LFT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料破坏的微裂纹理论
假定所有材料中都存在着微笑裂纹,裂纹的应力集中效应对于延展性材料来说由于裂纹的尖端局部流动使得应力松弛;脆性材料不具备流动能力,裂纹的扩展使材料在较低应力水平下就会破坏。
证明只对晶体材料适用。
玻璃的裂纹只存在于表面。
LFT材料——未来汽车内饰生力军什么是LFT,GMT,LFT-G,LFT-D
LFT是纤维增强聚合物领域的一种新型高级轻量化材料,具有可设计性、低密度、高比强度、高比模量和抗冲击性强等特点,它的出现对铝合金、纤维增强热固性复合材料构成了巨大挑战,逐步成为制作汽车零部件的主流材料。
LFT是英文Long-Fiber Reinforce Thermoplastic的简称,中文译为长纤维增强热塑性塑料,又习惯称之为长纤维增强热塑性复合材料,它是纤维增强聚合物领域的一种新型高级轻量化材料。
在过去的20多年时间里,能源危机和石油涨价促使汽车轻量化逐步成为新型汽车的发展趋势,也使得人们将注意力转移到了LFT低密度材料的研发上,LFT的材料性能和加工技术也不断得到改进。
目前,LFT已成为一种可以挑战铝合金、纤维增强热固性复合材料的汽车轻量化新材料,具有很强的市场竞争力。
据报道,在最近的几年中,采用LFT制造的汽车产品的市场份额增加了15%左右,并保持强劲的上升趋势,这一现象已引起业内专业人士的极大关注。
什么是LFT
LFT是一个广义的塑料专用词汇,在汽车复合材料工业中有一个非正式但却约定俗成的定义,即指长度超过10mm的增强纤维(一般是玻璃纤维)和热塑性聚合物(一般是聚丙烯)进行混合并生产而成的制品。
例如:GMT(Glass-Mat Reinforce Thermoplastic)、LFT-G (Long-Fiber Reinforce Thermoplastic Granules)、LFT-D(Long-Fiber Reinforce Thermoplastic Direct)等皆属于LFT范畴,具有低密度、高比强度、高比模量和抗冲击性强等特性。
LFT材料的机械特性与增强纤维的材性和所占比例有关。
汽车用LFT增强纤维通常为玻璃纤维,理论上这种玻璃纤维在制品中的比例可以达到10%~80%(指重量比),而实际上常用玻璃纤维的比例通常为20%~40%。
此外,LFT的机械特性还与增强纤维的长度有着密切的关系。
与相类似的短纤维(纤维长度约小于1mm)增强注塑成型热塑性复合材料相比,LFT材料无论在强度、抗撞击性能、能量的吸收率等方面都得到了很大提高。
因此,这些特性也为LFT在要求更为严格的汽车内外部的结构件和半结构件上的应用创造了条件,成为受汽车行业青睐的主要原因之一。
LFT的几种主要材料
近些年来,LFT材料的性能和成型加工工艺都有了很多新的进展:应用较为普及的材料大致可以归纳为三大类――GMT、LFT-G和LFT-D;较为成熟的成型技术有压塑成型和注塑成型,其中GMT材料为压塑成型,而LFT-G和LFT-D既可以压塑成型,也可以注塑成型,这需要根据制品的具体技术要求、成本、产量规模等因素进行选择。
1、GMT
在20世纪70年代,GMT首先在欧洲得到广泛应用,而进入80年代后期,GMT片材及其制品已成为国际上极为活跃的复合材料制品之一。
GMT片材是指以连续玻璃纤维毡或短切玻纤毡和热塑性树脂(大多是PP树脂)复合而成的一种片状模塑料,通常是两层玻璃纤维毡复合三层热塑性树脂薄膜层。
采用不同类型的玻璃纤维毡和不同品种的热塑性树脂做基体,就可以得到多种多样的GMT材料。
GMT复合材料制品的生产需要两个成熟的加工技术:片材(预浸渍)的成型和制品的压
