黑龙江省龙东南四校2014-2015学年高二下学期期末联考数学(文)试卷

合集下载

学14—15学年下学期高二期末考试数学(文)(附答案)

学14—15学年下学期高二期末考试数学(文)(附答案)

12i nb ==∑B =( C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关班级__________________________ 姓名___________________________4.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )1.8A 1.7B 1.6C 1.5D 5.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11 6.已知()0,1a =-,()1,2b =-,则(2)a b a +=( )A .1-B .0C .1D .2 7.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( ).0A .2B .4C .14D8.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ).2A .1B 1.2C 1.8D9.已知长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。

将动点P 到AB 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为( )10. 在回归直线方程表示回归系数中b bx a y,ˆ+= ( )A .当0x =时,y 的平均值B .当x 变动一个单位时,y 的实际变动量A B C DC .当y 变动一个单位时,x 的平均变动量D .当x 变动一个单位时,y 的平均变动量11. 在对分类变量X, Y 进行独立性检验时,算得2k =7有以下四种判断(1) 有99﹪的把握认为X 与Y 有关; (2)有99﹪的把握认为X 与Y 无关;(3)在假设H 0:X 与Y 无关的前提下有99﹪的把握认为X 与Y 有关; (4)在假设H 1: X 与Y 有关的前提下有99﹪的把握认为X 与Y 无关 .以上4个判断正确的是 ( )A . (1)、(4)B . (2)、(3)C . (3)D . (4)12. 下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则180=∠+∠B AB .由平面向量的运算性质,推测空间向量的运算性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除二、填空题(本题共4个小题,第个小题5分,合计20分) 13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .14. 某大学的信息中心A 与大学各部门、各院系B ,C ,D ,E ,F ,G ,H ,I 之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元).请观察图形,可以不建部分网线,而使得中心与各部门、院系彼此都能连通(直接或中转),则最少的建网费用(万元)是_____________________.15. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .16. 如图,用与底面成30︒角的平面截圆柱得一椭圆截线,则该椭圆的离心率为_______.三、解答题(17题10分,其他的题12分,合计70分)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC 且BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度,(不要求计算出具体值,给出结论即可)5060809010070满意度评分频率/组距0.0050.010 0.015 0.020 0.025 0.0350.030 B 地区满意度调查频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:((2)如果y对x有线性相关关系,求回归直线方程;20.(本小题满分12分)在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人。

14-15(下)高二文科数学期末试卷

14-15(下)高二文科数学期末试卷

2014-2015学年度第二学期高二级文科数学期末考试试卷本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上.2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁和平整.第一部分选择题(共 60 分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =A .{1,2}B .{1,9}C .{1}D .{1,4}2、已知点()()1,3,4,1,A B AB -则与向量方向相同的单位向量为A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭, 3、集合A={2,3},B={1,2,3},已知点(,),,M x y x A y B ∈∈,则点(,)M x y 落在直线4x y +=上的概率是A .23B .13C .12D .164、i 为虚数单位,则20151+1i i ⎛⎫⎪-⎝⎭A .iB .1-C .i -D . 15、函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是A .4,3πB .2,6π-C .4,6π-D .2,3π-6、设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =A .2-B .4-C .6-D .27、函数()2()=ln 1f x x +的图象大致是.8、阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是A .S <8B .S <9C .S <10D .S <119、一个多面体的三视图如图所示,则多面体的 体积是 A.7 B.476 C.6 D.23310、已知0>>b a ,椭圆1C 的方程为12222=+b y a x ,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 A.02=±y x B.02=±y x C. 02=±y x D.02=±y x11、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有黍米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛B.22斛C.36斛D.66斛12、已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-俯视图视图主正)(视图左侧)(第二部分非选择题 (共 90 分)二.填空题:本大题共4小题, 每小题5分, 共20分. 把答案填在答卷的相应位置13、若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____________.14、某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.15、若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16、已知F 为双曲线22:=1916x y C -的左焦点,,P Q 为C 双曲线上的点.若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ 上,则PQF ∆的周长为__________.三、解答题:必做大题共5小题,共60分;选做大题二选一,共10分;解答应写出文字说明、证明过程或演算步骤17.(本题满分12分)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求角C 和BD ;(2)求四边形ABCD 的面积.18.(本题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(II )估计这种产品质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);(III )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19. (本题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ; (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -锥的侧面积.••••••••••••••••O20.(本题满分12分)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积 21.(本题满分12分) 设函数()ln xf x e a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时()2ln f x a a a ≥-.请考生在第21、22题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E.(1)若D 为AC 中点,证明:DE 是 O 切线; (2)若OA = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求12,C C 的极坐标方程.(2)若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.2014-2015学年度第二学期高二级文科数学期末考试答卷成绩:注意事项:1、本答卷为第二部分非选择题答题区.考生必须用黑色字迹的钢笔或签字笔在各题目指定区域内的相应位置上答题,超出指定区域的答案无效.2、如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.。

黑龙江省龙东南四校2014-2015学年高二语文下学期期末联考试题

黑龙江省龙东南四校2014-2015学年高二语文下学期期末联考试题

2014——2015下学期期末联考高二语文试题一、现代文阅读(9分,每小题3分)西方古代艺术的尚光性易晓浪阅读下面的文字,完成1——3题。

如果说中国人在远古的鱼纹盆中便开始体现出对水的尊重,那么旧石器时代西班牙阿尔塔米拉洞窟壁画中那“受伤的野牛”就能够让我们看到远古的西方人对光的敏感。

尽管我们还不敢肯定地说那就是原始人对光影的描绘,但从黑、褐、赭、白的色彩有序递进变化中,我们分明已经看到了光的明暗显现,有如浅浮雕的拓片那样的立体空间感。

也许这只是原始人在黑暗的穴居环境中对明暗的偶然一次描绘,以至于我们还无法断定原始绘画对光的表现有无意识。

然而,后来成就于地中海爱琴文化时期的米诺斯“迷宫”装饰壁画,其鲜明轻快的色彩,充满生气,完全是阳光沐浴下的情景。

不仅如此,当时的克里特人已经懂得运用矿物质掺和树胶的颜料营造画面本体的气质,这种气质又在阳光的照耀下挥发到空气中,弥漫了整个克诺索斯宫。

自然的光芒已经成了画面散发出生命所赖以呼吸的空气。

古老的克里特人把光和画融化成了一个整体,这种艺术感染力至今依然令我们叹服。

其光彩绚烂的大自然主题,自在优雅的开放风格,与同时期中国商代艺术繁丽、深沉、奇诡的艺术风格有着天壤之别。

古希腊艺术家关心的是如何才能塑造出彰显事物本质的典型形象。

古希腊艺术(尤其是雕塑)本身所散射出来的耀眼光辉,似乎让那些来自画外空间而作用于绘画的光线显得暗淡失色。

又由于古希腊画作遗存的缺乏,仅从当时的瓶画风格来看,希腊绘画已经没有了从前的鲜艳光彩。

如果说他们依然有光的话,那就是逆光(黑绘式)与顺光(红绘式)的剪影,再加上衣纹与边饰图案所带来的光斑闪动感。

从文艺复兴开始,画家们开始打破一些禁忌,特别是开始对外光进行大胆的描绘,并且很注重明暗光线的对比,背景多作昏暗的、隐约的处理。

古典时期的绘画对暗部光线的把握能力超过了对亮部的把握,并不是说古典时期画家的亮部画得不好,这里指的是他们对亮部的处理是比较克制的,但由于对光的注重,这些画家们都可以把暗部光线画得非常有氛围,以至于很多画面都弥漫在神秘莫测的氛围中。

2014-2015学年度高二第二学期文科数学测试题

2014-2015学年度高二第二学期文科数学测试题

2014-2015学年第二学期高二测试题数学试题(文科)(本试卷共4页,21小题,满分150分。

考试用时120分钟)班别: 姓名: 座号: 分数:一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1.已知集合{0,1,2},{|20}A B x x ==-<,则AB = ( )A .{}0,2B .{}0,1C .{}1,2D .{}0,1,2 2.复数i-12等于( ) A.i --1 B.i +-1 C.i -1 D.i +1 3.设等比数列}{n a 的公比,21=q 前n 项和为n S ,则44S a =( ).A .31B .15C .16D .324.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40B .36C .30D .205.下列函数中,既是偶函数,又是在区间()0,+∞上单调递减的函数是( ) A .ln y x =B .2y x =C .cos y x =D .||2x y -=6.已知平面向量a,b 的夹角为6π,且=3⋅a b ,3=a ,则b 等于( ) A. 3 B. 32 C.332 D. 27.若正三棱柱的三视图如图所示,该三棱柱的表面积是( ) A. 623+ B.932C. 63+D. 38.执行如图所示程序框图.若输入3x =,则输出的k 值是( ) A .3 B .4 C .5 D .69.圆()221x a y -+=与直线y x =相切于第三象限,则a 的值是( ).A .2B .2-C .2-D .2 10.设函数3()4(02)f x x x a a =-+<<有三个零点123,,x x x , 且123x x x <<则下列结论正确的是( )A .11x >-B .20x <C .201x <<D .32x >二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分. 11.在ABC △中,若13,1,cos 3b c A ===,则a = . 12.不等式组201x y y x ≤⎧⎪≥⎨⎪≤-⎩表示的平面区域的面积是 .13. 2sin(),44πα+=则sin 2α= . 14.(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线过圆C :θρcos 22=的圆心C ,且与直线OC 垂直,则直线的极坐标方程为 . 15.(几何证明选讲选做题) 如图,090ACB ∠=,AC 是圆O 的切线,切点为E ,割线ADB 过圆心O ,若3,1AE AD ==,则BC 的长为 .开始 0k = 5x x =+1k k =+结束输入x是否输出k23?x >EDCBAO三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()1sin cos f x x x =+⋅.(1)求函数)(x f 的最小正周期和最小值;(2)若3tan 4x =,0,2x π⎛⎫∈ ⎪⎝⎭,求)24(xf -π的值.17.(本小题满分12分)对某校高一年级学生参加社区服务次数统计,随机抽去了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下: (1)求出表中,,,M r m n 的值;(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少一人参加社区服务次数在区间[)25,30内的概率.18.(本小题满分14分)如图,在三棱锥V ABC -中,VC ⊥底面ABC , ,AC BC D⊥ 为AB的中点,AC BC VC a ===.(1)求证:AB ⊥平面VCD ;(2)求点C 到平面VAB 的距离。

黑龙江省龙东南四校2014-2015学年高一下学期期末联考语文试卷

黑龙江省龙东南四校2014-2015学年高一下学期期末联考语文试卷

资料概述与简介 2014-2015学年度下学期龙东南四校期末联考 高一(语文)试题 1.试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,满分150分,时间为150分钟。

