第 3 章 简单电力网络的计算和分析
电力系统分析穆刚简单电力网络的计算和分析 共56页
W 1
W 2 W Z
式中W 2 为线路末端输出的电能.
《电力系统分析》
29.07.2019
三.变压器的功率损耗、电压降落
电力变压器的物理模型和等值电路
1 T2
变压器的物理模型
1
ZT
2
GT jBT
型等值电路
《电力系统分析》
29.07.2019
.变压器的功率损耗
~ S1
ZT
S~ 1
U1
功率分点:
功率从两侧供给
有功分点: 无功分点:
《电力系统分析》
29.07.2019
推广到n个负荷节点:
S
S
a
n S m
m 1
Zm
U N ( U A1 U A2 )
Z
Z
b
n S m
m 1
Z m
U N ( U A2 U A1 )
另一种方法是由最大负荷利用小时数与最大负 荷时的功率损耗求得,即
《电力系统分析》
29.07.2019
W L P ma x max
其中,可以根据最大负荷利用小时数Tmax 直接 查取最大负荷损耗时间 max。
表3—1所列就这种最大负荷损耗时间 ma与x 最大
负荷利用小时数 T的max 关系.
SP1U2N(jB2L)
等值功率— 升压母线所连的线路充电功率的1/2。
《电力系统分析》
29.07.2019
三. 闭环形网络中的潮流分布
4 G
1
L--1
2
L--2
T--1
电力系统分析穆刚简单电力网络的计算和分析
简化等值电路
Sb
4َ
Z31
S4
U4
U 1 U 4 d I a Z u 1 ( 2 I a I L 2 ) Z D 2 ( 3 I a I L 2 D I L 3 ) Z D 34 I a(Z23ZZ 314 )2I LZ D 223 ZZ 33 4 IL 4D 3d u
第一节 电力线路和变压器运行状况的计算和分析
➢电力线路的物理模型和等值电路
1
L
21
电力线路的物理模型
ZL
2
G jB 2
P 型等值电路
G jB 2
《电力系统分析》
2020/1/19
一.电力线路的功率损耗和电压降落
1.电力线路的功率损耗计算
《电力系统分析》
2020/1/19
图3-1中,设末端电压为U 2 ,末端功率为 S~2 ,则 末端导纳支路的功率为
另一种方法是由最大负荷利用小时数与最大负 荷时的功率损耗求得,即
《电力系统分析》
2020/1/19
W L P ma x max
其中,可以根据最大负荷利用小时数Tmax 直接 查取最大负荷损耗时间 max。
表3—1所列就这种最大负荷损耗时间 ma与x 最大
负荷利用小时数 T的max 关系.
7000
5950
0.85
1200 1500 1800 2150 2600 3000 3500 4000 4600 5200 5900
0.90
1000 1250 1600 2000 2400 2900 3400 3950 4500 5100 5800
0.95
800 1100 1400 1800 2200 2700 3200 3750 4350 5000 5700
第3章 简单电力网络计算和分析
的功率
31
第四步:计算整个网络的功率分布
1. 环式网络中的功率分布
由此,扩展到相应的多节点网络的计算当中:
~ *
S~a
Sm
*
Z
m
(m为除所流出功率节点外的其余各节点)
Z
S~b
S~m
*
Z
m
*
Z
2. 两端供电网络中的功率分布
回路电压为0的单一环网等值于两端电压大 小相等、相位相同的两端供电网络。同时,两端 电压大小不相等、相位不相同的两端供电网络, 也可等值于回路电压不为0的单一环网。
P1RT Q1X T U1
,
U T
P1X T Q1RT U1
U2 (U1 UT )2 (UT )2
T
tan 1
UT
U1 UT
本节要点
掌握线路的功率损耗和电压降落的计算 公式及分析
掌握变压器的功率损耗和电压降落的计 算公式及分析
重要概念
1. 功率分点:网络中某些节点的功率是由两 侧向其流动的。分为有功分点和无功分点。