塑成型。
制品的压塑成型需要通过片材的再次裁割、预热、模压、脱模一系列工艺过程才能完成加工。
GMT产品具有很多优异的性能,如耐化学性好,强度/重量比大,在高、低温环境中的抗冲击性能优良等。
GMT的最大单项用途是汽车前端模块框架,其次为座椅骨架、吸能内保险杠等。
2、LFT-G
LFT-G是短玻纤热塑性颗粒材料(FRTP)技术创新的成果。
早期的FRTP粒料长度虽然可达5~6mm,但经过混炼、切粒、塑化、注塑等工艺流程后,在制品中纤维的最终长度往往小于1mm,仅能作为填充剂增加制品的刚性,而对拉伸强度、抗冲击性能的提高十分有限。
因此,在当时FRTP并非主流的复合材料。
为充分发挥注塑成型生产效率高、成本低的优势,努力将断纤程度降至最低,20世纪80年代初LFT-G诞生。
LFT-G制品生产的工艺与GMT相似,也需要两个成熟的工艺,即长颗粒的成型和制品的注塑成型或压塑成型。
LFT-G粒料的直径大约为3mm,长度有12mm和25mm两种,其中12mm左右长度的粒料主要用于注塑成型,而25mm左右长度的粒料主要用于压塑成型。
在LFT-G粒料注塑成型过程中,尽管注塑成型机经过很多改良,但限于注塑工艺原因,在最后的制成品中纤维只能达到3.2~6.4mm。
虽然这个长度比FRTP注塑成型的纤维长,产品的抗冲击性能也明显提高,但是比LFT-D注塑或者压塑成型的纤维要短,强度和抗冲击性也比LFT-D差。
下图为用LFT-G生产的2004起亚 Cerato混合结构前端框架。
3、LFT-D
LFT-D是长纤维增强热塑性复合材料在线直接生产制品的一种工艺技术,它区别于GMT 和LFT-G的关键因素是半成品步骤被省去了,在材料的选择上也更加灵活。
在LFT-D技术中,不仅纤维的含量和长度,而且连其基体聚合物也可以直接调整到最终部件的要求。
通过添加剂的用量多少可以改变和影响制品的机械性能和特殊应用材料的特性,如热稳定性、着色性、紫外稳定性以及纤维与基体的粘结特性等,这也意味着每一种特殊应用都可以通过LFT-D获得其独特的材料配方。
LFT-D典型的工艺是聚合物基体颗粒和添加剂被输送到重量分析给料单元组合中,该单元根据部件的机械性能要求确保适度的混合。
经混合后的原料进入双螺杆挤塑机塑化,其熔融化合物通过一个薄膜模头形成类似瀑布的聚合物薄膜,直接进入双螺杆混炼挤塑机的开口处。
而玻璃纤维粗纱则通过特别设计的粗纱架,经过预热、分散等程序被引入到聚合物薄膜的顶端,与薄膜汇合一同进入到双螺杆挤塑机中,由螺杆切割粗纱,并把它们柔和地混合到
预熔的聚合物当中,然后直接送入压制模具中成型(见下图)。
LFT-D的优点主要体现在两方面:一是降低了成本。
由于是一步法生产,LFT-D生产的大型结构件比二步法生产的GMT或LFT-G压制件的成本低20%~50%;二是制品综合性能优异。
LFT-D压制成型制品的抗冲击性能比GMT略低,但由于比LFT-G成型后的纤维长很多,因此其抗冲击性能明显高于LFT-G。
另外,据大量的研究表明,LFT-D注塑的生产率比标准的LFT-G粒料高,因为LFT-D低的塑化要求改善了纤维发生断纤的状况。
对于成型周期超过1min的部件用LFT-D注塑设备在30s内就能完成。
下图为使用LFT-D生产的2003 大众Golf V前端框架。
LFT的特点
LFT除了具有热塑性塑料的特点之外,还由于混配了长玻纤,使其产生了更为优良的机械物理性能和力学性能。
其特点如下:
1、密度小、强度高。
LFT的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比SMC轻1/4~1/3,它能够以较小的单位质量获得较高的机械强度。