考生作答时,将答案写在答题卡上,在本试卷上答题无效。

考试结束后,只交答题卡。

2.答题前务必先将自己的姓名、准考证、班级填写在答题卡上,并认真核对。

3.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整、笔迹清楚。

4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

5.保持答题卡面清洁,不折叠、不破损。

第Ⅰ卷阅读题 一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题。

汉魏六朝的家教特点 1.关于汉魏六朝家庭教育的表述,正确的一项是( ) A.积极推行以法为教、以吏为师的文教政策,为家庭教育打下了坚实的基础。

B.魏晋南北朝时期学、佛学、史学以及一些自然科学技艺及生产技艺等,也进入了家庭教育范围,但不同阶层的家庭教育内容不尽相同。

C.魏晋南北朝时期读书无用的观念也渗透到不同阶级和阶层的家庭教育实践中,造成家庭教育日渐衰落的局面。

汉朝家庭教育在内容上以学为主,注重以三纲五常之教统治人们思想和以孝道之教稳定家庭与社会的伦理道德关系。

2.下列对原文内容理解,不符合原文意思的一项是( ) A.皇家的教育主要围绕皇太子和诸王子展开,为此垄断文化以作为皇家宗室的教材,收买第一流的学者充任宫廷教师,建立宫廷教师制度和教学制度。

B.汉魏六朝的家庭教育,尽管有由盛转衰的趋向,但是阶级性和等级性也日益明显起来,家庭教育功能日渐强大,这使得封建社会制度和家庭制度不断发展和完善。

C.汉魏六朝的家庭教育呈现贵族家庭教育、官宦家庭教育、平民家庭教育的家教制度的态势。

D.汉魏六朝的家庭教育,一直沿续和发展到封建社会末期,在客观上对我国封建社会政治、道德、家庭、社会秩序等,都产生了深刻的影响。

3根据原文的内容,下列分析不正确的一项是( ) A.汉朝经艺之所以在官宦之家的家教中占有十分重要的地位,主要还是为了培养子孙的德才学识以满足官宦子弟参加经学考试和担任朝廷官职的需要。

2014-2015学年高二下学期期末考试数学(文)试题带答案

2014-2015学年高二下学期期末考试数学(文)试题带答案

2014-2015学年度第二学期期末测试高二年级文科数学一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题4分,共40分).1、 设集合{}2|M x x x ==,{}|lg 0N x x =≤,则M N ⋃=( ) A .[0,1] B .(0,1) C .[0,1] D .(-∞,1)2、命题“存在实数x ,使210x x +-<”的否定为( )A .不存在实数x ,使210x x +-≥B .对任意实数x ,都有210x x +-≥C .存在实数x ,使210x x +-≥D .对任意实数x ,都有210x x +-<3、设f (x )=102,0x x x ⎧≥⎪⎨<⎪⎩,则((2))f f -=( )A .1-B .14C .12D .324、在等差数列{}n a 中,若2812a a +=,n S 是数列{}n a 的前n 项和,则9S =( )A .48B .54C .60D .665、下列函数中,既是偶函数又在(0,)+∞上是减函数的是( )A .3y x =B .x y e -=C .lg y x =D .21y x =-+ 6、若等比数列{}n a 的首项为1,且14a ,22a ,3a 成等差数列,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为A .3116B .2C .3316D .16337、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时()f x 是增函数,则(3)f -,(2)f -,()f π的大小关系是( )A .()(2)(3)f f f π>->-B .()(3)(2)f f f π>->-C .()(3)(2)f f f π<-<-D .()(2)(3)f f f π<-<-8、在等差数列{}n a 中,135105a a a ++=,24699a a a ++=,n S 是数列{}n a 的前n 项和,则n S 的最大值是( )A .100B .200C .400D .8009、定义在R 上的函数()f x 满足(6)()f x f x +=,当31x -≤<-时,2()(2)f x x =-+;当13x -≤<时,()f x x =,则(1)(2)(3)(2016)f f f f ++++= ( )A .0B .336C .672D .100810、已知函数()lg1a x f x x -=+,若()f x 是奇函数,且在(1,)n -上的值域为(1,)-+∞则n =( )A .1B .89 C .910 D .911二、填空题:(本大题共5小题,每小题4分,共20分).11、若“2230x x -->”是“x a <”的必要不充分条件,则实数a 的最大值为_______;12、当11,,12,32α⎧⎫∈-⎨⎬⎩⎭时,在幂函数y x α=中有____个单调递增的奇函数,且幂函数y x α=的图像不可能过第____象限;13、在数列{}n a 中,n S 是数列{}n a 的前n 项和,若223n S n n =-,则n a =_______n N +∈;14、若1)f x =+,则()f x =__________;15、在正项数列{}n a 中,11a =,2211(2,)n n n n a a a na n n n N +----=≥∈,若n S 是数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,则2015S =_______。

2014—2015学年度第二学期期末考试高二数学(文)参考答案与评分标准

2014—2015学年度第二学期期末考试高二数学(文)参考答案与评分标准

2014-------2015学年度第二学期期末考试参考答案及评分标准高二数学(文)一、选择题1、C2、B3、B4、 D5、 C6、 A7、 A8、C9、 C10、C11、 C12、 C二、填空题(13)2(14)2(15) 4836(16) ①②③三、解答题17.(本小题满分10 分)已知A x x24x0 ,B x x 22(a1)x a 210,其中 a R ,如果【解析】化简得A A∩ B=B ,求实数a的取值范围。

0, 4 ,∵集合 B 的元素都是集合 A 的元素,∴B A 。

⋯⋯⋯⋯⋯⋯⋯ 2 分⑴当 B时,4(a 1)24(a 21) 0 ,解得a 1 ;⋯⋯⋯⋯⋯⋯⋯ 4 分⑵当B0或 4时,4(a 1)24(a2 1) 0 ,解得a 1 ,此时 B0,满足B A ;⋯⋯⋯⋯⋯⋯⋯ 6 分4(a1)24(a21)0⑶当B 0, 4 时,2(a1)4,解得 a 1。

⋯⋯⋯⋯⋯⋯⋯ 8 分a2 10综上所述,实数 a 的取值范围是 a 1或者 a 1 。

⋯⋯⋯⋯⋯⋯⋯10 分18.(本小题满分 12 分 , 每个小题 6 分)60 ;(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于(2)已知n 0,试用分析法证明:n2n 1n 1n .【解析】(1)假设在一个三角形中,没有一个内角大于或等于60 ,即均小于 602分则三内角和小于180,4分这与三角形中三个内角和等于180矛盾,故假设不成立,原命题成立;6分(2)要证上式成立,需证n 2n2n 1需证 ( n 2n )2(2 n 1)28 分97.5%需证 n1n22n需证 (n1) 2n22n需证 n22n1n 22n10 分只需证 10因为 10 显然成立,所以原命题成立.12分考点:( 1)反证法;(2)分析法 .19.(本小题满分12 分)对某校小学生进行心理障碍测试得到如下的列联表:有心理障碍没有心理障碍总计女生1030男生7080总计20110将表格填写完整,试说明心理障碍与性别是否有关?K 2n( ad bc)2附:(a b)(c d )( a c)(b d )P(K2 ≥ k)0.150.100.050.0250.0100.0050.001K 2.072 2.076 3.841 5.024 6.6357.87910.828【解析】将列联表补充完整有:有心理障碍没有心理障碍 ]总计女生102030男生107080总计2090110K 2n( ad bc)2,故选择k0 5.024 较由(a b)(c d )(a c)(b d ) ,计算可得K2 6.366 5.024为合适 .10分因此,在犯错的概率不超过0.025 的前提下认为心理障碍与性别有关,所以有97.5%的把握认为心理障碍与性别有关.12 分考点:独立性检测 .20.(本小题满分12 分)某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在 4 月份的 30 天中随机挑选了 5 天进行研究,且分别记录了每天昼夜温差与每天每100 颗种子浸泡后的发芽数,得到如下资料:日期4月1日4月 7日4月15日4月 21日4月30日温差 x / C101113128发芽数 y / 颗2325302616(1)从这 5 天中任选 2 天,若选取的是 4 月 1日与 4 月 30 日的两组数据,请根据这 5 天中??的另三天的数据,求出y 关于的线性回归方程y b xx;?(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过 2 颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:n? bx i y i nx y? i1,a y bx )n2?2x i nxi1【解析】 (1)由数据得 x12, y27 ,3x y972 ,3977 ,322 x i y i x i434 , 3x432 i 1i 1由公式,得?9779725?5b27123 43443222所以 y 关于 x 的线性回归方程为?53⋯⋯⋯⋯⋯⋯⋯ 6 分x2( 2)当x 10时, ?, |22-23|2,当x 8时, ?|17-16|2,所以得到的线y 22y 17,性回归方程是可靠的 .⋯⋯⋯⋯⋯⋯⋯ 12 分21.(本小题满分 12 分)已知定义在 R 上的函数 f ( x) 对任意实数 x, y 恒有 f ( x) f ( y) f ( x y) ,且当x>0时,f ( x) <0,又 f (1)2。

