(完整)高二数学(文科)上学期期末试卷
高二数学上学期期末考试试卷(文科)(共5套,含参考答案)
高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
高二数学第一学期高二期末试题期末数学试卷(文科)
第一学期高二期末试题期末数学试卷(文科)考试内容:必修5中不等式 :必修3中算法初步、统计:占40% :选修2-1:占60%一、选择题:本大题共15小题 :每小题4分 :满分60分.(注:以下每小题给出的四个选项中 :有且只有一项符合题目要求. 请将符合题目要求的那一项的代号选出来填涂在指定地方.)1、已知a>0 :-1<b<0 :则a :ab :ab 2的大小关系是A .a> ab 2>abB .ab>ab 2>aC .ab 2>a>abD .ab 2>ab>a2、已知两定点F 1(-1 :0) 、F 2(1 :0) : 且12F F 是1PF 与2PF的等差中项 :则动点P的轨迹是 AA. 椭圆B. 双曲线C. 抛物线D. 线段3、若双曲线的渐近线方程为043=±y x :则双曲线的离心率为A.45B.35C. 45或35D. 54或534、焦距是10 :虚轴长是8 :过点(23 : 4)的双曲线的标准方程是A 、116922=-y xB 、116922=-x yC 、1643622=-y xD 、1643622=-x y5、已知三角形ABC 的顶点A (2 :4) :B (-1 :2) :C (1 :0) :点P (x :y )在三角形内部及其边界上运动 :则Z=x-y 的最大值和最小值分别是 A .3 :1 B .1 :-3 C .-1 :-3 D .3 :-16、若方程151022=-+-k y k x 表示焦点在y 上的椭圆 :则k 的取值范围是A .(5 :10) B.(215 :10) C.)215,5( D.)10,215()215,5(7、如果命题“p 或q ”为真命题 :则A 、p :q 均为真命题B 、p :q 均为假命题C 、¬p :¬q 中至少有一个为假命题D 、¬p :¬q 中至多有一个为假命题 8、已知p 是r 的充分不必要条件 :s 是r 的必要条件 :q 是s 的必要条件。
高二数学文科上学期期末试题(附答案)-学习文档
2019高二数学文科上学期期末试题(附答案)查字典数学网为大家介绍2019高二数学文科上学期期末试题,考生们应多加练习,对大家会有很大帮助的。
一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=(1+ai)(2+i)是纯虚数,则实数a的值为A.2B.-C.D.-22.如图所示是数列一章的知识结构图,下列说法正确的是A.概念与分类是从属关系B.等差数列与等比数列是从属关系C.数列与等差数列是从属关系D.数列与等比数列是从属关系,但数列与分类不是从属关系3.下列说法中错误的是A.对于命题p:?x0R,sin x01,则綈p:?xR,sin xB.命题若0C.若pq为真命题,则p,q均为真命题;D.命题若x2-x-2=0,则x=2的逆否命题是若x2,则x2-x-2.4.1A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件5.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是A.=0.7x+0.35B.=0.7x+1C.=0.7x+2.05D.=0.7x+0.456.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为A.V=abcB.V=ShC.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r 为内切球的半径)D.V=(ab+bc+ac)h,(h为四面体的高)7.函数f(x)=x5-x4-4x3+7的极值点的个数是A.1个B.2个C.3个D.4个8.已知椭圆+=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|(O为原点)的长为A.1B.2C.3D.4选择题答题卡题号12345678得分答案二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题卷对应题号后的横线上.9.已知复数z=1+,则||=____________.10.读下面的程序框图,当输入的值为-5时,输出的结果是________.11.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中的白色地面砖有______________块.12.曲线f(x)=xsin x在点处的切线方程是______________.13.已知双曲线-=1(a,b0)的顶点到渐近线的距离等于,则双曲线的离心率e是________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)在某测试中,卷面满分为100分,60分及以上为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:分数段[29~40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]午休考生人数23473021143114不午休考生人数1751671530173参考公式及数据:K2=P(K2k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879(1)根据上述表格完成列联表:及格人数不及格人数总计午休不午休总计(2)能否在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系?对今后的复习有什么指导意义?15.(本小题满分12分)已知:a,b,c0.求证:a(b2+c2)+b(a2+c2)+c(a2+b2)6abc.16.(本小题满分12分)已知抛物线y2=4x的焦点是F,准线是l,过焦点的直线与抛物线交于不同两点A,B,直线OA(O为原点)交准线l于点M,设A(x1,y1),B(x2,y2).(1) 求证:y1y2是一个定值;(2) 求证:直线MB平行于x轴.必考Ⅱ部分一、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.1.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________.二、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.已知定义在R上的函数f(x)的导数是f(x),若f(x)是增函数且恒有f(x)0,则下列各式中必成立的是A.2f(-1)C.2f(1)f(2)D.3f(2)2f(3)三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)已知函数f(x)=-x3+3x.(1)求函数f(x)的单调区间和极值;(2)当x[0,a],a0时,设f(x)的最大值是h(a),求h(a)的表达式.4.(本小题满分13分)(1)证明:xln x(2)讨论函数f(x)=ex-ax-1的零点个数.5. (本小题满分14分)如图,已知焦点在x轴上的椭圆+=1(b0)有一个内含圆x2+y2=,该圆的垂直于x轴的切线交椭圆于点M,N,且(O为原点).(1)求b的值;(2)设内含圆的任意切线l交椭圆于点A、B.求证:,并求|AB|的取值范围.湖南师大附中2019届高二第一学期期末考试试题数学(文科)参考答案必考Ⅰ部分(100分)6.C 【解析】△ABC的内心为O,连结OA、OB、OC,将△ABC 分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体A-BCD的内切球球心为O,连接OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原面为底面的四面体,高都为r,所以有V=(S1+S2+S3+S4)r.7.B 【解析】f(x)=x4-4x3-12x2=x2(x+2)(x-6),所以f(x)有两个极值点x=-2及x=6.8.D 【解析】据椭圆的定义,由已知得|MF2|=8,而ON是△MF1F2的中位线,故|ON|=4.二、填空题9.10.2 【解析】①A=-50,②A=-5+2=-30,③A=-3+2=-10,④A=-1+2=10,⑤A=21=2.11.4n+2 【解析】第1个图案中有6块白色地面砖,第二个图案中有10块,第三个图案中有14块,归纳为:第n个图案中有4n+2块.12.x-y=013. 【解析】由题意知=tan 30=?e==.∵K25.75.024,因此,有97.5%的把握认为午休与考生及格有关系,即能在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系.(10分)对今后的复习的指导意义就是:在以后的复习中,考生应尽量适当午休,以保持最佳的学习状态.(11分)(2)据题意设A,M(-1,yM),(8分)由A、M、O三点共线有=?y1yM=-4,(10分)又y1y2=-4则y2=yM,故直线MB平行于x轴.(12分)必考Ⅱ部分(50分)一、填空题1.10 【解析】设P(xP,yP),∵|PM|=|PF|=yP+1=5,yP=4,则|xP|=4,S△MPF=|MP||xP|=10.二、选择题2.B 【解析】由选择支分析可考查函数y=的单调性,而f(x)0且f(x)0,则当x0时0,即函数在(-,0)上单调递减,故选B.三、解答题3.【解析】(1)f(x)=-3x2+3=-3(x+1)(x-1)(2分)列表如下:x(-,-1)-1(-1,1)1(1,+)f(x)-0+0-f(x)递减极小值递增极大值递减所以:f(x)的递减区间有:(-,-1),(1,+),递增区间是(-1,1);f极小值(x)=f(-1)=-2,f极大值(x)=f(1)=2.(7分)(2)由(1)知,当0此时fmax(x)=f(a)=-a3+3a;(9分)当a1时,f(x)在(0,1)上递增,在(1,a)上递减,即当x[0,a]时fmax(x)=f(1)=2(12分)综上有h(a)=(13分)4.【解析】 (1)设函数(x)=xln x-x+1,则(x)=ln x(1分) 则(x)在(0,1)上递减,在(1,+)上递增,(3分)(x)有极小值(1),也是函数(x)的最小值,则(1)=1ln 1-1+1=0 故xln xx-1.(5分)(2)f(x)=ex-a(6分)①a0时,f(x)0,f(x)是单调递增函数,又f(0)=0,所以此时函数有且仅有一个零点x=0;(7分)②当a0时,函数f(x)在(-,ln a)上递减,在(ln a,+)上递增,函数f(x)有极小值f(ln a)=a-aln a-1(8分)ⅰ.当a=1时,函数的极小值f(ln a)=f(0)=a-aln a-1=0则函数f(x)仅有一个零点x=0;(10分)ⅱ.当0当0故此时f(x)?+,则f(x)还必恰有一个小于ln a的负根;当a1时,2ln a0,计算f(2ln a)=a2-2aln a-1考查函数g(x)=x2-2xln x-1(x1) ,则g(x)=2(x-1-ln x),再设h(x)=x-1-ln x(x1),h(x)=1-=0故h(x)在(1,+)递增,则h(x)h(1)=1-1-ln 1=0,所以g(x)0,即g(x)在(1,+)上递增,则g(x)g(1)=12-21ln 1-1=0即f(2ln a)=a2-2aln a-10,则f(x)还必恰有一个属于(ln a,2 ln a)的正根.故0综上:当a(-,0]{1}时,函数f(x)恰有一个零点x=0,当a(0,1)(1,+)时函数f(x)恰有两个不同零点. (13分) 5.【解析】(1)当MNx轴时,MN的方程是x=,设M,N由知|y1|=,即点在椭圆上,代入椭圆方程得b=2.(3分)(2)当lx轴时,由(1)知当l不与x轴垂直时,设l的方程是:y=kx+m,即kx-y+m=0 则=?3m2=8(1+k2)(5分)?(1+2k2)x2+4kmx+2m2-8=0,=16k2m2-4(1+2k2)(2m2-8)=(4k2+1)0,设A(x1,y1),B(x2,y2)则,(7分)x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2-+m2xkb1==0,即.即椭圆的内含圆x2+y2=的任意切线l交椭圆于点A、B时总有.(9分)(2)当lx轴时,易知|AB|=2=(10分)当l不与x轴垂直时,|AB|===(12分)设t=1+2k2[1,+),(0,1]则|AB|==所以当=即k=时|AB|取最大值2,当=1即k=0时|AB|取最小值,(或用导数求函数f(t)=,t[1,+)的最大值与最小值)综上|AB|.(14分)2019高二数学文科上学期期末试题就为大家整理到这儿了,同学们要好好复习。
()高二数学(文科)上学期期末试卷
高二数学〔文科〕上学期期末试卷〔命题范围:选修1—1、1—2总分值:150分,答卷时间:120分钟〕一、选择题〔共12个小题;每题5分,共60分,每题只有一个正确答案)1.抛物线y4x2的准线方程是〔〕A.y1B.y1C.y1D.y1 16162.“AB0〞是“方程Ax2By21表示椭圆〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D .既不充分也不必要条件3.命题“对任意的x R,x3x210〞的否认是〔〕A.不存在x R,x3x210B.存在x R,x3x210C.存在x R,x3x210D.对任意的x R,x3x2104.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程y=bx+a中的b为,据此模型预报广告费用为6万元时,销售额为()A.万元B.万元C.万元D.万元5.如图,一圆形纸片的圆心为O,F 是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于P,那么点P的轨迹是〔〕A.椭圆B .双曲线C.抛物线D.圆6.函数f (x)(x1)x〔〕e的单调递增区间是A.[0,+∞〕 B.[1,+∞〕 C.〔-∞,0] D.〔-∞,1]7.假设抛物线y22px的焦点与双曲线x23y23的右焦点重合,那么p的值为〔〕A.2B.2C.4D.4f(x)、偶函数g(x).假设当x0时有f '(x)0、g'(x)0,那么x0时8.奇函数〔〕A.f'(x)0,g'(x)0 C.f'(x)0,g'(x)0B.f'(x)0,g'(x)0 D.f'(x)0,g'(x)09.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:附表:男女总计P(χ2≥k)爱好402060k不爱好203050总计6050110高二数学〔文科〕选修1-1、1-2期末试卷第1页〔共4页〕由χ2=n n11n22-n12n212110×40×30-20×202算得:χ2= ≈7.8.nnnn60×50×60×501+ 2++1+2参照附表,得到的正确结论是 () A .在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别有关〞 B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关〞C .有99%以上的把握认为“爱好该项运动与性别有关〞D .有99%以上的把握认为“爱好该项运动与性别无关〞10.双曲线x 2—y 21上一点P 与双曲线的两个焦点F 1、F 2的连线互相垂直,那么△4924PF 1F 2的面积为〔〕A .20B.22C.28D.2411.有以下数组排成一排:12 13 214 3 2 15 4 3 2 1),L L ,如果把上述 ( ),( , ),( , ,),( , , , ),( 1 , ,, 4 ,1 12 1 2 31 2 3 4 2 3 5数组中的括号都去掉会形成一个数列:1,2,1,3,2,1,4,3,2,1,5,4,3,2,1,LL 那么此数11 2 1 2 31 2 3 412 3 4 5列中的第2021项是〔〕A.7B.6 C.5D.4 5758596012.