2017-2018学年高二上学期期末考试数学(文科)试题
2017-2018学年高二上期末数学文科试卷(1)含答案解析
![2017-2018学年高二上期末数学文科试卷(1)含答案解析](https://img.taocdn.com/s3/m/5555c038ff00bed5b9f31db5.png)
2017-2018学年高二(上)期末数学试卷(文科)一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.43.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣37.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤08.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>09.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=111.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是.(椭圆的一部分,圆的一部分,椭圆,直线的)14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.参考答案与试题解析一、选择题:(每小题5分,共60分)1.(5分)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切【解答】解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B2.(5分)已知直线l、m,平面α、β且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中正确的命题个数为()A.1 B.2 C.3 D.4【解答】解;①∵l⊥α,α∥β,∴l⊥β,又∵m⊂β,∴l⊥m,①正确.②由l⊥m推不出l⊥β,②错误.③当l⊥α,α⊥β时,l可能平行β,也可能在β内,∴l与m的位置关系不能判断,③错误.④∵l⊥α,l∥m,∴m∥α,又∵m⊂β,∴α⊥β,正确;故选:B.3.(5分)已知条件p:k=;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p 是¬q的()A.充分必要条件B.必要不充分条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:条件q:直线y=kx+2与圆x2+y2=1相切,可得:=1,解得k=.∴p是q的充分不必要条件.则¬p是¬q的必要不充分条件.故选:B.4.(5分)设A为圆周上一点,在圆周上等可能取点,与A连结,则弦长不超过半径的概率为()A.B.C.D.【解答】解:在圆上其他位置任取一点B,设圆半径为R,则B点位置所有情况对应的弧长为圆的周长2πR,其中满足条件AB的长度不超过半径长度的对应的弧长为•2πR,则AB弦的长度不超过半径长度的概率P=.故选:C.5.(5分)在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【解答】解:对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;根据所搜集的数据绘制散点图.观察散点图的形状,判断线性关系的强弱,求相关系数,写出线性回归方程,最后对所求出的回归直线方程作出解释;故正确顺序是②⑤④③①故选D.6.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选B.7.(5分)设m∈R,命题“若m>0,则方程x2+x﹣m=0 有实根”的逆否命题是()A.若方程x2+x﹣m=0 有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0 没有实根,则m>0D.若方程x2+x﹣m=0 没有实根,则m≤0【解答】解:命题的逆否命题为,若方程x2+x﹣m=0 没有实根,则m≤0,故选:D.8.(5分)命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【解答】解:命题“存在x0∈R,2x0≤0”的否定是对任意的x∈R,2x>0,故选:D.9.(5分)若直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点,则实数a取值范围是()A.[﹣3,﹣1]B.[﹣1,3]C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【解答】解:∵直线x﹣y+1=0与圆(x﹣a)2+y2=2有公共点∴圆心到直线x﹣y+1=0的距离为∴|a+1|≤2∴﹣3≤a≤1故选C.10.(5分)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为()A.=1 B.=1C.=1 D.=1【解答】解:设椭圆的短轴为2b(b>0),长轴为2a,则2a+2b=18又∵个焦点的坐标是(3,0),∴椭圆在x轴上,c=3∵c2=a2﹣b2∴a2=25 b2=16所以椭圆的标准方程为故选B.11.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax ﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选C.12.(5分)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中是这8个数据的平均数),则输出的S的值是()A.6 B.7 C.8 D.9【解答】解:本题在算法与统计的交汇处命题,考查了同学们的识图能力以及计算能力.本题计算的是这8个数的方差,因为所以故选B二、填空题:(每小题5分,共20分)13.(5分)程所表示的曲线是椭圆的一部分.(椭圆的一部分,圆的一部分,椭圆,直线的)【解答】解:方程,可得x≥0,方程化为:x2+4y2=1,(x≥0),方程表示焦点坐标在x轴,y轴右侧的一部分.故答案为:椭圆的一部分;14.(5分)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|=2.【解答】解:圆心为(0,0),半径为2,圆心到直线x﹣2y+5=0的距离为d=,故,得|AB|=2.故答案为:2.15.(5分)命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为[﹣2,2] .【解答】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:[﹣2,2]16.(5分)已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.【解答】解:由椭圆的标准方程可得:a=5,b=3,∴c=4,设|PF1|=t1,|PF2|=t2,所以根据椭圆的定义可得:t1+t2=10①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得:t12+t22﹣t1t2=64,②把①两边平方得t12+t22+2t1•t2=100,③所以③﹣②得t1t2=12,∴∠F1PF2=3.故答案为:3.三、解答题:17.(10分)给定两个命题,P:对任意的实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果p∨q为真,p∧q为假,求实数a的取值范围.【解答】解:当P为真时,a=0,或,解得:a∈[0,4)﹣﹣(3分)当Q为真时,△=1﹣4a≥0.解得:a∈(﹣∞,]﹣﹣(6分)如果p∨q为真,p∧q为假,即p和q有且仅有一个为真,﹣﹣(8分)当p真q假时,a∈(,4)当p假q真时,a∈(﹣∞,0)a的取值范围即为:(﹣∞,0)∪(,4)﹣﹣(12分)18.(12分)某校高二年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)试估计高二年级学生“同意”的人数;(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.【解答】解:(1)根据题意,填写被调查人答卷情况统计表如下:男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查,设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.(2)由表格可以看出女生同意的概率是,男生同意的概率是;用男女生同意的概率乘以人数,得到同意的结果数为105×+126×=105,估计高二年级学生“同意”的人数为105人;(3)设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法;其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),共8种满足题意;则恰有一人“同意”一人“不同意”的概率为P=.19.(12分)设锐角三角形的内角A、B、C的对边分别为a、b、c,且a=2bsinA.(1)求B的大小;(2)求cosA+sinC的取值范围.【解答】解:(1)由a=2bsinA.根据正弦定理,得sinA=2sinBsinA,sinA≠0.故sinB=.因△ABC为锐角三角形,故B=.(2)cosA+sinC=cosA+sin=cosA+sin=cosA+cosA+sinA=sin.由△ABC为锐角三角形,知=﹣B<A<,∴<A+<,故<sin<,<<.故cosA+sinC的取值范围是.20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:p:实数x满足x2﹣4ax+3a2<0,其中a>0,解得a<x<3a.命题q:实数x满足.化为,解得,即2<x≤3.(1)a=1时,p:1<x<3.p∧q为真,可得p与q都为真命题,则,解得2<x<3.实数x的取值范围是(2,3).(2)∵p是q的必要不充分条件,∴,a>0,解得1<a≤2.∴实数a的取值范围是(1,2].21.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,=∴V P﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.22.(12分)已知直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,m∈R,圆C:(x﹣1)2+(y﹣2)2=25.(Ⅰ)证明:直线l恒过一定点P;(Ⅱ)证明:直线l与圆C相交;(Ⅲ)当直线l被圆C截得的弦长最短时,求m的值.【解答】(本题满分12分)解:证明:(Ⅰ)直线l方程变形为(2x+y﹣7)m+(x+y﹣4)=0,由,得,∴直线l恒过定点P(3,1).…(4分)(Ⅱ)∵P(3,1),圆C:(x﹣1)2+(y﹣2)2=25的圆心C(1,2),半径r=5,∴,∴P点在圆C内部,∴直线l与圆C相交.…(8分)解:(Ⅲ)当l⊥PC时,所截得的弦长最短,此时有k l•k PC=﹣1,而,k PC=﹣,∴=﹣1,解得m=﹣.…(12分)。
2017-2018学年贵州省遵义高二上期末数学试卷(文科)含答案解析
![2017-2018学年贵州省遵义高二上期末数学试卷(文科)含答案解析](https://img.taocdn.com/s3/m/5da1a8355f0e7cd1842536d6.png)
2017-2018学年贵州省遵义高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分.每小题只有一个选项符合题意)1.(5分)设集合A={x|1<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m≥3 B.m≤1 C.m≥1 D.m≤32.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=13.(5分)已知,,则tanθ=()A.﹣2 B.C.D.4.(5分)下列说法正确的是()A.f(x)=ax2+bx+c(a,b,c∈R),则f(x)≥0的充分条件是b2﹣4ac≤0B.若m,k,n∈R,则mk2>nk2的充要条件是m>nC.对任意x∈R,x2≥0的否定是存在x0∈R,D.m是一条直线,α,β是两个不同的平面,若m⊥α,m⊥β,则α∥β5.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π6.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()A.B.1 C.D.27.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣ C.D.28.(5分)已知S n为等差数列{a n}的前n项和,若3a1+4a9=a17,则=()A.9 B.C.D.9.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤510.(5分)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为()A.B.C.2 D.11.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2 C.2 D.3二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量,若向量与垂直,则m=.14.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为.15.(5分)函数f(x)=cos2x+6cos(﹣x)的最大值是.16.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题(本题6小题,第17小题10分,第18-22小题,每小题10分,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.18.(12分)S n为数列{a n}前n项和,已知a n>0,a n2+2a n=4S n+3,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.19.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.(12分)如图所示,正三棱柱ABC﹣A1B1C1的高为2,D是A1B的中点,E是B1C1的中点(I)证明:DE∥平面ACC1A1;(II)若三棱锥E﹣DBC的体积为,求该正三棱柱的底面边长.21.(12分)中心在原点的双曲线C的右焦点为,渐近线方程为.(I)求双曲线C的方程;(II)直线l:y=kx﹣1与双曲线C交于P,Q两点,试探究,是否存在以线段PQ为直径的圆过原点.若存在,求出k的值,若不存在,请说明理由.22.(12分)已知函数f(x)=3﹣2log2x,g(x)=log2x;(I)当x∈[1,4]时,求函数h(x)=[f(x)+2g(x)]f(x)的最值;(II)如果对任意的x∈[1,4],不等式恒成立,求实数k的取值范围.2017-2018学年贵州省遵义高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分.每小题只有一个选项符合题意)1.(5分)设集合A={x|1<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m≥3 B.m≤1 C.m≥1 D.m≤3【解答】解:∵集合A={x|1<x<3},B={x|x<m},A⊆B,∴m≥3.∴m的取值范围是m≥3.故选:A.2.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.3.(5分)已知,,则tanθ=()A.﹣2 B.C.D.【解答】解:∵已知,,∴cosθ=﹣=﹣,则tanθ==﹣,故选:C.4.(5分)下列说法正确的是()A.f(x)=ax2+bx+c(a,b,c∈R),则f(x)≥0的充分条件是b2﹣4ac≤0B.若m,k,n∈R,则mk2>nk2的充要条件是m>nC.对任意x∈R,x2≥0的否定是存在x0∈R,D.m是一条直线,α,β是两个不同的平面,若m⊥α,m⊥β,则α∥β【解答】解:对于A,当a<0时,由b2﹣4ac≤0不能得到f(x)≥0,则“ax2+bx+c≥0”的充分条件是“b2﹣4ac≤0”错误.对于B,若m,k,n∈R,由mk2>nk2的一定能推出m>n,但是,当k=0时,由m>n不能推出mk2>nk2,故B错误,对于C,命题“对任意x∈R,有x2≥0”的否定是“存在x0∈R,有x02<0”,故C错误,对于D,因为垂直于同一直线的两个平面互相平行,故D正确,故选:D5.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.6.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()A.B.1 C.D.2【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k>0)与C交于点P在第一象限,由PF⊥x轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D7.(5分)圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣ B.﹣ C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.8.(5分)已知S n为等差数列{a n}的前n项和,若3a1+4a9=a17,则=()A.9 B.C.D.【解答】解:∵3a1+4a9=a17,∴4a1+4a9=a1+a17,即4(a1+a9)=2a9,即4a5=a9,则====,故选:C9.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤5【解答】解:方法一:当x=4,输出y=2,则由y=log2x输出,需要x>4,故选B.方法二:若空白判断框中的条件x>3,输入x=4,满足4>3,输出y=4+2=6,不满足,故A错误,若空白判断框中的条件x>4,输入x=4,满足4=4,不满足x>3,输出y=y=log24=2,故B正确;若空白判断框中的条件x≤4,输入x=4,满足4=4,满足x≤4,输出y=4+2=6,不满足,故C错误,若空白判断框中的条件x≤5,输入x=4,满足4≤5,满足x≤5,输出y=4+2=6,不满足,故D 错误,故选B.10.(5分)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为()A.B.C.2 D.【解答】解:由已知中的三视图可得该几何体是一个三棱锥,其直观图如下图所示:故其体积V==,故选:A11.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B 错误,A正确.故选:A.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2 C.2 D.3【解答】解:抛物线C:y2=4x的焦点F(1,0),且斜率为的直线:y=(x﹣1),过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l可知:,解得M(3,2).可得N(﹣1,2),NF的方程为:y=﹣(x﹣1),即,则M到直线NF的距离为:=2.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量,若向量与垂直,则m=7.【解答】解:∵向量,∴=(m﹣1,3),∵向量与垂直,∴()•=﹣1×(m﹣1)+2×3=0,解得m=7.故答案为:7.14.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为﹣5.【解答】解:由约束条件作出可行域如图,联立,解得B(3,4).化目标函数z=x﹣2y为y=x﹣z,由图可知,当直线y=x﹣z过B(3,4)时,直线在y轴上的截距最大,z有最小值为:3﹣2×4=﹣5.故答案为:﹣5.15.(5分)函数f(x)=cos2x+6cos(﹣x)的最大值是5.【解答】解:f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx=﹣2sin2x+6sinx+1.令t=sinx,t∈[﹣1,1],则原函数化为y=,∴当t=1时,y有最大值为.故答案为:5.16.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则k AH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.三、解答题(本题6小题,第17小题10分,第18-22小题,每小题10分,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.18.(12分)S n为数列{a n}前n项和,已知a n>0,a n2+2a n=4S n+3,(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.【解答】解:(1)a n>0,a n2+2a n=4S n+3,n≥2时,+2a n﹣1=4S n﹣1+3,相减可得:a n2+2a n﹣(+2a n﹣1)=4a n,化为:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即a n﹣a n﹣1=2,又=4a1+3,a1>0,解得a1=3.∴数列{a n}是等差数列,首项为3,公差为2.∴a n=3+2(n﹣1)=2n+1.(2)b n===,∴数列{b n}的前n项和=+…+==.19.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.20.(12分)如图所示,正三棱柱ABC﹣A1B1C1的高为2,D是A1B的中点,E是B1C1的中点(I)证明:DE∥平面ACC1A1;(II)若三棱锥E﹣DBC的体积为,求该正三棱柱的底面边长.【解答】证明:(Ⅰ)如图,连接AB1,AC1,…(1分)由题意知D是AB1的中点,又E是B1C1的中点,所以在△B1AC1中,DE∥AC1,…(3分)又DE⊄平面ACC1A1,AC1⊂平面ACC1A1,所以DE∥平面ACC1A1.…(5分)解:(Ⅱ)V E=V D﹣EBC,…(6分)﹣DBC∵D是AB1的中点,∴D到平面BCC1B1的距离是A到平面BCC1B1的距离的一半,如图,作AF⊥BC交BC于F,由正三棱柱的性质,得AF⊥平面BCC 1B1,设底面正三角形边长为a,则三棱锥D﹣EBC的高h=AF=,…(9分),∴=2=,…(11分)解得a=2.∴该正三棱柱的底面边长为2.…(12分)21.(12分)中心在原点的双曲线C的右焦点为,渐近线方程为.(I)求双曲线C的方程;(II)直线l:y=kx﹣1与双曲线C交于P,Q两点,试探究,是否存在以线段PQ为直径的圆过原点.若存在,求出k的值,若不存在,请说明理由.【解答】解:(Ⅰ)设双曲线的方程为﹣=1,(a>0,b>0),则有c=,=,c2=a2+b2,得a=,b=1,所以双曲线方程为2x2﹣y2=1.(Ⅱ)由得(2﹣k2)x2+2kx﹣2=0,依题意有解得﹣2<k<2且k≠,①且x1+x2=,x1x2=,设P(x1,y1),Q(x2,y2),依题意有OP⊥OQ,所以•=x1x2+y1y2=0,又y1y2=(kx1﹣1)(kx2﹣1)=k2x1x2﹣k(x1+x2)+1,所以﹣+1=0,化简得k=0,符合①,所以存在这样的圆.22.(12分)已知函数f(x)=3﹣2log2x,g(x)=log2x;(I)当x∈[1,4]时,求函数h(x)=[f(x)+2g(x)]f(x)的最值;(II)如果对任意的x∈[1,4],不等式恒成立,求实数k的取值范围.【解答】解:(Ⅰ)∵函数f(x)=3﹣2log2x,g(x)=log2x;h(x)=[f(x)+2g(x)]f(x)∴又h(x)在上[1,4]单调递减,∴,;(Ⅱ)由,得(3﹣4log2x)(3﹣log2x)>k•log2x令t=log2x,∵x∈[1,4],∴t∈[0,2]所以(3﹣4t)(3﹣t)>k•t对t∈[0,2]恒成立.①当t=0时,k∈R;②当t∈(0,2]时,,令由于r(t)在递减,在递增.所以,则k<﹣3;综上知k∈(﹣∞,﹣3).。