2. 在环网潮流求解过程中,在功率分点处将 环网解列。
重要概念
1. 环式网络中的功率分布
1. 根据网络接线图以及各元 件参数计算等值电路;
2. 以发电机端点为始端,并 将发电厂变压器的励磁支 路移至负荷侧;
3. 将同一节点下的对地支路 合并;
4. 在全网电压为额定电压的 假设下,计算各变电所的 运算负荷和发电厂的运算 功率,并将它们接在相应 节点。
1. 环式网络中的功率分布
P2RT Q2 X T U2
,
U T
P2X T Q2 RT U2
电力系统教学 3 简单电力网络潮流的分析与计算
L1
1 S~ 1
L2
T
2
~ S2
整P理2 课件jQ2
RL1 j BL1
2
jX L1 j BL1 2
1 j QyL2 2 ~ S1
j QyL1 2
等值负荷
RL2 j BL2
2
jX L2 j BL2 2
RL1
j BL1 2
由于母线电压在额定电 压附近,因此,线路对 地电容所消耗的功率近
似固定
RL1
S~1 U1
1
则:首端电压为
Y 2
U1 U2
3IZZ U 2
3(
S
' 2
)* Z
3U 2
电压降落 纵分量
U 2
( P2'
j
Q
' 2
)* ( R
U2
jX )
(U 2
P2' R
Q
' 2
X
U2
)
j ( P2' X
Q
' 2
R
)
U2
(U 2 U ) j ( U )
即: U1 (U2U)2(U)2
Sy1
Y2)*U12
1 2
(G
jB)U12
1 2
GU12
j
1 2
BU12
Py1 jQy1
整理课件
无功功率损耗为负 值,意味着发出无
功功率
III.电力线路中的功率损耗计算
流出线路阻抗支路功率
S2' S2 Sy2 流入线路阻抗支路功率
S1' S2' SZ
流入线路的功率
110/10.5
整理课件
第三章简单电力网络的计算和分析
2)、年负荷率:一年中负荷消费的电能W除以一年中 的最大负荷Pmax与8760h的乘积,即:
3)、年负荷损耗率:全年电能损耗除以最大负荷时的功 率损耗与8760h的乘积,即:
4)、线路年负荷损耗率与年负荷率的近似关系
K为经验数值。一般取K=0.1~0.4,kmy较低时取较小数值。 5)、计算过程:
A
j B1/2 j B1/2 ΔS0
j B2/2
j B2/2
➢ 开始时按L1侧额定电压计算,计算结果反 归算
方法三:用π型等值电路处理
L-1 b
A
Tc
d
L-2
SLD
A jB1/2
R1+ jX1 b jB1/2
Z’T/k
Z'T Z'T 1-k k²-k
c R’2+ j X’2
d
SLD
jB’2/2 jB’2/2
二、变压器运行状况的计算和分析
1、变压器中的电压降落、功率损耗和电能损耗 用变压器的 型电路
• 功率 A、变压器阻抗支路中损耗的功率
B、变压器励磁支路损耗的功率
C、变压器始端功率
2)、电压降落 (为变压器阻抗中电压降落的纵、横分 量)
注意:变压器励磁支路的无功功率与线路导纳支路的 无功功率符号相反
令:
其幅值为:
相角为 :
简化为 :
3、从末端向始端推导 已知:末端电压U2,末端功率S2=P2+jQ2,以及线路
参数。 求:线路中的功率损耗、始端电压和功率。
功率的求取与上相同,注意功率的流向。 电压的求取应注意符号,令:
4、电压质量指标 1)、电压降落:指线路始末两端电压的相量差。为相量
第三章 简单电力网络潮流的分析与计算
二、二端供电网络的潮流分布
回路电压为0的单一环网等值于两端电压大小 相等、相位相同的两端供电网络。同时,两端电压 大小不相等、相位不相同的两端供电网络,也可等 值于回路电压不为0的单一环网。
Sa U1 1 Z12 2 Z23 Sc 3 Z34 Sb U4 4
S2
S3
以回路电压不为0的单一环网为例, 其求解过程为: 1)设节点1、4的电压差为: U1 U 4 dU 2)用简化的回路电流法解简化等值电路