2014学年黑龙江省哈尔滨四中高二下学期期末考试数学(文)试题含答案

2014学年黑龙江省哈尔滨四中高二下学期期末考试数学(文)试题含答案

2014高二下学期期末考试数学(文)试题考试时间:7: 40~9:40 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的选项中,只有一个选项是符合题目要求的.) 1.设集合∈<≤=x x x A 且30{N }的真子集...的个数是( ) A .3 B .7C .8D .152.复数311i z +=(i 是虚数单位),则z 的共轭复数是( ) A.i -1 B.i +1 C.i 2121+D.i2121- 3.在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( )A .30°B .45°C .60°D . 90° 4.以下有关命题的说法错误的是( )A .命题“若0232=+-x x 则x=1”的逆否命题为“若023,12≠+-≠x x x 则”B .“1=x ”是“0232=+-x x ”的充分不必要条件C .若q p ∧为假命题,则p 、q 均为假命题D .对于命题01,:,01:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有则使得5. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且m b ⊥,则""βα⊥是""b a ⊥的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6. 设函数xxe x f =)(,则( ) A.x=1为)(x f 的极大值点B. x=-1为)(x f 的极大值点C.x=1为)(x f 的极小值点D. x=-1为)(x f 的极小值点7.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的41,且样本容量为160,则中间一组的频数为( ) A.28 B.32 C.64 D.1288. 下面框图所给的程序运行结果为S =28,那么判断框中应填入的关于k 的条件是( )ABC D1A 1B 1C 1DMNA .7≥k ?B .k ≤7?C .k<7?D .k>7?9. 一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形顶点的距离小于2的地方的概率为( ) A.12πB.10πC.6π D.24π10. 已知两条不同直线m 、l ,两个不同平面α、β,给出下列命题: ①若l ∥α,则l 平行于α内的所有直线; ②若m ⊂α,l ⊂β且l ⊥m ,则α⊥β; ③若l ⊂β,α⊥l ,则α⊥β;④若m ⊂α,l ⊂β且α∥β,则m ∥l ; 其中正确命题的个数为( ) A.1个 B.2个C.3个D.4个11.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 212.定义在R 上的函数)(x f 满足1)1(=f ,且对任意R x ∈都有21)(<'x f ,则不等式21)(22+>x x f 的解集为( )A.(1,2)B.(0,1)C.),1(+∞D.(-1,1)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.在平面直角坐标系xoy 中,若直线⎩⎨⎧-==a t y t x l :(t 为参数)过椭圆C:⎩⎨⎧==ϕϕsin 2cos 3y x (ϕ为参数)的右顶点,则常数a 的值为______.14. 已知边长分别为a 、b 、c 的三角形ABC 面积为S ,内切圆O 半径为r ,连接OA 、OB 、OC ,则三角形OAB 、OBC 、OAC 的面积分别为cr 21、ar 21、br 21,由br ar cr S 212121++=得cb a Sr ++=2,类比得四面体的体积为V ,四个面的面积分别为4321,,,S S S S ,则内切球的半径R=_________________15.已知函数23)(nx mx x f +=的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若)(x f 在区间[]1,+t t 上单调递减,则实数t 的取值范围是_____________16. 已知球的直径SC=4,A.,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为_________三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤)17. (本题满分10分).已知圆的极坐标方程为:2cos 604πρθ⎛⎫--+= ⎪⎝⎭.(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点(,)P x y 在该圆上,求x y +的最大值和最小值.18. (本小题满分12分) 如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且112AB AD CD ===.现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2. (1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ; (3)求点D 到平面BEC 的距离.19. (本小题满分12分)某学校准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位cm),跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175以下(不包括175cm)定义为“不合格”(1)求甲队队员跳高成绩的中位数(2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5人,则5人中“合格”与“不合格”的人数各为多少?(3)从甲队178cm以上(包括178cm)选取2人,至少有一人在186cm以上(包括186cm)的概率为多少?20. (本小题12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.(1)求证:平面ABM 平面PCD;(2)求三棱锥M-ABD的体积.21. (本小题满分12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如下图所示.该同学为这个开学季购进了160盒该产品,以X (单位:盒,100≤X≤200)表示这个开学季内的市场需求量,Y (单位:元)表示这个开学季内经销该产品的利润. (I )根据直方图估计这个开学季内市场需求量X 的平均数和众数; (II )将Y 表示为X 的函数;(III )根据直方图估计利润不少于4800元的概率.22.(本小题满分12分)已知函数1ln )(-=xxx f (Ⅰ)试判断函数)(x f 的单调性;(Ⅱ)设0>m ,求)(x f 在]2,[m m 上的最大值;(Ⅲ)试证明:对*∈∀N n ,不等式nnn n e +<+1)1ln(.哈四中2015届高二下学期期末考试数学(文)答案一、选择题:二、填空题:18.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.…………………………3分所以四边形为平行四边形.所以∥.…………………………4分又因为平面,且平面,所以∥平面.)知,所以 又因为平面又= (2)由茎叶图可知,甲、乙两队合格人数共有12人,不合格人数为18人,所以,抽取五人,合格人数为212305=⨯人 不合格人数为318305=⨯人 …………………………6分(3)53=P …………………………12分20.(1)ABCD AB ABCD PA 面面⊂⊥, AB PA ⊥∴又A AD PA AD AB =⋂⊥, PAD AB 面⊥∴ PD AB ⊥∴ 由题意得︒=∠90BMD ,BM PD ⊥∴ABM PD B BM AB 面又⊥∴=⋂,又PCD ABM PCD PD 面面面⊥∴⊂, …………………………6分 (2)设平面ABM 与PC 交于N ∵PD ⊥平面ABM∴MN 是PN 在平面ABM 上的射影∴∠PNM 是PC 与平面ABM 所成的角, …………………………8分 且∠PNM=∠PCD …………………………9分 tan ∠PNM=tan ∠PCD=PD/DC=2√2 …………………………12分(Ⅲ)∵利润不少于4800元, ∴80x-4800≥4800,解得x ≥120,∴由(Ⅰ)知利润不少于4800元的概率p=1-0.1=0.9.……………………12分 22.解:(I )函数)(x f 的定义域是:),0(+∞ 由已知2'ln 1)(x xx f -=………………………………1分 令0)('=x f 得,0ln 1=-x ,e x =∴当e x <<0时,0ln 1)(2'>-=x x x f ,当e x >时,0ln 1)(2'<-=xx x f∴函数)(x f 在],0(e 上单调递增,在),[+∞e 上单调递减…………………3分(III )由(I )知,当),0(+∞∈x 时,11)()(max -==ee f x f ………………10分 ∴ 在),0(+∞上恒有111ln )(-≤-=e x x x f ,即e x x 1ln ≤且当e x =时“=”成立∴ 对),0(+∞∈∀x 恒有x ex 1ln ≤e nnn n ≠+>+1,01n n n n n n e n n e +<+⇒+⋅<+∴1)1ln(111ln即对*∈∀N n ,不等式nn n n e +<+1)1ln(恒成立;………………………………12分。

黑龙江省龙东南四校2014-2015学年高二数学下学期期末联考试题 理

黑龙江省龙东南四校2014-2015学年高二数学下学期期末联考试题 理

2014-2015学年度第二学期高二期末考试理科试题第I 卷(选择题)一、选择题(每题5分,共60)1.i 是虚数单位,复数231i i -⎛⎫⎪+⎝⎭表示的点落在哪个象限( )A .第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知βα、均为锐角,若)sin(sin :βαα+<p ,2:πβα<+q ,则p 是q 的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 不充分也不必要条件3.2008年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( ) A. 48种 B. 36种 C. 18种 D. 12种4.甲、乙两人各用篮球投篮一次,若两人投中的概率都是7.0,则恰有一人投中的概率是A .42.0B .49.0C .7.0D .91.05.若椭圆的短轴为AB ,一个焦点为1F ,且1ABF △为等边三角形的椭圆的离心率是( ) A.14C.2D.126.执行如图所示的程序框图,若输入x 的值为2+log 23,则输出y 的值为( )A.38B.8C.12D.24 7.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 38.随机变量错误!未找到引用源。

服从正态分布错误!未找到引用源。

,若错误!未找到引用源。

,则错误!未找到引用源。

( )A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

9.已知数列{}n a 满足1n+112()n n a a a n *=⋅=∈N ,,则2015S = ( ) A .201521- B .100923- C .1007323⨯- D .100823-10.已知函数32()1f x x bx cx =+++有两个极值点12,x x 且12[2,1],[1,2]x x ∈--∈,则(1)f -的取值范围是( ) A .[3,12] B .3[,6]2-C .3[,3]2-D .3[,12]2- 11..下列四个命题中,正确的是( )A .已知函数0()sin af a xdx =⎰,则[()]1cos12f f π=-;B .设回归直线方程为 2 2.5y x =-,当变量x 增加一个单位时,y 平均增加2个单位; C .已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>=D .对于命题p :x R ∃∈,使得210x x ++<,则p ⌝:x R ∀∈,均有210x x ++>12.与双曲线2214y x -=有共同的渐近线,且过点(2,2)的双曲线方程为( ) A .22128x y -= B .221312x y -= C .221312y x -= D . 22128y x -=第II 卷(非选择题)二、填空题(每题5分,共20分)13.有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为 . 14.直线sin 10x y θ-+=(R θ∈)的倾斜角范围是 .15.设,x y 满足约束条件12220x y x y ≤⎧⎪≤⎨⎪+-≥⎩,则目标函数z =的最小值为___________.16.已知向量2(,1),(1,)a x x b x t =+=- ,若函数()f x a b =⋅ 在区间(1,1)-上是增函数,则实数t 的取值范围是 .三、解答题(共70分)17.(本题满分12分)ABC ∆的三个内角C B A ,,对应的三条边长分别是c b a ,,,且满足sin cos 0c A C = (1)求C 的值; (2)若53cos =A , 35=c ,求B sin 和b 的值. 18.(12分)某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率.(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者? (3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验, 求第4组至少有一名志愿者被抽中的概率.19.(12分)如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值; (2)求平面1ADC 与平面1ABA 所成二面角的正弦值.20.(本小题满分12分)已知椭圆C:)0(12222>>=+b a b y a x 过点A )23,22(-,离心率为22,点21,F F 分别为其左右焦点. (1)求椭圆C 的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点Q P ,,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.21.(本题满分12分)已知函数()ln f x x bx c =-+,()f x 在点(1,(1))f 处的切线方程为40x y ++=. (Ⅰ)求()f x 的解析式; (Ⅱ)求()f x 的单调区间;(Ⅲ)若在区间1,52⎡⎤⎢⎥⎣⎦内,恒有2()ln f x x x kx ≥++成立,求k 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l 的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 圆C 的极坐标方程为222sin()1(0)4r r ρρθπ+++=>.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)若圆C 上的点到直线l 的最大距离为3,求r 的值.高二理科数学参考答案1.C 【解析】试题分析:2223(3)86(86)(2)1216341(1)22(2)4i i i i i i i i i i i i -------⎛⎫=====-- ⎪++-⎝⎭,复数表示的点为(3,4)--,故选C 。

黑龙江省龙东南四校高二数学下学期期末试卷 文(含解析)

黑龙江省龙东南四校高二数学下学期期末试卷 文(含解析)