2017-2018学年高二(上)期末数学试卷(文科)(解析版)
![2017-2018学年高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/772dd20e866fb84ae45c8d74.png)
2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.101(9)化为十进制数为()A.9 B.11 C.82 D.101【解答】解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.2.随机事件A发生的概率的范围是()A.P(A)>0 B.P(A)<1 C.0<P(A)<1 D.0≤P(A)≤1【解答】解:∵随机事件是指在一定条件下可能发生,也有可能不发生的事件∴随机事件A发生的概率的范围0<P(A)<1当A是必然事件时,p(A)=1,当A是不可能事件时,P(A)=0故选C.3.如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数的平均数和方差分别是()A.B.C.D.【解答】解:∵x1,x2,…,xn的平均数是,方差是s2,∴的平均数为,的方差为3s2故选C4.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.5.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B6.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=++=(此时k=6),因此可填:S≤.故选:C.7.若直线l经过A(2,1),B(1,﹣m2)(m∈R)两点,则直线l的倾斜角α的取值范围是()A.0≤α≤B.<α<πC.≤α<D.<α≤【解答】解:根据题意,直线l经过A(2,1),B(1,﹣m2),则直线l的斜率k==1+m2,又由m∈R,则k=1+m2≥1,则有tanα=k≥1,又由0≤α<π,则≤α<;故选:C.8.从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是()A.B.C.D.【解答】解:从1,2,3,4,5中任取两个不同的数字,构成一个两位数有=5×4=20,这个数字大于40的有=8,∴这个数字大于40的概率是=,故选:A9.已知点P(x,y)在直线2x+y+5=0上,那么x2+y2的最小值为()A.B.2C.5 D.2【解答】解:x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,即为原点到该直线的距离平方d2,由点到直线的距离公式易得d==.∴x2+y2的最小值为5,故选:C10.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B11.一条光线沿直线2x﹣y+2=0入射到直线x+y﹣5=0后反射,则反射光线所在的直线方程为()A.2x+y﹣6=0 B.x+2y﹣9=0 C.x﹣y+3=0 D.x﹣2y+7=0【解答】解:由得,故入射光线与反射轴的交点为A(1,4),在入射光线上再取一点B(0,2),则点B关于反射轴x+y﹣5=0的对称点C(3,5)在反射光线上.根据A、C两点的坐标,用两点式求得反射光线的方程为,即x﹣2y+7=0.故选D.12.已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.2【解答】解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线8kx2﹣ky2=8的一个焦点为(0,3),则k的值为﹣1.【解答】解:根据题意可知双曲线8kx2﹣ky2=8在y轴上,即,∵焦点坐标为(0,3),c2=9,∴,∴k=﹣1,故答案为:﹣1.14.椭圆+y2=1的弦被点(,)平分,则这条弦所在的直线方程是2x+4y﹣3=0.【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得,又弦中点为(,),故k=﹣,故这条弦所在的直线方程y﹣=﹣(x﹣),整理得2x+4y﹣3=0.故答案为:2x+4y﹣3=0.15.已知命题p:|x﹣1|+|x+1|≥3a恒成立,命题q:y=(2a﹣1)x为减函数,若p且q为真命题,则a的取值范围是(.【解答】解:∵p且q为真命题,∴命题p与命题q均为真命题.当命题p为真命题时:∵|x﹣1|+|x+1|≥3a恒成立,∴只须|x﹣1|+|x+1|的最小值≥3a即可,而有绝对值的几何意义得|x﹣1|+|x+1|≥2,即|x﹣1|+|x+1|的最小值为2,∴应有:3a≤2,解得:a≤,①.当命题q为真命题时:∵y=(2a﹣1)x为减函数,∴应有:0<2a﹣1<1,解得:,②.综上①②得,a的取值范围为:即:(].故答案为:(].16.已知椭圆+=1,当椭圆上存在不同的两点关于直线y=4x+m对称时,则实数m的范围为:﹣<m<.【解答】解:∵+=1,故3x2+4y2﹣12=0,设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),则3x12+4y12﹣12=0,①3x22+4y22﹣12=0,②①﹣②得:3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即3•2x0•(x1﹣x2)+4•2y0•(y1﹣y2)=0,∴=﹣•=﹣.∴y0=3x0,代入直线方程y=4x+m得x0=﹣m,y0=﹣3m;因为(x0,y0)在椭圆内部,∴3m2+4•(﹣3m)2<12,即3m2+36m2<12,解得﹣<m<.故答案为:﹣<m<三、解答题(本大题共6小题,70分)17.为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是115,中位数是121.3.【解答】解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.∴样本容量是=150,∴第二小组的频率是=0.08.(2)∵次数在110以上为达标,∴在这组数据中达标的个体数一共有17+15+9+3,∴全体学生的达标率估计是=0.88 …6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即=115,…7分处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 …8分18.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]19.已知直线l:y=kx+1,圆C:(x﹣1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.【解答】解:(1)由,消去y得到(k2+1)x2﹣(2﹣4k)x﹣7=0,∵△=(2﹣4k)2+28k2+28>0,∴不论k为何实数,直线l和圆C总有两个交点;(2)设直线与圆相交于A(x1,y1),B(x2,y2),则直线l被圆C截得的弦长|AB|=|x1﹣x2|=2=2,令t=,则有tk2﹣4k+(t﹣3)=0,当t=0时,k=﹣;当t≠0时,由k∈R,得到△=16﹣4t(t﹣3)≥0,解得:﹣1≤t≤4,且t≠0,则t=的最大值为4,此时|AB|最小值为2,则直线l被圆C截得的最短弦长为2.20.已知回归直线方程是:=bx+a,其中=,a=﹣b.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:X 122 131 126 111 125 136 118 113 115 112Y 87 94 92 87 90 96 83 84 79 84(1)试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)(2)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?【解答】解:(1)由题意,==120.9,==87.6,=146825,=102812,∴===0.538,a=﹣b≈22.521∴=0.538x﹣22.521,(2)由(1)=0.538x﹣22.521,当y=93时,93=0.538x﹣22.521,x≈131.21.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.22.已知H(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足.(1)当点P在y轴上移动时,求点M的轨迹C;(2)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.【解答】解(1)设点M的坐标为(x,y),由.得,由,得,所以y2=4x由点Q在x轴的正半轴上,得x>0,所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(2)设直线l:y=k(x+1),其中k≠0代入y2=4x,得k2x2+2(k2﹣2)x+k2=0①设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得所以,线段AB的中点坐标为,线段AB的垂直平分线方程为,令,所以,点E的坐标为.因为△ABE为正三角形,所以,点E到直线AB的距离等于|AB|,而|AB|=.所以,解得,所以.。
学年上学期高二期末考试数学(文)试题(附答案)(3)
![学年上学期高二期末考试数学(文)试题(附答案)(3)](https://img.taocdn.com/s3/m/0dad0bbbf524ccbff12184d7.png)
2017-2018学年度上学期期末素质测试试卷高二数学(文科卷)(全卷满分150分,考试时间为120分钟)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第II 卷时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题(每小题5 分,共12小题,满分60分) 1.不等式1x x>的解集是 (A){x |-1<x <1 } (B){x |0<x <1} (C){x |-1<x <0或x >1}(D){x |0<x <1或x <-1}2. 已知q p ,为命题,则“p q ∨为假”是“p q ∧为假”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件3. 设a>b>0,c<d<0,则下列不等式中一定成立的是 (A)ac bd > (B)a b d c < (C) a b d c> (D) 22ac bd < 4. 抛物线22x y -=的焦点坐标是 (A) )0,21(-(B) )0,1(-(C) )81,0(-(D) )41,0(-5. 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷56粒,则这批米内夹谷约为 (A) 1365石 (B) 336石 (C) 168石 (D) 134石6. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) (A)-90 (B)-180(C) 180(D) 907. 根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确...的是 (A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放显现(C)2006年以来我国二氧化硫年排放量呈减少趋势 (D)2006年以来我国二氧化硫年排放量与年份正相关8. 设{a n }是由正数组成的等比数列,且a 4a 7+a 5a 6=18,log 3a 1+ log 3a 2+…+ log 3a 10= (A)12 (B)10 (C)8 (D)32log 5+9.二次不等式ax 2+bx +1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <13,则ab 的值为( ) (A)-6 (B)6 (C)-5 (D)510.函数[]()3()340,1f x x x x =-∈的最大值是(A )12(B ) -1 (C )0 (D )111. 设斜率为2的直线l 过双曲线)0,0(,12222>>=-b a by a x 的右焦点,且与双曲线的左、右两支分别相交,则双曲线离心率e 的取值范围是(A)e > 5(B)e > 3(C)1<e < 3(D)1<e < 512. 设()f x '是函数()f x 的导函数,()y f x '=的图象如右图所示,则()y f x =的图象最有可能的是2017-2018学年度上学期期末素质测试试卷高二数学(文科卷) 第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共4小题,满分20分) 13.曲线32y x x =-在点(11),处的切线方程为. 14. 在△ABC 中,已知AB =7,BC =5,AC =6,则AB AC ⋅=.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y -1≤0,x +y ≥0,x -y -2≤0.则z =2x y +的最大值为.16. 数列{}n a 的前n 项和2n n S =,则12111na a a +++= .三、解答题(共6小题,满分70分) 17. (本题满分10分)已知函数()26f x x ax =++.(Ⅰ)当5a =时,求不等式()0f x <的解集;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.18.(本题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b. (Ⅰ)求角A 的大小;(Ⅱ)若c =2,角B 的平分线BD =3,求△ABC 的面积.19.(本题满分12分)某校高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(Ⅰ)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(Ⅱ)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.20.(本题满分12分)如图,已知四棱锥P A B C D -,底面A B C D 为菱形,PA ⊥平面A B C D ,60ABC ∠=,E F ,分别是BC PC ,的中点.(Ⅰ)证明:AE PD ⊥;(Ⅱ)若2P A A B ==,求C 到平面EAF 的距离.21. (本题满分12分)已知函数31()43f x x ax =++ ()a R ∈在2x =处有极值. (Ⅰ)求a 的值;(Ⅱ)求f (x )在[]0,3上的最大值和最小值;(Ⅲ)在下面的坐标系中作出()f x 在[]0,3上的图象,若方程()f x bx =在[]0,3 上有2个不同的实数解,结合图象求实数b 的取值范围.22.(本题满分12分)已知椭圆E 的中心在原点,焦点1F 、2F 在x 轴上,离心率为12,在椭圆E 上有一动点A 与1F 、2F 的距离之和为4, (Ⅰ) 求椭圆E 的方程;(Ⅱ) 过A 、1F 作一个平行四边形,使顶点A 、B 、C 、D 都在椭圆E 上,如图所示.判断四边形ABCD 能否为菱形,并说明理由.2017-2018学年度上学期期末素质测试试卷高二文科数学参考答案一、选择题:CABC BCDB BDAC二、填空题:13、20x y +-=;14、30;15、5;16、13122n --. 三、解答题:17.解:(Ⅰ)当5a =时,2560x x ++<即()()230x x ++<,所以()0f x <的解集是{}32x x -<<-------------------4分(Ⅱ)()22624a a f x x ⎛⎫=++- ⎪⎝⎭-----------------------6分因为不等式()0f x >的解集为R ,所以2604a ->,-----8分 即实数a的取值范围是a -<分18.解:(Ⅰ)因为2a cos C -c =2b ,所以2a 2222a b c ab+--c =2b.------------2分即222122c b a bc +-=-,所以1cos 2A =---------------------4分 因为0A π<<, 所以23A π=--------6分 (Ⅱ)在△ABD 中,由正弦定理得sin sin AB BDADB A=∠∠sin 3=---------8分即sin ADB ∠=--------9分 因为23A π=,所以02ADB π<∠< 即4ADB π∠=------------10分所以,,126ABD ABC ACB ππ∠=∠=∠=B所以△ABC 的面积=212sin 232AB π⨯⨯=-------12分 19.解 (1)因为分数在[50,60)之间的频数为2,频率为0. 008×10=0. 08, 所以高一(1)班参加校生物竞赛的人数为20.08=25.------------2分分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0. 16,----4分所以频率分布直方图中[80,90)间的矩形的高为0.1610=0. 016.-------6分(2)设“至少有1人分数在[90,100]之间”为事件A ,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.----------------------8分在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,--------------------10分根据古典概型概率的计算公式,得P (A )=915=35.------------12分20(Ⅰ)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥. 又BC AD ∥,因此AE AD ⊥.---------2分 因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥.而PA ⊂平面PAD ,AD ⊂平面PAD 且PA AD A =,所以AE ⊥平面PAD .----------------4分 又PD ⊂平面PAD ,所以AE PD ⊥.------------------6分 (Ⅱ)由条件可得AE EF AF ===所以AEF ∆的面积为12AEF S ∆==--------------8分 设C 到平面EAF 的距离为d ,则 三棱锥F AEC -的体积11133AEC AEF V S S d ∆∆=⨯⨯=⨯⨯---------10分所以11124d ⨯=,从而5d =PBECFA即C 到平面EAF的距离为5----------------12分 21.解:(Ⅰ)因为/2()f x x a =+,所以/(2)40f a =+=,即4a =-----------2分(Ⅱ)31()443f x x x =-+,/2()4(2)(2)f x x x x =-=-+ 令/()0f x =得2x =-或2x =---------------3分 当x 变化时,/(),()f x f x 变化如下表:当(0,2x ∈时,()0f x <,()f x 单调递减;当()2,3x ∈时,/()0f x >,()f x 单调递增。