流经阻抗Z12功率为: * * ~ * ~ U N dU ~ ( Z 23 Z 34 ) S2 Z 34 S3 Sa * * * * * * Z 12 Z 23 Z 34 Z 12 Z 23 Z 34
流经阻抗Z43功率为: * * ~ * ~ U N dU ~ ( Z 32 Z 21 ) S3 Z 21 S2 Sb * * * * * * Z 12 Z 23 Z 34 Z 12 Z 23 Z 34
第一节 第二节 第三节
第一节 电力线路和变压器的功率损耗和电压降落
一、电力线路的功率损耗和电压降落 1.电力线路的功率损耗 其中z=R+jX,Y=G+jB是每相阻抗和导纳,U 为相电压,S为单相功率
~ S1
1
~ ' S1
Z
~ ' S2
2 S2
~
已知条件:末端电压U2,末端功 率S2=P2+jQ2,求解线路中的功 率损耗和始端电压和功率。
返回
第二节 开式网络的潮流分布
一、简单开式网络的潮流计算
步骤:
1.计算网络元件参数,可用有名值或者标么值进行计算, 作出等值网络图,并进行简化。 2.潮流计算 (1)已知末端负荷及末端电压,由末端--始端推算 (2)已知末端负荷及始端电压,先假设末端电压 U 2(0) ~ ~ ~ ( 0 ) (1) ( 1 ) ( 1 ) 和已知的 S 2(0) 向始端推算出U 1 , S 1 ,在由U 1 , S 1 ~ (1) 向末端推算 U 2 , S 2 (1) ,依此类推,知道满足已给 出的末端负荷及始端电压为止。
稳态第三章1
第三章 简单电力网络的计算和分析
1 概述电压(包括幅值和相角)和功率(包括有功功率和无功功率)是表征电力系统稳态运行的主要物理
量。这就需要采用一定的方法确定系统中各处的电压和功率分布(实为功率流,俗称潮流)
潮流(power flow):电网电压、电流、功率的分布。
ΔU' = P1'R + Q1' X U1
δU' = P1'X − Q1' R
U1
δ
=
− tg −1
δU'
U1 − ΔU'
电力系统分析最全复习资料 qq:469182589,email:jenvis@
电力系统分析最全复习资料 qq:469182589,email:jenvis@
求得线路两端电压后,就可计算某些标志电压质量的指标,如电压降落、电压损耗、电压偏移、电压调
整等。
所谓电压降落或线路阻抗中的电压降落是指线路始末两端电压的相量差。电压降落也是相量。它有两个
•
•
分量 ΔU 、δ U ,分别称电压降落的纵分量和横分量。
所谓电压损耗是指线路始末两端电压的数值差(U1—U2)。电压损耗仅有数值。而由式(3—8)或图 3—3 可
,末端功率为
~ S2
=
P2
+
jQ2
,则末端导纳支路功率
ΔS~ y2 为:
( ) ΔS~
y2=
∗
I
y2
•
U
2
=
⎜⎛
Y
•
U
2
⎟⎞∗
•
U
2
电力系统分析穆刚简单电力网络的计算和分析-56页精品文档
《电力系统分析》
17.11.2019
表3—1 最大负荷损耗时间 Tmax(h) 与最大负荷利用小时数
cos 的关系
cos
Tmax(h)
0.80
2000
1500
2500
1700
3000
2000
3500
2350
4000
2750
4500
3150
5000
3600
5500
4100
6000
4650
6500
C TA
S C
S A
L
B TD
S B
S D
简单辐射形网络接线图
S A U A S A Z L
A jBL/2
S B U B S B S B Z T
B
jBL/2 S 0
U D
D
简化等 值电路
S D
《电力系统分析》
17.11.2019
辐射形网络电压、功率的关系:
ZT
S 0
2 S 2
U 2
简化等值 电路
《电力系统分析》
17.11.2019
变电所等值负荷: S1S2ST
变电所运算负荷: S1S1SP2
其中 SP2U2N(jB2L) 等值负荷 + 一次母线所连线路充电功率的1/2
《电力系统分析》
17.11.2019
W 1
W 2 W Z
式中W 2 为线路末端输出的电能.