函数yf '(x)是函数yf(x)的导函数,且函数 y f(x)在点p(x 0,f(x 0))处的切线为:l:yg(x)f'(x 0)(xx 0) f(x 0),F(x)f(x) g(x),如果函数yf(x)在区间[a,b]上的图像如下列图,且 a x 0b ,那么 〔〕A .F'(x 0) 0,x x 0不是F(x)极值点B .F'(x 0) 0,x x 0是F(x)极值点C .F'(x 0)0,x x 0是F(x)的极大值点D .F'(x 0)=0,xx 0是F(x)的极小值点二、填空题(本大题共4个小题;每题4分,共16分)13.如果aa +b b >ab +ba ,那么a 、b 应满足的条件是__________.14.设双曲线x 2y 2 1(b a 0) 的半焦距为c ,直线l 过(a,0),(0,b)两点.已a 2b 2高二数学〔文科〕选修 1-1、1-2期末试卷第 2页〔共4页〕知原点到直线l的距离为1c,那么双曲线的离心率为.215.袋中有红,黄,绿色球各一个,每次任取一个,有放回地抽三次,那么球的颜色不全相同的概率为________.16.椭圆x2y2y 1的左、右焦点分别为F1、F2,过A169焦点F1的直线交椭圆于A,B两点,假设ABF2的内切圆的面MF1O x,A,B两点的坐标分别为BF2积为(x1,y1)和(x2,y2),那么y2y1的值为.三、解答题(本大题共6个小题,共74分,写出必要的步骤)17.(本小题总分值12分)命题p:不等式x2ax10有非空解集,命题q:函数f(x)(a1)x2是增函数.假设“p q〞为真,“p q〞为假,求实数a的取值范围.18.(本小题总分值12分)双曲线C与双曲线x2y21有共同渐近线,并且经过点(2,2). 21〕求双曲线C的标准方程;2〕过双曲线C的上焦点作直线l垂直与y轴,假设动点M到双曲线C的下焦点的距离等于它到直线l 的距离,求点M的轨迹方程.19.(本小题总分值12分)函数f(x)2x33ax23bxc在x1及x2处取得极值.求a、b的值;假设方程f(x)0有三个根,求c的取值范围.20.(本小题总分值12分)如图,抛物线C1:y24x,圆C2:(x 1)2y21,过抛物高二数学〔文科〕选修1-1、1-2期末试卷第3页〔共4页〕〔第20题〕线焦点的直线l 交C1于A,D两点,交C2于B,C两点.〔Ⅰ〕假设AB CD2BC,求直线l的方程;〔Ⅱ〕求AB CD的值. 21.(本小题总分值12分)函数f ()x33221〔a〕x ax ax R.〔I〕当a 3时,求函数f(x)的单调递减区间; 8(Ⅱ)当a0时,设函数g(x)f(x)32ax,假设x[1,2]时,g(x)0恒成立,求a的取值范围。
高二数学(文科)上学期期末试卷
1. 、选择题 抛物线2. 3. 高二数学(文科)上学期期末试卷(命题范围:选修 1 — 1、1 — 2 满分:150分,答卷时间:120分钟) (共12个小题;每小题 5分,共60分,每题只有一个正确答案 2 y 4x 的准线方程是 B . 160”是“方程Ax 2 “ AB A .充分而不必要条件 C .充分必要条件 命题“对任意的 x R, 3 1 y 16 By 2C. y 1 1表示椭圆”的 B A .不存在x R, x C .存在x R, 4..必要而不充分条件 .既不充分也不必要条件 的否定是 B.存在 x R , x 3D.对任意的x R , x 与销售额y 的统计数据如下表: 3x 2 x D 2 x 1 0 0 广告费用x (万元)4 2 35 销售额y (万元)49 26 39 54 根据上表可得回归方程 y = bx + a 中的b 为9.4,据此模型预报广告费用为 时,销售额为() A . 72.0 万元 B . 67.7 万元 C 5. 如图,一圆形纸片的圆心为 O, F 是圆内一定点, 与F 重合,; A .椭圆 C .抛物线 6. 函数f(x)A.[0 , +^)(―汽 1] 若抛物线 p 的值为( A . 24已知奇函数)A . f'(x) C. f'(x) 通过随机询问110名性别不同的大学生是否爱好某项运动, 然后抹平纸片,折痕为 CD 设B .双曲线 D .圆 (x 1)e x 的单调递增区间是 C. B. [1 , +^) 6万元.65.5万元 D . 63.6万元 M 是圆周上一动点,把纸片折叠使 MCD 与 OM 交于P ,则点P 的轨迹是( )( ) ( — g, 0] D. D. & ( 9 . 附表: 2px 的焦点与双曲线 ) B 3y 2 3的右焦点重合, C. 4 f (x)、偶函数g(x).若当 0, g '(x) 0 o,g'(x) 0 0时有f '(x) .f'(x) .f'(x)0、g '(x) 0 ,则 x 0时0,g'(x) 00,g'(x) 0得到如下的列联表:男 女 总计 爱好 40 20 60「 不爱好 20 30 50 总计6050110— 2 .R x 》k ) 0.050 0.010 0.001 k 3.8416.63510.8282B. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别无关”C. 有99%以上的把握认为“爱好该项运动与性别有关”D. 有99%以上的把握认为“爱好该项运动与性别无关”2 210 .双曲线X — y1上一点P 与双曲线的两个焦点F 1、F 2的连线互相垂直,则△4924PF 1F 2的面积为()A . 20B.22C. 28D.2411•有下列数组排成一排:1 ()(2 1、,3 2 1、,4 3 2 1、/ 1 ,2),(1,2,3),(1 ,2,3,4),(5 4 3 2 1上》「12.函数y f'(x )是函数y f (x )的导函数,且函数y线为:l:y g(x) f'(x 0)(x 沧)f(x 0),F(x) f (x) g(x),如果函数 y f (x)在区间[a,b ]上的图像如图所示,且 a x 0b ,那么 ()13.如果apa + g/b >a 寸b + g/a ,贝U a 、b 应满足的条件是 ______________2 214.设双曲线筈告1 (b aa 2b 22110X 40X 30— 20X 20 X 2n n ii n 22— n i2n 2i 由X =算得:rn +n 2+n +i n + 2参照附表,得到的正确结论是 ( A. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别有关”60 X 50 X 60 X50〜7.8. 数组中的括号都去掉会形成一个数列: 列中的第2011项是()A. —B.—57581 2 1 3 2 1—J J J — J J —112 12 34 3 2 15 4 3 2 17,2,3,4,<2,3, 7,子 L则此数C. 59f(x)在点p(x 0, f (X 0))处的切A.F'(x 。
高二数学文科期末测试题
高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
四川省成都市树德中学2022-2023学年高二上学期期末检测数学(文)试题(含答案)
成都树德中学高2021级高二上期期末检测数学(文科)试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是A.①用随机抽样法,②用系统抽样法 B.①用系统抽样法,②用分层抽样法C.①用分层抽样法,②用随机抽样法 D.①用分层抽样法,②用系统抽样法2.下面命题正确的是A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若1x <,则21x <”的否定是“存在1≥x ,则21x ≥”;C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件.3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为A.3π B.3π-或3πC.3π或23π D.6π或56π4.执行下面的程序框图,如果输入的3N =,那么输出的S =A.1B.32C.53D.525.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为A.y =B.3y x =±C.12y x =±D.2y x=±6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球7.已知点()M ,x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是A .[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦ B .12,2⎡⎤-⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为A .24B .25C .25.5D .26取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852B .0.8192C .0.8D .0.7511.已知O 为坐标原点,双曲线)0(14:222>=-b b y x C 的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点,,B A 若||332||||AB OB OA =+,则ABF ∆的周长为A.6B.36C.324+D.344+12.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P在线段AB 上,则12PF PF ⋅的取值范围为()A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线28y x =的焦点到其准线的距离为________.14.已知“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是假命题,则实数m 的取值范围为.15.在区间[0,1]上随机取两个数x、y ,则满足13x y -≥的概率为___________.16.已知直线y kx =与椭圆C :222212x yb b+=交于,A B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有__________.①椭圆C 的离心率为2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .x2223242526y2324▲2628三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知圆C 上有两个点()()2,3,4,9A B ,且AB 为直径.(1)求圆C的方程;(2)已知()0,5P ,求过点P 且与圆C 相切的直线方程.18.(本小题满分12分)某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.19.(本小题满分12分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .20.(本题满分12分)某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:=J1 (−p(−p(−p2,=−.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?22.(本小题满分12分)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.公众号高中僧试题下载高2021级期末考试数学(文)试题参考答案一、1-5CDCCA6-10BCABD11-12BD二、13、11614、2m≤15、9216、②③④18、(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a+⨯+++⨯=,解得a=0.006;(2)由频率分布的直方图可得设中位数为m,故可得()()0.004 0.006 0.023210700.0280.5m++⨯+-⨯=,解得m=76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a,分数在[50,60)内的3人为123,,b b b,则在这5人中抽取2人的情况有:()12,a a,()11,a b,()12,a b,()13,a b,()21,a b,()22,a b,()23,a b,()12,b b,()13,b b,()23,b b,共有10种情况,其中分数在在[50,60)内的2人有()12,b b,()13,b b,()23,b b,有3种情况,所以概率为P=310.…………………………………12分19、(1)因为焦点在x轴上,设双曲线C的标准方程为22221(0,0)x y a ba b-=>>,由题意得24c=,所以2c=,①又双曲线C的一条渐近线为y x=,所以3ba=,②又222+=a b c,③联立上述式子解得a=1b=,故所求方程为2213x y-=;(2)设11(,)A x y,22(,)B x y,联立2211213y xx y⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x+-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x+=-,1224x x=-,即AB===20、(1)由表格数据得=18+19+20+21+225=20,=61+56+50+48+455=52.则J15 (i−)(y i−)=﹣40,J15 (i−)2=10,则=−4010=−4,=−=52﹣(﹣4)×20=132,则y关于的回归直线方程为=−4x+132;(2)获得的利润z=(x﹣10)(﹣4x+132)=﹣4x2+172x﹣1320,对应抛物线开口向下,则当x=−1722×(−4)=21.5时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.22、(1)由题意得12p=,即2p=,所以抛物线的准线方程为1x=-.(2)设(,),(,),(),A AB B c cA x yB x yC x y,重心(,)G GG x y.令2,0Ay t t=≠,则2Ax t=.由于直线AB过F,故直线AB方程为2112tx yt-=+,代入24y x=,得222(1)40ty yt---=,故24Bty=-,即2Byt=-,所以212(,Bt t-.又由于11(),(3)3G A B c G A B cx x x x y y y y=++=++及重心G在x轴上,故220ct yt-+=,得422211222((),2()),(3t tC t t Gt t t-+--.所以直线AC方程为222()y t t x t-=-,得2(1,0)Q t-.由于Q在焦点F的右侧,故22t>.从而424222124422242221|1||2|||223221222211||||1||||2||23Act t tFG yS t t ttt tS t tQG y t tt t-+-⋅⋅--====--+--⋅--⋅-.令22m t=-,则0m>,1221223434S mS m m mm=-=-++++3212≥-=+.当m=12SS取得最小值12+,此时(2,0)G.。
2021-2022学年四川省成都市高二(上)期末数学试卷(文科)_20220122190805