2017-2018学年湖北省孝感高级中学高二上学期期末考试数学(文)试题
![2017-2018学年湖北省孝感高级中学高二上学期期末考试数学(文)试题](https://img.taocdn.com/s3/m/a09f5bf7172ded630b1cb670.png)
孝感高中2017—2018学年度高二上学期期末考试数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
1.为了解我校高二年级学生某次考试数学成绩的情况,从参加考试的学生中随机地抽查了1 00名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( ) A.总体指的是参加这次考试的全体学生 B.个体指的是1 00名学生中的每一名学生 C.样本容量指的是1 00名学生 D.样本是指1 00名学生的数学考试成绩2.命题“若x ,y 都是偶数,则x +y 也是偶数“的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数3.数学试卷中,共有12道选择题,每道选择题有4个选择支,其中只有1个选择支是正确的.某次考试,某同学说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3个题选择结果正确”,这种说法( )A.正确B.错误C.不一定D.无法解释4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球5.“51<<m ”是“方程15122=-+-my m x 表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.下列命题中的真命题是( )A .,R x ∈∃使得2cos sin =+x xB .∀x ∈(0,+∞),1+>x e xC .∃x ∈(-∞,0),x x 32<D .∀x ∈(0,2π),x x cos sin > 7.某学校高一、高二、高三三个年级共有学生4 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多500人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A.10B.12C.18D.168.设某校的高二年级女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.86x -88.66,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该校某女生身高增加1 cm ,则其体重约增加0.86 kgD.若该校某女生身高为165 cm ,则可判定其体重必为53.24kg 9.甲、乙两人做游戏,下列游戏中不公平的是( )A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于6则甲胜,否则乙胜C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D.甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜10.如图是我校举行的2018年元旦晚会中,七位评委为某个节目打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( ) A.84, 4.84 B.84, 1.6 C.85, 1.6 D.85, 0.411.已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 12.设直线t x =与函数22)(x x f =,x x g ln 2)(=的图象分别交于点M ,N ,则|MN |的最小值为( ) A .2ln 2121+ B.12+2ln C.2ln 1+D.22第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
安徽省滁州市2017-2018学年高二上学期期末考试数学(文)试题 (word版含答案)
![安徽省滁州市2017-2018学年高二上学期期末考试数学(文)试题 (word版含答案)](https://img.taocdn.com/s3/m/c85e9f1752ea551810a6875f.png)
滁州市2017-2018学年第一学期高二期末考试数 学 试 卷(文科)(试题卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. 若函数()cos =+f x x x ,则()f x 的导数()'=f x ( )2.高二(2)班男生36人,女生18 人,现用分层抽样方法从中抽出n 人,若抽出的男生人数为12,则n 等于( )A . 16B . 18C .20D .223. 双曲线221124x y -=的焦点到渐近线的距离为( )A . 2 D . 3 4. 下列函数是偶函数的是( )A .cos y x x =+B .sin 2y x x =+C .2+cos y x x =D .2sin 2y x x =+5. 若正方形ABCD 的边长为1,则在正方形ABCD 内任取一点,该点到点A 的距离小于1的概率为( ) A .4π B .6π C. 1π D .2π6.“函数()()()21=+-+f x x a x a 是偶函数”是“1=-a ”的( ) A .充分不必要条件 B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件7. 曲线()()1=+xf x x e 在点()()00,f 处的切线方程为( )A . 1=+y xB .21=+y x C.112=+y x D .113=+y x 8. 执行如图所示的程序框图,则输出的结果为( ) A . 2 B .3 C. 4 D .59. 设命题:p x R ∃∈,220x x -+=;命题q :若1m >,则方程22121x y m m+=-表示焦点在x 轴上的椭圆.那么,下列命题为真命题的是( )A .()p q ∨⌝B . ()()p q ⌝∨⌝ C. p q ∧ D .()p q ∧⌝ 10.若P 为抛物线2:4=C y x 上一点,F 是抛物线的焦点,点A 的坐标()30,,则当PA 最小时,直线PF 的方程为( )A .230--=x yB .210--=x y C.3=x D .1=x 11.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()3cos 3cos cos b A a a B -=+,则sin A =( )A .B .13 D 12.已知函数()f x 是定义在R 上的偶函数,当0>x 时,()()'>xf x f x ,若()20=f ,则不等式()0>f x x的解集为( ) A . {}2002-<<<<或x x x B .{}22<->或x x x C. {}202-<<>或x x x D .{}202<-<<或x x x第Ⅱ卷(非选择题 共 90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14. 已知一个算法的程序框图如图所示,当输入的1x =-与1x = 时,则输出的两个y 值的和 为 .15. 在长方体1111ABCD A BC D -中,1==AB BC , 12=AA ,点E ,F 分别为CD ,1DD 的中点,点G 在棱1AA 上,若//CG 平面AEF ,则四棱锥-G ABCD 的外接球的体积为 .16.已知双曲线2222:-x y C a b(0,0>>a b )的左顶点为M ,右焦点为F ,过左顶点且斜率为1的直线l 与双曲线C 的右支交于点N ,若∆MNF 的面积为232b ,则双曲线C 的离心率为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:m m ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18. 已知抛物线2:2=C y x ,过点()1,0P 的直线l 与抛物线相交于A ,B 两点,若=AB ,求直线l 的方程.19. 某高校进行社会实践,对[]2555,岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(]3035,岁,[)3540,岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[)3035,岁与[)3540,岁年龄段“时尚族”的人数; (2)从[)3045,岁和[)4550,岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[)3045,岁内的概率。
(完整版)高二第一学期数学期末考试题及答案(人教版文科),推荐文档
![(完整版)高二第一学期数学期末考试题及答案(人教版文科),推荐文档](https://img.taocdn.com/s3/m/77c7f4c29b6648d7c1c746bb.png)
2017—2018学年度第一学期高二数学期末考试题文科(提高班)一、选择题(每题5分,共60分)1.在相距2km的A、B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离是()A.2km B.3kmC.km D.3km2.已知椭圆()的左焦点为,则()A.9B.4C.3D.23.在等差数列中,,则的前5项和=()A.7B.15C.20D.254.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A.50m2B.100m2C.200m2D.250m25.如图所示,表示满足不等式的点所在的平面区域为()A.B.C.D.6.焦点为(0,±6)且与双曲线有相同渐近线的双曲线方程是()A.B.C.D.7.函数的导数为()A.B.C.D.8.若<<0,则下列结论正确的是()A.b B.D.C.-29.已知命题:命题.则下列判断正确的是()A.p是假命题B.q是真命题C.是真命题D.是真命题10.某观察站与两灯塔、的距离分别为300米和500米,测得灯塔在观察站北偏东30,灯塔在观察站正西方向,则两灯塔、间的距离为()A.500米B.600米C.700米D.800米11.方程表示的曲线为()A.抛物线B.椭圆C.双曲线D.圆12.已知数列的前项和为,则的值是()A.-76B.76C.46D.13二、填空题(每题5分,共20分)13. 若,,是实数,则的最大值是_________14. 过抛物线的焦点作直线交抛物线于、两点,如果,那么=___________.15. 若双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是____________.16. 直线是曲线y=ln x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡一、选择题(共12小题,每题5分)题号123456789101112答案C C B C B B B A C C A A二、填空题(共4小题,每题5分)13、2 14、815、 16、三、解答题(共6小题,17题10分,其他每小题12分)17. 已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18. 已知不等式组的解集是,且存在,使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19. 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20. 根据下列条件,求双曲线的标准方程.(1)经过点,且一条渐近线为;(2)与两个焦点连线互相垂直,与两个顶点连线的夹角为.21. 已知函数在区间上有最小值1和最大值4,设.(1)求的值;(2)若不等式在区间上有解,求实数k的取值范围.22. 已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数,使得,恒成立?若存在,求常数的值或取值范围;若不存在,请说明理由.文科(提高班)一.选择题(每题5分,共60分)1.考点:1.2 应用举例试题解析:由题意,∠ACB=180°-75°-60°=45°,由正弦定理得=,所以AC=·sin60°=(km).答案:C2.考点:2.1 椭圆试题解析:,因为,所以,故选C.答案:C3.考点:2.5 等比数列的前n项和试题解析:.答案:B4.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为,则宽为,所以矩形面积为,故选C答案:C5.考点:3.3 二元一次不等式(组)与简单的线性规划问题试题解析:不等式等价于或作出可行域可知选B答案:B6.考点:2.2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为.答案:B7.考点:3.2 导数的计算试题解析:,故选B.答案:B8.考点:3.1 不等关系与不等式试题解析:根据题意可知,对两边取倒数的得,综上可知,以此判断:A.正确;因为:,所以:,B错误;,两个正数相加不可能小于,所以C错误;,D错误,综上正确的应该是A.答案:A9.考点:1.3 简单的逻辑联结词试题解析:当时,(当且仅当,即时取等号),故为真命题;令,得,故为假命题,为真命题;所以是真命题.答案:C10.考点:1.2 应用举例试题解析:画图可知在三角形ACB中,,,由余弦定理可知,解得AB=700.答案:C11.考点:2.1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离,点不在直线上,符合抛物线的定义;答案:A12.考点:2.3 等差数列的前n项和试题解析:由已知可知:,所以,,,因此,答案选A.答案:A二.填空题(每题5分,共20分)13.考点:3.4 基本不等式试题解析:,,即,则,化简得,即,即的最大值是2.答案:214.考点:2.3 抛物线试题解析:根据抛物线方程知,直线过焦点,则弦,又因为,所以.答案:815.考点:2.2 双曲线试题解析:椭圆长轴的端点为,所以双曲线顶点为,椭圆离心率为,所以双曲线离心率为,因此双曲线方程为答案:16.考点:3.2 导数的计算试题解析:设曲线上的一个切点为(m,n),,∴,∴.答案:三、解答题(共6小题,17题10分,其他每小题12分)17.考点:2.3 等差数列的前n项和试题解析:(Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2,公比为4的等比数列(Ⅲ)由答案:(Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1,2,3,4}18.考点:3.2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令,由题意得时,.当即,(舍去)当即,.综上可知,的取值范围是.答案:(Ⅰ);(Ⅱ)的取值范围是19.考点:3.4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时,有最大值为当时,是减函数,∴当时,的最大值为答:每月生产台仪器时,利润最大,最大利润为元.答案:(1);(2)每月生产台仪器时,利润最大,最大利润为元20.考点:双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为,两顶点为由与两个焦点连线垂直得,所以由与两个顶点连线的夹角为得,所以,则所以方程为21.考点:3.2 一元二次不等式及其解法试题解析:(1),因为,所以在区间上是增函数,故,解得.(2)由已知可得,所以,可化为,化为,令,则,因,故,记,因为,故,所以的取值范围是22.考点:3.3 导数在研究函数中的应用试题解析:(1),所求切线的斜率所求切线方程为即(2)由,作函数,其中由上表可知,,;,由,当时,,的取值范围为,当时,,的取值范围为∵,恒成立,∴答案:(1)(2)存在,,恒成立100. 在中,角所对的边分别为,且满足,.(I )求的面积;(II)若,求的值.46.考点:正弦定理余弦定理试题解析:(Ⅰ)又,,而,所以,所以的面积为:(Ⅱ)由(Ⅰ)知,而,所以所以答案:(1)2(2)。
安徽省滁州市20172018学年高二上学期期末考试数学文试题含
![安徽省滁州市20172018学年高二上学期期末考试数学文试题含](https://img.taocdn.com/s3/m/a24ae1d5bed5b9f3f80f1c20.png)
百度文库 - 好好学习,天天向上滁州市 2017-2018 学年第一学期高二期末考试 数 学 试 卷(文科) (试题卷)第Ⅰ卷(选择题 共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一 项是符合题目要求的.1. 若函数,则 的导数()A.B.C.D.【答案】C【解析】由导数昀运算法则可得.故选 C. 2. 高二(2)班男生 36 人,女生 18 人,现用分层抽样方法从中抽出 人,若抽出的男生人 数为 12,则 等于( ) A. 16 B. 18 C. 20 D. 22 【答案】B 【解析】因为高二(2)班男生 人,女生 人,现用分层抽样方法从中抽出 人,所以,故选 B.3. 双曲线的焦点到渐近线的距离为( )A.B.【答案】CC. 2 D. 3【解析】由双曲线方程,可得,所以渐近线方程为,焦点坐标为 ,由点到直线距离公式可得焦点到渐近线的距离为-- 1 -百度文库 - 好好学习,天天向上,故选 C.4. 下列函数是偶函数的是( )A.B.C.D.【答案】C 【解析】,即不是奇函数,又不是偶函数, 不合题意,,是奇函数,不合题意,,,是偶函数, 合题意,,即不是奇函数,又不是偶函数, 不合题意,故选 C.5. 若正方形 概率为( )的边长为 1,则在正方形内任取一点,该点到点 的距离小于 1 的A.B.C.D.【答案】A 【解析】在正方形内任取一点,该点到点 的距离小于 的点,在以点 为圆心以 为半径的四分之一圆内,面积为 ,所以在正方形内任取一点,该点到点 的距离小于的点的概率为 ,故选 A.【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.6. “函数是偶函数”是“ ”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】C-- 2 -百度文库 - 好好学习,天天向上【解析】,当“函数函数”时“”,反过来当“”时函数为偶函数,故“函数是偶函数”是“”的充分必要条件.故选 C.7. 曲线在点处的切线方程为( )是偶A.B.C.D.【答案】B【解析】曲线在点处的切线方程为,即.故选 B. 【点睛】本题考查导数的运用,求切线的方程,考查导数的几何意义,正确求导和运用点 斜式方程是解题的关键. 8. 执行如图所示的程序框图,则输出的结果为( )A. 2 B. 3 【答案】DC. 4D. 5【解析】执行程序框图,,输出,故选 D. 【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题 时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支 结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的 问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输-- 3 -百度文库 - 好好学习,天天向上出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. 设命题,;命题 :若 ,则方程表示焦点在 轴上的椭圆.那么,下列命题为真命题的是( )A.B.C.D.【答案】B【解析】不存在 使为假, 为真,又时,方程表示焦点在 轴上的椭圆, 为真, 为假,为真,故选 B.10. 若 为抛物线上一点, 是抛物线的焦点,点 的坐标 ,则当 最小时,直线 的方程为( )A.B.【答案】DC.D.【解析】设 ,则时 最小,此时 故选 D. 11. 在,又 ,故直线 的方程为 . 中,角 , , 的对边分别为, ,,且,则()A.B.C.D.【答案】A 【解析】因为,所以由正弦定理得 ,即,由正弦定理可得化为,故选 A.12. 已知函数 是定义在 上的偶函数,当 的解集为( )时,-- 4 -,若,则不等式百度文库 - 好好学习,天天向上A.B.C.D.【答案】C【解析】设则是增函数,由题 是定义在 上的偶函数,故区间上是增函数,而即,当 时,不等式 0 等价于,由函数 在区间上是 上的奇函数,则函数 在得当 时,不等式 0 等价于,由,得,故所求的解集为.故选 C.第Ⅱ卷(非选择题 共 90 分)二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13. 已知向量,,若 ,则__________.【答案】【解析】,故答案为 .14. 已知一个算法的程序框图如图所示,当输入的与时,则输出的两个 值的和为________.-- 5 -百度文库 - 好好学习,天天向上【答案】【解析】 时,, 时,,,输出的两个 值的和为 ,故答案为 .15. 在长方体中,,,点 , 分别为 , 的中点,点 在棱 上,若 平面 ,则四棱锥的外接球的体积为__________.【答案】【解析】当 是 中点时,连接 交 于点 ,则 是 的中点,又因为 别为 的中点,所以,从而根据线面平行的判定定理可得 平面 ,所以四棱锥的外接球就是以为棱的正方体的外接球,设外接球的半径为 ,则外接球直径等于正方体对角线长,所以,故答案为 .16. 已知双曲线()的左顶点为 ,右焦点为 ,过左顶点且斜率为 1 的直线与双曲线 的右支交于点 ,若 【答案】2的面积为 ,则双曲线 的离心率为__________.即即答案为 2.三、解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,甲:25.44,25.43, 25.41,25.39,25.38乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.-- 6 -百度文库 - 好好学习,天天向上【答案】见解析 【解析】试题分析:分别利用平均值公式算出甲乙两人生产的零件的平均值,再利用方差 公式算出甲乙两人生产的零件的方差,发现甲、乙平均数相同,乙的方差较小,∴乙生产 的零件比甲的质量高.试题解析:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18. 已知抛物线,过点的直线与抛物线相交于 , 两点,若,求直线的方程.【答案】或.【解析】试题分析:设直线的方程为,与抛物线方程联立得到,由韦达定理,以及弦长公式得到关于 的方程,即可求得直线的方程. 试题解析:设直线的方程为:代入方程整理为:,故有,,.故有.整理为,解得.故直线的方程为:或.19. 某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁,岁年龄段人数中,“时尚族”人数分别占本组人数的 、 .(1)求岁与岁年龄段“时尚族”的人数;(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取 6 人参加网络-- 7 -百度文库 - 好好学习,天天向上时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。
