第4章 弹塑性力学的解题(修改)
《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档
应变能增量A 中有体积分和面积分,利用
柯西公式和散度定理将面积分换成体积分。
17.04.2020
8
§4-1 应变能、应变能密度与弹性材料的 本构关系
A V fiu id V s F iu id S U VW d V
SF i uidSS(ij ui)njdS V(jiui),j dV
17.04.2020
19
§4-2 线弹性体的本构关系
2.2 具有一个弹性对称面的材料
若物体内各点都有这样一 x3 个平面,对此平面对称方
向其弹性性质相同,则称
此平面为弹性对称面,垂
直弹性对称面的方向称为
弹性主轴。
x1
弹性主轴
x2
17.04.2020
20
§4-2 线弹性体的本构关系
如取弹性对称面为x1 —x2
{}=[c]{}
T 11 22 33 23 31 12
T 11 22 33 23 31 12
17.04.2020
16
§4-2 线弹性体的本构关系
2.1 各向异性材料
{}=[c]{}
C11 C12
C C21 C22
C61 C62
C16
C26
C66
17.04.2020
17.04.2020
3
§4-1 应变能、应变能密度与弹性材料的 本构关系
外力做实功 A: A=U 物体的应变能U
U VWdV
W:应变能密度——单位体积的应变能。
17.04.2020
4
§4-1 应变能、应变能密度与弹性材料的 本构关系
1.2 应变能密度W与材料的i
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。
(完整word版)武汉大学弹塑性力学简答题以及答案
弹塑性力学简答题2002年1 什么是偏应力状态?什么是静水压力状态?举例说明?P24静水压力状态时指微六面体的每个面只有正应力作用,应力大小均为平均应力。
偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2 从数学和物理的不同角度,阐述相容方程的意义。
P48从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。
从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续。
3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。
4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?P156平衡微分方程和静力边界条件。
不涉及物理本构方程。
适用于塑性力学问题。
5 应力状态是否可以位于加载面外?为什么?P239当应力状态从加载面上向加载面外变化时,将产生新的塑性变形,引起内变量增加,这时,加载面会随之改变,使得更新的应力状态处在更新的加载面上.6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?P250加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。
卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。
中性变载:应力增量沿着加载面,即与加载面相切.应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。
7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?P93协调方程和边界条件。
8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?P121平面内应力分量(x y xy σστ、、)最大,最主要的是应力,横向剪应力(z y xz ττ、)较小,是次要的应力;z 方向的挤压应力z σ最小,是更次要的应力。
弹塑性力学第四章
x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
弹塑性力学习题集
第二章应力
第四章本构关系
讨论:
s
σ3
h 3
h s
ε2
时,s 44h 本构方程为:
ε
σE =时,s )
1()
(111E
E
E E s s s -+=-+=σεεεσσs
εs
σ3
h 3
h
P
三杆均处于弹3
h 3h
P
03
h 3h
P
3
h 3
h
P
在弹塑性阶段,1杆虽然进入塑性状态,但由于其余两杆仍处于弹性阶段,1杆的塑性变形受到限制,整个桁架的变形仍限制在弹性变形的量级,这个阶段可称为约束的塑性变形阶段.在塑性阶段,三杆都进入塑性状态,桁架的变形大于弹性变形量
级.一般说来,所有的弹塑性结构在外力的作用下,都会有这样三个变形的阶段.