2021-2022学年四川省成都市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀x∈N,e x>sin x”的否定是()A.∀x∈N,e x≤sin x B.∀x∈N,e x<sin xC.∃x0∈N,>sin x0D.∃x0∈N,≤sin x02.(5分)抛物线y2=4x的准线方程是()A.B.C.x=﹣1D.x=13.(5分)在空间直角坐标系Oxyz中,点A(1,﹣1,1)关于x轴对称的点的坐标为()A.(1,1,1)B.(1,1,﹣1)C.(﹣1,﹣1,﹣1)D.(1,﹣1,﹣1)4.(5分)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a的值为()A.0或1B.0或﹣1C.1D.﹣15.(5分)下列有关命题的表述中,正确的是()A.命题“若a+b是偶数,则a,b都是偶数”的否命题是假命题B.命题“若a为正无理数,则也是无理数”的逆命题是真命题C.命题“若x=2,则x2+x﹣6=0”的逆否命题为“若x2+x﹣6≠0,则x≠2”D.若命题“p∧q”,“p∨(¬q)”均为假命题,则p,q均为假命题6.(5分)执行如图所示的算法框图,则输出的结果是()A.B.C.D.7.(5分)方程表示椭圆的充分不必要条件可以是()A.m∈(﹣3,1)B.m∈(﹣3,﹣1)∪(﹣1,1)C.m∈(﹣3,0)D.m∈(﹣3,﹣1)8.(5分)如图,是对某位同学一学期8次体育测试成绩(单位,分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差超过15分B.该同学8次测试成绩的众数是48分C.该同学8次测试成绩的中位数是49分D.该同学8次测试成绩与测试次数具有相关性,且呈正相关9.(5分)若椭圆的弦AB恰好被点M(1,1)平分,则AB所在的直线方程为()A.3x﹣4y+1=0B.3x+4y﹣7=0C.4x﹣3y﹣1=0D.4x+3y﹣7=0 10.(5分)七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔社”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A.B.C.D.11.(5分)已知双曲线的左、右焦点分别为F1、F2.若双曲线右支上存在点P,使得PF1与双曲线的一条渐近线垂直并相交于点Q,且PF2⊥PQ,则双曲线的渐近线方程为()A.y=±x B.y=±2x C.D.12.(5分)数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线C:x2+y2=|x|+|y|流是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线C围成的图形的面积是2+π;②曲线C上的任意两点间的臥离不超过2;③若P(m,n)是曲线C上任意一点,则|3m+4n﹣12|的最小值是.其中正确结论的个数为()A.0B.1C.2D.3二、填空题:本大题共4小题每小题5分,共20分,把答案13.(5分)椭圆x2+2y2=4的长轴长为.14.(5分)某班有40位同学,将他们从01至40编号,现用系统抽样的方法从中选取5人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是05,那么第四位的编号是.15.(5分)根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y (单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年x 1.8 2.2 2.6 3.0y 2.0 2.8 3.2 4.0若每年的进出口总额x,y满足线性相关关系,则=;若计划2022年出口总额达到5千亿元,预计该年进口总额为千亿元.16.(5分)已知椭圆和双曲线有相同的焦点F1和F2,设椭圆和双曲线的离心率分别为e1,e2,P为两曲线的一个公共点,且(O为坐标原点).若,则e2的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC的三个顶点是A(4,0),B(6,7),C(0,3).(Ⅰ)求AC边所在的直线方程;(Ⅱ)求经过AB边的中点,且与AC边平行的直线l的方程.18.(12分)某班主任对全班50名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游201030不喜欢手机网游51520列总数252550(Ⅰ)若随机抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生.现要从这5名学生中任取2名学生了解情况,求其中恰有1名“不喜欢手机网游”的学生的概率.19.(12分)已知圆C的圆心为C(1,2),且圆C经过点P(5,5).(Ⅰ)求圆C的一般方程;(Ⅱ)若圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,求实数m的取值范围.20.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的得分(得分均为整数,满分为100分)进行统计,所有学生的得分都不低于60分,将这50名学生的得分进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100](单位:分),得到如下的频率分布直方图.(Ⅰ)求图中m的值,估计此次活动学生得分的中位数;(Ⅱ)根据频率分布直方图,估计此竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.21.(12分)已知抛物线E:x2=2py(p>0)的焦点为F,直线y=3与抛物线E在第一象限的交点为A,且|AF|=4.(Ⅰ)求抛物线E的方程;(Ⅱ)经过焦点F作互相垂直的两条直线l1,l2,l1与抛物线E相交于P,Q两点,l2与抛物线E相交于M,N两点.若C,D分别是线段PQ,MN的中点,求|FC|•|FD|的最小值.22.(12分)已知点P是圆上任意一点,是圆C内一点,线段AP的垂直平分线与半径CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程;(Ⅱ)设不经过坐标原点O,且斜率为的直线l与曲线E相交于M,N两点,记OM,ON的斜率分别是k1,k2,当k1,k2都存在且不为0时,试探究k1k2是否为定值?若是,求出此定值;若不是,请说明理由.2021-2022学年四川省成都市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀x∈N,e x>sin x”的否定是()A.∀x∈N,e x≤sin x B.∀x∈N,e x<sin xC.∃x0∈N,>sin x0D.∃x0∈N,≤sin x0【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题的否定为∃x0∈N,≤sin x0,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)抛物线y2=4x的准线方程是()A.B.C.x=﹣1D.x=1【分析】由已知抛物线方程以及求出p的值,进而可以求解.【解答】解:由已知抛物线方程可得:2p=4,所以p=2,所以准线方程为x=−=−1,即x=﹣1,故选:C.【点评】本题考查了抛物线的性质以及准线方程,属于基础题.3.(5分)在空间直角坐标系Oxyz中,点A(1,﹣1,1)关于x轴对称的点的坐标为()A.(1,1,1)B.(1,1,﹣1)C.(﹣1,﹣1,﹣1)D.(1,﹣1,﹣1)【分析】根据所给的点的坐标,知一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,写出点的坐标.【解答】解:∵点A(1,﹣1,1),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点A(1,﹣1,1)关于x轴对称的点的坐标为(1,1,﹣1)故选:B.【点评】本题考查空间中点的对称,是一个基础题,注意点在空间中关于坐标轴和坐标平面对称的点的坐标,这种题目通常单独作为一个知识点出现.4.(5分)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a的值为()A.0或1B.0或﹣1C.1D.﹣1【分析】利用直线与直线垂直的性质直接求解.【解答】解:∵直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0,l1⊥l2,∴a×1+(a﹣2)×a=0,解得a=0或a=1.故选:A.【点评】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.5.(5分)下列有关命题的表述中,正确的是()A.命题“若a+b是偶数,则a,b都是偶数”的否命题是假命题B.命题“若a为正无理数,则也是无理数”的逆命题是真命题C.命题“若x=2,则x2+x﹣6=0”的逆否命题为“若x2+x﹣6≠0,则x≠2”D.若命题“p∧q”,“p∨(¬q)”均为假命题,则p,q均为假命题【分析】直接利用四种命题的转换和命题真假的判定的应用求出结果.【解答】解:对于A:命题“若a+b是偶数,则a,b都是偶数”的逆命题是:“若a,b 都是偶数,则a+b是偶数”,该命题为真命题,由于逆命题和否命题等价,故否命题为真命题,故A错误;对于B:命题“若a为正无理数,则也是无理数”的逆命题是:若是无理数,则a 也为无理数”是假命题,故B错误;对于C:命题“若x=2,则x2+x﹣6=0”的逆否命题为“若x2+x﹣6≠0,则x≠2”,故C正确;对于D:若命题“p∧q”,“p∨(¬q)”均为假命题,则p为假命题,q为真命题,故D 错误.故选:C.【点评】本题考查的知识要点:命题真假的判定,四种命题的转换,主要考查学生对基础知识的理解,属于基础题.6.(5分)执行如图所示的算法框图,则输出的结果是()A.B.C.D.【分析】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=++...+的值,进而根据裂项法即可求解.【解答】解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=++...+的值,S=++...+=(1﹣)+()+...+(﹣)=1﹣=.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.(5分)方程表示椭圆的充分不必要条件可以是()A.m∈(﹣3,1)B.m∈(﹣3,﹣1)∪(﹣1,1)C.m∈(﹣3,0)D.m∈(﹣3,﹣1)【分析】求得方程表示椭圆的条件,根据利用充分条件和必要条件的定义判断.【解答】解:若方程表示椭圆,则,解得:﹣3<m<1且m≠﹣1,则方程表示椭圆的充要条件是{m|:﹣3<m<1且m≠﹣1},则:方程表示椭圆的充分不必要条件所对应的集合必须是{m|:﹣3<m<1且m≠﹣1}的真子集,选项D,m∈(﹣3,﹣1)符合条件.故选:D.【点评】本题主要考查充分条件和必要条件的应用,以及椭圆的方程,属于基础题.8.(5分)如图,是对某位同学一学期8次体育测试成绩(单位,分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差超过15分B.该同学8次测试成绩的众数是48分C.该同学8次测试成绩的中位数是49分D.该同学8次测试成绩与测试次数具有相关性,且呈正相关【分析】利用散点图、极差、众数、中位数、相关性直接求解.【解答】解:由散点图得:对于A,该同学的体育测试成绩总的趋势是在逐步提高,且8次测试成绩的极差为:56﹣38=18,超过15分,故A正确;对于B,该同学8次测试成绩的众数是48分,故B正确;对于C,该同学8次测试成绩的中位数是:=48分,故C错误;对于D,该同学8次测试成绩与测试次数具有相关性,且呈正相关,故D正确.故选:C.【点评】本题考查命题真假的判断,考查散点图、极差、众数、中位数、相关性等基础知识,考查运算求解能力,是基础题.9.(5分)若椭圆的弦AB恰好被点M(1,1)平分,则AB所在的直线方程为()A.3x﹣4y+1=0B.3x+4y﹣7=0C.4x﹣3y﹣1=0D.4x+3y﹣7=0【分析】设A(x1,y1),B(x2,y2),利用平方差法求出直线的斜率,然后求解直线方程.【解答】解:设A(x1,y1),B(x2,y2),则,,两式相减得:+=0,因为弦AB恰好被点M(1,1)平分,所以有x1+x2=2,y1+y2=2.所以直线AB的斜率k==﹣•=﹣,因此直线AB的方程为y﹣1=﹣(x﹣1),即4x+3y﹣1=0,故选:D.【点评】本题考查直线与椭圆的位置关系的应用,椭圆的简单性质的应用,平方差法的应用,考查计算能力,属于中档题.10.(5分)七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔社”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A.B.C.D.【分析】设大正方形的边长为2,求出白色部分的面积,利用几何概型能求出在此正方形中任取一点,则此点取自白色部分的概率.【解答】解:如图,设大正方形的边长为2,则最大的三角形是腰长为的等腰直角三角形,角上的三角形是腰长为1的等腰直角三角形,最小的三角形是腰长为的等腰直角三角形,∴白色部分的面积为:S白=22﹣×﹣××﹣×1×1=,∴在此正方形中任取一点,则此点取自白色部分的概率为:P===.故选:A.【点评】本题考查概率的运算,考查几何概型等基础知识,考查运算求解能力,是基础题.11.(5分)已知双曲线的左、右焦点分别为F1、F2.若双曲线右支上存在点P,使得PF1与双曲线的一条渐近线垂直并相交于点Q,且PF2⊥PQ,则双曲线的渐近线方程为()A.y=±x B.y=±2x C.D.【分析】利用已知条件求出P的坐标,代入双曲线方程,推出a,b的关系,即可得到渐近线方程.【解答】解:PF1的方程:y=,PF2的方程为:y=﹣(x﹣c),联立,解得P(,),点P在双曲线上,可得,可得:b4﹣3a2b2﹣4a4=0,可得:b=2a,所以双曲线的渐近线方程为:y=±2x.故选:B.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是中档题.12.(5分)数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线C:x2+y2=|x|+|y|流是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线C围成的图形的面积是2+π;②曲线C上的任意两点间的臥离不超过2;③若P(m,n)是曲线C上任意一点,则|3m+4n﹣12|的最小值是.其中正确结论的个数为()A.0B.1C.2D.3【分析】由曲线方程知曲线关于原点,x,y轴对称,当x≥0,y≥0时,可得x2+y2﹣x﹣y=0,可得(x﹣)2+(y﹣)2=,所以可得是以C(,)为圆心,r=为半径的半圆,由此可作出曲线C的图象,从而通过运算可判断命题①②③的真假.【解答】解:曲线C:x2+y2=|x|+|y|可知曲线关于原点,x,y轴对称,当x≥0,y≥0时,可得x2+y2﹣x﹣y=0,可得(x﹣)2+(y﹣)2=,所以可得是以C(,)为圆心,r=为半径的半圆,由此可作出曲线C的图象,如图所示,所以曲线C围成的图形的面积是×+2×π×()2=2+π,故命题①正确;曲线上任意两点间距离的最大值为4×=2,故命题②错误;设圆心C到直线3x+4y﹣12=0的距离为d==,故曲线上任意一点P(m,n)到直线l的距离的最小值为最小值为﹣,故|3m+4n﹣12|的最小值是,故命题③正确.故选:C.【点评】本题考查命题真假的判断,以及考查由曲线方程研究曲线的相关性质,属中档题.二、填空题:本大题共4小题每小题5分,共20分,把答案13.(5分)椭圆x2+2y2=4的长轴长为4.【分析】化简椭圆方程为标准方程,然后求解长轴长即可.【解答】解:椭圆x2+2y2=4,可得,可得a=2,所以椭圆长轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质的应用,是基础题.14.