《电力系统分析》
17.11.2019
三.变压器的功率损耗、电压降落
电力变压器的物理模型和等值电路
1 T2
变压器的物理模型
1
ZT
2
GT jBT
第三章 简电力网络的计算和分析新
第三章 简单电力网络的计算和分析本章阐述的是电力系统正常运行状况的分析和计算,重点在电压、电流、功率的分布,即潮流分布(power flow ,load flow ),我们关心的主要是节点电压,支路功率。
第一节 电力线路运行状况的分析与计算电流或功率从电源向负荷沿电力网流动时,在电力网元件上将产生功率损耗和电压降落。
要了解整个电力系统的潮流分布,必然要进行电力网元件上的功率损耗和电压降落的计算。
一、 电力线路运行状况的计算1、电力线路上的功率损耗和电压降落也可运用欧姆定律等,但需要复数运算,手算时尽量避免复数运算。
电力线路的π型等值电路如图3-1所示,若已知线路参数和末端电压2U •、功率2S •,求始端的电压1U •和功率1S •。
因为这种电路较简单,可以运用基本的电路关系式写出有关的计算公式。
(以单相电路分析,结果推广到三相,采用复功率的计算式)图3-1中,设末端电压(相电压)0220U U •=∠,末端功率(单相功率)222S P jQ •=+,则末端导纳支路的功率损耗2y S •∆为22222()()222yY G B S U U U j *••*∆==-2222221122y y GU jBU P j Q =-=∆-∆ (3-1) 阻抗支路末端的功率2S •'为 2222222()()y y y S S S P jQ P j Q •••'=+∆=++∆-∆222222()()y y P j P j Q Q P jQ ''=+∆+-∆=+ 阻抗支路中损耗的功率Z S •∆为222222222()()Z S P Q S Z R jX U U ••'''+∆==+ 222222222222Z Z P Q P Q R j X P j Q U U ''''++=+=∆+∆ (3-2) 阻抗支路始端的功率1S •'为1222()()Z Z Z S S S P jQ P j Q •••''''=+∆=++∆+∆2211()()Z Z P j P j Q Q P jQ ''''=+∆++∆=+始端导纳支路的功率yl S •∆为2111()()222ylY G BS U U U j *••*∆==-2211111122y y GU jBU P j Q =-=∆-∆ (3-3) 始端功率1S •,为1111()()yl yl yl S S S P jQ P j Q •••'''=+∆=++∆-∆1111()()yl yl P j P j Q Q P jQ ''=+∆+-∆=+这就是电力线路功率计算的全部内容。
第三章 简单电力网的计算分析
第三章简单电力网络的计算和分析1.什么是电力系统潮流?2.如何计算电压降落和功率损耗?3.电力线路运行特性、潮流分布特点4.如何手工计算潮流?需掌握的问题基本概念:¾电力系统潮流:是指系统中所有运行参数的总体,包括各个母线电压的大小和相位、各个发电机和负荷的功率及电流,以及各个变压器和线路等元件所通过的功率、电流和其中的损耗。
¾潮流计算的任务是在已知某些运行参数的情况下,计算出系统全部的运行参数。
¾计算尺-》交流计算台-》计算机¾潮流计算的基础是电路计算,所不同的是电路计算中关心的和给定的量是U和I,而潮流计算中已知的或给定的是P 或者Q而不是I。
-》以电流I为桥梁建立起P、Q和U的关系,直接用U和P、Q进行潮流计算。
¾所需知识(1)根据系统状况得到已知元件:网络、负荷、发电机(2)电路理论:节点电流平衡方程(3)非线性方程组的列写和求解¾历史手工计算:近似方法计算机求解:严格方法¾已知条件负荷功率发电机电压Ld Ld P jQ +example三节点例子2G S 1G S 3V 1G 2G 3LD S 已知条件负荷功率发电机电压、33Ld Ld P jQ +1V 2V 求解1G S 所发功率1G 2G S 所发功率2G 以及各母线电压(幅值机相角)、网络中的功率分布及功率损耗等3.1 网络元件的电压降落和功率损耗一、网络元件的电压降落元件首末端两点电压的向量差。
12()dU U U I R jX=−=+电流功率始末两端功率不相等??以U 2为参考相量1.已知末端功率和末端电压的情况*2*2S IU = *212*2()S dU U U R jX U =−=+ *212*2()S U U R jX U =++ *2222*2222222222()()P jQ S dU R jX R jX U U P R Q X P X Q R jU U U j U δ−=+=++−=+=∆+ 220U U =∠D2U ∆2U 与同相,称为电压降落的纵分量,其值为2222P R Q XU U +∆=2U δ2U 与相位相差90o ,称为电压降落的横分量,其值为2222P X Q R U U δ−=(b)O2U 2U 2dU 1U 2U因此, 由末端电压和功率可求得首端电压1122222U U U dU U U j U θδ=∠=+=+∆+D 221222()()U U U U δ=+∆+1222U tgU U