤1,即sinα≠成立,故选项A正确;若直线l1与直线l2重合,则c=0,且sinα=,而-1≤sinα≤1,故选项B正确;若直线l1与直线l2垂直,则k1k2=sinα=-1,则sinα=-3,与-1≤sinα≤1矛盾,则直线l1与直线l2不可能垂直,故选项C错误;若直线l1与直线l2平行,则sinα=且c≠0,而-1≤sinα≤1,可以有sinα=,故选项D正确.故选ABD.。

2020版人教A数学必修2:第二章 检测试题

2020版人教A数学必修2:第二章 检测试题

第二章检测试题(时间:120分钟满分:150分)选题明细表一、选择题(本大题共12小题,每小题5分,共60分)1.直线l与平面α不平行,则( C )(A)l与α相交(B)l⊂α(C)l与α相交或l⊂α(D)以上结论都不对解析:直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交.因为直线l与平面α不平行,所以l与α相交或l⊂α.2.下列推理不正确的是( C )(A)A∈b,A∈β,B∈b,B∈β⇒b⊂β(B)M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MN(C)直线m不在α内,A∈m⇒A∉α(D)A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:由空间中点线面的位置关系知选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( D )(A)若α,β垂直于同一平面,则α与β平行(B)若m,n平行于同一平面,则m与n平行(C)若α,β不平行,则在α内不存在与β平行的直线(D)若m,n不平行,则m与n不可能垂直于同一平面解析:A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交,平行或异面,故错误; C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.α,β是两个不重合的平面,在下列条件中,可判定α∥β的是( D )(A)α,β都与平面γ垂直(B)α内不共线的三点到β的距离相等(C)l,m是α内的两条直线,且l∥β,m∥β(D)l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β解析:对于D,设过l和α内的一点的平面与平面α的交线为l′,因为l∥α,所以l′∥l.又因为l∥β,l′⊄β,所以l′∥β.设过m和α内的一点的平面与α的交线为m′,同理可证m′∥β.因为m与l是异面直线,所以m′与l′相交,所以α∥β.5.如图,四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( B )(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD, MN⊂平面PAC,平面PAC∩平面PAD=PA,由直线与平面平行的性质定理可得:MN∥PA.故选B.6.在正方体ABCD A1B1C1D1中,E为棱CC1的中点,则( B )(A)AE⊥CC1(B)AE⊥B1D1(C)AE⊥BC (D)AE⊥CD解析:如图所示:连接AC,BD,因为ABCD A1B1C1D1是正方体,所以四边形ABCD是正方形,AC⊥BD,CE⊥平面ABCD,所以BD⊥AC,BD⊥CE,而AC∩CE=C,故BD⊥平面ACE,因为BD∥B1D1,且B1D1⊄平面ACE,故B1D1⊥平面ACE,故B1D1⊥AE,故选B.7.在正方体ABCD A1B1C1D1中,异面直线A1C1与B1C所成角的余弦值为( B )(A)0 (B)(C)(D)解析:连接A1D,C1D,如图所示,A1D∥B1C,所以∠DA1C1是异面直线A1C1与B1C所成角(或所成角的补角),因为A1D=A1C1=DC1,所以∠C1A1D=60°,所以异面直线A1C1与B1C所成角的余弦值为cos 60°=.故选B.8.如图,在直三棱柱ABC A1B1C1中,D为A1B1的中点,AB=BC=BB1=2,AC= 2,则异面直线BD与AC所成的角为( C )(A)30°(B)45°(C)60°(D)90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角.由条件可知BD=DE=EB=,所以∠BDE=60°,故选C.9.如图所示,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( A )(A)A,M,O三点共线(B)A,M,O,A1不共面(C)A,M,C,O不共面(D)B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A,C,C1,A1四点共面,所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线,故选A.10.如图,在下列四个正方体ABCD A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG 不垂直的是( D )解析:如图在正方体中,E,F,G,M,N,Q均为所在棱的中点,是一个平面图形,直线BD1与平面EFMNQG垂直,并且选项A,B,C中的平面与这个平面重合,满足题意,只有选项D直线BD1与平面EFG不垂直.故选D.11.如图所示,在四棱锥P ABCD中,PA⊥底面ABCD,且底面ABCD为菱形,M是PC上的一个动点,若要使得平面MBD⊥平面PCD,则应补充的一个条件可以是( B )(A)MD⊥MB(B)MD⊥PC(C)AB⊥AD(D)M是棱PC的中点解析:因为在四棱锥P ABCD中,PA⊥底面ABCD,且底面各边都相等, M是PC上的一动点,所以BD⊥PA,BD⊥AC,因为PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.故选B.12.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( C )(A)平面BCE⊥平面ABN(B)MC⊥AN(C)平面CMN⊥平面AMN(D)平面BDE∥平面AMN解析:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM, PN,QM,QN,将几何体补成棱长为1的正方体.因为BC⊥平面ABN,BC⊂平面BCE,所以平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然PB⊥AN,所以MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.因为△AMN和△CMN都是边长为的等边三角形,所以AF⊥MN,CF⊥MN,所以∠AFC为二面角A MN C的平面角,因为AF=CF=,AC=,所以AF2+CF2≠AC2,即∠AFC≠,所以平面CMN与平面AMN不垂直,故C错误;因为DE∥AN,MN∥BD,所以平面BDE∥平面AMN,故D正确.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若m⊂β,n⊂β,m∥α,n∥α,则α∥β;②若α∥β,l⊂β,则l∥α;③若l⊥m,l⊥n,则m∥n;④若l⊥α,l∥β,则α⊥β.