(5分)某班有40位同学,将他们从01至40编号,现用系统抽样的方法从中选取5人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是05,那么第四位的编号是29.【分析】求出系统抽样间隔,根据抽取的第一位编号即可写出第四位的编号.【解答】解:系统抽样间隔为40÷5=8,且抽取的第一位编号是05,所以第四位的编号是5+8×3=29.故答案为:29.【点评】本题考查了系统抽样应用问题,是基础题.15.(5分)根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y (单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年x 1.8 2.2 2.6 3.0y 2.0 2.8 3.2 4.0若每年的进出口总额x,y满足线性相关关系,则= 1.6;若计划2022年出口总额达到5千亿元,预计该年进口总额为 3.65千亿元.【分析】求出样本中心坐标,代入回归直线方程,求解,然后代入计划2022年出口总额达到5千亿元,求解即可.【解答】解:由题意可得:=2.4.==3.因为样本中心满足回归直线方程,可得3=2.4﹣0.84,解得=1.6.,2022年出口总额达到5千亿元,预计该年进口总额为x,则5=1.6x﹣0.84,解得x=3.65.故答案为:1.6;3.65.【点评】本题考查回归直线方程的求法与应用,考查分析问题解决问题的能力,是中档题.16.(5分)已知椭圆和双曲线有相同的焦点F1和F2,设椭圆和双曲线的离心率分别为e1,e2,P为两曲线的一个公共点,且(O为坐标原点).若,则e2的取值范围是[,+∞).【分析】设椭圆C1:+=1(a1>b1>0),双曲线C2:﹣=1(a2>0,b2>0),F1(﹣c,0),F2(c,0)为C1与C2的共同焦点,则c2=a12﹣b12,c2=a22+b22,由|﹣|=2||,得|PO|=c,则∠F1PF2=90°(P为C1与C2的一个公共点),设|PF1|=m,|PF2=n,可得m2+n2=4c2①,m+n=2a1②,|m﹣n|=2a2③,进一步求出e2的取值范围.【解答】解:设椭圆C1:+=1(a1>b1>0),双曲线C2:﹣=1(a2>0,b2>0),F1(﹣c,0),F2(c,0)为C1与C2的共同焦点,则c2=a12﹣b12,c2=a22+b22,由|﹣|=2||,得||=2||,所以2c=2|PO|,所以|PO|=c,所以|OF1|=|OP|=|OF2|=c,所以∠F1PF2=90°(P为C1与C2的一个公共点),设|PF1|=m,|PF2|=n,则m2+n2=4c2,①m+n=2a1,②,|m﹣n|=2a2,③②2+③2,得2m2+2n2=4(a12+a22),代入①,得2×4c2=4(a12+a22),所以2c2=a12+a22,所以+=2,④又e1=,e2=,所以=,=,所以④化为+=2,即=2﹣,因为e1∈(,],所以<e12≤,所以≤<2,所以﹣2<﹣≤﹣,所以0<2﹣≤2﹣=,即0<≤,则e22≥,又e2>1,所以e2≥,所以e2的取值范围为[,+∞),故答案为:[,+∞).【点评】本题考查椭圆与双曲线的性质,解题中需要理清思路,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC的三个顶点是A(4,0),B(6,7),C(0,3).(Ⅰ)求AC边所在的直线方程;(Ⅱ)求经过AB边的中点,且与AC边平行的直线l的方程.【分析】(Ⅰ)由A、C两点坐标可以写出直线AC斜率,再代入A、C中的一个点就可以求出AC方程.(Ⅱ)求出AB中点,l与AC平行,从而斜率相等,即可设出l,代入A、C中点求得l.【解答】解:(Ⅰ)由题意知AC斜率为k==﹣,所以AC边所在直线方程为y﹣0=﹣(x﹣4),即3x+4y﹣12=0.(Ⅱ)由(Ⅰ)知l可设为3x+4y+m=0,又AB边中点为(5,),将点(5,)代入直线l的方程得3×5+4×+m=0,解得m=﹣29,所以l方程为3x+4y﹣29=0.【点评】本题考查了直线方程的求解和两直线平行的关系,属于简单题.18.(12分)某班主任对全班50名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游201030不喜欢手机网游51520列总数252550(Ⅰ)若随机抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生.现要从这5名学生中任取2名学生了解情况,求其中恰有1名“不喜欢手机网游”的学生的概率.【分析】(Ⅰ)利用古典概型直接求解.(Ⅱ)采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人,“喜欢手机网游”有4 人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n==10,利用列举法求出恰有1名“不喜欢手机网游”学生的情况有4种,由此能求出其中恰有1名“不喜欢手机网游”的学生的概率.【解答】解::(Ⅰ)用A表示“认为作业不多”,用B表示“喜欢手机网游且认为作业多”,则P(A)==,P(B)==.(Ⅱ)若在“认为作业多”的学生中已经用分层抽样的方法选取了5名学生,“不喜欢手机网游”与“喜欢手机网游”的人数的比值为=,∴采用分层抽样方法抽取5人,其中“不喜欢手机网游”的有1人,“喜欢手机网游”有4 人,记“不喜欢手机网游”的1名学生为B,“喜欢手机网游”的4名学生分别为B1,B2,B3,B4,从5名学生中抽取2名学生的所有可能情况有n==10,恰有1名“不喜欢手机网游”学生的情况有:{B,B1},{B,B2},{B,B3},{B,B4},共4种,∴其中恰有1名“不喜欢手机网游”的学生的概率P=.【点评】本题考查概率的求法,考查古典概型基础知识,考查运算求解能力,是基础题.19.(12分)已知圆C的圆心为C(1,2),且圆C经过点P(5,5).(Ⅰ)求圆C的一般方程;(Ⅱ)若圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,求实数m的取值范围.【分析】(I)设圆C的方程为(x﹣1)2+(y﹣2)2=r2(r为圆C的半径),再将点P (5,5)代入圆C方程,即可求解.(II)将已知条件转化为两圆相交,再结合圆心距与两圆半径之间的关系,即可求解.【解答】解:(I)设圆C的方程为(x﹣1)2+(y﹣2)2=r2(r为圆C的半径),∵圆C经过点P(5,5),∴(5﹣1)2+(5﹣2)2=r2,即r2=25,∴圆C的标准方程为(x﹣1)2+(y﹣2)2=25.(II)由(I)知圆C的圆心为C(1,2),半径为5,∵圆O:x2+y2=m2(m>0)与圆C恰有两条公切线,∴圆O与圆C相交,∴|5﹣m|<|OC|<5+m,∵,∴,故m的取值范围是.【点评】本题主要考查两圆之间的位置关系,属于基础题.20.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的得分(得分均为整数,满分为100分)进行统计,所有学生的得分都不低于60分,将这50名学生的得分进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100](单位:分),得到如下的频率分布直方图.(Ⅰ)求图中m的值,估计此次活动学生得分的中位数;(Ⅱ)根据频率分布直方图,估计此竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.【分析】(Ⅰ)所有组频率之和为1,每个小长方形面积为该组对应的频率,这样让1减去其它组频率即为所求组频率,所求组频率即为对应长方形面积,面积除以宽得到高就是m值.频率分布直方图中的中位数是频率0.5位置为应的x的值.(Ⅱ)平均值是各组中点值乘以对应的频率之和,不低于平均值的学生人数为总数500乘以不低于平均值的频率.【解答】(Ⅰ)由图知第三组频率为1﹣(0.01+0.04+0.02)×10=0.30,所以第三组矩形的高为m==0.03.因为前两组的频率为(0.01+0.03)×10=0.4<0.5,前三组的频率为(0.01+0.03+0.04)×10=0.8>0.5,所以得分的中位数在第三组内,设中位数为x,(0.01+0.03)×10+(x﹣80)×0.04=0.5,解得x=82.5,所以估计此次得分的中位数是82.5分.(Ⅱ)由频率分布直方图知,学生得分的平均值为=65×10×0.01+75×10×0.03+85×10×0.04+95×10×0.02=82.参赛的500名学生中得分不低于82分的人数为500×[0.02×10+(90﹣82)×0.04]=260,所以估计此次参加比赛活动学生得分的平均值为82分,参赛的500名学生中有260名学生获奖.【点评】本题考查了频率直方图中的频率、中位数、平均数,频数的求解,考查较基础难度不大.21.(12分)已知抛物线E:x2=2py(p>0)的焦点为F,直线y=3与抛物线E在第一象限的交点为A,且|AF|=4.(Ⅰ)求抛物线E的方程;(Ⅱ)经过焦点F作互相垂直的两条直线l1,l2,l1与抛物线E相交于P,Q两点,l2与抛物线E相交于M,N两点.若C,D分别是线段PQ,MN的中点,求|FC|•|FD|的最小值.【分析】(Ⅰ)由题意可得|AF|=3+=4,求得p,则抛物线E的方程可求;(Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ、MN的斜率都存在且均不为0.设直线PQ的斜率为k,则直线MN的斜率为﹣,可得直线PQ与MN的方程,与抛物线方程联立,利用根与系数的关系及中点坐标公式求得C与D的坐标,再求出|FC|与|FD|的值,作积后整理,再由基本不等式求最值.【解答】解:(Ⅰ)由题意,|AF|=3+=4,得p=2.∴抛物线E的方程为x2=4y;(Ⅱ)由(Ⅰ)知焦点为F(0,1).由已知可得两直线PQ、MN的斜率都存在且均不为0.设直线PQ的斜率为k,则直线MN的斜率为﹣,故直线PQ的方程为y=kx+1,联立方程组,消去y,整理得x2﹣4kx﹣4=0,设点P(x1,y1),Q(x2,y2),则x1+x2=4k,∵C(x C,y C)为弦PQ的中点,∴x C=(x1+x2)=2k.由y C=kx C+1=2k2+1,故点C(2k,2k2+1),同理,可得D(﹣,),故|FC|==2,|FD|==2.∴|FC|•|FD|=4=.当且仅当,即k=±1时,等号成立.∴|CF|•|FD|的最小值为8.【点评】本题考查抛物线的方程和性质,考查直线和抛物线的位置关系的应用,考查化简运算能力和推理能力,训练了利用基本不等式求最值,属于中档题.22.(12分)已知点P是圆上任意一点,是圆C内一点,线段AP的垂直平分线与半径CP相交于点Q.(Ⅰ)当点P在圆上运动时,求点Q的轨迹E的方程;(Ⅱ)设不经过坐标原点O,且斜率为的直线l与曲线E相交于M,N两点,记OM,ON的斜率分别是k1,k2,当k1,k2都存在且不为0时,试探究k1k2是否为定值?若是,求出此定值;若不是,请说明理由.【分析】(Ⅰ)由题意知|PQ|=|AQ|,又|CP|=|CQ|+|PQ|=4,|CQ|+|AQ|=4>|AC|=2,由椭圆定义知Q点的轨迹是椭圆,进而可得答案.(Ⅱ)设直线l的方程为y=x+b,M(x1,y1),N(x2,y2),联立椭圆的方程,结合韦达定理可得x1+x2,x1x2,再计算k1k2=•,即可得出答案.【解答】解:(Ⅰ)由题意知|PQ|=|AQ|,又因为|CP|=|CQ|+|PQ|=4,所以|CQ|+|AQ|=4>|AC|=2,由椭圆定义知Q点的轨迹是椭圆,所以2a=4,即a=2,2c=2,即c=,所以b2=a2﹣c2=1,所以点Q的轨迹方程为+y2=1.(Ⅱ)设直线l的方程为y=x+b,M(x1,y1),N(x2,y2),联立,得2x2+4bx+4b2﹣4=0,所以x1+x2=﹣2b,x1x2=2b2﹣2,所以k1k2=•=====,所以k1k2为定值.【点评】本题考查椭圆的方程,解题中需要一定的计算能力,属于中档题.。
高二数学上学期期末试卷(文科含解析)
高二数学上学期期末试卷(文科含解析)单元练习题是所有考生最大的需求点,只有这样才能保证答题的准确率和效率,以下是店铺为您整理的关于高二数学上学期期末试卷(文科含解析)的相关资料,供您阅读。
高二数学上学期期末试卷(文科含解析)数学试卷(文科)一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于.14.f(x)=x3﹣3x2+2在区间上的最大值是.15.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= .16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥A B.20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数m、n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn>0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【考点】命题的否定.【分析】根据已知我们可得命题“所有能被2整除的数都是偶数”的否定应该是一个特称命题,根据全称命题的否定方法,我们易得到结论.【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.已知椭圆上的点P到椭圆一个焦点的距离为7,则P到另一焦点的距离为( )A.2B.3C.5D.7【考点】椭圆的简单性质.【分析】由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为7,求出P到另一焦点的距离即可.【解答】解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为7,由定义得点P到另一焦点的距离为2a﹣3=10﹣7=3.故选B4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q【考点】四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.5.若双曲线的离心率为,则其渐近线的斜率为( )A.±2B.C.D.【考点】双曲线的简单性质.【分析】由双曲线的离心率为,可得,解得即可.【解答】解:∵双曲线的离心率为,∴ ,解得 .∴其渐近线的斜率为 .故选:B.6.曲线在点M( ,0)处的切线的斜率为( )A. B. C. D.【考点】利用导数研究曲线上某点切线方程.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x= 处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x= = |x= =故选B.7.若椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线ay=bx2的焦点坐标为( )A.( ,0)B.( ,0)C.(0, )D.(0, )【考点】双曲线的简单性质;椭圆的简单性质;抛物线的简单性质.【分析】根据椭圆 (a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点,得到a,b的关系式;再将抛物线ay=bx2的方程化为标准方程后,根据抛物线的性质,即可得到其焦点坐标.【解答】解:∵椭圆(a>b>0)的焦点与双曲线的焦点恰好是一个正方形的四个顶点∴2a2﹣2b2=a2+b2,即a2=3b2, = .抛物线ay=bx2的方程可化为:x2= y,即x2= y,其焦点坐标为:(0, ).故选D.8.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1|=|z2|,则B.若,则C.