3
h 3
h
P
扭和内压作用,有应力分量
求:
比例从零开
多大时开始进入屈服?z ϕϕτ3=(2)开始屈服后,继续给以应力增量,满足0
=d γMises :
屈服准则为
21=z f σz z ϕϕτσσ32==代入上式得到屈服后,增量本构关系为:
z
z
z z d E G d d σστσλϕ898=
=
第五章 弹塑性力学问题的提法
第六章弹塑性平面问题
试求其应力分量。
图6.7 局部受均布载荷简支粱
的增大而迅速衰减。
弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
弹塑性力学 第四章 弹性力学的求解方法
说明: 1、数学上可证明, 当为线弹性小变形情况,求解的 基本方程和边界条件为线性,叠加原理成立。 2、对大变形情况,几何方程出现二次非线性项,平 衡微分方程将受到变形的影响,叠加原理不再适 用。 3、对非线弹性或弹塑形材料,应力应变关系是非线 性的,叠加原理不成立。 4、对载荷随变形而变的非保守力系或边界为
1. 位移法:将几何方程代入物理方程,得到用位移
表示的应力分量,再将应力分量代入平衡方程和应力边 界条件,即得到空间问题的位移法控制方程。不需要用 相容位移表述。 3个位移表述的平衡微分方程,包含3个位 移未知数。 结合边界条件,解上述方程,可求出位移分 量,由几何方程求应变,再由本构方程求应力。
第四章 弹性力学问题的求解方法
§7-1 弹性力学基本方程
1. 平衡微分方程方程
2. 几何方程
3. 物理方程
各种弹性常数之间的关系
4. 相容方程
• 求解物理量:6个应力分量 6个应变分量 3个位移分量
共15个未知量
用于求解的方程:平衡微分方程 3个 几何方程 6个
共15个方程
本构方程
6个
用非线性弹簧支承的情况,边界条件是非 线性的,叠加原理也将失效。
二. 解的唯一性定理:
在给定载荷作用下,处于平衡状态的弹性体, 其内部各点的应力、应变解是唯一的,如物体刚 体位移受到约束,则位移解也是唯一的。 无论何方法求得的解,只要能满足全部基本方 程和边界条件,就一定是问题的真解。
三.圣维南原理: 提法一:若在物体的一小部分区域上作用一自平衡力系,则 此力系对物体内距该力系作用区域较远的部分不产生 影响只在该力系作用的区域附近才引起应力和变形。 提法二:若在物体的一小部分区域上作用一自平衡力系,该 力系在物体中引起的应力将随离力系作用部分的距离 的增大而迅速衰减,在距离相当远处,其值很小,可 忽略不计。 提法三:若作用在物体局部表面上的外力,用一个静力等效 的力系(具有相同的主矢和主矩)代替,则离此区域较 远的部分所受影响可以忽略不计。
弹塑性力学习题及问题详解
本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:假如ijji a a =,如此0ijk jk e a =。
〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学 弹性与塑性力学的解题方法
➢主应力法
➢ 主应力法是金属塑性成形中所经常使用的 一种简化方法。在分析问题时,认为剪应 力对材料的屈服影响很小,因而在屈服条 件中略去剪应力,这时平面应变问题中的 屈服条件可简化为
x - y = 2k
➢ 在分析中,还假设应力在一个方向的分布 是均匀的。因此在计算中,数学形式比较 简便。
➢ 平面应力问题,平面应变问题,结果转换 ➢ 平面问题的平衡方程(无体力)
x
xy
0
x y
yx x
y
y
0
➢ 艾里(Airy)应力函数
x
2
y 2
,
y
2
x 2
,
xy
2
xy
➢ 用应力函数表示的物理方程
➢ 变形协调条件
x
1 2G(1
)
2
y 2
2
x 2
y
2G
1 (1
)
2
x 2
几种应力函数所对应的边界条件
➢ = ax + by + c 矩形弹性体处于无应力状态,
即在边界上无面力。
➢ = ax2 + bxy + cy2 矩形弹性体受双向荷载。
a > 0, c > 0, b = 0
a = c = 0, b 0
➢ = ax3 + bx2y + cxy2 + dy3 复杂应力状态, 当a = c = b = 0, d 0时,xy = 6dy,为纯弯