7—18学年上学期高二期末考试数学(文)试题(附答案)(2)
![7—18学年上学期高二期末考试数学(文)试题(附答案)(2)](https://img.taocdn.com/s3/m/53eda503650e52ea551898cf.png)
长春市十一高中2017-2018学年度高二上学期期末考试数学试题(文科)组题人:高二数学组 2018.1.10一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数iiz 2131+-=,则=z ( ) A. 2B.2C.10D. 52.若原命题为:“若21,z z 为共轭复数,则21z z =”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( ) A. 真、真、真 B. 真、真、假 C. 假、假、真D. 假、假、假3.下列命题为特称命题的是( ) A. 任意一个三角形的内角和为︒180 B. 棱锥仅有一个底面C. 偶函数的图象关于y 轴垂直D. 存在大于1的实数x ,使21lg <+x 4.“n m =”是“方程322=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5.设双曲线)0,0(12222>>=-b a bx a y 的离心率是5,则其渐近线的方程为( )A.02=±y xB.02=±y xC. 02=±y xD. 02=±y x6.已知点)1,2,1(-A ,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则=BC ( )A. 72B. 52C. 22D. 47.椭圆16822=+y x 中,以点)1,2(M 为中点的弦所在直线斜率为( ) A.43-B.83-C. 32-D.34-8.若),0(,,321+∞∈x x x ,设133221,,x x c x xb x x a ===,则c b a ,,的值( ) A. 至多有一个不大于1 B. 至少有一个不大于1 C. 都大于1D. 都小于19.点),(y x P 在椭圆191622=+y x 上,则y x 2-的最大值为( ) A.6B. 132C.134D.1010.设函数x x x f ln 1621)(2-=在区间[]2,1+-a a 上单调递减,则实数a 的取值范围是( ) A. )3,1(B. )3,2(C. (]2,1D. []3,211.在ABC Rt ∆中,1==AC AB ,若一个椭圆经过B A ,两点,它的一个焦点为点C ,另一个焦点在边AB 上,则这个椭圆的离心率为( )A.3632-B.23-C.36-D.12-12.已知函数xe x xf 1)(+=,若对任意R x ∈,ax x f >)(恒成立,则实数a 的取值范围是( )A.(]1,1e -B. )1,(e --∞C. [)1,1-eD. ),1(+∞-e二、填空题(本大题共4小题,每小题5分,共20分.)13.在极坐标系中,圆θθρsin 32cos 2-=的圆心的极坐标...是____________. 14.观察下列各式:125355=,6251556=,7578125=,则20165的末四位数字为__________________.15.函数)cos (sin 21)(x x e x f x +=在区间⎥⎦⎤⎢⎣⎡2,0π上的值域为_________________. 16.设21,F F 分别为双曲线124:22=-y x C 的左、右焦点,P 为双曲线C 在第一象限上的一点,若3421=PF PF ,则21F PF ∆内切圆的面积为________________. 三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知极点为直角坐标系的原点,极轴为x 轴正半轴且单位长度相同的极坐标系中曲线1:1=ρC ,直线⎪⎪⎩⎪⎪⎨⎧+=+-=t y tx C 221221:2(t 为参数). (1)求曲线1C 上的点到直线2C 距离的最小值;(2)若把1C 上各点的横坐标都伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线3C .设)1,1(-P ,直线2C 与曲线3C 交于B A ,两点,求PB PA +.18.(本小题满分12分)如图,在四棱锥ABCD P -中, 底面ABCD 为菱形,⊥PC 平面ABCD ,点E 在棱PA 上. (1)求证:直线⊥BD 平面PAC ;(2)是否存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31?若存在,求出PAPE的值;若不存在,请说明理由.19.(本题满分12分)已知x xax x f ln )(-+=.R a ∈ (1)若2=a ,求)(x f 的单调区间;(2)当41-≤a 时,若2ln )(-≥x f 在[]e x ,2∈上恒成立,求a 的取值范围.20.(本题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆C 的标准方程;(2)设)0,2(P ,过椭圆C 左焦点F 作斜率k 直线l 交C 于B A ,两点,若ABP S ∆=求直线l 的方程.21.(本小题满分12分)已知抛物线G :)0(22>=p px y ,过焦点F 的动直线l 与抛物线交于B A ,两点,线段AB 的中点为M .(1)当直线l 的倾斜角为4π时,16=AB .求抛物线G 的方程; (2)对于(1)问中的抛物线G ,设定点)0,3(N ,求证:MN AB 2-为定值.22(本小题满分12分).已知xa x x x f +-+=42)(2. (1)若4=a ,求)(x f 的单调区间;(2)若)(x f 有三个零点,求a 的取值范围.体验 探究 合作 展示长春市十一高中2017-2018学年度高二上学期期中考试数学试题(文科)参考答案一、选择题(每题5分,共60分)二、选择题(每题5分,共20分)13.)3,2(π- 14. 3125 15. ⎥⎦⎤⎢⎣⎡221,21πe 16. π4三、解答题17.解(1)1:221=+y x C ,圆心为)0,0(,半径为1;2:2+=x y C圆心到直线距离222==d --------3分 所以1C 上的点到2C 的最小距离为12-.--------5分(2)伸缩变换为⎩⎨⎧='='yy x x 32,所以134:223='+'y x C --------7分 将2C 和3C 联立,得0102272=-+t t .因为021<t t --------8分72124)(212212121=-+=-=+=+∴t t t t t t t t PB PA --------10分18.解(Ⅰ)因为⊥PC 平面ABCD ,所以BD PC ⊥, 因为底面ABCD 是菱形,所以AC BD ⊥, 因为C AC PC = ,所以⊥BD 平面PAC .(2)在PAC ∆中过点E 作EF ∥PC ,交AC 于点F , 因为⊥PC 平面ABCD , 所以⊥EF 平面ABCD .由ABCD 是菱形可知BCD ABD S S ∆∆=,设存在点E ,使得四面体BDE A -的体积等于四面体BDC P -的体积的31,即BDC P BDA E V V --=31,则PC EF 31=,所以在PAC ∆中,31==PC EF AP AE ,所以32=PA PE .19.解(1)当2=a 时,x x x x f ln 2)(-+=,则2222121)(x x x x x x f --=--=',0>x令0)(>'x f ,解得2>x ,令0)(<'x f ,解得20<<x ,所以)(x f 增区间为),2(+∞,减区间为)2,0(.(2)由22211)(xa x x x x a x f --=--=',[]e x ,2∈,当41-≤a 时,02>--a x x故)(x f 在[]e x ,2∈上为增函数,若2ln )(-≥x f ,则只需2ln 2ln 22)2()(min -≥-+==af x f , 即:4-≥a ,综上有:414-≤≤-a20.解(1)依题意,221,1,2a b c b a =+==,解得1,222==b a ,所以椭圆C 的标准方程为1222=+y x . (2)设直线l :1+=x ty ,代入椭圆消去x 得:012)2(22=--+ty y t ,设),(),,(2211y x B y x A ,则21,22221221+-=+=+t y y t t y y 所以:2102121=-=∆y y FP S ABP , 即:2104)(32121221=-+⨯⨯y y y y ,即:10)24)2(4(92222=+++t t t解得:42=t ,即2±=t ,所以l :012=+±y x21.解(1)由题意知)0,2(p F ,设直线l 的方程为2px y -=,),(),,(2211y x B y x A 由⎪⎩⎪⎨⎧-==222p x y pxy 得:04322=+-p px x ,所以:p x x 321=+ 又由1621=++=p x x AB ,所以4=p ,所以:抛物线G 的方程为x y 82=(2)由(1)抛物线G 的方程为x y 82=,此时设2:-=x ty AB消去x 得:01682=--ty y ,设),(),,(2211y x B y x A , 则:16,82121-==+y y t y y所以:)1(88)(422121+=++=++=t y y t x x ABt y t y y tx M M 4,242)(2221=+=++=,即 )4,24(2t t M + 所以:222216)14(2)1(82t t t MN AB +--+=-6)14(2)1(822=+-+=t t()()222124a .f x x x x=+-+, 则,令0)(='x f ,解得1=x ,且有1>x 时,0)(>'x f ,1<x 时,0)(<'x f ,所以)(x f 在)1,0(),0,(-∞上单调递减,)(x f 在),1(+∞上单调递增.(2)0)(=x f ,即x x x a 4223-+=-,令x x x x g 42)(23-+=,()0x ≠则443)(2-+='x x x g ,解得,所以)(x g 有两个极值,,所以,即.又()40080027a ,a ,,⎛⎫≠∈- ⎪⎝⎭所以.。
2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)
![2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/74db41c5ba0d4a7302763a63.png)
2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若函数f(x)=x+cos x,则f(x)的导数f'(x)=()A.1﹣cos x B.1+cos x C.1﹣sin x D.1+sin x2.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.223.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)曲线f(x)=(x+1)e x在点(0,f(0))处的切线方程为()A.y=x+1B.y=2x+1C.y=x+1D.y=x+1 8.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.59.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)10.(5分)若P为抛物线C:y2=4x上一点,F是抛物线的焦点,点A的坐标(3,0),则当|P A|最小时,直线PF的方程为()A.x﹣2y﹣3=0B.x﹣2y﹣1=0C.x=3D.x=111.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的偶函数,当x>0时,xf'(x)>f(x),若f(2)=0,则不等式>0的解集为()A.{x|﹣2<x<0或0<x<2}B.{x|x<﹣2或x>2}C.{x|﹣2<x<0或x>2}D.{x|x<﹣2或0<x<2}二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.16.(5分)已知双曲线C:﹣(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为1的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,则双曲线C的离心率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18.(12分)已知抛物线C:y2=2x,过点P(1,0)的直线l与抛物线相交于A,B两点,若|AB|=2,求直线l的方程.19.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.20.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.21.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且过点(,).(1)求椭圆C的方程;(2)设过点P(1,1)的直线与椭圆C交于A,B两点,当P是AB中点时,求直线AB 方程.22.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)当a=﹣4时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:f′(x)=1﹣sin x,故选:C.2.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,f(x)=(x+2a)(x﹣a+1)=x2+(a+1)x﹣2a2+2a,∴a+1=0,解得a=﹣1,即“函数f(x)=(x+2a)(x﹣a+1)是偶函数”⇒“a=﹣1”;当a=﹣1时,f(x)=(x+2a)(x﹣a+1)=(x﹣2)(x+2)=x2﹣4是偶函数,即“a=﹣1”⇒“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,∴“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的充分必要条件.故选:C.7.【解答】解:∵f(x)=e x(x+1),∴f′(x)=e x(x+1)+e x=e x(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣1=2(x﹣0),即2x﹣y+1=0;故选:B.8.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.9.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.10.【解答】解:设P(x,y),抛物线C:y2=4x,F是抛物线的焦点(1,0),点A的坐标(3,0),|P A|===,当x=1时,|P A|最小,此时P(1,±2),所以直线PF的方程为:x=1.故选:D.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:∵f(x)是定义在R上的偶函数,当x>0时,>0,∴为增函数,f(x)为偶函数,为奇函数,∴在(﹣∞,0)上为增函数,∵f(﹣2)=f(2)=0,若x>0,=0,所以x>2;若x<0,=0,在(﹣∞,0)上为增函数,可得﹣2<x<0,综上得,不等式>0的解集是(﹣2,0)∪(2,+∞)故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.16.【解答】解:双曲线C:﹣(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F (c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣=,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故答案为:2.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18.【解答】解:设直线l的方程为:my=x﹣1,整为:x=my+1,代入方程y2=2x整理为:y2﹣2my﹣2=0,故有y1+y2=2m,y1y2=﹣2,.故有.整理为m4+3m2﹣4=0,解得m=±1.故直线l的方程为:x+y﹣1=0或x﹣y﹣1=0.19.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.20.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.21.【解答】解:(1)设椭圆的焦距为2c,则∴∴椭圆C的方程为:.(2)设A(x1,y1),B(x2,y2).则,,∴又x1+x2=y1+y2=2,∴.∴直线AB方程为.3x+4y﹣7=0.22.【解答】解:(1)a=﹣4时,f(x)=x2﹣2x﹣4lnx,定义域为(0,+∞),.∴0<x<2时:f'(x)<0,x>2时,f'(x)>0,∴f(x)的单调增区间为[2,+∞),单调减区间为[0,2](2)函数f(x)在(0,+∞)上有两个极值点,.由f'(x)=0.得2x2﹣2x+a=0,当△=4﹣8a>0,时,x1+x2=1,,,则x1>0,∴a>0.由,可得,,,令,则,因为.,,又2lnx<0.所以h'(x)<0,即时,h(x)单调递减,所以,即,故实数m的取值范围是.。
2017-2018学年山东省泰安市高二(上)期末数学试卷(文科)(解析版)
![2017-2018学年山东省泰安市高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/8404bc1f7375a417866f8f61.png)