2、可设计性的自由度大。
LFT的物理、化学和力学性能都可以通过合理选择原材料的种类、配比、加工方法、纤维含量来进行设计。
由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就更大。
3、热性能提高。
一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上,一些特殊的LFT使用温度甚至可提高到200℃以上;线膨胀系数比未增强的塑料低1/4~1/2;成型收缩率小,仅为0.2%,提高了制品的尺寸精度;导热系数为0.3~
0.36W(m2?K),与热固性复合材料相近。
4、耐化学腐蚀性。
该特性主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据LFT的使用环境和介质条件,对基体树脂进行优选。
5、良好的介电性能。
LFT不反射无线电波,透过微波性能良好。
在LFT中加入导电材料可改善其导电性能,防止产生静电。
6、废料能循环利用。
LFT可重复加工成型,废品和边角余料能循环利用,不会造成环境污染。
7、较强的柔韧性、抗冲击性能,良好的抗破坏能力和阻尼性能。
LFT在欧美及中国汽车市场的应用
现代汽车工业向着以减轻车身自重为主的节能降耗方向发展。
当前,国际上已把塑料的用量作为衡量一个国家汽车工业水平的重要标志之一。
轻质高强的LFT材料也已从小批量的、少数的汽车零部件的生产扩展到大批量的、广泛的汽车零部件生产,逐步成为制作汽车零部件的主流材料,尤其是在那些机械强度要求高的领域,如前端框架、吸能防撞保险杠、座椅骨架、车身底护板等。
据统计,汽车行业的LFT消耗量约占世界LFT行业总消耗量的80%。
而在汽车行业中,欧美LFT消耗量大约占95%,其中欧洲占80%,美国占15%,如下图所示。
2003年LFT在欧洲的总消耗量以及在各种汽车零部件中的应用比例LFT材料在中国的研发始于20世纪80年代未、90年代初,应该说和欧美相比在时间上相差不多,但是产业化进程和应用开发相对滞后。
目前,中国己形成具有自主知识产权的
GMT、LFT-G和LFT-D产品,并形成了一定的生产能力,但在产品质量和品种门类上与世界先进水平还有相当大的距离。
在己知的国产汽车中,LFT零件原材料90%以上都从欧美、韩国引进,而且其应用主要集中在从欧美、韩国引进的车型中。
巨大的市场前景
可以说,LFT是汽车复合材料工业中的希望之星。
美国Principia咨询公司的市场报告显示(见下表),2004年全球LFT市场需求量约为1.08亿kg(2.39亿磅),销售额为4.5亿美元。
LFT完全可以替代汽车业、工业以及园林草坪业中的压铸件、钢质冲压金属件以及短玻纤增强热塑性复合材料件,但是目前汽车行业仍然是LFT主要的应用领域。
汽车中应用LFT的零部件主要包括:前端模块框架、车身底护板、仪表台骨架、蓄电池托架、备胎仓、外罩、抗冲构件及其他。
总体上看,2004~2009年LFT的市场预计增长率平均可达18%,其中亚洲的增长率最为强劲,约为25%;西欧和北美洲的增长率预计分别可达17%和12%。
表2004~2009年LFT产量和增长率
另据专家统计,目前在全世界LFT的销售总额中,GMT约占52%,LFT-G约占32%,而LFT-D仅占16%。
随着新材料、新工艺、新技术的不断普及和推广,专家预测除GMT 以外,LFT的销售量每年将增长30%,其中LFT-D的增长速度会更快。
2006年,中国的汽车产销已突破700万辆,超过德国成为世界第三大汽车生产国。
从汽车行业的LFT消耗量约占世界LFT行业总消耗量的80%这一统计数字来看,中国LFT材料大有市场。