2
y 2
xy
1 G
2
xy
4 x
y 4
4 y
x 4
弹塑性力学___第四章_弹性力学的求解方法
叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程
弹塑性力学第四章弹性力学的求解方法
微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组
弹塑性力学习题集(有图)
~弹塑性力学习题集[殷绥域李同林编!)~中国地质大学·力学教研室二○○三年九月》目录弹塑性力学习题 (1)第二章应力理论.应变理论 (1);第三章弹性变形.塑性变形.本构方程 (6)第四章弹塑性力学基础理论的建立及基本解法 (8)第五章平面问题的直角坐标解答 (9)第六章平面问题的极坐标解答 (11)第七章柱体的扭转 (13)]第八章弹性力学问题一般解.空间轴对称问题 (14)第九章* 加载曲面.材料稳定性假设.塑性势能理论 (15)第十章弹性力学变分法及近似解法 (16)第十一章* 塑性力学极限分析定理与塑性分析 (18)第十二章* 平面应变问题的滑移线场理论解 (19)`附录一张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提示 (22)>前言弹塑性力学是一门理论性较强的技术基础课程,它与许多工程技术问题都有着十分密切地联系。
应用这门课程的知识,能较真实地反映出物体受载时其内部的应力和应变的分布规律,能为工程结构和构件的设计提供可靠的理论依据,因而受到工程类各专业的重视。
·《弹塑性力学习题集》是专为《弹塑性力学》(中国地质大学李同林、殷绥域编,研究生教学用书。
)教材的教学使用而编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性力学的基本概念、基础理论和基本技能,并培养和提高其分析问题和解决问题的能力。
鉴于弹塑性力学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较大的习题给出了解题提示或解答。
本习题集的编写基本取材于殷绥域老师编写的弹塑性力学习题集,由李同林老师重新修编,进一步充实而成。
书中大部分内容都经过了多届教学使用。
为保证教学基本内容的学习,习题中带“*”号的题目可酌情选做。
由于编者水平所限,错误和不妥之处仍在所难免,敬请读者指正。
<编者2003年9月@弹塑性力学习题"第二章 应力理论·应变理论2—1 试用材料力学公式计算:直径为1cm 的圆杆,在轴向拉力P = 10KN 的作用下杆横截面上的正应力σ及与横截面夹角︒=30α的斜截面上的总应力αP 、正应力ασ和剪应力ατ,并按弹塑性力学应力符号规则说明其不同点。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学课后习题答案
M r n (Ⅰ—1)
◆ 现令n为这些物理量的阶次,并统一称这些物
理量为张量。
当n=0时,零阶张量,M=1,标量; 当n=1时,一阶张量,M=3,矢量;
、 、 、 当取n时,n阶张量,M=3n。
◆ 二阶以上的张量已不可能在三维空间有明显直
观的几何意义,但它做为物理恒量,其分量间 可由坐标变换关系式来解决定义。
或
zx zy z
ij yxx
xy y
xz yz
(2—3)
zx zy z
据剪应力互等定理 ij ji (,i应力j)张量应是
一个对称的二阶张量。
1、任意斜截面上的应力
已知 : x、 y、 z
xy、 yz、 zx
斜求截:面P 外法P线x 、为Pny 、, Pz
即变程为3。
3.求和约定
关于哑标号应理解为取其变程N内所有数值, 然后再求和,这就叫做求和约定。 例如:
3
aibi aibi a1b1 a2b2 a3b3 i 1
(I-2)
3
aij b j aij b j ai1b1 ai2b2 ai3b3 j 1
33
aijbic j
aij bi c j
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
造成两者间这种差异的根本原因是什么呢?