若|z1|=|z2|,则D.若|z1﹣z2|=0,则【考点】复数代数形式的乘除运算;命题的真假判断与应用.【分析】利用特例判断A的正误;复数的基本运算判断B的正误;复数的运算法则判断C的正误;利用复数的模的运算法则判断D的正误.【解答】解:若|z1|=|z2|,例如|1|=|i|,显然不正确,A错误.B,C,D满足复数的运算法则,故选:A.9.已知命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=ex﹣mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题【考点】四种命题间的逆否关系.【分析】先利用导数知识,确定原命题为真命题,从而逆否命题为真命题,即可得到结论.【解答】解:∵f(x)=e x﹣mx,∴f′(x)=ex﹣m∵函数f(x)=ex﹣mx在(0,+∞)上是增函数∴ex﹣m≥0在(0,+∞)上恒成立∴m≤ex在(0,+∞)上恒成立∴m≤1∴命题“若函数f(x)=ex﹣mx在(0,+∞)上是增函数,则m≤1”,是真命题,∴逆否命题“若m>1,则函数f(x)=ex﹣mx在(0,+∞)上不是增函数”是真命题∵m≤1时,f′(x)=ex﹣m≥0在(0,+∞)上不恒成立,即函数f(x)=ex﹣mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex﹣mx在(0,+∞)上是增函数”是真命题,即B不正确故选D.10.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.【解答】解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,所以“不便宜”是“好货”的必要条件,故选B11.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为,则P到曲线y=f(x)对称轴距离的取值范围为( )A. B. C. D.【考点】直线的图象特征与倾斜角、斜率的关系.【分析】先由导数的几何意义,得到x0的范围,再求出其到对称轴的范围.【解答】解:∵过P(x0,f(x0))的切线的倾斜角的取值范围是,∴f′(x0)=2ax0+b∈,∴P到曲线y=f(x)对称轴x=﹣的距离d=x0﹣(﹣ )=x0+∴x0∈[ ,].∴d=x0+ ∈.故选:B.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1A.3B.4C.5D.6【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得 = .∵x1∴ , .而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取00.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x 的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.设复数,那么z• 等于 1 .【考点】复数代数形式的乘除运算.【分析】直接利用复数的代数形式的混合运算化简求解即可.【解答】解:复数,那么z• = = =1.故答案为:1.14.f(x)=x3﹣3x2+2在区间上的最大值是 2 .【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣10;当0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为215.函数f(x)=lnx﹣f′(1)x2+5x﹣4,则f(1)= ﹣1 .【考点】导数的运算.【分析】先求出f′(1)的值,代入解析式计算即可.【解答】解:∵f(x)=lnx﹣f′(1)x2+5x﹣4,∴f′(x)= ﹣2f′(1)x+5,∴f′(1)=6﹣2f′(1),解得f′(1)=2.∴f(x)=lnx﹣2x2+5x﹣4,∴f(1)=﹣1.故答案为:﹣1.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为45°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则 = .【考点】抛物线的简单性质.【分析】点斜式设出直线l的方程,代入抛物线方程,求出A,B 两点的纵坐标,利用抛物线的定义得出 = ,即可得出结论.【解答】解:设直线l的方程为:x=y﹣,A(x1,y1),B(x2,y2),由x=y﹣,代入x2=2py,可得y2﹣3py+ p2=0,∴y1= p,y2= p,从而, = = .故答案为: .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知z是复数,z+2i和均为实数(i为虚数单位).(Ⅰ)求复数z;(Ⅱ)求的模.【考点】复数求模;复数的基本概念.【分析】(Ⅰ)设z=a+bi,分别代入z+2i和,化简后由虚部为0求得b,a的值,则复数z可求;(Ⅱ)把z代入,利用复数代数形式的乘除运算化简,代入模的公式得答案.【解答】解:(Ⅰ)设z=a+bi,∴z+2i=a+(b+2)i,由a+(b+2)i为实数,可得b=﹣2,又∵ 为实数,∴a=4,则z=4﹣2i;(Ⅱ) ,∴ 的模为 .18.已知集合A={x|(ax﹣1)(ax+2)≤0},集合B={x|﹣2≤x≤4}.若x∈B是x∈A的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义,转化为集合的关系进行求解.【解答】解:(1)a>0时,,若x∈B是x∈A的充分不必要条件,所以,,检验符合题意;┅┅┅┅┅┅┅(2)a=0时,A=R,符合题意;┅┅┅┅┅┅┅(3)a<0时,,若x∈B是x∈A的充分不必要条件,所以,,检验不符合题意.综上.┅┅┅┅┅┅┅19.设椭圆的方程为,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为 .(Ⅰ)求椭圆的离心率;(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.【考点】椭圆的简单性质.【分析】(1)通过题意,利用 =2 ,可得点M坐标,利用直线OM 的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用×( )=﹣1,即得结论.【解答】(Ⅰ)解:设M(x,y),已知A(a,0),B(0,b),由|BM|=2|MA|,所以 =2 ,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x= a,y= b,即可得,┅┅┅┅┅┅┅所以,所以椭圆离心率;┅┅┅┅┅┅┅(Ⅱ)证明:因为C(0,﹣b),所以N ,MN斜率为,┅┅┅┅┅┅┅又AB斜率为,所以×( )=﹣1,所以MN⊥AB.┅┅┅┅┅┅┅20.设函数,其中a为实数.(1)已知函数f(x)在x=1处取得极值,求a的值;(2)已知不等式f′(x)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.【考点】利用导数研究函数的极值.【分析】(1)求出f′(x),因为函数在x=1时取极值,得到f′(1)=0,代入求出a值即可;(2)把f(x)的解析式代入到不等式中,化简得到,因为a>0,不等式恒成立即要,求出x的解集即可.【解答】解:(1)f′(x)=ax2﹣3x+(a+1)由于函数f(x)在x=1时取得极值,所以f′(1)=0即a﹣3+a+1=0,∴a=1(2)由题设知:ax2﹣3x+(a+1)>x2﹣x﹣a+1对任意a∈(0,+∞)都成立即a(x2+2)﹣x2﹣2x>0对任意a∈(0,+∞)都成立于是对任意a∈(0,+∞)都成立,即∴﹣2≤x≤0于是x的取值范围是{x|﹣2≤x≤0}.21.已知椭圆C1:的离心率为,且椭圆上点到椭圆C1左焦点距离的最小值为﹣1.(1)求C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l 的方程.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率和最小距离a﹣c,解方程可得a= ,c=1,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)设出直线y=kx+m,联立椭圆和抛物线方程,运用判别式为0,解方程可得k,m,进而得到所求直线的方程.【解答】解:(1)由题意可得e= = ,由椭圆的性质可得,a﹣c= ﹣1,解方程可得a= ,c=1,则b= =1,即有椭圆的方程为 +y2=1;(2)直线l的斜率显然存在,可设直线l:y=kx+m,由,可得(1+2k2)x2+4kmx+2m2﹣2=0,由直线和椭圆相切,可得△=16k2m2﹣4(1+2k2)(2m2﹣2)=0,即为m2=1+2k2,①由,可得k2x2+(2km﹣4)x+m2=0,由直线和抛物线相切,可得△=(2km﹣4)2﹣4k2m2=0,即为km=1,②由①②可得或,即有直线l的方程为y= x+ 或y=﹣ x﹣ .22.已知函数f(x)=lnx﹣a(x﹣1)2﹣(x﹣1)(其中常数a∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)当x∈(0,1)时,f(x)<0,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(Ⅱ)根据(Ⅰ)通过讨论a的范围,确定出满足条件的a的范围即可.【解答】解:(Ⅰ)f(x)=lnx﹣a(x﹣1)2﹣(x﹣1),(x>0),f′(x)=﹣,①a<﹣时,0<﹣ <1,令f′(x)<0,解得:x>1或00,解得:﹣∴f(x)在递减,在递增;②﹣﹣或00,解得:1∴f(x)在递减,在递增;③ ,f′(x)=﹣≤0,f(x)在(0,1),(1+∞)递减;④a≥0时,2ax+1>0,令f′(x)>0,解得:01,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)函数恒过(1,0),由(Ⅰ)得:a≥﹣时,符合题意,a<﹣时,f(x)在(0,﹣ )递减,在递增,不合题意,故a≥﹣ .。
年高二数学文科上学期期末试题(附)学科试卷
年高二数学文科上学期期末试题(附)学科试卷__()为大家介绍____高二数学文科上学期期末试题,考生们应多加练习,对大家会有很大帮助的。
一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(1+ai)(2+i)是纯虚数,则实数a的值为A.2B.-C.D.-22.如图所示是数列一章的知识结构图,下列说法正确的是A.概念与分类是从属关系B.等差数列与等比数列是从属关系C.数列与等差数列是从属关系D.数列与等比数列是从属关系,但数列与分类不是从属关系3.下列说法中错误的是A.对于命题p:_0_isin;R,sin_0_gt;1,则綈p:__isin;R,sin__le;1;B.命题若0C.若p_or;q为真命题,则p,q均为真命题;D.命题若_2-_-2=0,则_=2的逆否命题是若__ne;2,则_2-_-2_ne;0.4.1A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件5.某工厂生产某种产品的产量_(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:_3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是A.=0.7_+0.35B.=0.7_+1C.=0.7_+2.05D.=0.7_+0.456.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为A.V=abcB.V=ShC.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r为内切球的半径)D.V=(ab+bc+ac)h,(h为四面体的高)7.函数f(_)=_5-_4-4_3+7的极值点的个数是A.1个B.2个C.3个D.4个8.已知椭圆+=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|(O为原点)的长为A.1B.2C.3D.4选择题答题卡题号12345678得分答案二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题卷对应题号后的横线上.9.已知复数z=1+,则||=____________.10.读下面的程序框图,当输入的值为-5时,输出的结果是________.11.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中的白色地面砖有______________块.12.曲线f(_)=_sin_在点处的切线方程是______________.13.已知双曲线-=1(a,b_gt;0)的顶点到渐近线的距离等于,则双曲线的离心率e是________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)在某测试中,卷面满分为100分,60分及以上为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:分数段[29~40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] 午休考生人数23473021143114不午休考生人数1751671530173参考公式及数据:K2=P(K2_ge;k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879(1)根据上述表格完成列联表:及格人数不及格人数总计午休不午休总计(2)能否在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系?对今后的复习有什么指导意义?15.(本小题满分12分)已知:a,b,c_gt;0.求证:a(b2+c2)+b(a2+c2)+c(a2+b2)_ge;6abc.16.(本小题满分12分)已知抛物线y2=4_的焦点是F,准线是l,过焦点的直线与抛物线交于不同两点A,B,直线OA(O为原点)交准线l于点M,设A(_1,y1),B(_2,y2).(1)求证:y1y2是一个定值;(2)求证:直线MB平行于_轴.必考Ⅱ部分一、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.1.从抛物线_2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________.二、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.已知定义在R上的函数f(_)的导数是f_prime;(_),若f(_)是增函数且恒有f(_)_gt;0,则下列各式中必成立的是A.2f(-1)C.2f(1)_gt;f(2)D.3f(2)_gt;2f(3)三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)已知函数f(_)=-_3+3_.(1)求函数f(_)的单调区间和极值;(2)当__isin;[0,a],a_gt;0时,设f(_)的最大值是h(a),求h(a)的表达式.4.(本小题满分13分)(1)证明:_ln__ge;_-1;(2)讨论函数f(_)=e_-a_-1的零点个数.5.(本小题满分14分)如图,已知焦点在_轴上的椭圆+=1(b_gt;0)有一个内含圆_2+y2=,该圆的垂直于_轴的切线交椭圆于点M,N,且_perp;(O为原点).(1)求b的值;(2)设内含圆的任意切线l交椭圆于点A、B.求证:_perp;,并求|AB|的取值范围.