其中真命题的序号是.解析:由α,β为两个不重合的平面,l,m,n为两两不重合的直线,知: 在①中,若m⊂β,n⊂β,m∥α,n∥α,则α与β相交或平行,故①错误;在②中,若α∥β,l⊂β,则由面面平行的性质定理得l∥α,故②正确;在③中,若l⊥m,l⊥n,则m与n相交、平行或异面,故③错误;在④中,若l⊥α,l∥β,则由面面垂直的判定定理得α⊥β,故④正确.答案:②④14.如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.则异面直线SA与PD所成角的正切值为.解析:连接PO,则PO∥SA,PO==,所以∠OPD即为异面直线SA与PD所成的角,且△OPD为直角三角形,∠POD为直角,所以tan ∠OPD===.答案:15.在空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,对角线AC=BD=2,且AC⊥BD,则四边形EFGH的面积为.解析:因为点E,H分别为四边形ABCD的边AB,AD的中点,所以EH∥BD,且EH=BD=1.同理求得FG∥BD,且FG=1,所以EH∥FG,EH=FG,又因为AC⊥BD,AC=BD=2,所以EF⊥EH,EF=EH.所以四边形EFGH是正方形.所以四边形EFGH的面积为EF·EH=1.答案:116.在正方体ABCD A1B1C1D1中,下列结论中正确的序号有.①AC∥平面A1BC1;②AC⊥BD1;③AC1⊥平面CB1D1;④异面直线A1D与B1C1所成的角为45°.解析:①AC∥A1C1,AC⊄平面A1BC1,A1C1⊂平面A1BC1;所以AC∥平面A1BC1.①正确;②因为AC⊥BD,AC⊥DD1,所以AC⊥平面BDD1B1,所以AC⊥BD1,②正确;③在正方体ABCD A1B1C1D1中,A1C1⊥B1D1,B1D1⊥AA1,又A1C1∩AA1=A1,则B1D1⊥平面A1AC1,又AC1⊂平面A1AC1,所以B1D1⊥AC1,同理得B1C⊥AC1,又B1D∩B1C=B,所以AC1⊥平面CB1D1,所以③正确.④如图,∠CB1C1等于异面直线A1D与B1C1所成的角,由正方形中BB1C1C 中可得∠CB1C1为45°,因此④正确.答案:①②③④三、解答题(共70分)17.(本小题满分10分)如图,空间四边形ABCD中,E,F分别是AD,AB 的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设FG与HE交于点P,求证:P,A,C三点共线.证明:(1)△ABD中,因为E,F分别为AD,AB中点,所以EF∥BD.△CBD中,BG∶GC=DH∶HC=1∶2,所以GH∥BD,所以EF∥GH(平行线公理),所以E,F,G,H四点共面.(2)因为FG∩HE=P,P∈FG,P∈HE,所以P∈平面ABC,P∈平面ADC,又平面ABC∩平面ADC=AC,所以P∈直线AC.所以P,A,C三点共线.18.(本小题满分12分)如图,在三棱柱ABC A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,AB=BC,O为AC中点.(1)证明:A1O⊥BC;(2)若E为BC1的中点,求证:OE∥平面A1ABB1.证明:(1)因为在三棱柱ABC A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,O为AC中点.所以A1O⊥AC,又平面AA1C1C∩底面ABC=AC,所以A1O⊥底面ABC,因为BC⊂底面ABC,所以A1O⊥BC.(2)连接AB1,连接CB1交BC1于点E,连接OE,则E为CB1的中点,所以OE∥AB1,因为AB1⊂平面A1ABB1,OE⊄平面A1ABB1,所以OE∥平面A1ABB1.19.(本小题满分12分)如图所示的多面体中,底面ABCD为正方形, △GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(1)求证:AP⊥平面GCD;(2)求证:平面ADG∥平面FBC.证明:(1)因为△GAD是等边三角形,点P为线段GD的中点,故AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(2)因为BF⊥平面ABCD,所以BF⊥CD,因为BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,所以CD⊥平面FBC,由(1)知CD⊥平面GAD,所以平面ADG∥平面FBC.20.(本小题满分12分)如图,在四棱锥A BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(1)证明:平面ABD⊥平面ABC;(2)求直线AD与平面ACE所成的角的正弦值.(1)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.因为BD2+BC2=DE2+BE2+BC2=DC2,所以∠CBD=90°,所以BD⊥BC.又AC⊥平面BCDE,BD⊂平面BCDE,所以BD⊥AC,故BD⊥平面ABC.因为BD⊂平面ABD,所以平面ABD⊥平面ABC.(2)解:过点D作DH⊥CE.因为AC⊥DH,所以DH⊥平面ACE.所以∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,所以CE=,所以DH===.因为AC==,所以AD==,在Rt△AHD中,sin ∠DAH==.21.(本小题满分12分)如图所示,在长方体ABCD A1B1C1D1中,AB= 2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E DB C的正切值.(1)证明:在长方体ABCD A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)解:如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,所以EO⊥平面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E DB C的平面角.利用平面几何知识可得OF=,又OE=1,所以tan ∠EFO=.22.(本小题满分12分)如图,在直四棱柱ABCD A1B1C1D1中,底面ABCD 是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.(1)证明:连接BD1,在△DD1B中,E,F分别为线段DD1,BD的中点,所以EF为中位线,所以EF∥D1B,因为D1B⊂平面ABC1D1,EF⊄平面ABC1D1,所以EF∥平面ABC1D1.(2)解:连接CD1,由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,因为四棱柱ABCD A1B1C1D1的外接球的表面积为16π,所以四棱柱ABCD A1B1C1D1的外接球的半径R=2,设AA 1=a,则=2,解得a=2,在直四棱柱ABCD A1B1C1D1中,因为BC⊥平面CDD1C1,CD1⊂平面CDD1C1,所以BC⊥CD1,在Rt△BCD1中,BC=2,CD 1=2,D1C⊥BC,所以tan ∠D 1BC==,则∠D1BC=60°,所以异面直线EF与BC所成的角为60°.。