黑龙江省龙东南四校2014-2015学年高二(下)期末数学试卷(文科)一、选择题(共60分)1.(2015•天门模拟)已知全集U=R,A={x|x<1},B={x|x≥2},则集合∁U(A∪B)=()A.{x|1≤x<2} B.{x|1<x≤2}C.{x|x≥1} D.{x|x≤2}考点:交、并、补集的混合运算.专题:集合.分析:求出A与B的并集,根据全集U=R,求出并集的补集即可.解答:解:∵全集U=R,A={x|x<1},B={x|x≥2},∴A∪B={x|x<1或x≥2},则∁U(A∪B)={x|1≤x<2},故选:A.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(2015•宁德二模)若集合A={x|2x>1},集合B={x|lgx>0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据条件求出A,B,结合充分条件和必要条件的定义进行求解即可.解答:解:A={x|2x>1}={x|x>0},B={x|lgx>0}={x|x>1},则B⊊A,即“x∈A”是“x∈B”的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的关系的应用,比较基础.3.(2015•威海模拟)已知复数z满足(2﹣i)2•z=1,则z的虚部为()A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、虚部的定义即可得出.解答:解:∵(2﹣i)2=3﹣4i,∴==,∴z的虚部为,故选:D.点评:本题考查了复数的运算法则、虚部的定义,属于基础题.4.(2015春•黑龙江期末)执行如图所示的程序框图,若输入n的值为2,则输出s的值是()A. 1 B. 2 C. 4 D.7考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=3时不满足条件i≤n,最后输出S的值为2.解答:解:模拟执行程序框图,可得循环的结果依次为:S=1+0=1,i=2;S=1+1=2,i=3.不满足条件i≤n,最后输出S的值为2.故选:B.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,i的值是解题的关键,属于基础题.5.(2015•上饶校级二模)已知样本:8 6 4 7 11 6 8 9 10 5 则样本的平均值和中位数a的值是()A.B.C.D.考点:众数、中位数、平均数.专题:概率与统计.分析:根据平均数的计算方法计算即可,再根据中位数的定义计算即可.解答:解:=(8+6+4+7+11+6+8+9+10+5)=7.4,样本从小到大的顺序为:4,5,6,6,7,8,8,9,10,11,所以中位数a=(7+8)=7.5,故选:B.点评:本题考查了平均数和中位数的计算方法,属于基础题.6.(2015•雅安模拟)设α为锐角,若cos=,则sin的值为()A. B. C.﹣D.﹣考点:二倍角的正弦;三角函数的化简求值.专题:三角函数的求值.分析:利用同角三角函数基本关系式、倍角公式即可得出.解答:解:∵α为锐角,cos=,∴∈,∴==.则sin===.故选:B.点评:本题考查了同角三角函数基本关系式、倍角公式,考查了推理能力与计算能力,属于中档题.7.(2015•闸北区二模)如图,下列四个几何题中,他们的三视图(主视图,俯视图,侧视图)有且仅有两个相同,而另一个不同的两个几何体是()A.(1),(2)B.(1),(3)C.(2),(3)D.(1),(4)考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:根据题意,对题目中的四个几何体的三视图进行分析,即可得出正确的结论.解答:解:对于(1),棱长为2的正方体的三视图都相同,是边长为2的正方形,∴不满足条件;对于(2),底面直径与高都为2的圆柱,它的正视图与侧视图相同,是边长为2的正方形,俯视图是圆,∴满足条件;对于(3),底面直径与高都为2的圆锥,它的正视图与侧视图相同,是等腰三角形,俯视图是带圆心的圆,∴满足条件;对于(4),底面边长为2高为2的直平行六面体,它的三视图可以都相同,∴不满足条件;综上,满足条件的是(2)、(3).故选:C.点评:本题考查了空间几何体的三视图的应用问题,是基础题目.8.(2015•锦州二模)已知x、y满足约束条件则 z=x+2y 的最大值为()A.﹣2 B.﹣1 C. 1 D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.解答:解:作出不等式组对应的平面区域如图:由z=x+2y得y=﹣x+z,平移直线y=﹣x+z由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大,由,即,即A(0,1),此时z=0+2=2,故选:D.点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.9.(2015•威海模拟)已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥β,m∥α,n∥β,则m⊥n.A.②③B.③C.②④D.③④考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①由已知利用面面平行的判定定理可得:α∥β或相交,即可判断出正误;②利用面面平行的性质、线线垂直的性质可得:l与n不一定垂直,即可判断出正误;③利用线面垂直的性质、面面平行的性质可得:m∥n,即可判断出正误;④由已知可得m∥n、相交或异面直线,即可判断出正误.解答:解:①若m∥n,m⊂α,n⊂β,不满足平面平行的判定定理,因此α∥β或相交,不正确;②若m⊂α,n⊂β,α∥β,l⊥m,若l⊂m,则可能l∥n,因此不正确;③若m⊥α,α∥β,则m⊥β,又n⊥β,∴m∥n,正确;④若α⊥β,m∥α,n∥β,则m∥n、相交或异面直线,因此不正确.综上只有:③正确.故选:③.点评:本题考查了空间线线、线面、面面位置关系及其判定、简易逻辑的判定方法,考查了推理能力,属于中档题.10.(2015春•黑龙江期末)已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)的部分图象如图,则函数f(x)的解析式为()A.f(x)=4sin(x﹣)B. f(x)=﹣4sin(x+)C.f(x)=﹣4sin(x﹣)D. f(x)=4sin(x+)考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:数形结合.分析:由图象先确定A,再由周期确定ω,再代值求φ,可得解析式.解答:解:由图象可得A=﹣4,==6﹣(﹣2),解得ω=,故函数的解析式可写作f(x)=﹣4sin(x+φ),代入点(6,0)可得0=﹣4sin(+φ),故+φ=kπ,k∈Z,即φ=kπ﹣,又|φ|<,故当k=1时,φ=,故选B点评:本题考查三角函数解析式的确定,先确定A,再由周期确定ω,再代值求φ,属中档题.11.(2015春•黑龙江期末)化简的结果是()A.﹣cos1 B.cos 1 C.cos 1D.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:利用二倍角公式,同角三角函数关系式即可化简求值.解答:解:.故选:C.点评:本题主要考查了二倍角公式,同角间三角公式的综合应用,属于基本知识的考查.12.(2015•威海模拟)周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则f(2014)+f(2015)=()A.0 B. 1 C. 2 D.3考点:函数的值.专题:函数的性质及应用.分析:利用函数的周期性,以及函数的奇偶性,直接求解即可.解答:解:函数是周期为4的奇函数,f(x)在[0,2]上的解析式为f(x)=,所以f(2014)+f(2015)=f(2012+2)+f(2016﹣1)=f(2)+f(﹣1)=f(2)﹣f(1)=log22+1﹣12=1.故选:B.点评:本题考查函数的奇偶性以及函数的周期性,函数值的求法,考查计算能力.二、填空题(共20分)13.(2015春•黑龙江期末)已知平面向量=(2,4),,若,则||= 8.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知求出的坐标,然后进行模的计算.解答:解:,∴,∴,∴故答案为:8.点评:本题考查了平面向量的坐标运算以及向量模的求法;属于基础题.14.(2015•天门模拟)在等比数列{a n}中,对于任意n∈N*都有a n+1a2n=3n,则a1a2…a6= 729 .考点:数列递推式.专题:等差数列与等比数列.分析:通过等比数列的定义及a n+1a2n=3n可得公比及a2,利用等比中项的性质计算即可.解答:解:∵a n+1a2n=3n,∴a n+2a2(n+1)=3n+1,∴q3===3,即q=,∵a2a2=31,∴a2=,∴a5==3,∴a2•a5==9,∴a1a2…a6=(a1•a6)(a2•a5)(a3•a4)=93=729,故答案为:729.点评:本题考查求数列前几项的乘积,注意解题方法的积累,属于中档题.15.(2015•威海模拟)已知x>0,y>0且x+y=2,则++的最小值为 3 .考点:基本不等式在最值问题中的应用.专题:计算题;不等式.分析:由基本不等式可得,然后对已知式子进行求解即可解答:解:∵x>0,y>0且x+y=2∴=1(当且仅当x=y=1时取等号)则++==3(当且仅当x=y时取等号)即++的最小值3故答案为:3点评:本题主要考查基本不等式在求解最值中的应用,解题时要注意等号成立条件的检验16.(2014•天心区校级模拟)若函数f(x)=x3﹣x在(a,10﹣a2)上有最小值,则a的取值范围为[﹣2,1).考点:利用导数求闭区间上函数的最值.专题:计算题;函数的性质及应用;导数的综合应用.分析:由题意求导f′(x)=x2﹣1=(x﹣1)(x+1);从而得到函数的单调性,从而可得﹣2≤a <1<10﹣a2;从而解得.解答:解:∵f(x)=x3﹣x,∴f′(x)=x2﹣1=(x﹣1)(x+1);故f(x)=x3﹣x在(﹣∞,﹣1)上是增函数,在(﹣1,1)上是减函数,在(1,+∞)上是增函数;f(x)=x3﹣x=f(1)=﹣;故x=1或x=﹣2;故﹣2≤a<1<10﹣a2;解得,﹣2≤a<1故答案为:[﹣2,1).点评:本题考查了导数的综合应用,同时考查了函数的最值,属于中档题.三、解答题(共70分)17.(2015•威海模拟)已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用两个向量的数量积公式,三角恒等变换求得f(x)的解析式,再利用正弦函数的单调性求得f(x)的单调增区间.(Ⅱ)由题意根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用定义域和值域,求得函数g(x)的值域.解答:解:(Ⅰ)由题意可得sin2ωx﹣2cos2ωx+1=sin2ωx﹣cos2ωx=sin(2ωx﹣),由题意知,,∴ω=1,∴.由,解得:,∴f(x)的单调增区间为.(Ⅱ)由题意,把f(x)的图象向左平移个单位,得到,再纵坐标不变,横坐标缩短为原来的倍,得到,∵,∴,∴,函数g(x)的值域为.点评:本题主要考查两个向量的数量积公式,三角恒等变换,y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、定义域和值域,属于基础题.18.(2015•雅安模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求几何体D﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:计算题.分析:(Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD 中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD;解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证.(Ⅱ),由高和底面积,求得三棱锥B﹣ACD的体积即是几何体D﹣ABC的体积.解答:解:(Ⅰ)【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DO⊂平面ACD,从而OD⊥平面ABC,∴OD⊥BC又AC⊥BC,AC∩OD=O,∴BC⊥平面ACD【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂面ABC,∴BC⊥平面ACD(Ⅱ)由(Ⅰ)知,BC为三棱锥B﹣ACD的高,且,S△ACD=×2×2=2,所以三棱锥B﹣ACD的体积为:,由等积性知几何体D﹣ABC的体积为:.点评:本题通过平面图形折叠后得立体图形,考查空间中的垂直关系,重点是“线线垂直,线面垂直,面面垂直”的转化;等积法求体积,也是常用的数学方法.19.(2015•丰台区二模)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.考点:列举法计算基本事件数及事件发生的概率;茎叶图.专题:概率与统计.分析:(Ⅰ)求出A,B班样本数据的平均值,估计A,B两班的学生平均每周上网时长的平均值;(Ⅱ)先计算从A班和B班的样本数据中各随机抽取一个的情况总数,再计算a>b的情况种数,代入古典概型概率计算公式,可得答案.解答:解:(Ⅰ)A班样本数据的平均值为(9+11+13+20+24+37)=19,由此估计A班学生每周平均上网时间19小时;B班样本数据的平均值为(11+12+21+25+27+36)=22,由此估计B班学生每周平均上网时间较长.(Ⅱ)A班的样本数据中不超过21的数据有3个,分别为:9,11,14,B班的样本数据中不超过21的数据也有3个,分别为:11,12,21,从A班和B班的样本数据中各随机抽取一个共有:9种不同情况,分别为:(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),其中a>b的情况有(14,11),(14,12)两种,故a>b的概率P=点评:本题考查的知识点是古典概型概率计算公式,茎叶图的应用,难度不大,属于基础题.20.(2015春•黑龙江期末)已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长.考点:直线与圆相交的性质;二元二次方程表示圆的条件.专题:函数的性质及应用.分析:(1)化简方程为圆的标准形式,然后求解m的取值范围;(2)当m=﹣2时,求出圆的圆心与半径利用圆心到直线的距离,半径,半弦长满足的勾股定理,求圆C截直线l:2x﹣y+1=0所得弦长.解答:(10分)解:(1)(x﹣m)2+(y﹣2)2=m2﹣5m+4,方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆,∴m2﹣5m+4>0.m<1或m>4.(2)设m=﹣2时,圆心C(﹣2,2),半径,圆心到直线的距离为,圆C截直线l:2x﹣y+1=0所得弦长为:.点评:本题考查圆的标准方程的应用,仔细与圆的位置关系,考查计算能力.21.(2015•昌平区二模)已知函数f(x)=x2﹣ax+lnx,a∈R.(Ⅰ)若函数f(x)在(1,f(1))处的切线垂直于y轴,求实数a的值;(Ⅱ)在(I)的条件下,求函数f(x)的单调区间;(Ⅲ)若x>1时,f(x)>0恒成立,求实数a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(I)求出函数的导数,求得切线的斜率,由题意可得斜率为0,可得a=3:(II)求出导数,令导数大于0,可得增区间,令导数小于0,可得减区间;(Ⅲ)运用参数分离,可得a<在x>1时恒成立,令h(x)=1+x2﹣lnx,求得导数,判断函数的单调性,运用单调性即可求得a的取值范围.解答:解:(I)f(x)=x2﹣ax+lnx,a∈R.定义域为(0,+∞),导数.依题意,f′(1)=0.所以f′(1)=3﹣a=0,解得a=3;(II)a=3时,f(x)=lnx+x2﹣3x,定义域为(0,+∞),f′(x)=+2x﹣3=,当0<x<或x>1时,f′(x)>0,当<x<1时,f′(x)<0,故f(x)的单调递增区间为(0,),(1,+∞),单调递减区间为(,1);(III)由f(x)>0,得a<在x>1时恒成立,令g(x)=,则g′(x)=,令h(x)=1+x2﹣lnx,则h′(x)=2x﹣=,所以h(x)在(1,+∞)为增函数,h(x)>h(1)=2>0.故g'(x)>0,故g(x)在(1,+∞)为增函数,即有g(x)>g(1)=1,所以a≤1,即实数a的取值范围为(﹣∞,1].点评:本题考查导数的运用:求切线的斜率和单调区间,主要考查导数的几何意义,同时考查不等式恒成立问题转化为求函数的最值,运用参数分离和正确求导是解题的关键.【选修4-4:坐标系与参数方程】22.(10分)(2015春•黑龙江期末)已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为ρ2++1=r2(r>0).(1)求直线l的普通方程和圆C的直角坐标方程;(2)若圆C上的点到直线l的最大距离为3,求r的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)直线l的参数方程为(t为参数),两个方程相加可得直线l 的直角坐标方程.圆C的极坐标方程为ρ2++1=r2(r>0),展开为=r2,把代入即可得出.(2)求出圆心C到直线的距离为d,求出圆心到直线的距离,即可得出.解答:解:(1)直线l的参数方程为(t为参数),两个方程相加可得:直线l的直角坐标方程为.圆C的极坐标方程为ρ2++1=r2(r>0),展开为=r2,∴+1=r2,∴圆C的直角坐标方程为.(2)∵圆心,半径为r,圆心C到直线的距离为,又∵圆C上的点到直线l的最大距离为3,即d+r=3,∴r=3﹣2=1.点评:本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.。