δθ−=+∆在通常的线路长度下,线路两端电压的相位差较小,在此情况下222U U U δ+∆>>在作电压降的近似估算时,可以忽略电压降的横分量,即认为2212222P R Q XU U U U U +≈+∆=+同样,也可由首端电压和功率求得末端电压*112*1()S dU U U R jX U =−=+ *121*1()S U U R jX U =−+ 110U U =∠D 取始端电压为参考相量,即令111111111PR Q X P X Q R dU j U U U j U δ+−=+=∆+ 纵分量横分量2211111U U U dU U U j U θδ=∠−=−=−∆−D 222111()()U U U U δ=−∆+1111U tgU U δθ−=−∆忽略电压降的横分量1121111PR Q X U U U U U +≈−∆=−•两种分解∆U 1U1P2 R + Q2 X ⎫ ∆U 2 = ⎪ U2 ⎪ ⎬ P2 X − Q2 R ⎪ δU 2 = ⎪ U2 ⎭δU 1U 2 ∆U 2•δU 2P1 R + Q1 X ⎫ ∆U 1 = ⎪ U1 ⎪ ⎬ P X − Q1 R ⎪ δU 1 = 1 ⎪ U1 ⎭PR + QX ∆U = U PX − QR δU = U⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭特别注意: 计算电压降落时,必须用同一端的电压与功率.电压降落公式的简化 高压输电线路的特性 X>>R,可令R≈0,则:PR + QX ⎫ ∆U = ⎪ ⎪ U ⎬ PX − QR ⎪ δU = ⎪ U ⎭QX ∆U = U PX δU = U⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭电压损耗和电压偏移电压损耗:两点间电压模值之差V1δ∆U = U1 − U 2 = AG ≈ ∆U 2或表示为百分值:ABGDU1 − U 2 ∆U % = ×100 UNOV2∆V2电压偏移:线路始末端电压与线路额定电压之差U1 − U N U2 −U N ×100或者 ×100 电压偏移 (%) = UN UN二、网络元件的功率损耗~ S1 ~ S1' ∆SY 1•Z=R+jX~ S 2'~ S2∆SY 2 Y 2•U1Y 2线路U2•U1~ S1~ S 1' ∆SYTjBTRT + jX T~ S2•U2变压器GT1. 线路的功率分布和功率损耗对于线路中的功率损耗和功率分布,常应用其∏型等值 电路来进行分析和计算 其中,线路电压以及通过功率的假定正方向如图所示。
电力系统分析基础第三章
R
X
如单位长度电阻相同:S LD
n
S Li
i
i1
2) 功率分点—某一节点功率,有两侧电源供给,标记
有功与无功功率分点可能不在同一点上
3) 两端网络从功率点分开,按开式网计算功率损耗及电压降
4) 求功耗时,功率分点电压未知,近似以UN代
3 U N IˆL2 S L2
S 1
S L1 Zˆ 1 S L1 Zˆ 2 Zˆ
e U 3 j30 N
e Uˆ Uˆ 3 j30
a
a '
Zˆ
S L1 Zˆ 1 S L1 Zˆ 2 Zˆ
U N
Uˆ a Uˆ a' Zˆ
2
S Li
Zˆ i
i1
Zˆ
U N
Uˆ a Uˆ a' Zˆ
RⅡ + jXⅡ
Lb
RⅠ+ jXⅠ
a
La
11
c 11
b1 1
BⅢ 2
2 BⅢ
2 BⅡ 2 BⅡ
2 BⅠ 2 BⅠ
d S RⅢ+ jX Ⅲ Lc
S RⅡ + jXⅡ Lb
RⅠ+ jXⅠ
a S La
合并简化
1 2
B
Ⅲ
1 2
Bc
c
b
1 2
Bb
1 BⅠ 2
1、已知Ua时(精确计算)
第一步 末端导纳消耗功率:
2
II段
S II
Sb UN
RII
j XII
S C S b S 'C S II
III段
2
S III
SC UN
RIII
3简单电力网络的计算和分析
第三章 简单电力网络的计算和分析本章阐述的是电力系统正常运行状况的分析和计算,重点在电压、电流、功率的分布,即潮流分布(power flow ,load flow ),我们关心的主要是节点电压,支路功率。
3-1简单电力线路运行状况的计算和分析一、电力线路的电压降落和功率损耗~S '1~S 2~S '2~S 2U U Z电力线路的电压和功率-图13图3-1中,设末端电压为2U ,末端功率为222~jQ P S +=,则末端导纳支路的功率2y S ∆为222222121~jBU GU S y -=∆阻抗支路末端的功率2~S '为 22222~~~Q j P S S S y '+'=∆+=' 阻抗支路中损耗的功率z S ~∆为z Z z Q j P X U Q P j R U Q P S ∆+∆='+'+'+'=∆222222222222~阻抗支路中始端的功率1~S '为1121~~~Q j P S S S z '+'=∆+'='始端导纳支路的功率1~y S ∆为11212112121~y y y Q j P jBU GU S ∆-∆=-=∆始端功率1~S 为11111~~~jQ P S S S y +=∆+'=这就是电力线路功率计算的全部内容。
作业4:如图所示电力系统,元件参数在图中标出。