高中数学 第二章2.3.1直线与平面垂直的判定课件 新人教A版必修2

高中数学 第二章2.3.1直线与平面垂直的判定课件 新人教A版必修2

除定义外,如何判定一条直线与平面垂直呢? 除定义外,如何判定一条直线与平面垂直呢?
A A 如图,准备一块三角形的纸片,做一个试验: 如图,准备一块三角形的纸片,做一个试验: A
l
C
A
D
α
B B
D D
P
C
C
α C α
B B
D
边上的高时, 所在直 当且仅当折痕 AD 是 BC 边上的高时,AD所在直 的顶点A翻折纸片 得到折痕AD, 翻折纸片, 过 ∆ABC 的顶点 翻折纸片,得到折痕 ,将翻 α 垂直. 线与桌面所在平面 垂直. 折后的纸片竖起放置在桌面上( , 于桌面接触 于桌面接触) 折后的纸片竖起放置在桌面上(BD,DC于桌面接触)
⊥ α ,求证 b ⊥ α .
b
n
证明: 证明:在平面 α 内作 a 两条相交直线m, . 两条相交直线 ,n. 因为直线 a ⊥ α, 根据直线与平面垂直的定义知 α m a ⊥ m, a ⊥ n. 又因为 b // a 所以 b ⊥ m, b ⊥ n. 是两条相交直线, 又 m ⊂ α , n ⊂ α , m, n 是两条相交直线, 所以 b ⊥ α .
线面垂直
知识探究( 知识探究(二):直线与平面垂直的判定
思考1 对于一条直线和一个平面, 思考1:对于一条直线和一个平面,如果 根据定义来判断它们是否垂直, 根据定义来判断它们是否垂直,需要解 决什么问题?如何操作? 决什么问题?如何操作?
思考2 思考2:我们需要寻求一个简单可行的办 法来判定直线与平面垂直. 法来判定直线与平面垂直. 如果直线l与平面 内的一条直线垂直, 如果直线 与平面α内的一条直线垂直, 与平面 内的一条直线垂直 能保证l⊥α吗? 能保证 ⊥ 吗 如果直线l与平面 内的两条直线垂直, 与平面α内的两条直线垂直 如果直线 与平面 内的两条直线垂直, 能保证l⊥ 吗 能保证 ⊥α吗?

高一数学必修2《直线与平面垂直的判定》课件(新人教A版)

高一数学必修2《直线与平面垂直的判定》课件(新人教A版)