2014-2015学年第二学期高二数学(文科)试题

2014-2015学年第二学期高二数学(文科)试题

高二数学(文科) 第1页 共4页试卷类型:A肇庆市中小学教学质量评估2014—2015学年第二学期统一检测试题高二数学(文科)本试卷共4页,22小题,满分150分. 考试用时120分钟. 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔,将自己所在县(市、区)、姓名、试室号、座位号填写在答题卷上对应位置,再用2B 铅笔将准考证号涂黑。

2. 选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动, 用橡皮擦干净后,再选涂其它答案,答案不能写在试卷或草稿纸上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域 内相应的位置上;如需改动,先划掉原来的答案,然后再在答题区内写上新的答案; 不准使用铅笔和涂改液,不按以上要求作答的答案无效。

参考公式:线性回归方程a x b yˆˆˆ+=中系数计算公式: ∑∑∑∑====-⋅-=---=ni ini ii ni ini iix n xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-=,其中x ,y 表示样本均值. 22⨯列联表随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=. )(2k K P ≥与k 对应值表:一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i z i z 32,4321-=+-=,则21z z +在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知x e x f xsin )(+=,则=')(x fA .x x cos ln +B .x x cos ln -C .x e x cos +D .x e xcos - 3.若复数i a a a )1()32(2++--是纯虚数,则实数a 的值为A .3B .-3C .1D .-1或3高二数学(文科) 第2页 共4页4.在曲线3x y =上切线的斜率为3的点是A .(0,0)B .(1,1)C .(-1,-1)D .(1,1)或(-1,-1) 5.否定“自然数k n m ,,中恰有一个奇数”时正确的反设为A .k n m ,,都是奇数B .k n m ,,都是偶数C .k n m ,,中至少有两个偶数D .k n m ,,都是偶数或至少有两个奇数 6.下列函数)(x f 中,满足“对任意),0(,21+∞∈x x ,当21x x <时,都有)()(21x f x f >”的是 A .xx f 1)(= B .x x x f 1)(+= C .2)1()(-=x x f D .)1ln()(+=x x f7.复数i z +=11的共轭复数是 A .i 2121- B .i 2121+ C .i -1 D .i +18.函数221ln )(x x x f -=的单调递增区间为A .)1,(--∞与),1(+∞B .),1()1,0(+∞C .(0,1)D .(1,+∞)9.=-+23)1()1(i i A .i +1 B .i -1 C .i +-1 D .i --110.把一段长为12的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形的面积之和的最小值是A .32B .23C .233 D .4 11.若不等式0222<++kx kx 的解集为空集,则实数k 的取值范围是A .20<<kB .20<≤kC .20≤≤kD .2>k12.已知函数13)(23+-=x ax x f ,若)(x f 存在唯一的零点0x ,且00>x ,则实数a 的取值范围是A .(1,+∞)B .(2,+∞)C .(-∞,-1)D .(-∞,-2)高二数学(文科) 第3页 共4页二、填空题:本大题共4小题,每小题5分,共20分. 13.计算=+-+-+)1()1)(1(i i i ▲ .14.一物体的运动方程为232-=t s ,则其在=t ▲ 时的瞬时速度为1. 15.若复数i a z )1(2++=,且22||<z ,则实数a 的取值范围是 ▲ . 16.数列}{n a 满足nn a a -=+111,28=a ,则=1a ▲ . 三、解答题:本大题共6小题,共70分,解答应写出证明过程或演算步骤. 17.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 2,1(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2,tan 22y x (θ为参数).(1)求直线l 和曲线C 的普通方程; (2)求直线l 和曲线C 的公共点的坐标.18.(本小题满分12分)某产品的广告费用支出x 与销售额y (单位:百万元)之间有如下的对应数据:(1)求y 与x 之间的回归直线方程;(参考数据:1458654222222=++++,1380708506605404302=⨯+⨯+⨯+⨯+⨯)(2)试预测广告费用支出为1千万元时,销售额是多少?高二数学(文科) 第4页 共4页19.(本小题满分12分)随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下22⨯列联表:(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?(2)若采用分层抽样的方法从读营养说明的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?(3)在(2)的条件下,从中随机抽取2人,求恰有一男一女的概率. 20.(本小题满分12分)如图,在四面体BCD A -中,⊥AD 平面BCD ,CD BC ⊥. M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明:BC ⊥CM ; (2)证明://PQ 平面BCD . 21.(本小题满分12分)已知数列}{n a 满足11=a ,131+=+n n a a .(1)证明}21{+n a 是等比数列,并求}{n a 的通项公式;(2)证明2311121<+++n a a a .22.(本小题满分12分)已知函数4)(23-+-=ax x x f (R a ∈),)(x f '是)(x f 的导函数.(1)当2=a 时,对于任意的]1,1[-∈m ,]1,1[-∈n ,求)()(n f m f '+的最小值; (2)若存在),0(0+∞∈x ,使0)(0>x f ,求a 的取值范围.A BCDMPQ。

省龙东南四校2014-2015学年高二下学期期末联考(文)数学试题及答案

省龙东南四校2014-2015学年高二下学期期末联考(文)数学试题及答案

黑龙江省龙东南四校2014-2015学年高二下学期期末联考(文)第I 卷(选择题)一、选择题(共60分)1.已知全集U =R ,{}|1A x x =<,{}|2B x x =≥,则集合=)(B A C U ( ) A 、{}|12x x ≤< B 、{}|12x x <≤ C 、{}|1x x ≥ D 、{}|2x x ≤ 2.若集合{|21}x A x =>,集合{|lg 0}B x x =>,则“x A ∈”是“x B ∈”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.已知复数z 满足2(2)1i z -⋅=,则z 的虚部为( ) (A )325i (B )325 (C )425i (D )4254.执行如图所示的程序框图,若输入n 的值为2,则输出s 的值是( )A .1B .2C .4D .75.已知样本:8 6 4 7 11 6 8 9 10 5 则样本的平均值x 和中位数a 的值是( )A .7.3,7.5x a ==B .7.4,7.5x a ==C .7.3,78x a ==和D .7.4,78x a ==和 6.设α为锐角,若cos ()6πα+=45,则sin (2)3πα+的值为( )A .2512B .2425C .2425-D .1225- 7.如图,下列四个几何题中,它们的三视图(主视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是A 、(1)、(2)B 、(1)、(3)C 、(2)、(3)D 、(1)、(4)8.已知x 、 y 满足约束条件100,0x y x y x +-≤⎧⎪-≤⎨⎪≥⎩则 z = x + 2y 的最大值为(A )-2 (B )-1 (C )1 (D )29.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( ) ①若m ∥n ,,m n αβ⊂⊂,则α∥β; ②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ; ④若αβ⊥,m ∥α,n ∥β,则m n ⊥;(A )②③ (B )③ (C )②④ (D )③④ 10.函数),2||,0(),sin()(R x x A x f ∈<>+=πϕωϕω的部分图象如图所示,则)(x f 的解析式为( )A .)48sin(4)(ππ--=x x f B .)48sin(4)(ππ+-=x x fC .)48sin(4)(ππ-=x x f D .)48sin(4)(ππ+=x x f11( )A .1cos -B .cos 1 C.1cos 3-12.周期为4的奇函数()f x 在[0,2]上的解析式为22,01()log 1,12x x f x x x ⎧≤≤=⎨+<≤⎩,则(2014)+(2015)f f =( )(A )0 (B )1 (C )2 (D )3第II 卷(非选择题)二、填空题(共20分) 13.已知平面向量(2,4)a=,()2,1-=,若()⋅-=, 则||c =_______.14.在等比数列{}n a 中,对于任意*n N ∈都有123n n n a a +=,则126a a a ⋅⋅⋅= . 15.已知0,0x y >>且2x y +=,则22111x y xy++的最小值为______. 16.若函数x x x f -=331)(在()210,a a -上有最小值,则实数a 的取值范围为_________.三、解答题(共70分)17.(本小题满分12分)已知向量)2,cos (sin ),1,cos 2(x x x ωωω-=-=)0(>ω,。