湖南师大附中____届高二第一学期期末考试试题数学(文科)参考答案必考Ⅰ部分(100分)6.C△ABC的内心为O,连结OA、OB、OC,将△ABC分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体A-BCD 的内切球球心为O,连接OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原面为底面的四面体,高都为r,所以有V=(S1+S2+S3+S4)r.7.B f_prime;(_)=_4-4_3-12_2=_2(_+2)(_-6),所以f(_)有两个极值点_=-2及_=6.8.D 据椭圆的定义,由已知得|MF2|=8,而ON是△MF1F2的中位线,故|ON|=4.二、填空题9.10.2 ①A=-5_lt;0,②A=-5+2=-3_lt;0,③A=-3+2=-1_lt;0,④A=-1+2=1_gt;0,⑤A=21=2.11.4n+2 第1个图案中有6块白色地面砖,第二个图案中有10块,第三个图案中有14块,归纳为:第n个图案中有4n+2块.12._-y=013. 由题意知=tan30_deg;=e==.∵K2_asymp;5.7_gt;5.024,因此,有97.5%的把握认为午休与考生及格有关系,即能在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系.(10分)对今后的复习的指导意义就是:在以后的复习中,考生应尽量适当午休,以保持最佳的学习状态.(11分)(2)据题意设A,M(-1,yM),(8分)由A、M、O三点共线有=y1yM=-4,(10分)又y1y2=-4则y2=yM,故直线MB平行于_轴.(12分)必考Ⅱ部分(50分)一、填空题1.10 设P(_P,yP),∵|PM|=|PF|=yP+1=5,_there4;yP=4,则|_P|=4,S△MPF=|MP||_P|=10.二、选择题2.B 由选择支分析可考查函数y=的单调性,而f_prime;(_)_gt;0且f(_)_gt;0,则当__lt;0时_prime;=_lt;0,即函数在(-_infin;,0)上单调递减,故选B.三、解答题3.(1)f_prime;(_)=-3_2+3=-3(_+1)(_-1)(2分)列表如下:_(-_infin;,-1)-1(-1,1)1(1,+_infin;)f_prime;(_)-0+0-f(_)递减极小值递增极大值递减所以:f(_)的递减区间有:(-_infin;,-1),(1,+_infin;),递增区间是(-1,1);f极小值(_)=f(-1)=-2,f极大值(_)=f(1)=2.(7分)(2)由(1)知,当0此时fma_(_)=f(a)=-a3+3a;(9分)当a_gt;1时,f(_)在(0,1)上递增,在(1,a)上递减,即当__isin;[0,a]时fma_(_)=f(1)=2(12分)综上有h(a)=(13分)4.(1)设函数_phi;(_)=_ln_-_+1,则_phi;_prime;(_)=ln_(1分)则_phi;(_)在(0,1)上递减,在(1,+_infin;)上递增,(3分)_phi;(_)有极小值_phi;(1),也是函数_phi;(_)的最小值,则_phi;(_)_ge;_phi;(1)=1ln1-1+1=0故_ln__ge;_-1.(5分)(2)f_prime;(_)=e_-a(6分)①a_le;0时,f_prime;(_)_gt;0,f(_)是单调递增函数,又f(0)=0,所以此时函数有且仅有一个零点_=0;(7分)②当a_gt;0时,函数f(_)在(-_infin;,lna)上递减,在(lna,+_infin;)上递增,函数f(_)有极小值f(lna)=a-alna-1(8分)ⅰ.当a=1时,函数的极小值f(lna)=f(0)=a-alna-1=0则函数f(_)仅有一个零点_=0;(10分)ⅱ.当0当0故此时f(_)+_infin;,则f(_)还必恰有一个小于lna的负根;当a_gt;1时,2lna_gt;lna_gt;0,计算f(2lna)=a2-2alna-1考查函数g(_)=_2-2_ln_-1(__gt;1),则g_prime;(_)=2(_-1-ln_),再设h(_)=_-1-ln_(__gt;1),h_prime;(_)=1-=_gt;0故h(_)在(1,+_infin;)递增,则h(_)_gt;h(1)=1-1-ln1=0,所以g_prime;(_)_gt;0,即g(_)在(1,+_infin;)上递增,则g(_)_gt;g(1)=12-21ln1-1=0即f(2lna)=a2-2alna-1_gt;0,则f(_)还必恰有一个属于(lna,2lna)的正根.故0综上:当a_isin;(-_infin;,0]_cup;{1}时,函数f(_)恰有一个零点_=0,当a_isin;(0,1)_cup;(1,+_infin;)时函数f(_)恰有两个不同零点.(13分)5.(1)当MN_perp;_轴时,MN的方程是_=_plusmn;,设M,N由_perp;知|y1|=,即点在椭圆上,代入椭圆方程得b=2.(3分)(2)当l_perp;_轴时,由(1)知_perp;;当l不与_轴垂直时,设l的方程是:y=k_+m,即k_-y+m=0则=3m2=8(1+k2)(5分)(1+2k2)_2+4km_+2m2-8=0,_Delta;=16k2m2-4(1+2k2)(2m2-8)=(4k2+1)_gt;0,设A(_1,y1),B(_2,y2)则,(7分)_1_2+y1y2=(1+k2)_1_2+km(_1+_2)+m2-+m2_==0,即_perp;.即椭圆的内含圆_2+y2=的任意切线l交椭圆于点A、B时总有_perp;.(9分)(2)当l_perp;_轴时,易知|AB|=2=(10分)当l不与_轴垂直时,|AB|===(12分)设t=1+2k2_isin;[1,+_infin;),_isin;(0,1]则|AB|==所以当=即k=_plusmn;时|AB|取最大值2,当=1即k=0时|AB|取最小值,(或用导数求函数f(t)=,t_isin;[1,+_infin;)的最大值与最小值)综上|AB|_isin;.(14分)____高二数学文科上学期期末试题就为大家整理到这儿了,同学们要好好复习。
高二数学文科期末考试题
∴ b 的最大值是 4 6
……………………………………… 12 分
7 / 14
高二年级数学上学期期末考试试卷 ( 文科 )
命题人 鞍山一中 李燕溪 校对人 李燕溪
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一个选项是符 合题目要求的.
1.椭圆 x2 2
y2 1 的离心率是
()
2
A.
2
B. 2
1
C.
2
D. 2
2. 2, 5,2 2, 11 则 4 2 是该数列中的
A 第 9 项 B 第 10 项 C
第 11 项 D
第 12 项
3.在 ABC 中 , A 30 , B 45 , BC 2. 则 AC 边长为
() ()
A. 2
26
B.
3
C. 2 2
6
D.
.
14 、数列 an 的通项公式 an 的和 , 则 Sn = _________.
1
n(n
1),则
Sn为数列
{ }的前 an
n项
15. 在 ABC 中,三个角 A 、B 、C 成等差数列, AB 1, BC 4 ,则 BC 边上的中线 AD 的长为
.
16. 已知 2 3 2,( x 0, y 0) , 则 xy 的最小值是 _________. xy
B. 所有奇数都不能被 5 整除 D. 存在一个奇数,不能被 5 整除
9. 双曲线 x2 y2 1 mn 0 离心率为 2,有一个焦点与抛物线 y2 4 x 的焦点重合, mn
则 mn的值为
3 A.
16
3 B.
8
16 C.
高二数学期末考试试题文科
高二数学期末考试试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知a, b ∈R ,若|a+b |=1,则下列各式中成立的是( ) A .|a |+|b |>1B .|a |+|b |≥1C .|a |+|b |<1D .|a |+|b |≤12.下列命题中,正确的是( ) A .经过不同的三点有且只有一个平面 B .平行于同一平面的两条直线互相平行C .分别和两条异面直线都相交的两条直线是异面直线D .若一个角的两边和另一个角的两边分别平行,则这两个角相等或互补 3.抛物线y =4x 2的准线方程是( ) A .x =1B .14x =-C .y =-1D .116y =-4.已知圆C 与圆22(1)1x y -+=关于直线y=x 对称,则圆C 的方程是( ) A .22(1)1x y +-= B .22(1)1x y ++= C .221x y +=D .22(1)1x y ++=5.不等式1|1|2x <+<的解集为( ) A .(3,0)-B .(0,1)C .(1,0)(2,3)-D .(3,2)(0,1)--6.若P 为双曲线22197x y -=的右支上一点,且P 到右焦点的距离为4,则P 到左准线的距离为( ) A .3B .6C .152D .107.如图,A 、B 、C 、D 、E 、F 分别为正方体相应棱的中点,对于直线AB 、CD 、EF ,下列结论正确的是( ) A .AB ∥CDB .CD 与EF 异面C .AB 与CD 相交D .AB 与EF 异面8.已知(cos ,1,sin ),(sin ,1,cos )a b αααα==,当a b 取最小值时,,a b <>的值为( )A .0°B .90°C .180°D .60°9.设,,αβγ为不重合的平面,,,l m n 为不重合的直线,给出下列四个命题: ①,,l l αβαβ⊥⊥则; ②若,,,,m n m n ααββαβ⊂⊂则;③若,,n m n m αβα=则; ④若,,,,l m n l m n αββγγαγ===且则.其中是真命题的个数是( ) A .1B .2C .3D .410.已知实数x, y 满足10y x -+≤,则22(1)(1)x y +++的最小值是( )A .12BCD .211.若双曲线22221(0,0)x y a b a b-=>>与直线2y x =无交点,则离心率e 的取值范围是( )A.B.C .(1,2]D .(1,2)12.E 、F 是椭圆22142x y +=的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠EPF 的最大值是( ) A .60°B .30°C .90°D .45°A D CB EF选择题答题卡二、填空题:本大题共4小题,每小题4分,共16分.把答案写在横线上.13.若(2,1)p -为圆22(1)25x y -+=的弦AB 的中点, 则直线AB 的方程为____________. 14.过抛物线24y x =的焦点作直线l 交抛物线于A (x 1, y 1), B (x 2, y 2)两点,则y 1y 2=_______. 15.已知关于x 的不等式2(6)()0ax x a x a--<-的解集为M ,若3M ∉,则a 的取值范围是________________.16.某单位需购液化气106千克,现在市场上该液化气有两种瓶装,一种是瓶装35千克,价格为140元;另一种是瓶装24千克,价格为120元. 在满足需要的情况下,最少要花费_________________元.三、解答题:本大题共6个小题,共74分.解答应写出文字说明、证明或演算步骤. 17.(本小题满分12分)求经过点A (3,2),圆心在直线y =2x 上,且与直线y =2x +5相切的圆的方程.18.(本小题满分12分)如图,ABCD 为正方形,PD ⊥平面AC ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明:P A ∥平面EDB ; (2)证明:PB ⊥平面EFD .A19.(本小题满分12分)一座拱桥桥洞的截面边界由抛物线弧段COD 和矩形ABCD 的三边组成,拱的顶部O 距离水面5m ,水面上的矩形的高度为2m ,水面宽6m ,如图所示.一艘船运载一个长方体形的集装箱,此箱平放在船上,已知船宽5m ,船面距离水面1.5m ,集装箱的尺寸为长×宽×高=4×3×3(m). 试问此船能否通过此桥?并说明理由.20.(本小题满分12分)如图,在长方体ABCD —A 1B 1C 1D 1,AB=BC =1,AA 1=2,E 为CC 1的中点,F 为BD 1的中点.(1)求异面直线D 1E 与DF 所成角的大小;(2)M 为直线DA 上动点,若EF ⊥平面BMD 1,则点M 在直线DA 上的位置应是何处?21.(本小题满分12分)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 作直线PF 垂直于该双曲线的一条渐近线1l 于33P . (1)求该双曲线方程;(2)设A 、B 为双曲线上两点,若点N (1,2)是线段AB 的中点,求直线AB 的方程.22.(本小题满分14分)如图,梯形ABCD 的底边AB 在y 轴上,原点O 为AB的中点,|||2,33AB CD AC BD ==-⊥M 为CD 的中点. (1)求点M 的轨迹方程;(2)过M 作AB 的垂线,垂足为N ,若存在正常数0λ,使0MP PN λ=,且P 点到A 、B 的距离和为定值,求点P 的轨迹E 的方程;(3)过1(0,)2的直线与轨迹E 交于P 、Q 两点,且0OP OQ =,求此直线方程.2005年秋高二数学参考答案(文)1.B2.D3.D4.A5.D6.C7.D8.B9.B 10.A 11.A 12.B 13.x-y-3=0 14.-4 15.[2, 3]∪[9, +∞) 16.50017.解:设圆心坐标为(a, 2a).∴5a2-14a+8=0. ∴a=2或45a=. 故所求圆的方程为482222(2)(4)5,()() 5.55x y x y-+-=-+-=或18.(1)连结AC,设AC∩BD=0,连结EO,∵底面是正方形,∴O为AC的中点∴OE为△P AC的中位线∴P A∥OE,而OE⊂平面EDB,P A⊄平面EBD,∴P A∥平面EDB. (2)∵PD⊥平面AC,BC⊂平面AC,∴BC⊥PD,而BC⊥CD,PD∩CD=D.∴BC⊥平面PDC. ∵DE⊂平面PDC, ∴BC⊥DE . ①又∵PD⊥平面AC,DC⊂平面AC,∴PD⊥DC,而PD=DC,∴△PDC为等腰三角形. ∴DE⊥PC . ②由①、②可知DE⊥平面PBC,∴DE⊥PB.又EF⊥PB, ∴PB⊥平面DEF.(可建立空间直角坐标系证明。
陕西省西安市长安区第一中学2022-2023学年高二上学期期末文科数学试题
陕西省西安市长安区第一中学2022-2023学年高二上学期期
末文科数学试题
学校:___________姓名:___________班级:___________考号:___________
二、填空题
15.某区域有大型城市24个,中型城市18个,小型城市12个.为了解该区域城市空气质量情况,现采用分层抽样的方法抽取9个城市进行调查,则应抽取的大型城市个数为________.
16.若样本数据1x ,2x ,…,100x 的方差为100,则数据134x -,234x -,…,10034x -的方差为________.
17.已知双曲线C 的左、右焦点分别为1F ,2F ,过2F 的直线垂直于双曲线的一条渐近
三、解答题 21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据
按照[)[0.51)
[44.5]0,0.5,,,,,L 分成9组,制成了如图的频率分布直方图.
(1)求直方图中a 的值;
(2)估计居民月均用水量的中位数;
(3)设该市有60万居民,估计全市居民中月均用水量不低于2.5吨的人数,并说明理由. 22.如图,在四棱锥S ABCD -中,//AB DC ,BC AB ⊥,CD SD =,平面SCD ⊥平面SBC .
(1)求证:BC ⊥平面SCD ;
(2)设8BC CD ==,16SB =,求三棱锥S BCD -的体积.