2017-2018学年山东省泰安市高二(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知a>b,则下列结论正确的是()A.B.a+c>b+c C.ac>bc D.a2>b22.(5分)一个命题与它的逆命题,否命题,逆否命题这四个命题中()A.假命题与真命题的个数相同B.真命题的个数是奇数C.真命题的个数是偶数D.假命题的个数是奇数3.(5分)下列双曲线中,焦点在y轴上且渐近线为y=±3x的是()A.B.C.D.4.(5分)函数y=3x2﹣2lnx的单调增区间为()A.(﹣∞,)∪(0,)B.(﹣)∪(,+∞)C.(0,)D.(,+∞)5.(5分)已知数列{a n}是等比数列,a2=2,,则公比q等于()A.﹣2B.C.2D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cos A=,则b=()A.B.C.2D.37.(5分)抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A.B.C.1D.8.(5分)已知m是两个正数2,8的等比中项,则圆锥曲线x+=1的离心率是()A.或B.C.D.或9.(5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10D.1210.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 11.(5分)设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf'(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(﹣2,0)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣2,0)D.(0,2)∪(2,+∞)12.(5分)已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF2|>|PF1|,椭圆的离心率为e1,双曲线的离心率为e2,若|PF1|=|F1F2|,则的最小值为()A.B.C.8D.6二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)命题p:∃x0∈R,,则命题p的否定为.14.(5分)在曲线f(x)=x3﹣2x2+1上点(1,f(1))处的切线方程为.15.(5分)设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=.16.(5分)若两个正实数x,y满足=1,则x+2y的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(Ⅰ)若a=2,且¬p∧q为真命题,求实数x的取值范围;(Ⅱ)若q是¬p的充分不必要条件,求实数a的取值范围.18.(12分)在△ABC中,a,b,c分别是内角A,B,C的对边,且.(Ⅰ)若,求b的值;(Ⅱ)若△ABC的面积为,求△ABC的周长.19.(12分)已知等差数列{a n}中,公差d≠0,S6=27,且a3,a5,a8成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列的前n项和为T n,则.20.(12分)某运输公司有7辆可载6t的A型卡车与4辆可载10t的B型卡车,有9名驾驶员,建筑某段高速公路中,此公司承包了每天至少搬运360t沥青的任务,已知每辆卡车每天往返的次数为A型车8次,B型车6次,每辆卡车每天往返的成本费为A型车160元,B型车252元,每天派出A型车和B型车各多少辆,公司所花的成本费最低?21.(12分)已知函数f(x)=lnx﹣mx(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于m﹣2时,求m的取值范围.22.(12分)设椭圆的左焦点为F1,右顶点为A,离心率为,已知点A是抛物线E:y2=2px(p>0)的焦点,点F1到抛物线准线的距离是.(Ⅰ)求椭圆C的方程和抛物线E的方程;(Ⅱ)若B是抛物线E上的一点且在第一象限,满足|AB|=4,直线l交椭圆于M,N两点,且OB∥MN,当△BMN的面积取得最大值时,求直线l的方程.2017-2018学年山东省泰安市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:对于A:a=﹣1或b=﹣2时,根式无意义;对于B:在一个不等式两边同时加上一个实数,不等式仍成立,故B正确;对于C:c=0时不成立;对于D:a=﹣1,b=﹣2时不成立.故选:B.2.【解答】解:根据四种命题及其关系理论:原命题⇔逆否命题,逆命题⇔否命题;如果原命题是真命题,逆命题是假命题,则真命题共有两个;如果原命题是真命题,逆命题也是真命题,则真命题共有四个;如果原命题是假命题,逆命题也是假命题,则真命题共有0个;故一个命题与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数一定是偶数,故选:C.3.【解答】解:选项A双曲线的焦点坐标在x轴,不正确;选项B双曲线的焦点坐标在x轴不正确;选项C:双曲线的焦点坐标在y轴,渐近线方程为:y=±3x,满足题意;正确;选项D双曲线的渐近线方程为:y=x,不满足题意,不正确;故选:C.4.【解答】解:函数y=3x2﹣2lnx的定义域为(0,+∞),求函数y=3x2﹣2lnx的导数,得f′(x)=6x﹣=,由f′(x)>0,解得x>.故函数y=3x2﹣2lnx的单调增区间为(,+∞),故选:D.5.【解答】解:∵数列{a n}是等比数列,a2=2,,∴q3=,解得q=.故选:D.6.【解答】解:∵a=,c=2,cos A=,∴由余弦定理可得:cos A===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.7.【解答】解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B.8.【解答】解:∵m是两个正数2,8的等比中项,∴m2=2×8=16,即m=4或m=﹣4,当m=4时,圆锥曲线x+=1为椭圆,∴a=2,b=1,c=,∴e==,当m=﹣4时,圆锥曲线x﹣=1为双曲线,∴a=1,b=2,c=,∴e==,故选:D.9.【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a1+×1=4×(4a1+),解得a1=.则a10=+9×1=.故选:B.10.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.11.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)===g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故选:A.12.【解答】解:由题意可知:|PF1|=|F1F2|=2c,设椭圆的方程为+=1(a1>b1>0),双曲线的方程为﹣=1(a2>0,b2>0),又∵|F1P|+|F2P|=2a1,|PF2|﹣|F1P|=2a2,∴|F2P|+2c=2a1,|F2P|﹣2c=2a2,两式相减,可得:a1﹣a2=2c,则+=+===(++18)≥•(2+18)=8.当且仅当=,即有e2=3时等号成立,则的最小值为8,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:特称命题的否定是全称命题,所以命题p:∃x0∈R,,则命题p的否定为:∀x∈R,x2﹣x+1≥0.故答案为:∀x∈R,x2﹣x+1≥0.14.【解答】解:∵f(x)=x3﹣2x2+1,∴f′(x)=3x2﹣4,∴f′(1)=﹣1,∵f(1)=0∴曲线f(x)=x3﹣2x2+1上在点(1,f(1))处的切线方程为y=﹣1(x﹣1),即x+y﹣1=0.故答案为:x+y﹣1=0.15.【解答】解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.故答案为:﹣8.16.【解答】解:∵两个正实数x,y满足=1,∴x+2y=(x+2y)()=4+≥4+2=8,当且仅当时取等号即x=4,y=2,故x+2y的最小值是8.故答案为:8.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(Ⅰ)当a=2命题q:2<x<4,∵命题p:x≤2或x>6∴¬p:2<x≤6,又¬p∧q为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(Ⅱ)由题意得:命题q:a<x<2a;∵q是¬p的充分不必要条件,∴,∴2≤a≤3,∴实数a的取值范围{a|2≤a≤3}.18.【解答】解:(Ⅰ)在△ABC中,由题意知,由正弦定理得:,∴.(Ⅱ)∵,∴,∴由余弦定理得:,∴,∴,∴△ABC的周长为.19.【解答】解:(Ⅰ)由题意得整理得∴∴a n=2+(n﹣1)d=n+1(Ⅱ)∵∴==20.【解答】解:设每天派出A型车x辆,B型车y辆,成本为z,所以x和y需满足:可行域如图目标函数为z=160x+252y.把z=160x+252y变形为得到斜率为,在y轴上的截距为随z变化的一组平行直线.在可行域的整点中,点M(5,2)使得z取得最小值.所以每天派出A型车5辆,B型车2辆成本最小,最低成本1304元.21.【解答】解:(1)f(x)的定义域为(0,+∞),,若m≤0,则f'(x)>0∴f(x)在(0,+∞)上单调递增,若m>0令f'(x)>0,则,令f'(x)<0,则,∴f(x)在上单调递增.在上单调递减.综上,当m≤0时,f(x)在(0,+∞)上单调递增.当m>0时,f(x)在上单调递增,在上单调递减.(2)由(1)知当m≤0时,f(x)在(0,+∞)上无最大值;当m>0时,f(x)在处取得最大值.最大值为,又等价于lnm+m﹣1<0,令g(m)=lnm+m﹣1,则g(m)在(0,+∞)上单调递增.g(1)=0.∴当0<m<1时,g(m)<0;当m>1时,g(m)>0.∴m的取值范围是(0,1).22.【解答】解:(Ⅰ)由题意可列方程组:,解得,所以b2=a2﹣c2=2.从而椭圆C的方程为,抛物线E的方程为y2=8x.(Ⅱ)可设B(x0,y0),抛物线E的准线方程为x=﹣2,由抛物线的定义得:|AB|=x0﹣(﹣2)=x0+2=4,解得x0=2,所以,因为点B在第一象限,所以y0=4.从而B(2,4).由于OB∥MN,所以K MN=K OB=2,l的方程可设为:y=2x+m,即:2x﹣y+m=0M(x1,y1),N(x2,y2),消去y整理得9y2+8mx+2m2﹣4=0,△=(8m)2﹣36(2m2﹣4)>0,则m2<18,解得:﹣3<m<3,∴x1+x2=﹣,x1x2=.所以|MN|===,点B(2,4)到直线l的距离d==.所以S△BMN=|MN|d=××==,当m2=9时,即:m=±3时,△BMN的面积取得最大值.此时l的方程为2x﹣y+3=0或2x﹣y﹣3=0.。
2017-2018学年高二上学期期末考试数学(文)试题
![2017-2018学年高二上学期期末考试数学(文)试题](https://img.taocdn.com/s3/m/5f057b8fdaef5ef7bb0d3c17.png)
2017-2018学年第一学期期末考试高二数学(文科)试题一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线y=x 2的准线方程是( ) A .2x +1=0B .4x +1=0C .2y +1=0D .4y +1=02.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知命题:p x ∀∈R ,20x >,则( )A .:p x ⌝∃∉R ,20x ≤B .:p x ⌝∃∈R ,20x ≤C .:p x ⌝∃∈R ,20x <D .:p x ⌝∃∉R ,20x > 4.函数()sin xf x x e =+,则()0f ' 的值为( )A . 0B . 1C . 2D . 3 5.已知复数21a ii--为纯虚数(其中i 是虚数单位),则a 的值为( ) A .-2 B .2 C .12 D .1-26.下列求导运算正确的是( )2x 22111.()1 B. (lnx)e C.(x cosx)-2xsinx D. ()x x x A x x x xxe e x ''+=+=+''==7. 双曲线229436x y -=-的渐近线方程是( )A .23y x =±B .94y x =±C .32y x =±D .49y x =± 8.椭圆)0(12222>>=+b a by a x 的上顶点B 与两焦点F 1、F 2构成等边三角形,则此椭圆的离心率为( )A .51 B .43 C .33 D .21 9.在复平面内,复数z 满足()113z i i +=+,则z 的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知三次函数32()f x ax bx cx d =+++的图象如图所示,则(3)(1)f f '-='( ) A .-1 B .2 C .-5 D .-311.已知椭圆x 22+y 2m =1和双曲线y 23-x 2=1有公共焦点F 1,F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于( )A .3B .2 3C .3 2D .2 6 12.已知函数1()ln 1f x x x =--,则()y f x =的图像大致为( )二、填空题:本题共4小题,每小题5分,共20分。
河南省郑州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析
![河南省郑州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析](https://img.taocdn.com/s3/m/4ebdf061a26925c52cc5bf1b.png)
河南省郑州市2017-2018学年高二上学期期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣25.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.238.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.49.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>410.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.411.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.212.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是.14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.河南省郑州市2014-2015学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的定义可得,x2=2py(p>0)的焦点坐标(0,)可直接求解解答:解:根据抛物线的定义可得,x2=2y的焦点坐标(0,)故选B.点评:本题主要考查了抛物线的简单的性质,属于基础试题.2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当a>b,b=0时,不等式(a﹣b)b2>0不成立.若(a﹣b)b2>0,则b≠0,且a﹣b>0,∴a>b成立.即a>b是(a﹣b)b2>0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为(x+2015)(x﹣1)>0,求出解集即可.解答:解:不等式x2+2014x﹣2015>0可化为(x+2015)(x﹣1)>0,解得x<﹣2015或x>1;∴不等式的解集为{x|x>1或x<﹣2015}.故选:B.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣2考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解答:解:∵等差数列{a n}的前n项和为S n,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D点评:本题考查等差数列的求和公式和通项公式,属基础题.5.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b考点:解三角形的实际应用.专题:应用题;解三角形.分析:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.解答:解:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.故选:A.点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.23考点:简单线性规划的应用.专题:不等式的解法及应用.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解答:解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.8.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.4考点:基本不等式;等差数列.专题:不等式的解法及应用.分析:利用等差中项及基本不等式的性质即可求出答案.解答:解:∵2是2a与b的等差中项,∴2a+b=4,又∵a>0,b>0,∴=,当且仅当2a=b=2,即a=1,b=2时取等号,∴.故选B.点评:充分理解基本不等式及其变形是解题的关键.9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>4考点:直线的斜率.专题:直线与圆.分析:由点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,把两点的坐标代入3x﹣2y+a 所得的值异号,由此列不等式求得a的范围.解答:解:∵点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,∴(3×2﹣2×1+a)(﹣1×3﹣2×3+a)<0,即(a+4)(a﹣9)<0.解得﹣4<a<9.故选:A.点评:本题考查了简单的线性规划,考查了二元一次不等式所表示的平面区域,是基础题.10.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.4考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由各项为正的等比数列{a n}中,a4与a14的等比中项为,知a4•a14=(2)2=8,故a7•a11=8,利用均值不等式能够求出2a7+a11的最小值.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a7+a11≥2=2=8.故选B.点评:本题考查等比数列的通项公式的应用,是中档题.解题时要认真审题,仔细解答.11.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.2考点:导数的运算.专题:导数的概念及应用.分析:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解答:解:由f(x)=x2+2xf′(1),得:f′(x)=2x+2f′(1),取x=1得:f′(1)=2×1+2f′(1),所以,f′(1)=﹣2.所以f′(x)=2x﹣4故f′(0)=2f′(1)=﹣4,故选:C.点评:本题考查了导数运算,解答此题的关键是理解原函数解析式中的f′(1),在这里f′(1)只是一个常数,此题是基础题.12.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:由题意,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象,从而可求得y′|x=β=﹣cosβ,即k=﹣cosβ,从而可得=﹣cosβ,化简即可.解答:解:在(0,+∞)上,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象如下,在x=β时,==k,又∵在x=β处直线与y=|sinx|相切,∴y′|x=β=﹣cosβ,故k=﹣cosβ,则=﹣cosβ,即sinα=﹣αcosβ;故选A.点评:本题考查了导数的几何意义的应用及方程的根与函数图象的关系应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是∀x<0,有x2≤0.考点:的否定.分析:对特称的否定是一个全称,对一个全称的否定是全称,即:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,由此不难得到对“∃x<0,有x2>0”的否定.解答:解:∵对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”∴对“∃x<0,有x2>0”的否定是“∀x<0,有x2≤0”故答案为:∀x<0,有x2≤0点评:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称的否定是一个全称,对一个全称的否定是全称14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.考点:等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.解答:解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:点评:本题考查等差数列的性质和通项公式,属基础题.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=2.考点:正弦定理;余弦定理.专题:解三角形.分析:在△ABC中,由正弦定理求得a=c,结合余弦定理,即可求出c的值解答:解:∵在△ABC中,sinA=sinC∴a= c又∵B=30°,由余弦定理,可得:cosB=cos30°===解得c=2故答案为:2.点评:本题考查的知识点是正弦定理和余弦定理,熟练掌握定理是解题的关键,属于中档题.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为t1>t2.考点:有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:由题意,甲用的时间t1=+=S;乙用的时间t2=2×=;从而作差比较大小即可.解答:解:由题意知,甲用的时间t1=+=S•;乙用的时间t2=2×=;∴t1﹣t2=S﹣=S(﹣)=S>0;故t1>t2;故答案为:t1>t2.点评:本题考查了有理指数幂的化简求值,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.考点:等差数列的前n项和;等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式,列出方程,解得首项和公差,即可得到通项公式;(Ⅱ)运用前n项和的公式,配方,结合二次函数的最值,即可得到.