求用标么值表示的电力系统等值电路。
取U与实轴重合,如图3-2。
则由 Z U S U U *⎪⎪⎭⎫ ⎝⎛'+=2221~可得)()()(222222222221U X Q R P j U X Q R P U jX R U Q j P U U '-'+'+'+=+'-'+= 再令U U X Q R P U ∆='+'+2222;U U X Q R P δ='-'222将上式改写为U j U U U δ+∆+=)(21 则又可得2221)()(U U U U δ+∆=+ 而图3-2中的相位角,或所谓功率角则为UU Utg ∆+=-21δδ电压降落:U j U δ+∆ 电压损耗:221U U U ∆≈-220/10.5kv 200km 50km ΔPk =404kw Uk%=14.45 X1=0.432Ω/km B1=0.87μF/km S N =63MVA电压偏差:%1001⨯-N N U U U 、%1002⨯-NNU U U 讨论:1.电压损耗 222U X Q R P U '+'=∆由上式可知降低损耗的方法有:提高电压等级;增大导线截面积;减小线路中流过的无功功率。
第三章 简单电力系统潮流计算
S%Y1
S%Y 2
S%ZT S%YT
基于末端功率和首端电压的功率分布计算举例
S%ZL
S%Y1
S%Y 2
S%ZT S%YT
基于末端功率和首端电压的功率分布计算举例
g
UA
g
g
dUL
UB
S%Y1
S%Y 2
g
dUT
g
g
U C U C
S%YT
基于末端功率和首端电压的功率分布计算举例
电力线路的电压计算
——参考首端电压的电压降落横分量与纵分量
电力线路的电压计算
——电压质量指标
线路的潮流计算例题
S1 P1 jQ1
+
Y
U1
2
Z=R + jX
S2 P2 jQ2
+
Y
2
U2
已知: U&2 11o, S%2 1 j1,Y / 2 j1, Z 1 j1
S%z dU& S%Y 2
电力线路的电能损耗计算
——理论计算公式
电力线路的电能损耗计算 ——常用的基本概念*
电力线路的电能损耗计算
——基于年负荷损耗率的工程计算法
年负荷率低时k取小值
电力线路的电能损耗计算
——输电效率与线损率
或网损率
电力线路运行状况的分析 ——空载线路的首末端电压
U&1 R jX U&2
基于末端功率和首端电压的功率分布计算举例
环形网络中的潮流分布
——简单环形网络的定义
• 环形网络(闭式网络):任何负荷都能从两个或两个 以上的方向得到功率,包括环网和双端(电源)供电 网络。
电力系统分析第3章 简单电力网络的计算和分析
25
对发电厂的变压器,则应有
由式(3-27)、(3-28)、(3-27a)可见,额定条件下运行时, 变压器电抗中损耗的无功功率就等于以标么值表示的短路 电压乘以额定功率;电纳中损耗约无功功率则等于以标么 值表示的空载电流乘以额定功率。计算电阻和电导中损耗 26 的有功功率时,要注意制造厂提供的单位(kW)与电力系统 计其中常取的单位(MW)之间的换算。
2.节点注入功率、运算负荷和运算功率 求得变压器中的功率损耗后,可将变电所负荷侧的 负荷功率P2、Q2与按式(3-25)、(3-26)求得的功率损耗 相加,得直接联接在变电所电源侧母线上的等值负荷功 率P1、Q1;或从发电厂电源侧的电源功率P1、Q1中减去按 式(3-25a)、(3-26)求得的功率损耗,得直接联接在发 电厂负荷侧母线上的等值电源功率P2、Q2。 等值电源功率,在运用计算机计算并将发电厂负荷 侧母线看作为一个节点时,又称该节点的注入功率,即 电源向网络注入的功率,而与之相对应的电流则称注入 电流。注入功率或注入电流总以流入网络为正。从而, 等值负荷功率,即负荷从网络吸取的功率,就可看作为 具有负值的变电所(电源侧母线)节点注入功率。 27
第三章 :简单电力网络的 计算和分析概念
本章阐述的都是电力系统正常运行状况的 分析和计算,重点在电压、电流、功率的分 布,即潮流分布。侧重于物理现象的分析和 简单网络潮流分布的手算方法和控制。主要 阐述两个问题:电力线路和变压器运行状况 的计算和分析;简单电力网的潮流分布和控 制。
1
本章主要内容
2
12
上式虽较严格,却因计算工作量太大而不实用。工程实践 中,特别是进行规划设计时,往往用根据统计资料制定的 经验公式或曲线计算电能损耗。 对不同行业,可从有关手册中查得它们的最大负荷利 用小时数;并求得年负荷率。 所谓最大负荷利用小时数Tmax系指一年中负荷消费的电 能W除以一年中的最大负荷Pmax。即Tmax=W/Pmax。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路的末端电压为:
U 2 U1 Z I
*
只是换了下标,公 式形式与前一样
U U 1 U 2
将电流用功率表示:
S1 P 1 jQ1 I * U1 U1
P 1 jQ1 ( R jX )( ) U1 PR P 1 Q1 X 1 X Q1R j U1 U1
P2 R Q2 X U 2 U2
U 2
P2 X Q2 R U2
成立的条件:
负荷为感性负荷,即S=P+jQ 已知节点2的电压U2和负荷S2
提出疑问:
如果已知的是节点1的电压和负荷,如何求解? 如果是容性负荷怎么办?