23.已知动圆过定点(0,3)A ,且在x 轴上截得的弦长为6.。
许昌市2021-2022学年高二上学期期末数学试卷(文科)(含答案解析)
许昌市2021-2022学年高二上学期期末数学试卷(文科)班级:_________ 姓名:_________ 分数:_________一、单选题(本大题共12小题,共60分)1、命题“∀x >1,x 2−x >0”的否定是( )A. ∃x 0≤1,x 02−x 0>0B. ∃x 0>1,x 02−x 0≤0C. ∀x >1,x 2−x ≤0D. ∀x ≤1,x 2−x >02、已知抛物线y =34x 2,则它的焦点坐标是( )A. (0,316)B. (316,0)C. (13,0)D. (0,13)3、“m =−2”是“直线l 1:mx +4y +4=0与直线l 2:x +my +2=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4、设实数x ,y 满足{x +4y −5≥0x +y −5≤0x ≥1,则z =x +5y 的最小值为( )A. 5B. 6C. 7D. 85、已知数列{a n }满足,a 1=1,log 2a n+1−log 2a n =1,数列{a n }的前n 项和S n =( )A. 2n+1−1B. 2n+1−2C. 2n −1D. 2n −26、在△ABC 中,A =60°,a =√6,b =2,满足条件的三角形的个数为( )A. 0B. 1C. 2D. 无数多7、已知F 1,F 2为椭圆x 29+y 216=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A|+|F 2B|=10,则|AB|=( )A. 2B. 4C. 6D. 108、设{a n }是等差数列,公差为d ,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A. d <0B. a 7=0C. S 9>S 5D. S 6和S 7均为S n 的最大值9、若直线2ax−by+2=0(a>0,b>0)被圆x2+y2+2x−4y+1=0所截得的弦长为4,则1 a +1b的最小值为()A. 14B. 12C. 2D. 410、数列{a n}满足a n+2=2a n+1−a n,且a2014,a2016是函数f(x)=13x3−4x2+6x−1的极值点,则log2(a2000+a2012+a2018+a2030)的值是()A. 2B. 3C. 4D. 511、过双曲线x2a2+y2b2=1(a>0,b>0)的左焦点F(−c,0)作圆x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为()A. √5B. √52C. √5+1 D. √5+1212、设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)−f(x)x2<0恒成立,则不等式xf(x)>0的解集是()A. (−2,0)∪(2,+∞)B. (−2,0)∪(0,2)C. (−∞,−2)∪(0,2)D. (−∞,−2)∪(2,+∞)二、填空题(本大题共4小题,共20分)13、已知椭圆x210−m +y2m−2=1的长轴在y轴上,若焦距为4,则m=______ .14、在△ABC中.若sinA,sinB,sinC成公比为√2的等比数列,则cosB=______ .15、若函数f(x)=x3−tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是______.16、阿基米德(公元前287−公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆C:x2 a2+y2b2=1(a>b>0)经过点P(√2,1),则当e+ba取得最大值时,椭圆的面积为______.三、解答题(本大题共6小题,共70分)17、(本小题10.0分)(1)求焦点在x轴上,虚轴长为12,离心率为54的双曲线的标准方程;(2)求经过点P(−2,−4)的抛物线的标准方程.18、(本小题12.0分)设p:关于x的不等式x2−4x+m≤0有解,q:m2−6m+5≤0.(1)若p为真命题,求实数m的取值范围;(2)若p∧q为假命题,p∨q为真命题,求实数m的取值范围.19、(本小题12.0分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,2cosBcosC+2cosA=√3sinC.(1)求B;(2)若b=2√7,△ABC的面积为6√3,求a+c的值.20、(本小题12.0分)已知公差不为零的等差数列{a n}的前n项和为S n,S5=35,且a2,a6,a22成等比数列.(1)求{a n}的通项公式;(2)记b n=3a n a n+1,求数列{b n}的前n项和T n.21、(本小题12.0分)已知函数f(x)=e x−ax+a(a∈R).(1)当a=1时,求函数f(x)的图象在x=0处的切线方程;(2)求f(x)的单调区间.22、(本小题12.0分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的焦距为2,左、右焦点分别为F1,F2,A为椭圆C上一点,且AF2⊥x轴,OM⊥AF1,M为垂足,O为坐标原点,且|OM||AF2|=25.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F2的直线l(斜率不为0)与椭圆交于P,Q两点,G为x轴正半轴上一点,且∠PGF2=∠QGF2,求点G的坐标.参考答案及解析1.答案:B解析:本题考查命题的否定,属于基础题.利用全称量词命题的否定是存在量词命题写出结果即可.因为全称量词命题的否定是存在量词命题,所以命题“∀x>1,x2−x>0”的否定是:∃x0>1,x02−x0≤0.所以选:B.2.答案:D解析:∵抛物线方程为y=34x2,∴化成标准形式,得x2=43y,因此,2p=43,得p2=13,所以焦点坐标为(0,13).所以选:D.将抛物线化成标准方程得x2=43y,从而得到2p=43,由此即可写出该抛物线的焦点坐标.本题给出抛物线的方程,求它的焦点坐标.着重考查了抛物线的标准方程与简单几何性质等知识,属于基础题.3.答案:C解析:直线l1:mx+4y+4=0与直线l2:x+my+2=0的方向向量分别为a⃗=(−4,m),b⃗⃗=(−m,1).∵a⃗//b⃗⃗,由−m2−(−4)×1=0,解得m=±2,经过验证m=2时两条直线重合,舍去.∴m=−2”是“直线l1:mx+4y+4=0与直线l2:x+my+2=0平行”的充要条件.所以选:C.由m2−4=0,解得m,去掉重合情况,即可判断出关系.本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.4.答案:A解析:作出不等式组所表示的平面区域,如图所示,由z =x +5y 得y =−15x +15z , 结合图形可知,当y =−15x +15z过B(5,0)时,在y 轴上的纵截距15z最小,此时z 取得最小值5. 所以选:A .作出不等式组所表示的平面区域,由z =x +5y 得y =−15x +15z ,结合直线在y 轴的截距先求出z 取得最小值的位置,代入可求. 本题主要考查了线性规划在求解目标函数最值中的应用,属于基础题.5.答案:C解析:依题意,由log 2a n+1−log 2a n =1,可得log 2a n+1a n =1,即an+1a n=2,故数列{a n }是以1为首项,2为公比的等比数列, ∴S n =1−2n 1−2=2n −1.所以选:C .先根据已知条件及对数的运算,可得数列{a n }是以1为首项,2为公比的等比数列,再根据等比数列的求和公式即可计算出S n 的表达式,得到正确选项.本题主要考查等比数列的判定,以及等比数列的求和问题.考查了转化与化归思想,等比数列的定义,对数的运算,以及逻辑推理能力和数学运算能力,属基础题.6.答案:B解析:△ABC 中,A =60°,a =√6,b =2, 满足a sinA=bsinB ,整理得sinB =√22,所以B =45°或135°, 由于a >b , 所以A >B ,故B=45°.所以满足条件的三角形有1个.所以选:B.直接利用正弦定理和三角函数的值的应用确定三角形的个数.本题考查的知识要点:正弦定理的应用,主要考查学生的运算能力和数学思维能力,属于基础题.7.答案:C解析:根据椭圆的定义|F1A|+|F2A|+|F1B|+|F2B|=4a=16,所以|AB|=|F1A|+|F2B|=6.所以选:C.利用椭圆的定义,转化求解|AB|即可.本题考查椭圆的定义的应用,椭圆的简单性质的应用,是基础题.8.答案:C解析:∵S5<S6,S6=S7>S8,∴a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.S9=9(a1+a9)2=9a5,S5=5(a1+a5)2=5a3.S9−S5=9(a1+4d)−5(a1+2d)=4a1+26d=4a7+2d<0,∴S9<S5.因此C错误.所以选:C.S5<S6,S6=S7>S8,可得a6>0,a7=0,a8<0,可得d<0.S6和S7均为S n的最大值.作差S9−S5= 4a7+2d<0,可得S9<S5.本题考查了等差数列的单调性、通项公式与求和公式、作差法,考查了推理能力与计算能力,属于中档题.9.答案:D解析:圆x2+y2+2x−4y+1=0的圆心坐标(−1,2),半径是2,弦长是4,所以直线2ax−by+2= 0(a>0,b>0)过圆心,即:−2a−2b+2=0,∴a+b=1,将它代入1a +1b得,a+ba+a+bb=2+ba+ab≥4(因为a>0,b>0当且仅当a=b时等号成立).所以选:D.先求圆的圆心和半径,求弦心距,用弦心距、半径、半弦长的关系得到a、b关系,来求1a +1b的最小值.分析中用的是一般方法,解答中比较特殊,解题灵活,本题是一个好题目,学生容易受挫.10.答案:C解析:函数f(x)=13x3−4x2+6x−1,可得f′(x)=x2−8x+6,∵a2014,a2016是函数f(x)=13x3−4x2+6x−1的极值点,∴a2014,a2016是方程x2−8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1−a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.所以选:C.利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.11.答案:A解析:如图,记右焦点为F′,则O为FF′的中点,∵E为PF的中点,∴OE为△FF′P的中位线,∴PF′=2OE=2a,∵E为切点,∴OE⊥PF,∴PF′⊥PF,∵点P在双曲线上,∴PF−PF′=2a,∴PF=PF′+2a=4a,在Rt△PFF′中,有:PF2+PF′2=FF′2,∴16a2+4a2=4c2,即20a2=4c2,∴离心率e=ca=√5.所以选:A .通过双曲线的特点知原点O 为两焦点的中点,利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF ,通过勾股定理得到a ,c 的关系,进而求出双曲线的离心率.本题主要考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a ,b ,c 的关系,注意解题方法的积累,属于中档题.12.答案:B解析:f(x)是R 上的奇函数,则f(x)x为偶函数; (f(x)x )′=xf′(x)−f(x)x 2; ∵x >0时,xf′(x)−f(x)x 2<0恒成立;∴x >0时,(f(x)x)′<0恒成立;∴f(x)x 在(0,+∞)上单调递减,在(−∞,0)上单调递增; 由xf(x)>0得:f(x)x>0;∵f(2)=0,∴f(−2)=0; ∴①x >0时,f(x)x >f(2)2; ∴0<x <2;②x <0时,f(x)x >f(−2)−2; ∴−2<x <0;综上得,不等式xf(x)>0的解集为(−2,0)∪(0,2). 所以选:B .根据f(x)是R 上的奇函数,即可得出f(x)x为偶函数,并根据条件可得出x >0时,(f(x)x)′<0,这样即可得出函数f(x)x的单调性,根据f(2)=0即可得出f(−2)=0,可知xf(x)>0等价于f(x)x>0,从而可讨论x >0,和x <0,即可得出f(x)x>0的解集,从而得出xf(x)>0的解集.考查奇函数、偶函数的定义,偶函数在对称区间上的单调性,根据函数导数符号判断函数单调性的方法,以及函数单调性的定义.13.答案:8。
(完整word版)高二第一学期数学期末考试题及答案(人教版文科)
2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。
高二上学期期末考试数学(文)试题Word版含答案
届高二上学期期末考试试卷文科数学考试时间:120 分钟满分:150 分注意事项: 1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。
考试结束后,请将答题卡 上交。
2.答卷前,考生务必将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答 题卡上。
3.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
4.非选择题的作答:用黑色签字笔在答题卡上对应的答题区域内作答。
答在试卷、草稿 纸上无效。
5.考生务必保持答题卡的整洁。
第I卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设全集U 1,2,3,4,5, M 1,2,4, N 2,4,5,则(CU M) (CU N ) 等于( )A. 4B. 1,3C. 2,5D. 32. 设,“ x 1”是“ x 1”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3. 已知直线 经过点 P2,5 ,且斜率为 3 ,则直线 l 的方程为( )4A. 3x 4y 14 0B. 3x 4y 14 0C. 4x 3y 14 0D. 4x 3y 14 04. 如果执行右面的程序框图,那么输出的 S ( )A.90B.110第1页 共11页C.250D.2095. 将一条 5 米长的绳子随机地切断为两段,则两段绳子都不短于 1 米的概率为( )A. 1 5B. 2 5C. 3 5D. 4 53x y 2≤06.已知变量x,y满足线性约束条件 xy2≥0x y 1≥0,则目标函数 z 1 x y 的最小值为 2()A. 5 4B. 2C. 2D. 13 47. 下列四个命题中正确的是( )①若一个平面经过另一平面的垂线,那么这两个平面相互垂直;②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③垂直于同一条直线的两个平面相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A.①③B.①④C.①②④D.①③④8. 某四棱锥的三视图如图所示,则该四棱锥的体积为( )A. 4 3B. 2 3C. 8 3D. 29. 若,,则的值为( )A.B.C.D.10. 若圆 C 的半径为 1,圆心在第一象限,且与直线 4x 3y 0 和 x 轴都相切,则该圆的标准方程是( )A. (x 2)2 ( y 1)2 1B. (x 2)2 ( y 1)2 1C. (x 2)2 ( y 1)2 1D. (x 3)2 ( y 1)2 1第2页 共11页11. 《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把 120 个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍,则最少的那份有( )个面包.A.1B.2C.3D.412.设函数f x lg 1 2x11 x4,则使得f3x 2 f x 4 成立的 x 的取值范围是( )A. 1 3,1B. 1,3 2 C. ,3 2 D. ,1 3 , 2 第 II 卷(非选择题,共 90 分)注意事项:用 0.5 毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分。
高二上学期期末文科数学试卷带答案(必修5+选修1-1)
深圳市布吉高级中学学业评价测试试卷高二数学(文科)满分:150分 时间:120分钟考生注意:客观题请用2B 铅笔填涂在答题卡上,主观题用黑色的水笔书写在答题卡上。
一、选择题:(本大题共10小题,每小题5分,共50分。