C C1
B
B1
金太阳教育网
品质来自专业 信赖源于诚信
直线与平面垂直的定义: 如果一条直线l 和一个平面α内的任意一条直线 都垂直,我们就说直线l 和平面α互相垂直. 记作:l ⊥α l 叫做α 的垂线, α 叫做l 的垂面, l 与α 的唯一公共点P叫做垂足。 画直线与平面平行时,通 常把直线画成与表示平面 的平行四边形的一边垂直。
D
C
B
巩固练习 2.过ABC所在平面外一点P, 作PO , 垂足
金太阳教育网
品质来自专业 信赖源于诚信
为O, 连接PA, PB, PC. 1).若PA PB PC, C 90 , 则O是AB边的 __ 点.
王新敞
奎屯 新疆
金太阳教育网
品质来自专业 信赖源于诚信
引入新课 在直线和平面相交的位置关系中,有一种相交是很 特殊的,我们把它叫做垂直相交,这节课我们重点 来探究这种形式的相交
金太阳教育网
品质来自专业 信赖源于诚信
观察实例,发现新知
金太阳教育网
品质来自专业 信赖源于诚信
旗杆与地面的关系, 给人以直线与平面 垂直的形象。
观察实例,发现新知
金太阳教育网
品质来自专业 信赖源于诚信
房屋的屋柱与地面的 关系,给人以直线与 平面垂直的形象。
观察实例,发现新知
金太阳教育网
品质来自专业 信赖源于诚信
金太阳教育网
品质来自专业 信赖源于诚信
例题示范,巩固新知 例2、如图,已知a∥b,a⊥α 。 求证:b⊥α 。 分析:在平面内作两条相交直线, 由直线与平面垂直的定义可知, 直线a与这两条相交直线是垂直的, 又由b平行a,可证b与这两条相交 直线也垂直,从而可证直线与平 面垂直。