作者:意大利朗基尔股份有限公司上海代表处蒋鼎丰来源:AI汽车制造业
世界上第一辆全复合材料车身的汽车诞生55年以来,随着汽车工业的快速发展以及大众环保意识和节能意识的不断增强,尤其是在世界能源危机和石油涨价而使得汽车工业向轻量化方向发展的大背景下,作为汽车轻量化主流轻质材料之一的汽车复合材料的材料性能和加工工艺技术也因此而得到了快速发展。
现在,无论是欧、美、日等汽车工业发达国家,还是中国、巴西和印度等汽车工业快速发展中国家,都已在汽车制造中大量采用汽车复合材料,涉及的车辆有商用车、乘用车、工程车、农用车、运动车以及休闲车、军用车和摩托车等几乎所有的车种,主要应用范围也从外履件发展到汽车的各个部分,可以说从车头到车尾,从外饰件到内饰件,从A级表面的车身面板到结构件、半结构件,从车门、车窗到车盖、车顶,从皮卡车厢、车身底护板到发动机气门盖、油底壳,从座椅骨架、底盘到储气罐、传动轴和板弹簧等,到处都有汽车复合材料的应用。
那么,这些形状各异、技术性能各不相同,甚至规格和产量规模都相差甚远的汽车复合材料零部件是如何生产出来的呢?其主要生产工艺有哪些?与常规金属汽车零部件生产相比又有什么优缺点?……我们知道,汽车复合材料是一种可设计的材料,能够方便地实现整体综合优化设计。
其中汽车复合材料制造工艺的可设计性带给了汽车复合材料制造行业无穷的想像力和创新机会。
目前,我们己知的汽车复合材料制造工艺技术就多达几十种,并且还处于不断的创新发展之中。
由于篇幅有限,本文就汽车复合材料主要且常用的6种加工工艺和技术做一初步介绍。
手糊成型工艺和技术
简单地说,手糊成型工艺(Hand Lay-up Molding)是手工作业把玻璃纤维织物和树脂交替地铺层在已被覆好脱模剂和胶衣的模具上,然后用压辊滚压压实脱泡,最后在常温下固化成型为汽车复合材料制品,如图1所示。
尽管在现代汽车复合材料成型新工艺不断涌现的情况下,手糊成型工艺显得比较原始,但是,该工艺却具有其独特的不可替代性,仍然为世界各国汽车复合材料行业特别是中国汽车复合材料行业所广泛采用。
图1 手糊成型工艺示意图
图2所示为手糊成型工艺流程。
从该工艺流程可以看出,手糊成型工艺具有以下优点:不需要复杂的设备和模具,投资低;生产技术容易掌握,且产品不受尺寸形状的限制,适合小批量和大型制件的生产;可与其他材料如金属、木材及塑料泡沫等同时复合制成一体。
这些优点使得手糊成型工艺至今仍然作为汽车复合材料的一种主要成型工艺而被用于小批量地加工各种汽车复合材料制品,如客车和重型卡车的前/后围面板、高顶、导流罩、引擎罩盖、保险杠、挡泥板以及休闲车、农用车的车身等。
此外该工艺还被用于新车开发,如制造概念车和新车样件试制。
图2 手糊成型工艺流程
手糊成型工艺的缺点是生产效率低,生产周期长,工作环境差,因此对于大批量车型的产品不太适合。
此外,由于这种工艺与操作人员的技能水平和制作环境条件有很大的关系,受此影响,在我国,由手糊成型工艺生产的汽车零部件的质量往往不够稳定,从而影响了汽车复合材料的声誉。
需要说明的是,手糊成型工艺并不是劣质汽车复合材料零部件的代名词。
只要严格按照手糊成型工艺的流程和工艺规范,准确掌握手糊工艺的技术要领,同样能够制作出一流水平的汽车复合材料制品。
实际上,国外很多昂贵和精致的高档跑车以及在展会上熠熠生辉的很多概念车均出自于手糊成型工艺之手。
图3所示的Chevrolet Corvette跑车,其车身即为用手糊成型工艺生产出来的。
图3 用手糊成型工艺生产的跑车车身
喷射成型工艺和技术
图4所示为喷射成型工艺(Spray Up Molding)示意图。
该工艺是将混有引发剂和促进剂的两种聚酯分别从喷枪两侧喷出,同时将切断的玻纤无捻粗纱由喷枪中心喷出,使其与树脂在空间均匀混合后沉积到模具上。