)1. 在ABC ∆中,若a =,60A =︒,6b =,则角B 是A .30︒或150︒B .30︒C .150︒D .45︒2. 命题“2,210x R x ∀∈+>”的否定是A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+> C .200,210x R x ∃∈+≤ D .200,210x R x ∃∈+<3. 椭圆13610022=+y x 的焦距等于 A .20B .16C .12D .84. “0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 5. 等比数列{}n a 中,42=a ,1617=a ,则5463a a a a +的值是 A .1B .2C .12D .146. 如果实数,x y 满足:102010x y x y x -+≤⎧⎪+-≤⎨⎪+≥⎩,则目标函数4z x y =+的最大值为A .2B .3C .27D .47. 已知函数()2xf x =,则'()f x =A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x8. 已知双曲线12222=-b y a x 的一条渐近线方程为,34x y =则双曲线的离心率为A .35 B .34 C .45 D .23 9. 若抛物线22(0)y px p =>的焦点与双曲线221124x y -=的右焦点重合,则p 的值为A .8B.C .4D .210. 已知椭圆的方程为13422=+y x ,P 是椭圆上的一点,且 6021=∠PF F ,则21PF F ∆的面积为A .33B .3C .32D .33二、填空题:(本大题共4小题,每小题5分,共20分。
(推荐)高二上学期文科数学期末试卷,附答案
高二上学期数学期末试卷(新课标)文 科 数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷和答题卡上,并用2B 铅笔在答题卡上填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卷交回.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,xx e x ∀∈>R ”的否定是( ) A .x eR x x <∈∃0,0B .,xx e x ∀∈<R C .,xx e x ∀∈≤RD .x eR x x ≤∈∃0,0.2.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .14新$课$标$第$一$网3.抛物线22y x =的准线方程为( ) w w w .x k b 1.c o mA .14y =-B .18y =-C .1y =D .12y =4.“α为锐角”是“0sin >α”的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件5.设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A .4 B .3 C .2 D .16. 在空间直角坐标系中,已知点P (x ,y ,z ),给出下列四条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .07.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.[来源:学&科&网Z&X&X&K]其中,为真命题的是( )A .①和② B.②和③ C.③和④ D.②和④8.若双曲线193622=-y x 的弦被点(4,2)平分,则此弦所在的直线方程是( ) A .02=-y x B .042=-+y x C .014132=-+y x D .082=-+y x9.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34 D .4510.椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =( ) A .415B .95C .6D .7二、填空题:本大题共3小题,每小题5分,共15分.11.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线0x y +=相切,则圆O 的方程是.12.某三棱锥的三视图如图所示,该三棱锥的体积是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(文科)上学期期末试卷(命题范围:选修1—1、1—2 满分:150分,答卷时间: 120分钟)一、选择题(共12个小题;每小题5分,共60分,每题只有一个正确答案)1.抛物线24y x =的准线方程是 ( )A .116y =-B .116y = C .1y =- D .1y = 2.“0AB >”是“方程221Ax By +=表示椭圆”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.命题“对任意的3210x R x x ∈-+≤,”的否定是 ( ) A .不存在3210x R x x ∈-+≤,B .存在3210x R x x ∈-+≤,C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 4广告费用x (万元) 4 2 3 5 销售额y (万元)492639546万元时,销售额为 ( )A .72.0万元B .67.7万元C .65.5万元D .63.6万元 5.如图,一圆形纸片的圆心为O, F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 6.函数()(1)xf x x e =-的单调递增区间是 ( ) A.[0,+∞) B. [1,+∞) C.(-∞,0] D.(-∞,1]7.若抛物线22y px =的焦点与双曲线2233x y -=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .48.已知奇函数()f x 、偶函数()g x .若当0>x 时有'()0f x >、'()0g x >,则0<x 时( )A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<9.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50总计 60 50 110P (χ2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.828由χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2算得:χ2=110×40×30-20×20260×50×60×50≈7.8.参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”10.双曲线1244922=y x —上一点P 与双曲线的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( )A .20B .22C .28D .2411.有下列数组排成一排:121321432154321(),(,),(,,),(,,,),(,,,,),112123123412345,如果把上述数组中的括号都去掉会形成一个数列:121321432154321,,,,,,,,,,,,,,,112123123412345则此数列中的第2011项是( ) .A 757 .B 658 .C 559 .D 46012.函数'()y f x =是函数()y f x =的导函数,且函数()y f x =在点00(,())p x f x 处的切线为:000:()'()()(),()()()l y g x f x x x f x F x f x g x ==-+=-,如果函数()y f x =在区间[,]a b 上的图像如图所示,且0a x b <<,那么 ( ) A .00'()0,F x x x ≠=不是()F x 极值点 B .00'()0,F x x x ≠=是()F x 极值点 C .00'()0,F x x x ==是()F x 的极大值点 D .0'()F x =00,x x =是()F x 的极小值点 二、填空题(本大题共4个小题;每小题4分,共16分)13.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________.14.设双曲线12222=-by a x (0)b a >>的半焦距为c ,直线l 过(,0)a ,(0,)b 两点.已xyO1F 2F A BM知原点到直线l 的距离为12c ,则双曲线的离心率为 . 15.袋中有红,黄,绿色球各一个,每次任取一个,有放回地抽三次,则球的颜色不全相同的概率为________.16.椭圆221169x y +=的左、右焦点分别为1F 、2F , 过焦点1F 的直线交椭圆于,A B 两点 ,若2ABF ∆的内切圆的面积为π,A ,B 两点的坐标分别为11(,)x y 和22(,)x y ,则21y y -的值为 .三、解答题(本大题共6个小题,共74分,写出必要的步骤) 17.(本小题满分12分)已知命题p :不等式210x ax ++≤有非空解集,命题q :函数()(1)2f x a x =-+是增函数.若“p q ∨”为真,“p q ∧”为假,求实数a 的取值范围.18.(本小题满分12分)已知双曲线C 与双曲线2212x y -=有共同渐近线,并且经过点(2,2)-. (1)求双曲线C 的标准方程;(2)过双曲线C 的上焦点作直线l 垂直与y 轴,若动点M 到双曲线C 的下焦点的距离等于它到直线l 的距离,求点M 的轨迹方程.19.(本小题满分12分)已知函数32()233f x x ax bx c =+++在1x =及2x =处取得极值.(1)求a 、b 的值;(2)若方程()0f x =有三个根,求c 的取值范围. 20.(本小题满分12分)如图,抛物线x y C 4:21=,圆1)1(:222=+-y x C ,过抛物线焦点的直线l 交1C 于D A ,两点,交2C 于C B ,两点. (Ⅰ)若2AB CD BC +=,求直线l 的方程; (Ⅱ)求AB CD ⋅的值. 21.(本小题满分12分)已知函数123)(23++-=ax ax x x f (a ∈R ). (I )当83-=a 时,求函数f(x)的单调递减区间;(Ⅱ) 当0>a 时,设函数ax x f x g 23)()(-+=,若]2,1[∈x 时,0)(>x g 恒成立,求a 的取值范围。
22.(本小题满分14分)已知点M(k,l )、P (m,n ),(klmn ≠0)是曲线C 上的两点,点M 、N 关于x 轴对称,直线MP 、NP 分别交x 轴于点E(x E ,0)和点F (x F ,0),(Ⅰ)用k 、l 、m 、n 分别表示E x 和F x ;(Ⅱ)当曲线C 的方程分别为:222(0)x y R R +=> 、22221(0)x y a b a b+=>>时,探究E F x x ⋅的值是否与点M 、N 、P 的位置相关;(Ⅲ)类比(Ⅱ)的探究过程,当曲线C 的方程为22(0)y px p =>时,探究E x 与Fx 经加、减、乘、除的某一种运算后为定值的一个正确结论.(写出你的探究结论,并且证明).13、a ≥0,b ≥0且a ≠b 解析:a a +b b >a b +b a ⇔(a -b )2(a +b )>0⇔a ≥0,b ≥0且a ≠b .14、215、 8916、17、解答:p :240a ∆=-≥,即p :2a ≤-或2a ≥ -----3分q :1a >; --------------------------------------6分 ∵ “p q ∨”为真,“p q ∧”为假,∴p 与q 一真一假; --------------------------9分 ∴2a ≤-或12a <<. -------------------------12分18、解答:(1)解:设所求双曲线方程为 22(0)2x y k k -=≠, 将点(2,2)-代入,得2k =-,故双曲线的标准方程是22124y x -=.---------------6分(2)由题设可知,动点M 的轨迹是以双曲线C 的下焦点2(0,F 为焦点,直线:l y =12p F F ==,故点M 的轨迹方程是2x =-. -----12分 19、解答:解:(1)由已知b ax x x f 366)(2++=',-----------------------------------------------------------------------2分因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根,故3-=a 、4=b ; ------------------------------------------------------------------------5分(2)由(1)可得32()2912f x x x x c =-++,)2)(1(612186)(2--=+-='x x x x x f ,当1<x 或2>x 时,0)(>'x f ,)(x f 递增, 当21<<x 时,0)(<'x f ,)(x f 递减,------------------------------------------------------------------------8分据题意,()(1)50()(2)40f x f c f x f c ==+>⎧⎪⎨==+<⎪⎩极大值极小值, ------------------10分解得:54c -<<-. ------------------------------------------ 12分 20、解答:(第20题)(Ⅰ)2C ()1,0为抛物线的焦点, 由2AB CD BC +=,得6AD =.由题易得直线l 的斜率存在且不为零,设直线():-1l y k x =,1122(,),(,),A x y D x y由2(1),4,y k x y x =-⎧⎨=⎩得()2222240k x k x k -++=,212224k x x k ++=.--------------(4分)又1226,AD x x =++=所以12x x +=22244k k +=, 解得2k =±,直线l 的方程为()21.y x =±------- (7分) (Ⅱ)若l 与x 轴垂直,则121x x ==;若l 与x 轴不垂直,则由(Ⅰ)知21221k x x k==.所以1)11)(11(||||2121==-+-+=⋅x x x x CD AB .-----(12分)21、解答:(I )当83-=a 时,函数为14389)(23+-+=x x x x f ,则043493)(2/<-+=x x x f ,解得当411<<-x 时,函数单调递减,所以函数f(x)的单调递减区间为1(1,)4-.------------- -------------------------- 4分 (Ⅱ) 43)(23+-=ax x x g ,则)2(363)(2/a x x ax x x g -=-=,令0)(/=x g ,解得0=x 或a x 2=------------ 5分 (1)若210≤<a ,在区间]2,1[∈x 上时,0)(/>x g ,即)(x g 在区间]2,1[上单调递增所以有0)1(>g ,解得35<a ,故210≤<a ------ 7分(2)若121<<a ,当[1,2]x a ∈时,函数)(x g 单调递减,当[2,2]x a ∈时,函数)(x g 单调递增,所以有0)2(>a g ,解得1<a ,故121<<a------ 9分(3)若1≥a ,当]2,1[∈x 时,0)(/<x g ,即)(x g 在区间]2,1[上单调递减,所以有0)2(>g ,解得1<a ,舍去------ ------ ------------------ ------ ------------ 11分综上所述,当10<<a 时,]2,1[∈x ,0)(>x g 恒成立. ------ ------ ----------------------12分 22、解答:(Ⅰ)依题意N (k,-l ),且∵klmn ≠0及MP 、NP 与x 轴有交点知:……2分M 、P 、N 为不同点,直线PM 的方程为()n ly x m n m k-=-+-,----------------3分则E nk ml x n l -=-,同理可得F nk mlx n l+=+.……5分(Ⅱ)∵M,P 在圆C :x 2+y 2=R 2上,222222m R n k R l⎧=-∴⎨=-⎩,222222222222222()()E F n k m l n R l R n l x x R n l n l ----⋅===-- (定值). ∴E F x x ⋅的值是与点M 、N 、P 位置无关. ----------------8分同理∵M,P 在椭圆C :22221(0)x y a b a b+=>>上,2222222222a n m a b a lk a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩,2222222222222222222()()E F a l a n n a a l n k m l b b x x a n l n l ----⋅===-- (定值).∴E F x x ⋅的值是与点M 、N 、P 位置无关. ………11分 (Ⅲ)一个探究结论是:0E F x x +=. ………12分证明如下:依题意, E nk ml x n l -=-,F nk mlx n l+=+. ∵M,P 在抛物线C :y 2=2px (p >0)上,∴n 2=2pm,l 2=2pk.2222222()2(22)0E F n k ml pmk pmk x x n l n l--+===--. ∴E F x x +为定值. ------ ------ ------------------14分。