黑龙江省龙东南四校2014-2015学年高一下学期期末联考数学(文)试题 Word版含答案

黑龙江省龙东南四校2014-2015学年高一下学期期末联考数学(文)试题 Word版含答案

2014-2015学年度下学期龙东南四校期末联考高一数学(文科)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第I 卷(选择题)一、 选择题:本大题共12小题。

每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.若,,a b c R ∈,且a b >,则下列不等式一定成立的是( ) A .ba 11< B .2()0a b c -≥ C .22b a > D .ac bc > 2.设b a ,是两条不同的直线,βα,是两个不同的平面,则下列命题错误的是( ) A .b a b a ⊥⊥则若,//,αα B .βαβα⊥⊂⊥则若,,//,b a b a C .b a b a //,//,,则若βαβα⊥⊥ D .βαβα//,//,//则若a a3.已知直线012=-+ay x 与直线02)2(=+--ay x a 平行,则a 的值是( ) A .23 B.023或 C.32- D. 032或- 4.已知等比数列}{n a 的前n 项和为n S ,且满足639S S =,则公比q =( ) A .12 B .12±C .2D .2±5.设一元二次不等式012>++bx ax 的解集为{}21<<-x x ,则ab 的值为( )A.1B.-4C.41- D.21- 6.在等差数列{}n a 中,36852=++a a a ,27963=++a a a ,则数列{}n a 的前10项和=10S ( ) A.220 B.210 C.110 D.1057.已知ABC ∆,6,2==b a , 30=∠A ,则=c ( )A.2B.222或C. 22D.均不正确 8.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ) A.54 B.24 C.8 D.109.若直线3:-=kx y l 与直线0632=-+y x 的交点位于第一象限,则直线的倾斜角的取值范围是( )A.⎪⎭⎫⎢⎣⎡3,6ππ B.⎪⎭⎫ ⎝⎛2,6ππ C.⎪⎭⎫⎝⎛2,3ππ D.⎥⎦⎤⎢⎣⎡2,6ππ10.已知圆()()112:221=++-y x C ,圆2C 与圆1C 关于直线02=--y x 对称,则圆2C 的方程为( ) A.()1122=+-y x B. ()1122=-+y x C.()1122=++y x D. ()1122=++y x11. 已知a 、b 满足a+2b=1,则直线必过定点( ) A BC D12.直线与圆相切,则实数m等于( ) A B C D第II 卷(非选择题)二、填空题:本大题共4小题。

2014-2015学年黑龙江省龙东南四校高一(下)期末数学试卷与解析word(文科)

2014-2015学年黑龙江省龙东南四校高一(下)期末数学试卷与解析word(文科)