当沉积到一定厚度时,用压辊滚压使纤维浸透树脂,排除气泡,在经常温固化后成型为汽车复合材料制品。
喷射成型工艺是在手糊成型工艺的基础上发展起来的。
由于该工艺是借助于机械的手工操作工艺,因此也被称为“半机械手糊成型工艺” 。
图5所示为该工艺的工艺流程。
图4 喷射成型工艺示意图
图5 喷射成型工艺流程
与手糊成型工艺相比,喷射成型工艺的效率提高了2~4倍甚至更高。
其优点是:由于使用无捻粗纱代替了手糊工艺的玻璃纤维织物,因而材料成本更低;成型过程中无接缝,这使得制品的整体性和层间剪切强度更好;可自由调节产品的壁厚、纤维与树脂的比例以及纤维的长度,因而满足了汽车零部件的不同机械强度要求。
由于喷射成型工艺具有效率高、成本低及产品尺寸形状不受限制的优点,因此该工艺在国外汽车复合材料行业中,有逐步取代传统的手糊成型工艺的趋势,例如,客车和重型卡车的很多前/后围面板、侧面护板、高顶及导流罩等都已由喷射成型工艺制作。
喷射成型工艺的缺点是:产品的均匀度在很大程度上取决于操作人员的操作熟练程度;由于
喷射成型的树脂含量高且增强玻纤短,因而制品强度较低;阴模成型比阳模成型难度大,小型制品比大型制品生产难度大;生产现场工作环境恶劣,环境污染程度一般均大于其他的工艺方法;初期投资比手糊成型工艺大。
尽管如此,近年来,喷射成型工艺的缺点正在得到极大的改善。
在国外,已采用机械手编程来替代人工喷射,从而大大提高了产品质量的稳定性,原材料的损耗也被明显降低。
同时,通过对生产现场采取全封闭的管理措施以及进行空气排放处理,使得环境污染问题得到明显改善。
图6所示为采用喷射成型工艺生产的KENWORTH 重卡高顶。
图6 采用喷射成型工艺生产的重卡高顶
缠绕成型工艺和技术
缠绕成型工艺(Filament Winding)是在控制纤维张力和预定线型的条件下,将浸过树脂胶液的连续纤维(或布带、预浸纱)按照一定的规律连续地缠绕到相应于制品内腔尺寸的芯模或内衬上,然后在室温或加热条件下使之固化、脱模,获得一定形状的汽车复合材料制品,如图7所示。
根据纤维缠绕成型时树脂基体的物理化学状态不同,分为干法缠绕、湿法缠绕和半干法缠绕三种。
其中,湿法缠绕的应用最为普遍。
湿法缠绕工艺顾名思义是将连续玻璃纤维粗纱或玻璃布带浸渍树脂胶后,直接缠绕到芯模或内衬上而成型并经固化的成型方法。
而干法缠绕一般仅用于高性能、高精度的尖端技术领域中。
图7 纤维缠绕成型工艺示意图
纤维缠绕成型工艺的优点是:能够按产品的受力状况设计缠绕规律,以充分发挥纤维的强度;比强度高。
一般来讲,纤维缠绕压力容器与同体积、同压力的钢质容器相比,重量可减轻40%~60%;可靠性高。
纤维缠绕制品易实现机械化和自动化生产,工艺条件确定后,缠出来的产品质量稳定、精确;生产效率高。
采用机械化或自动化生产,只需少数操作工人,缠绕速度快(240m/min);成本低。
在同一产品上,可合理配选若干种材料(包括树脂、纤维和内衬),使其再复合以达到最佳的技术经济效果。
现在用纤维缠绕成型工艺生产的CNG/LPG高压气瓶、传动轴和板状弹簧等已广泛应用于大客车、轿车和卡车上。
纤维缠绕成型工艺的缺点是:缠绕成型适应性小,不能缠任意结构形式的制品,特别是具有凹形表面的制品。
这是因为缠绕时,纤维不能紧贴在芯模表面,而是处于架空状态;缠绕成型需要有缠绕机、芯模、固化加热炉、脱模机及熟练的技术工人,不仅投资大,而且技术要求高,因此只有大批量生产时才能获得较大的经济技术效益。
图8所示为采用纤维缠绕成型工艺生产的CNG乘用车用高压气瓶。
图8 采用纤维缠绕成型工艺生产的CNG车用气瓶
树脂传递模塑成型工艺和技术