解答:解:(Ⅰ)由a n=a1+(n﹣1)d,及a3=5,a10=﹣9得,,解得,数列{a n}的通项公式为a n=11﹣2n.(Ⅱ)由(1)知.因为.所以n=5时,S n取得最大值25.点评:本题考查等差数列的通项公式和前n项和公式的运用,考查解方程组和二次函数的最值的求法,属于基础题.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.考点:复合的真假.专题:计算题;简易逻辑.分析:先分别求出p,q为真时实数a的取值范围,再由p或q为真,p且q为假,可知p 和q一真一假,从而解得.解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,故△=4a2﹣16<0,∴﹣2<a<2.又∵抛物线y2=4ax的焦点在(1,0)的左侧,∴a<1.a≠0.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则∴1≤a<2;或a=0.(2)若p假q真,则∴a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.或a=0.点评:本题考查了复合的真假性的应用,属于基础题.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinC的值,由C为锐角求出C的度数即可;(2)利用余弦定理列出关系式,把cosC的值代入并利用完全平方公式变形,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:(1)由正弦定理==,及b=2csinB,得:sinB=2sinCsinB,∵sinB≠0,∴sinC=,∵C为锐角,∴C=60°;(2)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a﹣b)2+ab,∵c2=(a﹣b)2+6,∴ab=6,则S△ABC=absinC=.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:由题意列出不等式组,分别求解两种车型的事发前的车速,判断它们是不是超速行驶,即可得到结论.解答:解:由题意知,对于甲车,有0.1x+0.01x2=12.即x2+10x﹣1200=0,…(2分)解得x=30或x=﹣40(x=﹣40不符合实际意义,舍去).…(4分)这表明甲车的车速为30km/h.甲车车速不会超过限速40km/h.…(6分)对于乙车,有0.05x+0.005x2>10,即x2+10x﹣2000>0,…(8分)解得x>40或x<﹣50(x<﹣50不符合实际意义,舍去).…(10分)这表明乙车的车速超过40km/h,超过规定限速.…(12分)点评:本题的考点是函数模型的选择与应用,考查不等式模型的构建,考查利用数学知识解决实际问题.解题的关键是利用函数关系式构建不等式.21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)先求出函数的导数,令f′(x)=0,解得x=ln2,从而求出函数的单调区间;(Ⅱ)问题转化为求的最小值.令,通过求导得到函数g(x)的最小值,从而求出m的范围.解答:解:(Ⅰ)f′(x)=e x﹣2,令f′(x)=0,即e x﹣2=0,解得x=ln2,x∈(﹣∞,ln2)时,f′(x)<0,x∈(ln2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(﹣∞,ln2),单调递增区间为(ln2,+∞).(Ⅱ)由题意知使f(x)<mx成立,即使成立;所以的最小值.令,,所以g(x)在上单调递减,在上单调递增,则g(x)min=g(1)=e﹣2,所以m∈(e﹣2,+∞).点评:本题考查了函数的单调性,函数的最值问题,考查了导数的应用,考查转化思想,是一道中档题.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)设点F(c,0)(c>0),由已知条件得,圆C的半径等于椭圆E的短半轴长,由此能求出椭圆方程.(Ⅱ)由圆心O到直线l的距离为,得,由已知条件推导出|AF|+|AM|=2,|BF|+|BM|=2,由此能证明|AF|﹣|BF|=|BM|﹣|AM|.解答:(Ⅰ)解:设点F(c,0)(c>0),则F到直线l的距离为,即,…(2分)因为F在圆C内,所以,故c=1;…(4分)因为圆C的半径等于椭圆E的短半轴长,所以b2=3,椭圆方程为.…(6分)(Ⅱ)证明:因为圆心O到直线l的距离为,所以直线l与圆C相切,M是切点,故△AOM为直角三角形,所以,又,得,…(7分),又,得,…(9分)所以|AF|+|AM|=2,同理可得|BF|+|BM|=2,…(11分)所以|AF|+|AM|=|BF|+|BM|,即|AF|﹣|BF|=|BM|﹣|AM|.…(12分)点评:本题考查椭圆方程的求法,考查两组线段差相等的证明,解题时要认真审题,注意点到直线的距离公式的合理运用.。
(完整word版)高二第一学期数学期末考试题及答案(人教版文科)
![(完整word版)高二第一学期数学期末考试题及答案(人教版文科)](https://img.taocdn.com/s3/m/fd00a3afdb38376baf1ffc4ffe4733687e21fc95.png)
2017—2018学年度第一学期高二数学期末考试题文科(提高班)选择题(每题5分, 共60分)1.在相距2km的A、B两点处测量目标C, 若∠CAB=75°, ∠CBA=60°, 则A、C两点之间的B. 3 km距离是()A. 2 kmA.2kmC. kmD. 3 km2. 已知椭圆()的左B.4C.3D.2焦点为,则()A.93. 在等差数列中,,则B. 15C. 20D. 25的前5项和=()A.74. 某房地产公司要在一块圆形的土地上,设计一B. 100m2C. 200m2D. 250m2个矩形的停车场.若圆的半径为10m,则这个矩形的面积最大值是()A. 50m2A.50m25. 如图所示, 表示满足不等式的点所在的平面区域为()B .C .D .A .6. 焦点为(0, ±6)且与双曲线有相同渐近线的双曲线方程是()B .A .C .D .7. 函数的导数为()B .A .C .D .8. 若<<0, 则下列结论正确的是()B .A. bA .bC. -2D .9. 已知命题: 命题.则下列判断正确的是()B. q是真命题A. p是假命题A.p是假命题C. 是真命题D. 是真命题10. 某观察站B. 600米C. 700米D. 800米与两灯塔、的距离分别为300米和500米, 测得灯塔在观察站北偏东30 , 灯塔在观察站正西方向, 则两灯塔、间的距离为()A. 500米A.500米11. 方程表示的曲线为()A. 抛物线A.抛物线B. 椭圆 C. 双曲线D.圆12. 已知数列的前项和为, 则的值是()A. -76A.-76B. 76C. 46D. 13二、填空题(每题5分, 共20分)13.若, , 是实数, 则的最大值是_________14.过抛物线的焦点作直线交抛物线于、两点, 如果, 那么=___________.15.若双曲线的顶点为椭圆长轴的端点, 且双曲线的离心率与该椭圆的离心率的积为1, 则双曲线的方程是____________.16.直线是曲线y=l.x(x>0)的一条切线,则实数b=___________2017—2018学年度第一学期高二数学期末考试文科数学(提高班)答题卡二、填空题(共4小题, 每题5分)13. 2 14、 815. 16.三、解答题(共6小题, 17题10分, 其他每小题12分)17.已知数列(Ⅰ)求数列的通项公式;(Ⅱ)求证数列是等比数列;18.已知不等式组的解集是, 且存在, 使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.19.某公司生产一种电子仪器的固定成本为20000元, 每生产一台仪器需增加投入100元, 已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时, 公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20.根据下列条件, 求双曲线的标准方程.(1)经过点, 且一条渐近线为;(2) 与两个焦点连线互相垂直, 与两个顶点连线的夹角为.21.已知函数在区间上有最小值1和最大值4, 设.(1)求的值;(2)若不等式在区间上有解, 求实数k的取值范围.22.已知函数().(1)求曲线在点处的切线方程;(2)是否存在常数, 使得, 恒成立?若存在, 求常数的值或取值范围;若不存在, 请说明理由.文科(提高班)选择题(每题5分, 共60分)1.考点: 1. 2 应用举例试题解析:由题意, ∠ACB=180°-75°-60°=45°, 由正弦定理得=, 所以AC=·sin60°=(km).答案:C2.考点: 2. 1 椭圆试题解析:, 因为, 所以, 故选C.答案:C3.考点: 2. 5 等比数列的前n项和试题解析: .答案:B4.考点: 3. 3 二元一次不等式(组)与简单的线性规划问题试题解析:如图,设矩形长为, 则宽为,所以矩形面积为 , 故选C答案: C5.考点:3..二元一次不等式(组)与简单的线性规划问题试题解析: 不等式等价于或作出可行域可知选B答案: B6.考点: 2. 2 双曲线试题解析:与双曲线有共同渐近线的双曲线方程可设为,又因为双曲线的焦点在y轴上,∴方程可写为.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为.答案:B7.考点: 3. 2 导数的计算试题解析:, 故选B.答案:B8.考点: 3. 1 不等关系与不等式试题解析:根据题意可知, 对两边取倒数的得, 综上可知, 以此判断:A.正确;因为:, 所以:, B错误;, 两个正数相加不可能小于, 所以C错误;, D错误, 综上正确的应该是A.答案:A9.考点: 1. 3 简单的逻辑联结词试题解析:当时, (当且仅当, 即时取等号), 故为真命题;令, 得, 故为假命题, 为真命题;所以是真命题.答案:C10.考点: 1. 2 应用举例试题解析:画图可知在三角形ACB中, , , 由余弦定理可知, 解得AB=700.答案:C11.考点: 2. 1 椭圆试题解析:方程表示动点到定点的距离与到定直线的距离, 点不在直线上, 符合抛物线的定义;答案:A12.考点: 2. 3 等差数列的前n项和试题解析:由已知可知:, 所以, , , 因此, 答案选A.答案:A二. 填空题(每题5分, 共20分)13.考点: 3. 4 基本不等式试题解析:, , 即,则, 化简得, 即, 即的最大值是2.答案:214.考点: 2. 3 抛物线试题解析:根据抛物线方程知, 直线过焦点, 则弦, 又因为, 所以.答案:815.考点: 2. 2 双曲线试题解析:椭圆长轴的端点为, 所以双曲线顶点为, 椭圆离心率为,所以双曲线离心率为, 因此双曲线方程为答案:16.考点: 3. 2 导数的计算试题解析:设曲线上的一个切点为(m, n), , ∴,∴.答案:三、解答题(共6小题, 17题10分, 其他每小题12分)17.考点: 2. 3 等差数列的前n项和试题解析: (Ⅰ)设数列由题意得:解得:(Ⅱ)依题,为首项为2, 公比为4的等比数列(Ⅲ)由答案: (Ⅰ)2n-1;(Ⅱ)见解析;(Ⅲ){1, 2, 3, 4}18.考点: 3. 2 一元二次不等式及其解法试题解析:(Ⅰ)解得;(Ⅱ)令, 由题意得时, .当即, (舍去)当即, .综上可知, 的取值范围是.答案: (Ⅰ);(Ⅱ)的取值范围是19.考点: 3. 4 生活中的优化问题举例试题解析:(1)(2)当时,∴当时, 有最大值为当时,是减函数,∴当时, 的最大值为答:每月生产台仪器时, 利润最大, 最大利润为元.答案:(1);(2)每月生产台仪器时, 利润最大, 最大利润为元20.考点: 双曲线试题解析:(1)由于双曲线的一条渐近线方程为设双曲线的方程为()代入点得所以双曲线方程为(2)由题意可设双曲线的方程为则两焦点为, 两顶点为由与两个焦点连线垂直得, 所以由与两个顶点连线的夹角为得, 所以, 则所以方程为21.考点: 3. 2 一元二次不等式及其解法试题解析: (1), 因为, 所以在区间上是增函数,故, 解得.(2)由已知可得, 所以, 可化为,化为, 令, 则, 因, 故,记, 因为, 故,所以的取值范围是22.考点: 3. 3 导数在研究函数中的应用试题解析:(1), 所求切线的斜率所求切线方程为即(2)由, 作函数,其中由上表可知, , ;,由, 当时, , 的取值范围为, 当时, , 的取值范围为∵, 恒成立, ∴答案:(1)(2)存在, , 恒成立100.在中, 角所对的边分别为, 且满足, .(.)求的面积;(II)若, 求的值.46.考点: 正弦定理余弦定理试题解析:(Ⅰ)又, , 而, 所以, 所以的面积为:(Ⅱ)由(Ⅰ)知, 而, 所以所以答案: (1)2(2)。
2017-2018学年高二(上)期末数学 试卷(文科)(解析版)
![2017-2018学年高二(上)期末数学 试卷(文科)(解析版)](https://img.taocdn.com/s3/m/511c78395901020207409cfe.png)
2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“∃x0≤0,使得x02≥0”的否定是()A.∀x≤0,x2<0 B.∀x≤0,x2≥0 C.∃x0>0,x02>0 D.∃x0<0,x02≤0 【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0≤0,使得x02≥0”的否定是∀x≤0,x2<0.故选:A.2.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3) B.(1,3] C.[﹣1,2)D.(﹣1,2)【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.3.已知圆(x+2)2+(y﹣2)2=a截直线x+y+2=0所得弦的长度为6,则实数a的值为()A.8 B.11 C.14 D.17【解答】解:圆(x+2)2+(y﹣2)2=a,圆心(﹣2,2),半径.故弦心距d==.再由弦长公式可得a=2+9,∴a=11;故选:B.4.函数y=的图象大致是()A.B.C.D.【解答】解:函数y=是奇函数,所以选项A,B不正确;当x=e时,y=>0,图象的对应点在第一象限,D正确;C错误.故选:D.5.将函数y=(sinx+cosx)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,所得函数图象的解析式是()A.y=cos B.y=sin()C.y=﹣sin(2x+)D.y=sin(2x+)【解答】解:将函数y=(sinx+cosx)=sin(x+)的图象上各点的横坐标伸长到原来的2倍,可得函数y=sin(x+)的图象;再向左平移个单位,所得函数图象的解析式为y=sin[(x+)+]=cos x,故选:A.6.函数f(x)=,若f(a)=1,则a的值是()A.1或2 B.1 C.2 D.1或﹣2【解答】解:由题意得,f(x)=,当a<2时,f(a)=3a﹣2=1,则a=2,舍去;当a≥2时,f(a)==1,解得a=2或a=﹣2(舍去),综上可得,a的值是2,故选C.7.执行如图的程序框图,则输出S的值为()A.2 B.﹣3 C. D.【解答】解:模拟执行程序,可得S=2,k=1,S=﹣3,不满足条件k≥2016,k=2,S=﹣,不满足条件k≥2016,k=3,S=,不满足条件k≥2016,k=4,S=2,不满足条件k≥2016,k=5,S=﹣3,…观察规律可知,S的取值周期为4,由于2016=504×4,可得不满足条件k≥2016,k=2016,S=2,满足条件k≥2016,满足退出循环的条件,故输出的S值为2.故选:A.8.已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【解答】解:a=∈(0,1),b=log2<0,c=log>1.∴c>a>b.故选:C.9.设a>0,b>0,若是4a与2b的等比中项,则的最小值为()A.2B.8 C.9 D.10【解答】解:因为4a•2b=2,所以2a+b=1,,当且仅当即时“=”成立,故选C.10.已知A,B,P是双曲线上的不同三点,且AB连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率e=()A.B. C. D.【解答】解:由题意,设A(x1,y1),P(x2,y2),则B(﹣x1,﹣y1)∴kPA•k PB=,A,B代入两式相减可得=,∵,∴=,∴e2=1+=,∴e=.故选:B.11.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为()A.8πB.π C.12πD.π【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为2,A,D为棱的中点根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:2﹣x,∴R2=x2+()2,R2=12+(2﹣x)2,解得出:x=,R=,该多面体外接球的表面积为:4πR2=π,故选D.12.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<<16 B.4<<8 C.3<<4 D.2<<3【解答】解:令g(x)=,则g′(x)==,∵xf′(x)<3f(x),即xf′(x)﹣3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,即有g(x)在(0,+∞)递减,可得g(2)<g(1),即<,由2f(x)<3f(x),可得f(x)>0,则<8;令h(x)=,h′(x)==,∵xf′(x)>2f(x),即xf′(x)﹣2f(x)>0,∴h′(x)>0在(0,+∞)恒成立,即有h(x)在(0,+∞)递增,可得h(2)>h(1),即>f(1),则>4.即有4<<8.故选:B.二、填空题(本小题共4小题,每小题5分,共20分)13.已知点P(﹣1,1)在曲线y=上,则曲线在点P处的切线方程为y=﹣3x﹣2.【解答】解:点P(﹣1,1)在曲线上,可得a﹣1=1,即a=2,函数f(x)=的导数为f′(x)=,曲线在点P处的切线斜率为k=﹣3,则曲线在点P处的切线方程为y﹣1=﹣3(x+1),即为y=﹣3x﹣2.故答案为:y=﹣3x﹣2.14.在Rt△ABC中,∠A=90°,AB=AC=2,点D为AC中点,点E满足,则=﹣2.【解答】解:如图,∵,∴=,又D为AC中点,∴,则===.故答案为:﹣2.15.已知抛物线y2=4x与经过该抛物线焦点的直线l在第一象限的交点为A,A在y轴和准线上的投影分别为点B,C,=2,则直线l的斜率为2.【解答】解:设A的横坐标为x,则∵=2,BC=1,∴AB=2,∴A(2,2),∵F(1,0),∴直线l的斜率为=2,故答案为:2.16.已知定义在R上的偶函数f(x)满足f(x+4)=﹣f(x),且在区间[0,4]上市减函数,则f(10)、f(13)、f(15)这三个函数值从小到大排列为f(13)<f(10)<f(15).【解答】解:∵f(x+4)=﹣f(x),∴f(x+8)=﹣f(x+4)=﹣[﹣f(x)]=f(x),∴周期T=8,∵f(x)为定义在R上的偶函数,∴f(﹣x)=f(x),∴f(10)=f(2+8)=f(2),f(13)=f(5+8)=f(5)=f(﹣5)=f(﹣5+8)=f(3),f(15)=f(7+8)=f(7)=f(﹣7)=f(﹣7+8)=f(1),∵f(x)在区间[0,4]上是减函数,∴f(3)<f(2)<f(1),即f(13)<f(10)<f(15).故答案为:f(13)<f(10)<f(15).三、解答题(本题共70分)17.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.(ⅰ)列出所有可能的抽取结果;(ⅱ)求抽取的2所学校均为小学的概率.【解答】解:(I)抽样比为=,故应从小学、中学、大学中分别抽取的学校数目分别为21×=3,14×=2,7×=1 (II)(i)在抽取到的6所学校中,3所小学分别记为1、2、3,两所中学分别记为a、b,大学记为A则抽取2所学校的所有可能结果为{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15种(ii)设B={抽取的2所学校均为小学},事件B的所有可能结果为{1,2},{1,3},{2,3}共3种,∴P(B)==18.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.19.已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=.(1)求数列{bn}的通项公式;(2)求数列{bn•3n}的前n项和Sn.【解答】解:(1)∵(an+1﹣1)(an﹣1)=3(an﹣an+1)=3[(an﹣1)﹣(an+1﹣1)],2·1·c·n·j·y∴=,即bn+1﹣bn=.∴数列{bn}是等差数列,首项为1,公差为.∴bn=1+(n﹣1)=.(2)=(n+2)•3n﹣1.∴数列{bn•3n}的前n项和Sn=3+4×3+5×32+…+(n+2)•3n﹣1.∴3Sn=3×3+4×32+…+(n+1)×3n﹣1+(n+2)•3n,∴﹣2Sn=3+3+32+…+3n﹣1﹣+(n+2)•3n=2+﹣(n+2)•3n=2+,∴Sn=.20.如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.