新教材高考数学第二章直线和圆的方程1-2两条直线平行和垂直的判定练习含解析新人教A版选择性必修第一册

新教材高考数学第二章直线和圆的方程1-2两条直线平行和垂直的判定练习含解析新人教A版选择性必修第一册

两条直线平行和垂直的判定学习目标 1.理解并掌握两条直线平行的条件及两条直线垂直的条件.2.会运用条件判定两直线是否平行或垂直3.运用两直线平行和垂直时的斜率关系解决相应的几何问题.知识点一两条直线(不重合)平行的判定类型斜率存在斜率不存在前提条件α1=α2≠90°α1=α2=90°对应关系l1∥l2⇔k1=k2l1∥l2⇔两直线的斜率都不存在图示知识点二两条直线垂直的判定图示对应关系l1⊥l2(两直线的斜率都存在)⇔k1k2=-1l1的斜率不存在,l2的斜率为0⇔l1⊥l2思考两直线的斜率相等是两直线平行的充要条件吗?答案不是,垂直于x轴的两条直线,虽然平行,但斜率不存在.1.若l1∥l2,则k1=k2.( ×)2.若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直.( ×)3.若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.( √)一、两条直线平行的判定例1 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C (4,2),D (2,3),试判断四边形ABCD 是否为平行四边形,并给出证明. 解 四边形ABCD 是平行四边形,证明如下:AB 边所在直线的斜率k AB =-12,CD 边所在直线的斜率k CD =-12, BC 边所在直线的斜率k BC =32,DA 边所在直线的斜率k DA =32.因为k AB =k CD ,k BC =k DA ,所以AB ∥CD ,BC ∥DA . 因此四边形ABCD 是平行四边形.反思感悟 判断两条不重合的直线是否平行的方法跟踪训练1 (1)已知l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5),判断直线l 1与l 2是否平行.解 ∵l 1与l 2都与x 轴垂直,且l 1与l 2不重合, ∴l 1∥l 2.(2)试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解 由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-m +1=m-6-m ,k CD =5-30--4=12,由于AB ∥CD ,所以k AB =k CD ,即m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.二、两条直线垂直的判定例2 已知△ABC 的顶点为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,求m 的值. 解 若∠A 为直角,则AC ⊥AB ,∴k AC ·k AB =-1, 即m +12-5·1+11-5=-1,解得m =-7; 若∠B 为直角,则AB ⊥BC ,∴k AB ·k BC =-1, 即1+11-5·m -12-1=-1,解得m =3; 若∠C 为直角,则AC ⊥BC ,∴k AC ·k BC =-1,即m +12-5·m -12-1=-1,解得m =±2. 综上所述,m =-7或m =3或m =±2. 反思感悟 判断两条直线是否垂直在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行或重合时,这两条直线也垂直. 跟踪训练2 判断下列各题中l 1与l 2是否垂直. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1经过点A (3,4),B (3,10),l 2经过点M (-10,40),N (10,40). 解 (1)k 1=-10,k 2=3-220-10=110,k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴;k 2=40-4010--10=0,则l 2∥x 轴,∴l 1⊥l 2.垂直与平行的综合应用典例 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.解 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32--4=13,k CD =0-3-3-6=13,k AD =0-3-3--4=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC , 所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.[素养提升] 用代数运算解决几何图形问题(1)利用直线的斜率判定平面图形的形状一般要运用数形结合的方法,先由图形作出猜测,然后利用直线的斜率关系进行判定.(2)明确运算对象,探究运算思路,是对逻辑推理与数学运算核心素养的考查.1.若过点P (3,2m )和点Q (-m ,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A.13 B .-13 C .2 D .-2 答案 B解析 由k PQ =k MN ,即2m -23--m =4--1-3-2,得m =-13.经检验知,m =-13符合题意.2.已知直线l 1的斜率为a ,l 2⊥l 1,则l 2的斜率为( ) A.1aB .-1aC .aD .-1a或不存在答案 D解析 当a ≠0时,由k 1·k 2=-1知,k 2=-1a,当a =0时,l 2的斜率不存在.3.已知两条直线l 1,l 2的斜率是方程3x 2+mx -3=0(m ∈R )的两个根,则l 1与l 2的位置关系是( ) A .平行 B .垂直 C .可能重合 D .无法确定答案 B解析 由方程3x 2+mx -3=0,知Δ=m 2-4×3×(-3)=m 2+36>0恒成立. 故方程有两相异实根,即l 1与l 2的斜率k 1,k 2均存在. 设两根为x 1,x 2,则k 1k 2=x 1x 2=-1,所以l 1⊥l 2,故选B.4.(多选)若l 1与l 2为两条不重合的直线,它们的倾斜角分别是α1,α2,斜率分别为k 1,k 2,则下列命题正确的是( )A .若l 1∥l 2,则斜率k 1=k 2B .若k 1=k 2,则l 1∥l 2C .若l 1∥l 2,则倾斜角α1=α2D .若α1=α2,则l 1∥l 2 答案 ABCD5.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线的斜率为________. 答案 -1解析 若a =3-b ,则P ,Q 两点重合,不合题意.故PQ 斜率存在.由k PQ =3-a -b3-b -a =1,得线段PQ 的垂直平分线的斜率为-1.1.知识清单:两直线平行或垂直的条件.2.方法归纳:分类讨论,数形结合. 3.常见误区:研究两直线平行、垂直关系时忽略直线斜率为0或斜率不存在的情况.1.过点A (2,5)和点B (-4,5)的直线与直线y =3的位置关系是( ) A .相交 B .平行 C .重合 D .以上都不对 答案 B解析 斜率都为0且不重合,所以平行.2.已知过A (-2,m )和B (m ,4)的直线与斜率为-2的直线平行,则m 的值是( ) A .-8 B .0 C .2 D .10 答案 A解析 由题意可知,k AB =4-mm +2=-2,所以m =-8.3.