树脂传递模塑成型工艺(Resin Transfer Moulding)简称RTM。
该技术始于1950年代,是从湿法铺层手糊成型工艺和注塑成型工艺中衍生出来的一种新的闭模成型工艺。
该工艺一般是在模具的型腔中预先放置玻璃纤维增强材料(包括螺栓、螺帽或聚氨酯泡沫塑料等嵌件),闭模锁紧后,将配好的树脂胶液在一定的温度和压力下,从设置于适当位置的注入孔处注入模腔,浸透玻纤增强材料,然后一起固化,最后启模、脱模,得到两面光滑的汽车复合材料制品。
图9所示为RTM工艺示意图。
图9 树脂传递模塑成型工艺示意图
图10所示为RTM的工艺流程。
由于是一种闭模成型工艺,因此RTM的优点是:无需胶衣涂层即可使构件获得双面光滑的表面;在成型过程中散发的挥发性物质很少,有利于工人的健康和环境保护;模具制造与材料选择的机动性强,不需要庞大、复杂的成型设备就可以制造出复杂的、有极好制品表面的大型构件;根据设计需求,增强材料可以按任意方向铺放或局部增强,因而容易实现按制品受力状况铺放增强材料的目的。
成型效率高、投资少以及易实现自动化生产的特点,使RTM工艺日益为汽车复合材料行业所重视,并逐步成为取代手糊成型、喷射成型的主导成型工艺之一。
图10 RTM工艺流程
目前,RTM工艺在汽车制造业中的应用已非常广泛,如乘用车的车顶、后厢盖、侧门框和备胎仓,以及卡车的整体驾驶室、挡泥板和储物箱门等都有用RTM工艺生产的。
图11所示是用RTM工艺生产的ASTON MARTIN跑车的车身侧围板。
图11 用RTM工艺生产的车身侧围板
当然,RTM工艺也存在一些不足,如:双面模具的加工费用较高;预成型坯加工生产设备的投资大;对原材料(树脂和玻纤材料)和模具质量的要求高,以及对模具中的设置与工艺要
求严格等。
目前,对RTM成型工艺的研究和推广不断取得新的进展,主要研究方向集中在:微机控制注射机组、增强材料预成型技术、低成本模具、快速树脂固化体系及工艺稳定性和适应性等方面,涌现出了一系列改良的RTM成型工艺,如Lite-RTM、VARTM、VIP和TERTM 等。
模压成型工艺和技术
模压成型工艺(Compression Molding)是复合材料生产中最古老而又富有无限活力的一种成型方法。
它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化而成型的一种方法,如图12所示。
模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。
当前常用的模压料品种有:热固性复合材料,包括SMC、BMC和TMC等;热塑性复合材料,包括GMT、D-LFT和G-LFT等。
图12 模压成型工艺示意图
在提到模压成型工艺技术时,我们特别要提到汽车复合材料工业广泛应用的热固性复合材料SMC和热塑性复合材料GMT模压成型工艺。
SMC(Sheet Moulding Compounds)又名片状模塑料,是一种带流动性能的预浸材料,其物理形态是一种类似“橡皮”的夹芯材料,“芯材”由经树脂糊充分浸渍的短切玻璃纤维(或毡)组成,上下两面为聚乙烯薄膜所覆盖,以防止空气,灰尘、水汽及杂质等对材料的污染以及聚酯树脂交联剂苯乙烯的挥发损失。
树脂糊里含有聚酯树脂、引发剂、化学增稠剂、低收缩率添加剂、填料、脱模剂和颜料等组分。
SMC主要采用金属对模的模压成型工艺,其压制工艺过程相对比较简单,主要包括片状模塑料的制备和成模两部分。
由于SMC的组成比较复杂,每种组分的种类、质量、性能及其配比等对SMC的生产工艺、成型工艺及最终制品的性能、价格等都有很大的影响,因此,对组分、用量和配比等进行合理的选择,对于制造优良的汽车SMC零部件具有十分重要的意义。
图13所示为SM C模压成型工艺流程。