8
假设:已知首端功率和电压,负荷为感性,求末端电压
33
同一电压等级开式网计算
S d
d
S S Lb Lc RⅢ jX Ⅲ S R jX S R Ⅰ jXⅠ S S c c a a Ⅱ Ⅱ b c Sb b Sa
BⅢ 2
QⅢ
Qc
Bc 2
Qb
Bb 2
Q Ⅰ
B Ⅰ 2
S La
第一步:设Ua为参考电压
简单电力网络的计算和分析
1
稳态计算
为了使电力系统能够安全、优质、经济的运行, 在电力系统的设计、运行以及研究工作中,需要 针对系统的不同运行状态,做多种多样的计算。 本章主要研究稳态计算。 稳态计算:
不考虑发电机的参数,作为功率注入元或者电压恒定的 边界节点。 根据给定的有功、无功负荷,发电机的有功出力和机端 母线电压幅值,求解电力网中其它各母线的电压、各条 线路中的功率以及功率损耗。 也叫潮流计算,不仅经常进行,还是其它计算的基础。
线路首端导纳中的功率损耗
Q B1 1 BU 12 2
23
变压器中的功率损耗
YT ZT
变压器中的功率损耗包括两个部分:
可变损耗:ZT中的功率损耗与通过变压器的负荷 有关,是随机的。 固定损耗:YT中的功率损耗只与电网的电压有关, 变化范围小,可当作是不变的。
24
双绕组变压器
两者表达式并不相同,这是因为选择的参 考向量不同导致的。 U U , U U 计算结果一定满足: U U
1 1 2 2
P2 X Q2 R j U2
tg 1
2
U 2 U 2
tg 1
1
U1 U1 10
电压降落的通式表达
线路首端导纳 中的功率损耗
线路末端导纳 中的功率损耗
19
线路首末端功率损耗
线路首端导纳中的功率损耗
Q B1 1 BU 12 2
线路末端导纳中的功率损耗
Q B 2 1 2 BU 2 2
20
线路阻抗中的功率损耗
已知首端电压和首端功率
2 P 3I R 3 Q 3I 2 X 3
d Ⅲ G
d
BⅢ 2
c
S Lc
Ⅱ
b
S Lb
Ⅰ
Ua a
S La
画出等值电路图,并标注参数
RⅢ jX Ⅲ
BⅢ 2
c
S Lc
RⅡ jXⅡ
BⅡ 2 BⅡ 2
b
S Lb
R Ⅰ jXⅠ
B Ⅰ 2
a
B Ⅰ 2
S La
30
同一电压等级开式网
简化等值电路图 S S Lb Lc RⅢ jX Ⅲ R RⅡ jXⅡ Ⅰ jXⅠ d a S La c b B BⅢ Bb Bc Ⅰ 2 2 2 2
2
QTX
U k %S 100S N
2
I0 % QTB SN 100
26
开式网潮流计算
计算步骤
1、计算元件参数 2、形成等值电路 3、计算电压降落和功率损耗
27
1、计算元件参数
计算线路和变压器参数
线路用Π型等值模型
R rl 1
2 PKNU N RT 2 1000S N
3、求第Ⅱ段线路阻抗中的电压降落及功率损耗
电压偏移
某点的电压有效值与相应线路标称电压之差。 衡量某一点的电压质量。
电压调整
某点的电压有效值与相应线路空载电压之差。 衡量某一点的电压空载与负载时的差值。
15
输电效率
定义:
线路末端输出有功功率P1与线路始端输入有功 功率P2的比值,常以百分值表示。
因为线路始端有功功率P1总大于末端有功 功率P2,因此输电效率总小于1。
U U1 U 2
电压损耗百分比:
电压损耗与相应线路标称电压相比称为电压损耗 U1 U 2 百分值
U %
UB
100
12
电压偏移
定义:
网络中某点的实际电压有效值与相应线路标称电 压的差值称之为该点的电压偏移。
电压偏移百分值:
与标称电压的比值的百分值
U - UB 电压偏移% 100 UB
32