【解答】(I)证明:取BC的中点E,连接DE,则ABED为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OD,OE由△PAB和△PAD都是等边三角形知PA=PB=PD∴OA=OB=OD,即O为正方形ABED对角线的交点∴OE⊥BD,∴PB⊥OE∵O是BD的中点,E是BC的中点,∴OE∥CD∴PB⊥CD;(II)取PD的中点F,连接OF,则OF∥PB由(I)知PB⊥CD,∴OF⊥CD,∵,=∴△POD为等腰三角形,∴OF⊥PD∵PD∩CD=D,∴OF⊥平面PCD∵AE∥CD,CD⊂平面PCD,AE⊈平面PCD,∴AE∥平面PCD∴O到平面PCD的距离OF就是A到平面PCD的距离∵OF=∴点A到平面PCD的距离为1.21.已知A为椭圆=1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1,F2,且当线段AF1的中点在y轴上时,cos∠F1AF2=.(Ⅰ)求该椭圆的离心率;(Ⅱ)设,试判断λ1+λ2是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)当线段AF1的中点在y轴上时,AC垂直于x轴,△AF1F2为直角三角形.运用余弦函数的定义可得|AF1|=3|AF2|,易知|AF2|=,再由椭圆的定义,结合离心率公式即可得到所求值;(Ⅱ)由(Ⅰ)得椭圆方程为x2+2y2=2b2,焦点坐标为F1(﹣b,0),F2(b,0),(1)当AB,AC的斜率都存在时,设A(x0,y0),B(x1,y1),C(x2,y2),求得直线AC 的方程,代入椭圆方程,运用韦达定理,再由向量共线定理,可得λ1+λ2为定值6;若AC ⊥x轴,若AB⊥x轴,计算即可得到所求定值.【解答】解:(Ⅰ)当线段AF1的中点在y轴上时,AC垂直于x轴,△AF1F2为直角三角形.因为cos∠F1AF2=,所以|AF1|=3|AF2|,易知|AF2|=,由椭圆的定义可得|AF1|+|AF2|=2a,则4•=2a,即a2=2b2=2(a2﹣c2),即a2=2c2,即有e==;(Ⅱ)由(Ⅰ)得椭圆方程为x2+2y2=2b2,焦点坐标为F1(﹣b,0),F2(b,0),(1)当AB,AC的斜率都存在时,设A(x0,y0),B(x1,y1),C(x2,y2),则直线AC的方程为y=(x﹣b),代入椭圆方程得(3b2﹣2bx0)y2+2by0(x0﹣b)y﹣b2y02=0,可得y0y2=﹣,又λ2===,同理λ1=,可得λ1+λ2=6;(2)若AC⊥x轴,则λ2=1,λ1==5,这时λ1+λ2=6;若AB⊥x轴,则λ1=1,λ2=5,这时也有λ1+λ2=6;综上所述,λ1+λ2是定值6.22.已知函数f(x)=(1)若m∈(﹣2,2),求函数y=f(x)的单调区间;(2)若m∈(0,],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.【考点】函数单调性的判断与证明;函数的值域.【分析】(Ⅰ)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(Ⅱ)令g(x)=x,讨论m的范围,根据函数的单调性求出g(x)的最大值和f(x)的最小值,结合函数恒成立分别判断即可证明结论.【解答】解:(Ⅰ)函数定义域为R,f′(x)=①当m+1=1,即m=0时,f′(x)≥0,此时f(x)在R递增,②当1<m+1<3即0<m<2x∈(﹣∞,1)时,f′(x)>0,f(x)递增,x∈(1,m+1)时,f′(x)<0,f(x)递减,x∈(m+1,+∞)时,f′(x)>0,f(x)递增;③0<m+1<1,即﹣1<m<0时,x∈(﹣∞,m+1)和(1,+∞),f′(x)>0,f(x)递增,x∈(m+1,1)时,f′(x)<0,f(x)递减;综上所述,①m=0时,f(x)在R递增,②0<m<2时,f(x)在(﹣∞,1),(m+1,+∞)递增,在(1,m+1)递减,③﹣2<m<0时,f(x)在(﹣∞,m+1),(1,+∞)递增,在(m+1,1)递减;(Ⅱ)当m∈(0,]时,由(1)知f(x)在(0,1)递增,在(1,m+1)递减,令g(x)=x,①当x∈[0,1]时,f(x)min=f(0)=1,g(x)max=1,所以函数f(x)图象在g(x)图象上方;②当x∈[1,m+1]时,函数f(x)单调递减,所以其最小值为f(m+1)=,g(x)最大值为m+1,所以下面判断f(m+1)与m+1的大小,即判断ex与(1+x)x的大小,其中x=m+1∈(1,],令m(x)=ex﹣(1+x)x,m′(x)=ex﹣2x﹣1,令h(x)=m′(x),则h′(x)=ex﹣2,因x=m+1∈(1,],所以h′(x)=ex﹣2>0,m′(x)单调递增;所以m′(1)=e﹣3<0,m′()=﹣4>0,故存在x0∈(1,]使得m′(x0)=ex0﹣2x0﹣1=0,所以m(x)在(1,x0)上单调递减,在(x0,)单调递增所以m(x)≥m(x0)=ex0﹣x02﹣x0=2x0+1﹣﹣x0=﹣+x0+1,所以x0∈(1,]时,m(x0)=﹣+x0+1>0,即ex>(1+x)x也即f(m+1)>m+1,所以函数f(x)的图象总在直线y=x上方.。
2017-2018年河南省南阳市高二上学期期末数学试卷(文科)与解析
![2017-2018年河南省南阳市高二上学期期末数学试卷(文科)与解析](https://img.taocdn.com/s3/m/6b4b6f2490c69ec3d4bb751d.png)
2017-2018学年河南省南阳市高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卷上)1.(5分)不等式(x﹣2)(x﹣3)>0的解集为()A.(2,3)B.(3,+∞)C.(2,+∞)D.(﹣∞,2)∪(3,+∞)2.(5分)命题“所有自然数的平方都是正数”的否定为()A.所有自然数的平方都不是正数B.有的自然数的平方是正数C.至少有一个自然数的平方是正数D.至少有一个自然数的平方不是正数3.(5分)等差数列{a n}中,若a2+a8=15﹣a5,则a5的值为()A.3B.4C.5D.64.(5分)抛物线y=x2的焦点坐标为()A.(﹣,0)B.(,0)C.(0,﹣1)D.(0,1)5.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=()A.B.C.D.6.(5分)设变量x,y满足约束条件,则目标函数z=4x+y的最大值为()A.4B.11C.12D.147.(5分)对于R上可导的任意函数f(x),若满足≤0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)8.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则的最小值为()A.4B.12C.16D.69.(5分)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f (x)的图象最有可能的是()A.B.C.D.10.(5分)已知椭圆的中心为原点,离心率,且它的一个焦点与抛物线的焦点重合,则此椭圆方程为()A.B.C.D.11.(5分)已知椭圆+y2=1(m>1)和双曲线﹣y2=1(n>0)有相同的焦点F1,F2,P是它们的一个交点,则△F1PF2的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.随m,n的变化而变化12.(5分)已知P1,P2为曲线C:y=|lnx|(x>0且x≠1)上的两点,分别过P1,P2作曲线C的切线交y轴于M,N两点,若=0,则||=()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知f(x)=x3+3xf′(0),则f′(1)=.14.(5分)两个正数a、b的等差中项是,一个等比中项是,且a>b,则双曲线的离心率e等于.15.(5分)已知抛物线y2=2px(p>0),过点C(﹣4,0)作抛物线的两条切线CA,CB,A、B为切点,若直线AB经过抛物线y2=2px的焦点,△CAB的面积为24,则以直线AB为准线的抛物线标准方程是.16.(5分)函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐标为a k,k为正整数,a1=16,则a1+a3+a5=.+1三、解答题(本大题共6小题,共70分。
精选2017-2018学年高二数学上学期期末考试试题文(含解析)
![精选2017-2018学年高二数学上学期期末考试试题文(含解析)](https://img.taocdn.com/s3/m/bda8b52e90c69ec3d5bb7545.png)
临夏中学2017—2018学年第一学期期末考试卷答案文科数学一、选择题(每小题4分,共40分,在每个小题给出的四个选项中,只有一项符合题目要求)1. 设,则“”是的()A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】集合是的真子集,由集合包含关系可知“”是的充分而不必要条件.本题选择B选项.2. 命题的否定是()A.B.C.D.【答案】C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.3. 抛物线的焦点坐标是( )A. B. C. D.【答案】D【解析】抛物线的标准方程为,表示焦点位于轴正半轴的抛物线,故其焦点坐标是本题选择D选项.点睛:求抛物线的焦点坐标时,首先要把抛物线方程化为标准方程,抛物线方程中,字母p 的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离.牢记它对解题非常有益.4. 曲线在点(1,-1)处的切线的斜率为( )A. 2B. 1C.D. -1【答案】B【解析】因为点(1,-1)在曲线上,所以曲线在点(1,-1)处的切线的斜率就等于在x=1处的导数,即切线的斜率为1.本题选择B选项.5. 函数f(x)=(x-3)e x的单调递增区间是( )A. (1,4)B. (0,3)C. (2,+∞)D. (-∞,2)【答案】C【解析】f′(x)=e x+(x-3)e x=e x(x-2),由f′(x)>0,得x>2.故函数f(x)=(x-3)e x的单调递增区间是(2,+∞) .本题选择C选项.6. 设椭圆的标准方程为若其焦点在x轴上,则k的取值范围是( )A. 4<k<5B. 3<k<5C. k>3D. 3<k<4【答案】A【解析】方程表示的椭圆焦点在x轴上,则:,求解不等式组可得:4<k<5.故k的取值范围是4<k<5 .本题选择A选项.7. 已知函数f(x)的导函数f′(x)的图象如图所示,则f(x)的图象可能是( )A. B.C. D.【答案】D【解析】解:由导函数图象可知是的极小值点,是的极大值点,选D。
2017-2018学年 高二(上) 期末数学试卷(文科)(解析版)
![2017-2018学年 高二(上) 期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/c3bfceef7c1cfad6195fa774.png)
2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)21教育网1.抛物线x2=8y的焦点坐标是()A.(0,)B.(,0)C.(2,0) D.(0,2)【解答】解:根据题意,抛物线的方程为x2=8y,则其p=4,焦点在y轴的正半轴上,则其焦点坐标为(0,2);故选:D.2.已知直线mx+4y﹣2=0与2x﹣5y+1=0互相垂直,则m的值为()A.10 B.20 C.0 D.﹣4【解答】解:∵直线mx+4y﹣2=0与2x﹣5y+1=0垂直,∴2m﹣20=0,解得m=10,故选:A3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【解答】解:由已知得:a=(15+17+14+10+15+17+17+16+14+12)=14.7;b==15;c=17,∴c>b>a.故选:D.4.某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为()A.5,10,15 B.3,9,18 C.3,10,17 D.5,9,16【解答】解:由=,所以,高级职称人数为15×=3(人);中级职称人数为45×=9(人);一般职员人数为90×=18(人).所以高级职称人数、中级职称人数及一般职员人数依次为3,9,18.故选B.5.在区间[﹣,]上任取一个数x,则函数f(x)=sin2x的值不小于的概率为()A.B.C.D.【解答】解:∵函数f(x)=sin2x,当x∈[﹣,]时,2x∈[﹣,],函数f(x)=sin2x的值不小于,则≤x≤,区间长度为则所求概率为P==.故选:B.6.设双曲线的﹣个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)7.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别是()A.19、13 B.13、19 C.20、18 D.18、20【解答】解:由题意知,∵甲运动员的得分按照从小到大排列是7,8,9,15,17,19,23,24,26,32,41共有11 个数字,最中间一个是19,乙运动员得分按照从小到大的顺序排列是5,7,8,11,11,13,20,22,30,31,40,共有11个数据,最中间一个是13,∴甲、乙两名运动员比赛得分的中位数分别是19,13.故选A.8.已知圆C:x2+y2﹣2x﹣15=0,直线l:3x+4y+7=0,则圆C上到直线l距离等于2的点的个数为()A.1 B.2 C.3 D.4【解答】解:圆C:x2+y2﹣2x﹣15=0化为标准式为(x﹣1)2+y2=16,其圆心坐标(1,0),半径r=4,由点到直线的距离公式得圆心到直线l:3x+4y+7=0的距离d==2,∴圆C上到直线l距离等于2的点的个数为3,故选C.9.在区间[0,1]中随机取出两个数,则两数之和不小于的概率是()A.B.C.D.【解答】解:设取出的两个数为x、y;则有0≤x≤1,0≤y≤1,其表示的区域为纵横坐标都在[0,1]之间的正方形区域,其面积为1,而x+y>表示的区域为直线x+y=上方,且在0≤x≤1,0≤y≤1表示区域内部的部分,如图所示,易得其面积为1﹣×=;则两数之和不小于的概率是.故选:D.10.过椭圆+=1(a>b>0)的左焦点F作斜率为1的直线交椭圆于A,B两点.若向量+与向量=(3,﹣1)共线,则该椭圆的离心率为()A.B.C.D.【解答】解:设A(x1,y1),B(x2,y2).F(﹣c,0).直线l的方程为:y=x+c,联立,化为:(a2+b2)x2+2ca2x+a2c2﹣a2b2=0,∴x1+x2=,y1+y2=x1+x2+2c=,∴向量+=(,),∵向量+与向量=(3,﹣1)共线,∴﹣﹣3×=0,∴a2=3b2,∴==.故选:B.11.某著名纺织集团为了减轻生产成本继续走高的压力,计划提高某种产品的价格,为此销售部在10月1日至10月5日连续五天对某个大型批发市场中该产品一天的销售量及其价格进行了调查,其中该产品的价格x(元)与销售量y(万件)之间的数据如表所示:日期10月1日10月2日10月3日10月4日10月5日价格x(元)9 9.5 10 10.5 11销售量y(万件)11 10 8 6 5已知销售量y与价格x之间具有线性相关关系,其回归直线方程为:=﹣3.2x+,若该集团提高价格后该批发市场的日销售量为7.36万件,则该产品的价格约为()2·1·c·n·j·y A.14.2元B.10.8元C.14.8元D.10.2元【解答】解:由题意可知,=(9+9.5+10+10.5+11)=10,=×(11+10+8+6+5)=8,所以8=﹣3.2×10+,即=40,∴回归直线方程为y=﹣3.2x+40,当日销售量为7.36时,y=﹣3.2x+40=7.36.解得:x=10.2,故选:D.12.设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴,∵M在圆上,∴,∴r2=,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应位置上)13.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽80名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从31~40这10个数中取的数是39,则在第1小组1~10中随机抽到的数是9.【解答】解:样本间隔为800÷80=10,∵在从31~40这10个数中取的数是39,∴从31~40这10个数中取的数是第4个数,∴第1小组1~10中随机抽到的数是39﹣3×10=9,故答案为9.14.从一个正方体的6个面中任取2个,则这2个面恰好互相平行的概率是.【解答】解:从一个正方体的6个面中任取2个,基本事件总数n=,这2个面恰好互相平行包含的基本事件个数m=3,∴这2个面恰好互相平行的概率p===.故答案为:.15.已知下面四个命题:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样;(2)两个随机变量相关性越强,则相关系数的绝对值越接近于1;(3)对分类变量X和Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大;(4)在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量大约增加0.4个单位.其中所有真命题的序号是(1)(2)(4).【解答】解:(1)从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是等间隔的,是系统抽样,故(1)正确;(2)两个随机变量相关性越强,则相关系数的绝对值越接近于1,故(2)正确;(3)对分类变量X和Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,故(3)错误;(4)在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量大约增加0.4个单位,故(4)正确.故答案为:(1)(2)(4)16.在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小.此时圆的直径为O(0,0)到直线2x+y﹣4=0的距离为:d==,此时r==∴圆C的面积的最小值为:Smin=π×()2=.故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中取出2球.(Ⅰ)求取出2球都是白球的概率;(Ⅱ)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求取出两球分数之和为2的概率.【解答】解:(Ⅰ)从袋中取出2球,共有=6种方法,取出2球都是白球,有1种方法,所以取出2球都是白球的概率是…..(Ⅱ)取出两球分数之和为2,包括取1个红球、1个黑球或2个白球,取1个红球、1个黑球的概率均为,∴取出两球分数之和为2的概率…..18.已知椭圆C:+=1(a>b>0)的长轴长是短轴长的倍,直线y=﹣x+1与椭圆C相交于A,B两点,且弦AB的长为,求此椭圆的方程.【解答】解:由题意a2=2b2,则椭圆方程为,即x2+2y2﹣2b2=0联立,得3x2﹣4x+2﹣2b2=0.△=16﹣12(2﹣2b2)=24b2﹣8>0,得.设A(x1,y1),B(x2,y2),则.∴,则.解得b2=2.∴椭圆方程为.19.对一批零件的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示.根据标准,零件长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.(Ⅰ)用频率估计概率,现从该批产品中随机抽取一件,求其为二等品的概率;(Ⅱ)已知检测结果为一等品的有6件,现随机从三等品中取两件,求取出的两件产品中恰有1件的长度在区间[30,35)上的概率.【解答】解:(Ⅰ)由频率分布直方图可得产品数量在[10,15)频率为0.1,在[15,20)频率为0.2,[20,25)之间的频率为0.3,在[30,35)频率为0.15,所以在[25,30)上的频率为0.25,所以样本中二等品的频率为0.45,所以该批产品中随机抽取一件,求其为二等品的概率0.45.…..(Ⅱ)因为一等品6件,所以在[10,15)上2件,在[30,35)上3件,令[10,15)上2件为a1,a2,在[30,35)上3件b1,b2,b3,所以一切可能的结果组成的基本事件空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3)…}由15个基本事件组成.恰有1件的长度在区间[30,35)上的基本事件有6个.所以取出的两件产品中恰有1件的长度在区间[30,35)上的概率P=.…..20.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如表:日最高气温t(单位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃天数 6 12 X Y由于工作疏忽,统计表被墨水污染,Y和X数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.8.(Ⅰ)求X,Y的值;(Ⅱ)把日最高气温高于32℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关?说明理由.高温天气 非高温天气 合计 旺销 2 22 24 不旺销 4 2 6 合计 6 24 30 附:K2=P (K2≥k )0.10 0.050 0.025 0.010 0.005 0.001 k 2.706 3.841 5.0246.6357.87910.828【解答】解 (1)由题意,P (t ≤32℃)=0.8, ∴P (t >32℃)=1﹣P (t ≤32℃)=0.2;∴Y=30×0.2=6,X=30﹣(6+12+6)=6;….. 填写列联表,如下;高温天气 非高温天气 合计 旺销 2 22 24 不旺销 4 2 6 合计62430 (2)计算观测值∴K2==≈10.21,∵10.21>3.841,…..∴有95%的把握认为本地区的“高温天气”与冷饮“旺销”有关. …..21.已知抛物线E :y2=4x 的焦点是F ,过点F 的直线l 与抛物线E 相交于A ,B 两点,O 为原点.(Ⅰ)若直线l 的斜率为1,求的值;(Ⅱ)设=t,若t ∈[2,4],求直线l 的斜率的取值范围.【解答】解:(Ⅰ)抛物线E :y2=4x 的焦点是F (1,0), 直线l 的斜率为1,可得直线l 的方程为y=x ﹣1, 代入抛物线的方程可得,x2﹣6x+1=0, 设A (x1,y1),B (x2,y2), 可得x1+x2=6,x1x2=1, 则=x1x2+y1y2=x1x2+(x1﹣1)(x2﹣1)=2x1x2﹣(x1+x2)+1=2﹣6+1=﹣3;(Ⅱ)设直线l :x=my+1,代入y2=4x ,可得y2﹣4my ﹣4=0, 设A (x1,y1),B (x2,y2),可得y1+y2=4m,y1y2=﹣4,由=t,可得y2=t(0﹣y1),解得y1=,y2=﹣,即有﹣4=﹣t•()2,由t∈[2,4],可得2|m|=﹣,令u=(≤u≤2),则y=u﹣在[,2]上递增,即有y∈[,],即|m|∈[,].则直线l的斜率的绝对值范围是[,2],即有直线l的斜率的范围为[﹣2,﹣]∪[,2].22.已知抛物线C:y2=2px(p>0)的焦点为F,P为C上异于原点的任意一点,过点P的直线l交C于另一点Q,交x轴的正半轴于点S,且有|FP|=|FS|.当点P的横坐标为3时,|PF|=|PS|.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,l1和C有且只有一个公共点E,(ⅰ)△OPE的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由;(ⅱ)证明直线PE过定点,并求出定点坐标.【解答】解:(I)由题意知.xP=3,则,则S(3+p,0),或S(﹣3,0)(舍)则FS中点.因为|PF|=|PS|,则解得p=2.所以抛物线C的方程为y2=4x.…..(II)(i)由(I)知F(1,0),设P(x0,y0),(x0y0≠0),S(xS,0)(xS>0),因为|FP|=|FS|,则|xS﹣1|=x0+1,由xS>0得xS=x0+2,故S(x0+2,0).故直线PQ的斜率KPQ=.因为直线l1和直线PQ平行,设直线l1的方程为,代入抛物线方程得,由题意,得.设E(xE,yE),则yk=﹣,xK==,当y02≠4时,kPE==,可得直线PE的方程为,则O到直线PE的距离为,…..所以,△OPE的面积当时,S△OPE=2所以,△OPE的面积有最小值,最小值为2.…..(ii)由(i)知时,直线PE的方程,整理可得,直线PE恒过点F(1,0).当时,直线PE的方程为x=1,过点F(1,0).…..。