直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( ) A .(3,0) B .(-3,0) C .(0,-3) D .(0,3)答案 D解析 设P (0,y ),因为l 1∥l 2,所以y -10+1=2,所以y =3.即P (0,3).4.若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23的直线垂直,则实数a 的值为( )A .-23B .-32 C.23 D.32答案 A解析 易知a =0不符合题意.当a ≠0时,直线l 的斜率k =2-a -2-a +2=-1a ,由-1a ·⎝ ⎛⎭⎪⎫-23=-1,得a =-23,故选A.5.(多选)设点P (-4,2),Q (6,-4),R (12,6),S (2,12),下面四个结论正确的是( ) A .PQ ∥SR B .PQ ⊥PS C .PS ∥QS D .PR ⊥QS答案 ABD解析 由斜率公式知,k PQ =-4-26+4=-35,k SR =12-62-12=-35,k PS =12-22+4=53,k QS =12+42-6=-4,k PR =6-212+4=14, ∴PQ ∥SR ,PQ ⊥PS ,PR ⊥QS .而k PS ≠k QS , ∴PS 与QS 不平行,故ABD 正确.6.若经过点(m ,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 答案145解析 由题意可知k l =14,又因为k l =m -32-m,所以m -32-m =14,解得m =145.7.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-4k +m =0的两根,若l 1⊥l 2,则m =________,若l 1∥l 2,则m =________. 答案 -2 2解析 由一元二次方程根与系数的关系得k 1·k 2=m2,若l 1⊥l 2,则m2=-1,∴m =-2.若l 1∥l 2,则k 1=k 2,即关于k 的二次方程2k 2-4k +m =0有两个相等的实根,∴Δ=(-4)2-4×2×m =0,∴m =2.8.已知点A (-3,-2),B (6,1),点P 在y 轴上,且∠BAP =90°,则点P 的坐标是________. 答案 (0,-11)解析 设P (0,y ),由∠BAP =90°知,k AB ·k AP =1--26--3×y +23=y +29=-1,解得y =-11.所以点P 的坐标是(0,-11).9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行. 解 (1)由k AB =m -32m2=tan 135°=-1, 解得m =-32或m =1.(2)由k AB =m -32m 2,且-7-20-3=3, 则m -32m 2=-13,解得m =32或m =-3. (3)令m -32m 2=9+3-4-2=-2,解得m =34或m =-1. 经检验,当m =34或m =-1时,均符合题意.10.已知▱ABCD 中,A (1,2),B (5,0),C (3,4). (1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?解 (1)设D 点坐标为(a ,b ),因为四边形ABCD 为平行四边形,所以k AB =k CD ,k AD =k BC ,所以⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧a =-1,b =6.所以D (-1,6).(2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1,所以k AC ·k BD =-1,所以AC ⊥BD ,所以▱ABCD 为菱形.11.(多选)已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( ) A .-1 B .0 C .1 D .2答案 BC解析 当m =0时,直线AB 与直线CD 的斜率均不存在且不重合,此时AB ∥CD . 当m ≠0时,k AB =m +4-32m -m ,k CD =2-0m +1-1,则k AB =k CD ,即m +1m =2m,得m =1,∴m =0或1. 12.如图所示,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(-3,1)B .(4,1)C .(-2,1)D .(2,-1)答案 A解析 如图所示,因为经过三点可构造三个平行四边形,即▱AOBC 1,▱ABOC 2,▱AOC 3B .根据平行四边形的性质,可知B ,C ,D 分别是点C 1,C 2,C 3的坐标,故选A. 13.若点P (a ,b )与Q (b -1,a +1)关于直线l 对称,则l 的倾斜角为( ) A .135° B.45° C.30° D.60° 答案 B解析 若a =b -1,则P ,Q 重合,不合题意,故直线PQ 斜率存在.k PQ =a +1-bb -1-a=-1,k PQ ·k l=-1,∴l 的斜率为1,倾斜角为45°.14.下列直线l 1与直线l 2(l 1与l 2不重合)平行的有________.(填序号) ①l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);②l 1的斜率为2,l 2经过点A (1,1),B (2,2);③l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); ④l 1经过点E (2,6),F (2,3),l 2经过点P (-3,-3),Q (-3,-6). 答案 ①③④解析 ①∵k AB =5-1-3-2=-45,k CD =-7+38-3=-45,∴k AB =k CD ,∴l 1∥l 2. ②∵2l k =2-12-1=1≠1l k =2,∴l 1不平行于l 2. ③∵1l k =tan 60°=3,2l k =3+231+2=3,∴12l l k k =,∴l 1∥l 2.④l 1,l 2的斜率均不存在,∴l 1∥l 2.15.直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,此时直线l 1与l 2平行,且l 2是线段AB 的垂直平分线,其中A (1,m -1),B (m ,2),则m =________.答案 4+ 3解析 如图,直线l 1的倾斜角为30°+30°=60°,∴直线l 1的斜率k 1=tan 60°= 3. 由l 1∥l 2知,直线l 2的斜率k 2=k 1= 3. ∴直线AB 的斜率存在,且k AB =-1k 2=-33.∴m -1-21-m =m -31-m =-33, 解得m =4+ 3.16.已知△ABC 三个顶点坐标分别为A (-2,-4),B (6,6),C (0,6),求此三角形三边的高所在直线的斜率.解 由斜率公式可得k AB =6--46--2=54,k BC =6-66-0=0,k AC =6--40--2=5.由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在. 设AB ,AC 边上高线的斜率分别为k 1,k 2, 由k 1·k AB =-1,k 2·k AC =-1, 即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在;AB 边上的高所在直线的斜率为-45; AC 边上的高所在直线的斜率为-15.。