2014-2015学年黑龙江省龙东南四校高一(下)期末数学试卷(文科)一、选择题:本大题共12小题.每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.<B.(a﹣b)c2≥0 C.a2>b2D.ac>bc2.(5分)设a、b是两条不同直线,α、β是两个不同平面,则下列命题错误的是()A.若a⊥α,b∥α,则a⊥b B.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥b D.若a∥α,a∥β,则α∥β3.(5分)已知直线x+2ay﹣1=0与直线(a﹣2)x﹣ay+2=0平行,则a的值是()A.B.或0 C.﹣ D.﹣或04.(5分)已知等比数列{a n}的前n项和为S n,且满足=9,则公比q=()A.B.± C.2 D.±25.(5分)设一元二次不等式ax2+bx+1>0的解集为{x|﹣1<x<2},则ab的值为()A.1 B.﹣ C.4 D.﹣6.(5分)在等差数列{a n}中,a2+a5+a8=36,a3+a6+a9=27,则数列{a n}的前10项和S10=()A.220 B.210 C.110 D.1057.(5分)已知△ABC,a=,b=,∠A=30°,则c=()A.B.或C.D.均不正确8.(5分)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.B.C.8 D.109.(5分)若直线与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围()A.B.C.D.10.(5分)已知圆C1:(x﹣2)2+(y+1)2=1,圆C2与圆C1关于直线x﹣y﹣2=0对称,则圆C2的方程为()A.(x﹣1)2+y2=1 B.x2+(y﹣1)2=1 C.(x+1)2+y2=1 D.x2+(y+1)2=1 11.(5分)已知a,b满足a+2b=1,则直线ax+3y+b=0必过定点()A.()B.()C.()D.()12.(5分)直线与圆x2+y2﹣2x﹣2=0相切,则实数m等于()A.或B.或C.或D.或二、填空题:本大题共4小题.每小题5分,共20分.13.(5分)(理科)若x,y满足约束条件,则z=x﹣y的最小值是.14.(5分)一个正方体的各顶点均在同一球的球面上,若该球的表面积为12π,则该正方体的体积为.15.(5分)已知点A(0,﹣3),B(4,0),点P是圆x2+y2﹣2y=0上任意一点,则△ABP面积的最小值是.16.(5分)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是.(1)A′C⊥BD;(2)∠BA′C=90°;(3)CA′与平面A′BD所成的角为30°;(4)四面体A′﹣BCD的体积为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)已知圆x2+y2=8内有一点M(﹣1,2),AB为经过点M且倾斜角为α的弦.(1)当弦AB被点M平分时,求直线AB的方程;(2)当α=时,求弦AB的长.18.(12分)△ABC中,A(0,1),AB边上的高CD所在直线方程为x+2y﹣4=0,AC边上的中线BE所在直线方程为2x+y﹣3=0(1)求直线AB的方程;(2)求直线BC的方程.19.(12分)在△ABC中,内角A,B,C所对边分别为a,b,c,且=.(1)求角B的大小;(2)如果b=2,求△ABC面积的最大值.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∠ACB=90°,2AC=AA1,D,M分别是棱AA1,BC的中点.证明:(1)AM∥平面BDC1(2)DC1⊥平面BDC.21.(12分)在海岸A处,发现北偏东45°方向,距A处()海里的B处有一艘走私船,在A处北偏西75°的方向,距离A处2海里的C处的缉私船奉命以海里/每小时的速度追截走私船,此时,走私船正以10海里/每小时的速度从B处向北偏东30°方向逃窜.问:缉私船沿什么方向能最快追上走私船?22.(12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.2014-2015学年黑龙江省龙东南四校高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.<B.(a﹣b)c2≥0 C.a2>b2D.ac>bc【解答】解:对于A,若a=1,b=﹣1,则>,故A不成立,对于B,a>b,则a﹣b>0,故(a﹣b)c2≥0,故B成立,对于C,若a=1,b=﹣1,则a2=b2,故C不成立,对于D,若c=0,则ac=bc,故D不成立,故选:B.2.(5分)设a、b是两条不同直线,α、β是两个不同平面,则下列命题错误的是()A.若a⊥α,b∥α,则a⊥b B.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥b D.若a∥α,a∥β,则α∥β【解答】解:A选项不正确,由于a⊥α,b∥α,可得出a⊥b,故此命题是正确命题B选项不是正确选项,若a⊥α,b∥a,可得出b⊥α,又b⊂β,由字定理知则α⊥β,故此命题是正确命题C选项不是正确选项,若a⊥α,b⊥β,α∥β两条直线分别垂直于两个平行平面,可得出a∥b,故此命题是正确命题D选项是正确选项,a∥α,a∥β,不能得出α∥β,因为平行于同一直线的两个平面可能相交故选:D.3.(5分)已知直线x+2ay﹣1=0与直线(a﹣2)x﹣ay+2=0平行,则a的值是()A.B.或0 C.﹣ D.﹣或0【解答】解:∵直线x+2ay﹣1=0与直线(a﹣2)x﹣ay+2=0平行,∴1×(﹣a)=2a(a﹣2),解得a=或a=0,经验证当a=0时两直线重合,应舍去,故选:A.4.(5分)已知等比数列{a n}的前n项和为S n,且满足=9,则公比q=()A.B.± C.2 D.±2【解答】解:===9,∴q6﹣9q3+8=0,∴q3=1或q3=8,即q=1或q=2,当q=1时,S6=6a1,S3=3a1,=2,不符合题意,故舍去,故q=2.故选:C.5.(5分)设一元二次不等式ax2+bx+1>0的解集为{x|﹣1<x<2},则ab的值为()A.1 B.﹣ C.4 D.﹣【解答】解:∵一元二次不等式ax2+bx+1>0的解集为{x|﹣1<x<2},∴方程ax2+bx+1=0的解为﹣1,2∴﹣1+2=﹣,(﹣1)×2=∴a=﹣,b=,∴ab=﹣.故选:B.6.(5分)在等差数列{a n}中,a2+a5+a8=36,a3+a6+a9=27,则数列{a n}的前10项和S10=()A.220 B.210 C.110 D.105【解答】解:∵a2+a5+a8=36,a3+a6+a9=27,∴3a 1+12d=36且3a1+15d=27,即a1+4d=12且a1+5d=9,解:a1=24,d=﹣3,则S10=10a1+×d=240﹣3×45=105,故选:D.7.(5分)已知△ABC,a=,b=,∠A=30°,则c=()A.B.或C.D.均不正确【解答】解:∵a=,b=,∠A=30°,∴由余弦定理可得:a2=b2+c2﹣2bccosA,即:2=6+c2﹣2×,整理可得:c,∴解得:c=或.故选:B.8.(5分)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A.B.C.8 D.10【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其直观图如下图所示:四个面的面积分别为:8,4,4,4,显然面积的最大值为4,故选:A.9.(5分)若直线与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围()A.B.C.D.【解答】解:联立两直线方程得:,将①代入②得:x=③,把③代入①,求得y=,所以两直线的交点坐标为(,),因为两直线的交点在第一象限,所以得到,由①解得:k>﹣;由②解得k>或k<﹣,所以不等式的解集为:k>,设直线l的倾斜角为θ,则tanθ>,所以θ∈(,).方法二、∵直线l恒过定点(0,﹣),作出两直线的图象.,设直线2x+3y﹣6=0与x轴交于点A,与y轴交于点B.从图中看出,斜率k AP<k<+∞,即<k<+∞,故直线l的倾斜角的取值范围应为(,).故选:B.10.(5分)已知圆C1:(x﹣2)2+(y+1)2=1,圆C2与圆C1关于直线x﹣y﹣2=0对称,则圆C2的方程为()A.(x﹣1)2+y2=1 B.x2+(y﹣1)2=1 C.(x+1)2+y2=1 D.x2+(y+1)2=1【解答】解:圆C1:(x﹣2)2+(y+1)2=1的圆心为C1(2,﹣1),半径为1,设圆心C1(2,﹣1)关于直线x﹣y﹣2=0的对称点为C2(m,n),则由,求得,故C2(1,0),再根据半径为1,可得圆C2的方程为(x﹣1)2+y2=1,故选:A.11.(5分)已知a,b满足a+2b=1,则直线ax+3y+b=0必过定点()A.()B.()C.()D.()【解答】解:因为a,b满足a+2b=1,则直线ax+3y+b=0化为(1﹣2b)x+3y+b=0,即x+3y+b(﹣2x+1)=0恒成立,,解得,所以直线经过定点().故选:B.12.(5分)直线与圆x2+y2﹣2x﹣2=0相切,则实数m等于()A.或B.或C.或D.或【解答】解:圆的方程(x﹣1)2+y2=3,圆心(1,0)到直线的距离等于半径或者故选:C.二、填空题:本大题共4小题.每小题5分,共20分.13.(5分)(理科)若x,y满足约束条件,则z=x﹣y的最小值是﹣3.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,将z=x﹣y整理得到y=x﹣z,要求z=x﹣y的最小值即是求直线y=x﹣z的纵截距的最大值,当平移直线x﹣y=0经过点A(0,3)时,x﹣y最小,且最小值为:﹣3,则目标函数z=x﹣y的最小值为﹣3.故答案为:﹣3.14.(5分)一个正方体的各顶点均在同一球的球面上,若该球的表面积为12π,则该正方体的体积为8.【解答】解:一个正方体的各个顶点都在一个表面积为12π的球面上,所以4πr2=12所以球的半径:,正方体的棱长为a:a=2,a=2,所以正方体的体积为:8.故答案为:815.(5分)已知点A(0,﹣3),B(4,0),点P是圆x2+y2﹣2y=0上任意一点,则△ABP面积的最小值是.【解答】解:直线AB的方程为+=0,即3x﹣4y﹣12=0,圆心(0,1)到直线的距离为d==,则点P到直线的距离的最小值为d﹣r=﹣1=,∴△ABP面积的最小值为×AB×=,故答案为:.16.(5分)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(2)(4).(1)A′C⊥BD;(2)∠BA′C=90°;(3)CA′与平面A′BD所成的角为30°;(4)四面体A′﹣BCD的体积为.【解答】解:∵四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,平面A'BD⊥平面BCD,则由A′D与BD不垂直,BD⊥CD,故BD与平面A′CD不垂直,则BD 仅于平面A′CD与CD平行的直线垂直,故(1)不正确;由题设知:△BA'D为等腰Rt△,CD⊥平面A'BD,得BA'⊥平面A'CD,于是(2)正确;由BD⊥CD,平面A′BD⊥平面BCD,易得CD⊥平面A′BD,∴CD⊥A′B,CD⊥A′D,∵A′D=CD,∴△A′CD为等腰直角三角形,∴∠A′DC=45°,则CA′与平面A′BD所成的角为45°,知(3)不正确;V A′﹣BCD=V C﹣A′BD=,故(4)正确.故答案为:(2)(4).三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)已知圆x2+y2=8内有一点M(﹣1,2),AB为经过点M且倾斜角为α的弦.(1)当弦AB被点M平分时,求直线AB的方程;(2)当α=时,求弦AB的长.【解答】解:(1)当弦AB被点M平分时,OM⊥AB,,直线AB的斜率.所以直线AB的方程为:,即x﹣2y+5=0…(4分)(2)当时,直线AB的斜率,直线AB的方程为:y﹣2=﹣1•(x+1),即x+y﹣1=0.…(6分)圆心O(0,0)到直线x+y﹣1=0的距离为,…(8分)所以弦AB的长.…(10分)18.(12分)△ABC中,A(0,1),AB边上的高CD所在直线方程为x+2y﹣4=0,AC边上的中线BE所在直线方程为2x+y﹣3=0(1)求直线AB的方程;(2)求直线BC的方程.【解答】解:(1)∵AB边上的高CD所在直线方程为x+2y﹣4=0,其斜率为,∴直线AB的斜率为2,且过A(0,1)所以AB边所在的直线方程为y﹣1=2x,即2x﹣y+1=0;(2)联立直线AB和BE的方程:,解得:,即直线AB与直线BE的交点为B(,2),设C(m,n),则AC的中点D(,),由已知可得,解得:,∴C(2,1),BC边所在的直线方程为,即2x+3y﹣7=0.19.(12分)在△ABC中,内角A,B,C所对边分别为a,b,c,且=.(1)求角B的大小;(2)如果b=2,求△ABC面积的最大值.【解答】解:(1)∵由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,∴==.可得:c2﹣b2=ac﹣a2,整理得:c2+a2﹣b2=ac∴由余弦定理可得:cosB===,0<B<π,∴…(6分)(2),∴a2+c2=ac+4…(8分)又∴a2+c2≥2ac,所以ac≤4,当且仅当a=c取等号.…(10分)∴S=acsinB,△ABC∴△ABC为正三角形时,S max=.…(12分)20.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∠ACB=90°,2AC=AA 1,D,M分别是棱AA1,BC的中点.证明:(1)AM∥平面BDC1(2)DC1⊥平面BDC.【解答】证明:(1)如图所示,取BC1的中点N,连接DN,MN.则MN∥CC1,且MN=CC1;又AD∥CC1,且AD=CC1,∴AD∥MN,且AD=MN;∴四边形ADNM为平行四边形,∴DN∥AM;又DN⊂平面BDC1,AM⊄平面BDC1,∴AM∥平面BDC1…(6分)(2)由已知BC⊥CC1,BC⊥AC,又CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC;由已知得∠A1DC1=∠ADC=45°,∴∠CDC1=90°,∴DC1⊥DC;又DC∩BC=C,∴DC1⊥平面BDC.…(12分)21.(12分)在海岸A处,发现北偏东45°方向,距A处()海里的B处有一艘走私船,在A处北偏西75°的方向,距离A处2海里的C处的缉私船奉命以海里/每小时的速度追截走私船,此时,走私船正以10海里/每小时的速度从B处向北偏东30°方向逃窜.问:缉私船沿什么方向能最快追上走私船?【解答】解:如图所示,设缉私船追上走私船需t小时,则有CD=t,BD=10t.在△ABC中,∵AB=,AC=2,∠BAC=45°+75°=120°.根据余弦定理BC2=AB2+AC2﹣2AB•ACcos∠BAC==6可求得BC=.=,∴∠ABC=45°,∴BC与正北方向垂直,∵∠CBD=90°+30°=120°.在△BCD中,根据正弦定理可得sin∠BCD===,∴∠BCD=30°所以缉私船沿东偏北30°方向能最快追上走私船.22.(12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.【解答】解:(I)设成等差数列的三个正数分别为a﹣d,a,a+d 依题意,得a﹣d+a+a+d=15,解得a=5所以{b n}中的依次为7﹣d,10,18+d依题意,有(7﹣d)(18+d)=100,解得d=2或d=﹣13(舍去)故{b n}的第3项为5,公比为2由b3=b1•22,即5=4b1,解得所以{b n}是以首项,2为公比的等比数列,通项公式为(II)数列{b n}的前和即,所以,因此{}是以为首项,公比为2的等比数列赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度第二学期高二数学期末考试数学试卷(文科)第I 卷(选择题)一、选择题(共60分)1.已知全集U =R ,{}|1A x x =<,{}|2B x x =≥,则集合=)(B A C U ( ) A 、{}|12x x ≤< B 、{}|12x x <≤ C 、{}|1x x ≥ D 、{}|2x x ≤ 2.若集合{|21}x A x =>,集合{|lg 0}B x x =>,则“x A ∈”是“x B ∈”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知复数z 满足2(2)1i z -⋅=,则z 的虚部为( ) (A )325i (B )325 (C )425i (D )4254.执行如图所示的程序框图,若输入n 的值为2,则输出s 的值是( )A .1B .2C .4D .75.已知样本:8 6 4 7 11 6 8 9 10 5 则样本的平均值x 和中位数a 的值是( )A .7.3,7.5x a == B .7.4,7.5x a ==C .7.3,78x a ==和D .7.4,78x a ==和 6.设α为锐角,若cos ()6πα+=45,则sin (2)3πα+的值为( )A .2512B .2425C .2425-D .1225-7.如图,下列四个几何题中,它们的三视图(主视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是(1)棱长为2的正方体 (2)底面直径和高均为2的圆柱(3)底面直径和高均为2的圆锥 (4)底面边长为2高为2的直平行六面体 A 、(1)、(2) B 、(1)、(3) C 、(2)、(3) D 、(1)、(4)8.已知x 、 y 满足约束条件100,0x y x y x +-≤⎧⎪-≤⎨⎪≥⎩则 z = x + 2y 的最大值为(A )-2 (B )-1 (C )1 (D )29.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( ) ①若m ∥n ,,m n αβ⊂⊂,则α∥β; ②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ; ④若αβ⊥,m ∥α,n ∥β,则m n ⊥;(A )②③ (B )③ (C )②④ (D )③④ 10.函数),2||,0(),sin()(R x x A x f ∈<>+=πϕωϕω的部分图象如图所示,则)(x f 的解析式为( )A .)48sin(4)(ππ--=x x f B .)48sin(4)(ππ+-=x x fC .)48sin(4)(ππ-=x x f D .)48sin(4)(ππ+=x x f11的结果是 ( )A .1cos -B .cos 1 Ccos 1 D .1cos 3-12.周期为4的奇函数()f x 在[0,2]上的解析式为22,01()log 1,12x x f x x x ⎧≤≤=⎨+<≤⎩,则(2014)+(2015)f f =( )(A )0 (B )1 (C )2 (D )3第II 卷(非选择题)二、填空题(共20分) 13.已知平面向量(2,4)a=,()2,1-=b ,若()b b a ac ⋅-=, 则||c =_______.14.在等比数列{}n a 中,对于任意*n N ∈都有123n n n a a +=,则126a a a ⋅⋅⋅= . 15.已知0,0x y >>且2x y +=,则22111x y xy++的最小值为______. 16.若函数x x x f -=331)(在()210,a a -上有最小值,则实数a 的取值范围为_________.三、解答题(共70分)17.(本小题满分12分)已知向量)2,cos (sin ),1,cos 2(x x n x m ωωω-=-=)0(>ω, 函数3)(+⋅=n m x f ,若函数)(x f 的图象的两个相邻对称中心的距离为2π.(Ⅰ)求函数)(x f 的单调增区间;(Ⅱ)若将函数)(x f 的图象先向左平移4π个单位,然后纵坐标不变,横坐标缩短为原来的21倍,得到函数)(x g 的图象,当]2,6[ππ∈x 时,求函数)(x g 的值域.18.(本题满分12分)如图1,在直角梯形ABCD 中,090=∠ADC ,CD ∥AB ,4=AB ,2==CD AD ,将ADC ∆沿AC 折起,使平面⊥ADC 平面ABC ,得到几何体ABC D -,如图2所示.(1)求证: ⊥BC 平面ACD ; (2)求几何体ABC D -的体积.19.(本小题共12分)长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(Ⅱ)从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率. 20.(共12分)已知方程222450x y mx y m +--+=的曲线是圆C (1)求m 的取值范围;(2)当2m =-时,求圆C 截直线:l 210x y -+=所得弦长; 21.(本小题满分12分)已知函数2()ln ,.f x x ax x a =-+∈R (Ⅰ)若函数()f x 在(1,(1))f 处的切线垂直于y 轴,求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,求函数()f x 的单调区间; (Ⅲ)若1,()0x f x >>时恒成立,求实数a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l 的参数方程为x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数), 圆C 的极坐标方程为222sin()1(0)4r r ρρθπ+++=>.(1)求直线l 的普通方程和圆C 的直角坐标方程;(2)若圆C 上的点到直线l 的最大距离为3,求r 的值.高二文科数学参考答案1.A 【解析】试题分析:由题意,得{}21|≥<=x x x B A 或 ,则{}21|)(<≤=x x B A C U . 考点:集合的运算. 2.B 【解析】试题分析:{}{}0|12|>=>=x x x A x,{}{}1|0lg |>=>=x x x x B ,由A x ∈不能推出B x ∈,由B x ∈能推出A x ∈,“A x ∈”是“B x ∈”的必要不充分条件,故答案为B. 考点:充分条件、必要条件的判断.3.D 【解析】试题分析:由213434(2)1(34)134(34)(34)2525i i z i z z i i i i +-⋅=⇒-=⇒===+--+,所以复数z 的虚部为425,故答案选D . 考点:1.复数的计算;2.复数的定义. 4.B 【解析】试题分析:这是一个循环结构,循环的结果依次为:101,2;112,3S i S i =+===+==.最后输出2.选B . 考点:程序框图. 5.B 【解析】 试题分析:8647116891057.410x +++++++++==,把这10个数按从小到大顺序排列,第5个是7,第6个是8,故中位数是7.5。