1、弹塑性力学分析问题的基本思路
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
工程弹塑性力学课后答案
工程弹塑性力学课后答案【篇一:弹塑性力学思考题答案】一点的应力状态?答:通过一点p 的各个面上应力状况的集合⒉一点应变状态?答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 p 的邻域内线段与线段间夹角的改变⒊应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量j2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合??x?xy?xz???????????yxyyz???zx?zy?z???。
其中:?=?,?=?,?=?。
xzzxxyyxyzzy应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即j1,j2,j3是不变量,不随着坐标轴的变换而发生变化。
所以j1,j2,j3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0???x-?m?xy?xz???m0??+???ij??0?0????mymyz?,等式右端第一个张量称为应力球张量,第二个张量称为应???yx?0?m??zy?z??m??0????zx?力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力11平均应力:?m?(?x??y??z)?(?1??2??3),?m为不变量,与坐标无关。
33偏应力第二不变量j2的物理意义:形状变形比能。
单向应力状态:两个主应力为零的应力状态。
纯剪应力状态的应力张量:给出应力分分量,计算第一,第二不变量。
(带公式)⒋应变张量?应变张量的不变量?应变球张量?体积应变?平均应变?应变偏张量?应变张量:几何方程给出的应变通常称为工程应变,这些应变分量的整体,构成一个二阶的对称张版权所有,翻版必究量,称为应变张量,记为:即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
w 的表达式,则有:
1 2 w [ g (h 2 z 2 ) 2q(h z )],u 0,v 0 4(1 )G
利用式(4-1)求应力:
x y
2G
(q gz )
1
(q gz )
dw z ( 2G ) (q gz ) dz
2 2 2
2 2
2 xy
y 2 x xy E 2 2 (G ) ( 2 2 )2 2 2 2(1 ) 1 x xy x y y
2013-7-20周书敬
16
第四章 弹塑性力学的解题方法
在(4-3)式中,利用平衡方程,将第一,三式相加,
而由上述
z 0
q
z 0
w 的表达式有:
1 2 A q 2(1 )G
11
dw 1 2 gz A dz 2(1 )G
2013-7-20周书敬
第四章 弹塑性力学的解题方法
又由条件:z
h,
得: w
z 0
0
1 2 1 2 B qh gh 2 2(1 )G 4(1 )G
为一矢量,则
p R divv x y z
旋度算子:
div v v
j y Q k z R
i rot v v x P
若设:u
ui vj wk
则有:f f x i f y j f z k
divu u
zx xy zy 2 x )2 ( z x yz x y xy yz 2 y xz ) 2 ( x y xz y z yz xy 2 z zx ( )2 y z xy z x
2013-7-20周书敬
xy yz zx 0
12
第四章 弹塑性力学的解题方法
第二节 按应力求解弹性力学问题
解题思路:以六个应力分量作为基本未知量。从基本方
程中消去位移和应变,得到关于应力的偏微分方程组。首先
这六个应力分量应满足三个平衡方程 ,但还需补充方程。
在第二章中,我们推导了应变协调方程(2-39)、(2 -40)如下:
2013-7-20周书敬
1
第四章 弹塑性力学的解题方法
题和边值问题)等又可使此解具有唯一性。但真正要求解这
样一组偏微分方程,在数学上是很困难的,因此就产生了一 些相应的解题方法,包括解析解法和数值解法两大类。本章
介绍解析解法。
第一节 按位移求解弹性力学问题
在解方程组中,一种通用的方法是“消元法”。在处理弹
可得出:
x x 2 2 y z
2 2
2 ( y z ) x 2
2
2 2 2 (2 2 2 2 ) 1 x y z
解题思路:在求解问题时,要使所求的位移函数
u,v,w
2013-7-20周书敬
在物体内部满足方程式(4-2),在边界上满
足边条(4-4)或满足直接给出的位移边条;将所求问题的
8
第四章 弹塑性力学的解题方法
位移代入几何方程便可求出应变,利用式(4-1)可求出应
力分量。 按位移法求解弹性力学问题时,未知函数个数比较少, 仅只有三个未知量 u,v,w,但必须求解三个联立的二阶 偏微分方程,而不能像按应力求解问题时那样简化为求解一