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

高中数学《直线与平面垂直的判定》教学设计(全国一等奖)《普通高中课程标准实验教科书—数学必修(二)》人教A版直线与平面垂直的判定姓名:单位:《直线与平面垂直的判定(第一课时)》教学设计一、内容和内容解析:本节内容选自人教A版《普通高中课程标准实验教科书——数学必修(二)》第二章第三节:2.3.1直线与平面垂直的判定(第一课时),属于新授概念课.本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,后续内容如空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此学习这部分知识有着非常重要的意义.二、目标和目标解析:《数学课程标准》中与本节课相关的要求是:① 在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面垂直位置关系的定义;② 通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定定理;③ 能运用已获得的结论证明一些空间位置关系的简单命题.本节课的课程标准分解如下:(1)从认知角度进行分解:(2)从能力角度进行分解:根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:(1)在直观认识和理解空间点、线、面的位置关系的基础上,抽象出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的定义和判定定理证明一些空间位置关系的简单命题.针对本节课的学习目标,我设计了如下的评价任务:评价任务一:能否从生活现象中直观感受到直线与平面垂直的形象,并将其抽象出直线与平面垂直的概念;评价任务二:学生积极参与,通过影子实验,在动手操作、思考、归纳等一系列活动中完成探索.评价任务三:能够从正反例中,通过对比归纳出直线与平面垂直的定义,并用自己的语言描述定义内容.评价任务四:能够根据定义得到直线与平面垂直时,直线与平面内任意一条直线垂直的结论,并写出符号语言,了解定义的双向叙述功能.评价任务五:能够利用将无限转化为有限的思想,寻找判定直线与平面垂直的可能性假设. 评价任务六:能在实验操作中,确认直线与平面垂直的判定定理,能用自己的语言叙述出定理内容并写出相应的符号语言.评价任务七:能够用定义和判定定理解决空间位置关系的简单命题.三、教学问题诊断分析:1、学生已有基础:学生已经学习了两条直线互相垂直的位置关系,学习了直线、平面平行的判定及性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,具备学习本节课所需的知识.2、学生面临的问题:高一学生仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维.认识到这点,教学中要控制要求的拔高,关注学习过程.因此我确定本节课的难点为:直线与平面垂直的定义的生成,操作确认直线与平面垂直的判定定理.因此,在教学过程中我抓住学生好奇心强,学习积极性较高的特点,我让学生以小组为单位进行合作,通过动手操作,观察、思考、归纳总结,发现直线与平面垂直时,直线与平面内的直线有怎样的位置关系;再通过操作,反向验证,当直线与平面内的直线具有上述位置关系时,能否得到直线与平面垂直,让学生在实验中自然生成直线与平面垂直的定义.在探究直线与平面垂直的判定定理时,让学生从寻找合理假设出发,通过操作验证假设的正确性,从而获得直线与平面垂直的判定定理.由于学生对这种用“有限”代替“无限”的过程,在形成理解上的可能会有思维障碍,所以强调关于定理的证明,会在后续学习中获得.四、教学策略分析:新课程标准明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维.因此本节课在“目标导引教学”这一理念的指引下,主要采用的是引导发现教学法.教学中,我利用学生感兴趣的图片引出直线与平面垂直的形象,抽象出直线与平面垂直的概念.让学生在分析操作过程发现规律特点,从而自发地生成定义;接着让学生在实际应用中自觉提出判定直线与平面垂直是否有更简洁方便的方法,通过折纸活动,让学生在游戏中学习,在活动中获得知识.我设计了分组探究等实践活动,通过活动引导学生进行观察、思考、操作、归纳、应用,使学生始终处于积极、主动、有趣的学习状态中,深刻体会到了“做数学、学数学”的乐趣,最终达成了本节课的学习目标.五、课前准备:多媒体课件、三角形纸片(多种形状)、三角板、手电筒、彩色手环、笔(表直线)、纸(表平面)等.六、教学过程:验证跨栏的支架与地面是否垂直,七、教学设计说明:兴趣是最好的老师,它是学生主动学习、积极思考、勇于探索的强大内驱力.因此,本节课我在“目标导引教学”理念及“数学源于生活、又应用于生活”的理念的指引下,以激发学生的学习兴趣为出发点,设置了一系列的动手操作、自主探索的活动,引导学生通过感受、思考、交流、总结,真正对所学内容有所感悟,进而内化为己有.课堂上加入了多种探究实验与动手操作活动,增加了学生学习的兴趣;加入了影子实验、折纸环节,使学生体会到了学数学的乐趣,达到了让教学生活化、让教学活动化、让教学趣味化的目的.符合新课标中“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法”的要求.此外,在整个教学过程中,“学生是学习的主体”这一理念,“让不同的人在数学上得到不同的发展”的理念都得到了充分的体现.总之,本节课的设计使学生的情感和能力都得到了一定的发展,成长过程和长期发展也得到了一定的关注,体现了新课程的要求.八、教学反思:本节课的设计从理解数学、理解学生、理解教学三个维度出发,对高中数学课程结构体系及本节课教学重点的知识进行了较为系统的分析;对学生学习本节课的难点进行了深入思考,并精心设计了重点、难点知识的教学解释;评估了学生的知识理解水平等方面,以达到教学设计的科学、完整和精细,具有一定的可操作性和调控性.本节课树立理解数学、理解学生、理解教学的观念来设计课堂教学,本质与核心是“以学生的发展为本”,这是时代发展的要求.这就要求教师在教学设计中,不仅要看到所教的学科知识,而且要看到相应的知识在学生发展中起什么作用;不仅要研究学生的发展规律,思考学习与发展的关系,而且要研究学生是如何学习的;不仅要以适合学生认知特点的方式传《直线与平面垂直(第一课时)》教学设计授数学知识,而且要在教学过程中时刻体现思想性,从而在提高学生在知识水平的同时,提高他们的素质,丰富他们的精神世界.点评这堂课给人的感觉是充满青春的朝气,一气呵成,如沐春风。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 直线与平面垂直的判定
A级基础巩固
一、选择题
1.下列说法中正确的个数是( )
①如果直线l与平面α内的两条相交直线都垂直,则l⊥α;
②如果直线l与平面α内的任意一条直线垂直,则l⊥α;
③如果直线l不垂直于α,则α内没有与l垂直的直线;
④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.
A.0 B.1 C.2 D.3
解析:由直线和平面垂直的定理知①正确;由直线与平面垂直的定义知,②正确;当l与α不垂直时,l 可能与α内的无数条直线垂直,故③错误,④正确.
答案:D
2.直线l⊥平面α,直线m⊂α,则l与m不可能( )
A.平行B.相交
C.异面D.垂直
解析:若l∥m,l⊄α,m⊂α,则l∥α,这与已知l⊥α矛盾.所以直线l与m不可能平行.
答案:A
3.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是( )
①三角形的两边②梯形的两边③圆的两条直径
④正六边形的两条边
A.①③B.②
C.②④D.①②③
解析:由线面垂直的判定定理可知①③是正确的,而②中线面可能平行、相交.④中由于正六边形的两边不一定相交,所以也无法判定线面垂直.
答案:A
4.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )
A.平行
B.垂直相交
C.垂直但不相交
D.相交但不垂直
解析:因为四边形ABCD是菱形,所以BD⊥AC.又MC⊥平面ABCD,则BD⊥MC.因为AC∩MC=C,所以BD⊥平面AMC.又MA⊂平面AMC,所以MA⊥BD.显然直线MA与直线BD不共面,因此直线MA与BD的位置关系是垂直但不相交.
答案:C
5.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数是( )
A.1 B.2
C.3 D.4
解析:
⎭⎪