考点:平均值与中位数.(样本的数字特征) 6.B 【解析】 试题分析:令6p a b +=,则43cos ,sin 55b b ==,3424sin(2)sin 22sin cos 235525p a b b b +===创=,选B . 考点:三角恒等变换.7.C. 【解析】试题分析:依题可知(1)中三视图均是边长为2的正方形;(2)主视图与侧视图均是边长为2的正方形,俯视图是直径为2的圆;(3)主视图与侧视图均是底边长和高为2的等腰三角形,俯视图是直径为2的圆;(4)主侧视图均是矩形,俯视图是菱形;故选C . 考点:1.三视图. 8.D 【解析】试题分析:画出可行域如图所示,由图可知当目标函数 2z x y =+过点()A 0,1时取得最大值max z 0122=⨯+=考点:简单的线性规划9.B【解析】试题分析:如图所示,在正方体1111ABCD A B C D -中,11//AD B C ,AD ⊂平面ABCD ,11B C ⊂平面11BB C C ,但平面ABCD 与平面11BB C C 相交于BC ,故选项①错误;平面//ABCD 平面1111A B C D ,AD ⊂平面ABCD ,11D C ⊂平面11BB C C ,CD AD ⊥,但CD 与11D C 不垂直,,故选项②错误;选项③是线面垂直的一个性质定理,故选项③是正确的;平面ABCD ⊥平面11BB C C ,11//B C 平面ABCD ,//AD 平面11BB C C ,但11//B C AD ,故选项④错误.故答案选B考点:点、线、面的位置关系. 10.B【解析】 试题分析:由图可知()4,6282T A ==--=,216,8T ππωω∴==∴=.()4sin 8f x x πϕ⎛⎫∴=+ ⎪⎝⎭. 由图可知()6,0是五点作图的第一个点,所以608πϕ⨯+=,解得34πϕ=-. 所以()34s i n 4s i n 4s i n 484848484fxx x x x ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-=--=+-=-+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故B 正确.考点:求三角函数解析式. 11.C 【解析】===考点:1.二倍角公式;2.同角间三角公式 12.B 【解析】试题分析:因为函数()f x 是周期为4的奇函数, 所以2(2014)(50342)(2)log 212f f f =⨯+==+=,2(2015)(50441)(1)(1)11f f f f =⨯-=-=-=-=-,(2014)+(2015)1f f =,故答案选B .考点:1.函数求值;2.函数的周期性和奇偶性. 13.28. 【解析】试题分析:682-=-=⋅b a ,()()12,6-=⋅⋅∴b b a ,()()8,812,6-=--=∴a c ,()288822=-+考点:向量的模. 14.63 【解析】试题分析:令2=n ,得2433=⋅a a ;由等比数列的性质,得()63436213==⋅⋅⋅a a a a a .考点:1.赋值法;2.等比数列的性质. 15.3 【解析】试题分析:2222222221111111()()[4()3()]24x y y x y xx y xy x y xy x y x y+++=++=++++11[423(426)344y x x y ≥+⋅⋅+⋅=++=,当且仅当""x y =时,等号成立. 考点:基本不等式. 16.[)1,2- 【解析】试题分析:()()()2'111f x x x x =-=+-,令()'0f x >得1x <-或1x >,令()'0f x <得11x -<<,所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,减区间为()1,1-.所以要使函数x x x f -=331)(在()210,a a -上有最小值,只需()()21101a a f a f ⎧<<-⎪⎨≥⎪⎩,即23110312112233a a a a a a a ⎧<<--<<⎧⎪⇒⇒-≤<⎨⎨≥--≥-⎩⎪⎩. 考点:用导数研究函数的简单性质. 17.(Ⅰ)Z k k k ∈+-],83,8[ππππ;(Ⅱ)[. 【解析】试题解析:(Ⅰ)32)cos (sin cos 23)(+--=+⋅=x x x n m x f ωωω2sin 22cos 1sin 2cos 2)4x x x x x ωωωωπω=-+=-=-, -------4由题意知,πωπ==22T ,1=∴ω, )42sin(2)(π-=∴x x f . ---------------5由Z k k x k ∈+≤-≤-,224222πππππ,解得:Z k k x k ∈+≤≤-,838ππππ,∴)(x f 的单调增区间为Z k k k ∈+-],83,8[ππππ. ------6(Ⅱ)由题意,若)(x f 的图像向左平移4π个单位,得到)4y x π=+,再纵坐标不变,横坐标缩短为原来的21倍,得到)44sin(2)(π+=x x g , ]2,6[ππ∈x ,]49,1211[44πππ∈+∴x , ---------8∴22)44sin(1≤+≤-πx , -----------10∴函数()g x 的值域为[. ---------1218.(1)详见解析;(2)几何体ABC D -的体积为324. 【解析】试题解析:(1)证明:在图1中,可得22==BC AC , 从而222AB BC AC =+,故BC AC ⊥,方法一:取AC 的中点O ,连接DO ,则AC DO ⊥,又平面ADC ⊥平面ABC ,平面 ADC 平面AC ABC =,⊂DO 平面ADC , 从而⊥DO 平面ABC∴BC DO ⊥,又BC AC ⊥,O DO AC = ,∴BC ⊥平面ACD 6分 (方法二:因为平面ADC ⊥平面ABC 平面ADC 平面ABC AC = 又因为,AC BC BC ⊥⊂平面ABCBC ∴⊥平面ADC 6分)(2)解 由(Ⅰ)知BC 为三棱锥ACD B -的高,22=BC ,2=∆ACD S ∴3242223131=⨯⨯=⋅=∆-BC S V ACD ACD B 由等体积性可知,几何体ABC D -的体积为324. 12分 考点:1、空间线面的垂直关系;2、几何体的体积. 19.(Ⅰ)17,19;(Ⅱ)31【解析】试题解析:(Ⅰ)A 班样本数据的平均值为1(911142031)175++++=,B 班样本数据的平均值为1(1112212526)195++++=,据此估计B 班学生平均每周上网时间较长. 5分(Ⅱ)依题意,从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b 的取法共有12种,分别为: (9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),(20,11),(20,12),(20,21).----------8 其中满足条件“a >b ”的共有4种,分别为:(14,11),(14,12),(20,11),(20,12). 设“a >b ”为事件D ,-------10 则31124)(==D P . 答:a >b 的概率为31.------12 20.(1)14m m <>或(2)试题解析:(1)()()222254x m y m m -+-=-+--------4254m m -+>0 14m m <>或---------6(2)设=-2C(-22)m 时,圆心 ,,半径 -------8圆心到直线的距离为d ----------10圆C 截直线:l 210x y -+=所得弦长为== 21.(Ⅰ)3a =;(Ⅱ)()f x 的单调递增区间为1(0,),(1,)2+∞,单调递减区间为1(,1)2;(Ⅲ)实数a 的取值范围为(,1]-∞. 试题解析:(Ⅰ)1()2f x x a x'=-+. 由题意得,1(1)201f a '=-+=即3a = 4分(Ⅱ)3a =时,2()ln 3f x x x x =+-,定义域为(0,)+∞,21123()23x xf x x x x+-'=+-=当102x <<或1x >时,()0f x '>, 当112x <<时,()0f x '<, 故()f x 的单调递增区间为1(0,),(1,)2+∞,单调递减区间为1(,1)2.----8分(Ⅲ)解法一:由()0f x >,得2ln x x a x+<在1x >时恒成立, 令2ln ()x x g x x +=,则221ln ()x x g x x+-'= -----------10 令2()1ln h x x x =+-,则2121()20x h x x x x -'=-=> 所以()h x 在(1,)+∞为增函数,()(1)20h x h >=> .故()0g x '>,故()g x 在(1,)+∞为增函数.()(1)1g x g >=,所以 1a ≤,即实数a 的取值范围为(,1]-∞. ----------12分 解法二:2112()2x ax f x x a x x+-'=+-= 令2()21g x x ax =-+,则28a ∆=-,(Ⅰ)当0∆<,即a -<<时,()0f x '>恒成立,因为1x >,所以()f x 在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以(a ∈-;(Ⅱ)当0∆=,即a =±()0f x '≥恒成立,因为1x >,所以()f x 在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以a =-;(Ⅲ)当0∆>,即a <-或a >方程()0g x =有两个实数根12x x ==若a <-,两个根120x x <<,当1x >时,()0f x '>,所以()f x 在(1,)+∞上单调递增,则()(1)10f x f a >=-≥,即1a ≤,所以a <-;若a >()0g x =的两个根120x x <<,因为()10f x a =-<,且()f x 在(1,)+∞是连续不断的函数所以总存在01x >,使得0()0f x <,不满足题意.综上,实数a 的取值范围为(,1]-∞.22.(1)222(((0)x y r r ++=>;(2)1. 【解析】试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若y x ,有范围限制,要标出y x ,的取值范围;(3)直角坐标方程化为极坐标方程,只需把公式θρcos =x 及θρsin =y 直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如θρcos ,θρsin ,2ρ的形式,进行整体代换,其中方程的两边同乘以(或同除以)ρ及方程的两边平方是常用的变形方法.试题解析:(1)直线l的直角坐标方程为x y +=, 2分圆C的直角坐标方程为222(((0)x y r r +++=>. 5分 (2)∵圆心(C ,半径为r , 5分 圆心C到直线x y +=2d , 8分又∵圆C 上的点到直线l 的最大距离为3,即3d r +=,∴321r =-=. ------ 10分考点:1、极坐标方程与普通方程的互化;2、点到直线的距离.。

相关文档
最新文档