同一电压等级开式网计算
S d
d
S Lb S Lc RⅢ jX Ⅲ S R jX S R Ⅰ jXⅠ S S S S c c b b a a a Ⅱ Ⅱ c b
BⅢ 2
QⅢ
Qc
Bc 2
Qb
Bb 2
Q Ⅰ
B Ⅰ 2
S La
第一步:设Ua为参考电压
34
同一电压等级开式网计算
S d
d
S S Lb Lc RⅢ jX Ⅲ S R jX S R Ⅰ jXⅠ S S c c a a Ⅱ Ⅱ b c Sb b Sa
BⅢ 2
QⅢ
Qc
Bc 2
Qb
Bb 2
Q Ⅰ
B Ⅰ 2
S La
第二步:计算第Ⅱ段线路电压降落和功率损耗
9
比较两者的关系
已知首端电压和功率,求末端电压 已知末端电压和功率,求首端电压
P2 R Q2 X U 1 U 2 U U 2 U2
PR 1 Q1 X U 2 U 1 U U1 U1
P 1 X Q1R j U1
表达式
其中: U
U
dU U jU
PR QX 电压降落纵分量 U
PX QR 电压降落横分量 U
注意:这个公式是在感性负荷的情况下得 到的,如果是容性负荷,则上述公式中无 功功率前的符号应变号。
11
电压损耗
定义:
电力网任意两点电压有效值之差,近似等于电压 降落的纵分量。
举例分析:
发电机通过一条线路向一个用户供电。已知线路 末端电压U2和负荷SL。
4
简单电力系统电压降落分析
线路的首端电压为:
U1 U 2 Z I
*
负荷为感性
U U 1 U 2
将电流用功率表示:
S2 P2 jQ2 I * U2 U 2
4、计算b点电压 5、计算功率Sa’
U U U b a Ⅰ S S S
a a Ⅰ
第二步:计算第Ⅱ段线路电压降落和功率损耗
S S jQ 2、确定送往b点的负荷 S b a Lb b
Bb 2 1、计算第Ⅱ段线路末端电纳中的功率损耗 Qb U b 2
损耗过大时,可能因过热而烧毁绝缘和融化导体,致使设 备损坏,影响系统的安全运行。
17
电力线路功率损耗
已知线路末端电压和三相负荷,线路用Π型 等值电路表示:
则线路的功率损耗由三个部分组成:
线路末端导纳中的功率损耗 阻抗中的功率损耗
线路首端导纳中的功率损耗
18
线路Π型等值电路
线路阻抗 中的功率 损耗 ΔP+jΔQ
首端电压有效值:U (U U ) 2 U 2 1 2 2 2 首末端电压相位差: tg 1
U 2
U 2 U 2
6
电压降落向量图
电压 降落
U1
dU
电压 降落 的横 分量
I
jI X
U
U2
IR
U
电压降落的 纵分量
7
需要注意的问题
公式
P2 100 输电效率% P 1
16
功率损耗
功率损耗的产生:
电力线路、变压器等设备具有阻抗和导纳; 电流流过阻抗和导纳将产生有功和无功功率损耗。
损耗对电力系统运行实不利的:
迫使投入运行的发电设备容量大于用户的实际负荷
多装设发电机组 多消耗大量的一次能源
损耗产生的热量会加速电气绝缘的老化
21
线路阻抗中的功率损耗计算通式
P Q P Q
2 2
U
2
2 2
R X
P Q U
2
注意:其中P、Q和U是线路中某一端节点所对应 的有功功率、无功功率和电压幅值。
22
电力线路功率损耗
线路末端导纳中的功率损耗
Q B 2 1 BU 22 2
阻抗中的功率损耗
P 2 Q2 P 2 Q2 P R Q X 2 2 U U
2
潮流计算的作用
电力系统规划中用于选择系统的接线方式、 选择电气设备及导线的截面;在电力系统 的运行中,用于确定运行方式和合理的供 电方案,确定电压调整措施等;提供继电 保护、自动装置的设计与整定依据。