⎪⎫
PA⊥平面ABC
BC⊂平面ABC

⎭⎪

⎪⎫
PA⊥BC
AC⊥BC
PA∩AC=A

BC⊥平面PAC⇒BC⊥PC,
所以直角三角形有△PAB,△PAC,△ABC,△PBC.
答案:D
二、填空题
6.已知△ABC所在平面外一点P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影是△ABC的____________________
(填“重心”、“外心”、“内心”、“垂心”).
解析:P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影到△ABC三顶点的距离都相等,所以是外心.
答案:外心
7.已知正三棱锥S­ABC的所有棱长都相等,则SA与平面ABC所成角的余弦值为________.
解析:因为S­ABC为正三棱锥,所以设点S在底面ABC上的射影为△ABC的中心O,连接SO,AO,如图所示,则∠SAO为SA与底面ABC所成的角,设三棱锥的棱长为a,在Rt△SOA中,AO=
2
3
·a sin 60°=
3
3
a,SA=a,所以cos∠SAO=
AO
SA

3
3
.
答案:
3
3
8.如图所示,平面α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,则CD与AB的位置关系是________.
解析:因为EA⊥α,CD⊂α,
根据直线和平面垂直的定义,则有CD⊥EA.
同样,因为EB⊥β,CD⊂β,则有EB⊥CD.
又EA∩EB=E,
所以CD⊥平面AEB.
又因为AB⊂平面AEB,所以CD⊥AB.
答案:CD⊥AB
三、解答题
9.如图所示,在正四面体ABCD中,E是棱AD的中点,求直线CE与底面BCD所成的角的正弦值.
解:设正四面体ABCD的棱长为1,如图,作AO⊥平面BCD,垂足为O,则O是△BCD的中心,故OD=
2
3
×
3
2=
3
3
.
取OD的中点G,连接EG,
因为EG∩OD=G,则EG⊥平面BCD.连接CG,于是∠ECG就是直线CE与底面BCD所成的角.
因为EG=
1
2
AO=
1
2
AD2-DO2=
1
2
×12-




⎫3
3
2

6
6
,又CE=
3
2

所以sin∠ECG=
EG
EC

6
6
3
2

2
3
.
所以直线CE与底面BCD所成的角的正弦值为
2
3
.
10.如图所示,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BE⊥平面ACE.求证: AE⊥BE.
证明:因为AD ⊥平面ABE ,AD ∥BC , 所以BC ⊥平面ABE .
又AE ⊂平面ABE ,所以AE ⊥BC .
因为BF ⊥平面ACE ,AE ⊂平面ACE ,所以AE ⊥BF . 又因为BF ⊂平面BCE ,BC ⊂平面BCE ,BF ∩BC =B , 所以AE ⊥平面BCE .
又BE ⊂平面BCE ,所以AE ⊥BE .
B 级 能力提升
1.已知直线m ,n 是异面直线,则过直线n 且与直线m 垂直的平面( ) A .有且只有一个 B .至多一个 C .有一个或无数个
D .不存在
解析:若异面直线m ,n 垂直,则符合要求的平面有一个,否则不存在. 答案:B
2.在三棱柱ABC ­A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中点,则AD 与平面BB 1C 1C 所成角的大小是________.
解析:如图所示,取BC 的中点E ,连接DE ,AE ,则AE ⊥面BB 1C 1C .
所以AE ⊥DE ,因此AD 与平面BB 1C 1C 所成角即为∠ADE , 设AB =a ,则AE =
32a ,DE =a 2
, 有tan ∠ADE =3,所以∠ADE =60°. 答案:60°
3.(2016·全国卷Ⅱ改编)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,
CD 上,AE =CF =5
4
,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置, OD ′=10.
证明:D ′H ⊥平面ABCD .
证明:由已知得AC ⊥BD ,AD = CD , 又由AE =CF ,得AE AD =
CF
CD
,故AC ∥EF .
因为EF ⊥HD ,从而EF ⊥D ′H .
由AB =5,AC =6得DO =BO =AB 2
-AO 2
=4. 由EF ∥AC 得OH DO =
AE AD =1
4

所以OH =1,D ′H =DH =3,
于是D ′H 2
+OH 2
=32
+12
=10=D ′O 2
,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .。

相关文档
最新文档