性力学问题时也不例外。
以位移为基本未知量进行求解,就是“位移法”。 以应力为基本未知量进行求解,就是“应力法”。
2013-7-20周书敬
2
第四章 弹塑性力学的解题方法
以部分位移和部分应力为基本未知量求解,就是“混合
法”。 选用何种方法,视具体问题具体分析。 如:当边界条件给的是位移边界条件,则适用位移法; 当边界条件给的是应力边界条件,则适用应力法;
10
第四章 弹塑性力学的解题方法
确定积分常数A、B:
由边条:l m 0,
n 1,
cos180 1,
Fx Fy 0,
Fz q
dw dz 1 2 q 2(1 )G
代入式(4-4),前两式为恒等式,第三式为
dw dw ( 2G ) dz dz
14
第四章 弹塑性力学的解题方法
G
E , 2(1 )
2 y x 2
x y z
E (1 2 )
代入上式得应力表示的协调方程:
2 x 2 y 2 y z 2 2 z x 2 2 x yz 2 y zx 2 z xy
2013-7-20周书敬
xy 2 2 ( 2 2 )2 1 x xy y
2
yz 2 z 2 2 ( 2 2 )2 yz y 2 1 z y
2
2 x 2 zx 2 2 ( 2 )2 2 1 x 2 xz z z 2 zx xy yz ( ) 1 yz x y z x 2 xy yz zx ( ) 1 zx y z x y 2 zx yz xy ( ) 1 xy z y x z
(4—5)
15
第四章 弹塑性力学的解题方法
2 2 x xy 2 第一式由 2 xy x y
2 y
2 x 2
1 (1 ) y E
2 2 y
1 (1 ) x E
2 1 xy G xy
l x m xy n xz Fx l yx m y n yz Fy l zx m zy n z Fz
2013-7-20周书敬
7
第四章 弹塑性力学的解题方法
其中, l , m, n 为该边界的外法线的三个方向余弦,得到用 位移表示的边界条件。
u v u w u lG ( 2G x ) mG( x y ) nG ( x z ) Fx u v v w v ) Fy (4-4) lG ( ) mG( 2G ) nG ( y y z y x u w v w w ) mG( ) nG ( 2G ) Fz lG ( z y z z x
个单独的微分方程(缺点) 。
但是,位移法是一种普适方法,特别是在数值解法中得 到了广泛应用,如:有限元法、差分法等数值计算方法。 〖例〗P132;该问题是关于z 轴的轴对称问题。 可以假设:
2013-7-20周书敬
u 0, v 0,w w( z )
9
第四章 弹塑性力学的解题方法
dw 所以体积应变 为: dz 2 d w 2 而 w 2 dz
当边界条件给的是混合边界条件,则适用混合法 。 位移法:以u、v、w作为基本未知量,在物理方程(3—
18式,P88)中,利用几何方程将应变用位移表示,可得用位 移表示的应力分量: 因为:
x 2G x, y 2G y, z 2G z
xy G xy, yz G yz, zx G zx
2 2 y 2 x 1 2 1 2 1 xy 2 (1 ) 2 (1 ) 2 2 E x x E y y G xy
2 y x 2
x E ( 2 2 ) 2 1 x G(1 ) xy y y
(4-2)
2 2 2 其中, 2 2 2 2 —— 拉普拉斯算子。 x y z
grad i j k — 梯度算子(矢量算子)。 x y z
2013-7-20周书敬
5
第四章 弹塑性力学的解题方法
散度算子:设
v pi j Rk
2013-7-20周书敬
3
第四章 弹塑性力学的解题方法
所以有:
u v u x 2G x , xy G ( x y ) v w v ) y 2G , yz G ( y y z w w u , zx G ( ) z 2G z x z 2G 其中, (1 )(1 2 ) 1 2
2013-7-20周书敬
13
第四章 弹塑性力学的解题方法
2 y 2 x 2 xy 2 2 xy y x 2 2 2 z y zy 2 2 yz z y 2 2 z 2 xz 2x 2 xz x z
由广义胡克定律:
1 x E [(1 ) x ] 1 y [(1 ) y ] E 1 z E [(1 ) z ]
2013-7-20周书敬
xy xy G yz yz G zx zx G
代入拉梅方程得:
只有一个变量可以用全微分
d 2w ( 2G ) 2 g 0 dz d 2w g 1 2 2 g dz 2G 2(1 )G
1 2 w ( gz 2 z ) 积分得: 4(1 )G
2013-7-20周书敬
(4-1)
u v w x y z 3 0 x y z
2013-7-20周书敬
为体积应变。
4
第四章 弹塑性力学的解题方法
将(4-1)式代入平衡方程(1-39式,P35)有拉梅位
移方程(4—2)。
( G ) G 2 u f x 0 x ( G ) G 2 v f y 0 y ( G ) G 2 w f z 0 z