2017-2018学年安徽省亳州市高二(上)期末数学试卷(文科)(解析版)
![2017-2018学年安徽省亳州市高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/b950ea015a8102d276a22f6d.png)
2017-2018学年安徽省亳州市高二(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)“a>b”是“ln(a﹣b)>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.(5分)抛物线x2=2py过点(2,﹣2),则抛物线的准线为()A.y=1B.C.D.y=﹣13.(5分)实数x,y满足不等式组,则x﹣2y的最大值为()A.1B.0C.﹣1D.﹣24.(5分)等差数列{a n}的前n项和为S n,且a5+2a2=0,S9=9,则d=()A.B.﹣1C.D.5.(5分)不等式的解集为()A.B.C.且x≠﹣2}D.6.(5分)已知a>b>0,且a≠1,b≠1,则下列不等式恒成立的是()A.B.a b>b aC.log b a>log a b D.sin a>sin b7.(5分)已知焦点在y轴上的椭圆的焦距为,则a=()A.8B.12C.16D.528.(5分)公比为的等比数列{a n}中,S n为数列的前n项和,若,则a3=()A.﹣1B.C.D.19.(5分)已知双曲线的一条渐近线过点(2,﹣1),则双曲线的离心率为()A.B.C.D.10.(5分)函数f(x)=x3+ax+b的极大值与极小值之和为2,且f(2)=a,则a=()A.﹣9B.﹣8C.9D.1011.(5分)在△ABC中,有且a=2,其中内角A,B,C的对边分别是a,b,c.则△ABC周长的最大值为()A.B.C.D.12.(5分)已知函数,若方程|f(x)|=mx有3个根,则m的取值范围是()A.0<m<2B.m<﹣2或0<m<2C.﹣e<m≤2D.m<﹣e或0<m<2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)命题“”的否定为.14.(5分)函数f(x)=e x+x在(1,f(1))处的切线方程为.15.(5分)已知ab>0,2a+b=5,则的最小值为.16.(5分)如图已知等边△ABC的边长为2,点D在AB上,点E在AC上,CD与BE交于点F,AB=2AD,AC=3AE,则△BCF的面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知△ABC的内角A,B,C的对边分别是a,b,c,a(sin A﹣sin C)=(b﹣c)(sin B+sin C).(1)求角B;(2)若b=2,求△ABC面积的最大值.18.(12分)已知数列{a n}满足n≥2时,a n=2a n﹣1+1,数列{b n}的前n项和为T n,且b1=,a n+T n=2n﹣.(1)求数列{a n}的前n项和S n.(2)求数列{b n}的通项公式.19.(12分)抛物线y2=2px(p>0)上的点P到点的距离与到直线x=0的距离之差为1,过点M(p,0)的直线l交抛物线于A,B两点.(1)求抛物线的方程;(2)若△ABO的面积为,求直线l的方程.20.(12分)函数f(x)=x2+alnx﹣x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在实数a,使得不等式f(x)≥0恒成立?若存在,请求出a的值;若不存在,请说明理由.21.(12分)已知椭圆离心率为为椭圆上一点.(1)求E的方程;(2)已知斜率为,不过点P的动直线l交椭圆E于A、B两点.证明:直线AP、BP 的斜率和为定值.22.(12分)已知函数f(x)=axlnx+2(a≠0).(1)求函数f(x)的最值;(2)函数f(x)图象在点(1,f(1))处的切线斜率为有两个零点x1,x2,求证:x1+x2>4.2017-2018学年安徽省亳州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由ln(a﹣b)>0⇒a﹣b>1⇒a>b,反之不成立.∴“a>b”是“ln(a﹣b)>0”的必要不充分条件.故选:C.2.【解答】解:抛物线x2=2py过点(2,﹣2),可得p=﹣1,抛物线x2=﹣2y,抛物线的开口向下,所以抛物线的准线方程为:y=.故选:B.3.【解答】解:由实数x,y满足不等式组,作出可行域如图,化目标函数t=x﹣2y为y=x﹣,由图可知,当直线过A时,直线在y轴上的截距直线,t最大.由,可得A(1,0)∴t=1﹣2×0=1.故选:A.4.【解答】解:由,S9=9=9a5,则a5=1,由a5+2a2=0,则a2=﹣,则3d=a5﹣a2=1+,则d=,故选:D.5.【解答】解:根据题意,⇒≥0⇔(1﹣3x)(x+2)≥0且(x+2)≠0,解可得:﹣2<x≤,则不等式的解集为(﹣2,];故选:B.6.【解答】解:利用特殊值法,对于选项B,当a=,b=,不等式a b>b a不成立.对于选项C,当a=,b=,不等式log b a>log a b不成立.对于选项D,当a=4,b=,不等式sin a>sin b不成立.故选:A.7.【解答】解:焦点在y轴上的椭圆的焦距为,可得:,解得a=16.故选:C.8.【解答】解:∵公比为的等比数列{a n}中,,∴=+2,解得a1=2.则a3==.故选:C.9.【解答】解:∵双曲线的一条渐近线过点(2,﹣1),∴渐近线方程为y=±x,因此,点(2,﹣1)在直线y=﹣x上,可得a=4,∴b=2,可得c=2,由此可得双曲线的离心率e==.故选:C.10.【解答】解:∵f(x)=x3+ax+b,且f(2)=a,∴8+2a+b=a,即a+b=﹣8,∵f′(x)=3x2+a,且f(x)有极大值和极小值,∴f′(x)=0,即3x2+a=0有两个不等的实根,设为x1,x2,则x1=﹣,x2=,3x12+a=0,3x22+a=0,x1+x2=0∴f(x)的极大值为f(x1)、极小值为f(x2),∴f(x1)+f(x2)=2,∴x13+ax1+b+x23+ax2+b=2∴x1•x12+x2•x22+a(x1+x2)+2b=2,∴﹣(x1+x2)+a(x1+x2)+2b=2,又x1+x2=0,∴2b=2,∴b=1∴a=﹣9故选:A.11.【解答】解:△ABC中,∵有,即﹣cos B cos C+sin B sin C=1+3cos A,即﹣cos(B+C)=1+3cos A,∴cos A=﹣,∴A=120°,B+C=60°.由正弦定理可得===,则△ABC周长为a+b+c=2+sin B+sin C=2+(sin B+sin C)=2+[sin B+sin(60°﹣B)]=2+(sin B+cos B)=2+sin(B+60°)≤2+=2+,当且仅当B=30°=C时,取等号,故△ABC周长的最大值为2+,故选:A.12.【解答】解:方程|f(x)|=mx有3个根,即为y=|f(x)|的图象与直线y=mx有三个交点,画出y=|f(x)|的图象和直线y=mx,当直线与y=|f(x)|右边的图象相切,且切点为(0,0),由y=2x﹣x2的导数为y′=2﹣2x,可得m=2;设直线与y=|f(x)|左边图象相切于(t,mt),可得m=﹣e﹣t,且mt=e﹣t,解得t=﹣1,m=﹣e.由图象可得,当0<m<2或m<﹣e时,y=|f(x)|的图象与直线y=mx有三个交点,故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:由全称命题的否定为特称命题,可得命题”的否定为为“∃x0>0,﹣lnx0>0”故答案为:∃x0>0,﹣lnx0>014.【解答】解:f(x)=e x+x,f′(x)=e x+1,f′(1)=e+1,f(1)=e+1,故切线方程是:y﹣e﹣1=(e+1)(x﹣1),即y=(e+1)x,故答案为:y=(e+1)x.15.【解答】解:∵2a+b=5,∴2(a+1)+b+1=8∴=()(2a+2+b+1)=(4+1++)≥(5+2)=,当且仅当a=b=取等号,故答案为:16.【解答】解:根据等边三角形建立平面直角坐标系:如图所示:由于三角形为边长为2的等边三角形,故:A(0,),B(﹣1,0),C(1,0)AB=2AD,AC=3AE,所以:D为线段AB的中点,所以:D(),E为线段AC的三等分点,过点E作EH∥AO,得到:E(),所以:直线BE的方程为:y==,直线CD的直线方程为:,所以:,解得:,y=,则:.故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)因为a(sin A﹣sin C)=(b﹣c)(sin B+sin C),由正弦定理可得:a(a﹣c)=(b﹣c)(b+c),即a2+c2﹣b2=ac,由余弦定理可得:.因为0<B<π,所以角.(2)因为b=2,所以a2+c2=ac+4,又因为a2+c2≥2ac,当且仅当a=c时,等号成立所以ac+4≥2ac,即ac≤4,当且仅当a=c时,等号成立所以△ABC的面积,△ABC面积的最大值为.18.【解答】解:(1)n≥2时,a n=2a n﹣1+1得:a n+1=2(a n﹣1+1);{a n+1}是等比数列;所以,a1=1,q=2,所以,;数列{a n}的前n项和S n=2×﹣n=2n+1﹣n﹣2.(2)由(1)知,由b1=,a n+T n=2n﹣.得:,所以,,所以,.19.【解答】解:(1)设P(x0,y0),由定义知,∴,即p=2,∴抛物线方程为y2=4x;(2)设A(x1,y1),B(x2,y2),由(1)知M(2,0),若直线l的斜率不存在,则方程为x=2,此时,∴△ABO的面积为,不满足题意;当直线l的斜率存在时,设直线l的方程为y=k(x﹣2),代入抛物线方程得:k2x2﹣4(k2+1)x+4k2=0.△=16(k2+1)2﹣16k2>0.,x1x2=4,∴|AB|==,点O到直线l的距离为,∴,解得:k=±1,满足△>0.∴直线l的方程为y=x﹣2或y=﹣x+2.20.【解答】解:(1),即2x2﹣x+a=0,当a<时,得:,当时,f(x)在(0,+∞)上单调递增;当时,f(x)在,上单调递增,在上单调递减;当a≤0时,f(x)在上单调递增,在上单调递减.(2)由(1)知a>0时,不等式f(x)≥0不可能恒成立,所以a≤0时,,因为f(1)=0,所以,所以a=﹣1.21.【解答】解:(1)由题知,解得a2=6,b2=2.即所求E的方程为.(2)证明:设A(x1,y1),B(x2,y2),设l方程为.联立方程组得,△=48﹣12m2>0,即m∈(﹣2,0)∪(0,2).所以.所以.即,因为,故k P A+k PB=0.22.【解答】解:(1)f'(x)=a(lnx+1),x>0当a>0时,f(x)在上单调递减,在上单调递增,有最小值,无最大值;当a<0时,f(x)在上单调递增,在上单调递减,有最大值,无最小值.证明:(2)依题知f'(1)=1,即a=1,所以,,x>0所以g(x)在(0,2)上单调递减,在(2,+∞)上单调递增.因为x1,x2是g(x)的两个零点,必然一个小于2,一个大于2,不妨设0<x1<2<x2.因为,所以,变形为.欲证x1+x2>4,只需证,即证.令,则只需证对任意的t>1都成立.令,则所以h(t)在(1,+∞)上单增,h(t)>h(1)=0即对任意的t>1都成立.所以x1+x2>4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选择中,只有一项是符合题目要求的.1. 已知抛物线的准线方程是,则的值为()A. 2B. 4C. -2D. -4【答案】B【解析】抛物线的准线方程是,所以.故选B.2. 已知命题:,总有,则为()A. ,使得B. ,总有C. ,使得D. ,总有【答案】B【解析】全称命题的否定为特称命题,所以命题:,总有,有,总有.故选B.3. 袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A. 至少有一个白球;至少有一个红球B. 至少有一个白球;红、黑球各一个C. 恰有一个白球;一个白球一个黑球D. 至少有一个白球;都是白球【答案】B【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立; 在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立; 在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.故选B.点睛:事件A和B的交集为空,A与B就是互斥事件,也可以描述为:不可能同时发生的事件,则事件A与事件B互斥,从集合的角度即;若A交B为不可能事件,A并B为必然事件,那么事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生,其定义为:其中必有一个发生的两个互斥事件为对立事件.4. 中国诗词大会的播出引发了全民的读书热,某中学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A. 2B. 4C. 5D. 6【答案】B【解析】由题得:诗词达人有8人,诗词能手有16人,诗词爱好者有16人,分层抽样抽选10名学生,所以诗词能手有人5. 方程表示双曲线的一个充分不必要条件是()A. -3<m<0B. -3<m<2C. -3<m<4D. -1<m<3【答案】A【解析】由题意知,,则C,D均不正确,而B为充要条件,不合题意,故选A.6. 水滴在水面上形成同心圆,边上的圆半径以6m每秒的速度向外扩大,则两秒末时圆面积的变化速率为()A. B. C. D.【答案】D【解析】由题意知圆的半径得:圆面积,求导得,当时,即两秒末时圆面积的变化速率为.故选D.7. 我国发射的“天宫一号” 宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面千米,远地点距地面千米,地球半径为千米,则该飞船运行轨道的短轴长为()A. 千米B. 千米C. 千米D. 千米【答案】B【解析】∵某宇宙飞船的运行轨道是以地球的中心F2为一个焦点的椭圆,设长半轴长为a,短半轴长为b,半焦距为c,则近地点A距地心为a−c,远地点B距地心为a+c.∴a−c=m+r,a+c=n+r,∴.........................∴,∴短轴长为2b=千米,故选B.8. 已知,则()A. B. C. D.【答案】A【解析】由f(x)=f′(1)+x ln x,得:f′(x)=1+ln x,取x=1得:f′(1)=1+ln1=1故f(e)=f′(1)+e ln e=1+e.故选:A.9. 若正整数N除以整数m后的余数为n,则记为:(mod m),例如(mod 4).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》。
执行该程序框图,则输出的i等于()A. 4B. 8C. 16D. 32【答案】C【解析】初如值n=11,i=1,i=2,n=13,不满足模3余2.i=4,n=17, 满足模3余2, 不满足模5余1.i=8,n=25, 不满足模3余2,i=16,n=41, 满足模3余2, 满足模5余1.输出i=16.选C。
10. 在处有极小值,则常数c的值为()A. 2B. 6C. 2或6D. 1【答案】A【解析】函数,∴,又在x=2处有极值,∴f′(2)=12−8c+=0,解得c=2或6,又由函数在x=2处有极小值,故c=2,c=6时,函数在x=2处有极大值,故选:A.点睛:已知函数的极值点求参数的值时,可根据建立关于参数的方程(组),通过解方程(组)得到参数的值后还需要进行验证,因为“”是“为极值点”的必要不充分条件,而不是等价条件,因此在解答此类问题时不要忘了验证,以免产生增根而造成解答的错误.11. 为定义在上的函数的导函数,而的图象如图所示,则的单调递增区间是()A. B. C. D.【答案】D【解析】由题意如图,令f′(x)>0的区间是(−∞,3),故函数y=f(x)的增区间(−∞,3),故选D.12. 是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的离心率为()A. B. C. D.【答案】C【解析】由已知渐近线方程为l1:,l2:,由条件得F到渐近线的距离,则,在Rt△AOF中,,则.设l1的倾斜角为θ,即∠AOF=θ,则∠AOB=2θ.在Rt△AOF中,,在Rt△AOB中,.∵,即,即a2=3b2,∴a2=3(c2-a2),∴,即.故选C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为______【答案】【解析】甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P==.14. 过点向圆作两条切线,切点分别为,则过点四点的圆的方程为_______________________.【答案】【解析】圆的圆心为(1,1),半径为1,由直线与圆相切知,,所以过点四点的圆的直径为,的中点为圆心,即圆心为(0,0)..所以.过点四点的圆的方程为.故答案为:.15. 如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为_________【答案】22.5【解析】根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20∼25内,设中位数为x,则0.3+(x−20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故答案为:22.5.点睛:用频率分布直方图估计总体特征数字的方法:①众数:最高小长方形底边中点的横坐标;②中位数:平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;③平均数:频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.16. 古式楼阁中的横梁多为木质长方体结构,当横梁的长度一定时,其强度与宽成正比,与高的平方成正比(即强度=k×宽×高的平方).现将一圆柱形木头锯成一横梁(长度不变),当高与宽的比值为_______时,横梁的强度最大.【答案】【解析】设直径为d,如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.∵,∴.令,得,令,解得或(舍去).当,f′(x)>0;当时,f′(x)<0,因此,当时,f(x)取得极大值,也是最大值。
∴,故答案为:.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. 命题:关于的不等式,对一切恒成立。
命题:方程表示焦点在点的左侧的抛物线,若为真命题,为假命题,求实数的取值范围. 【答案】或或【解析】试题分析:分别求出关于p,q的a的范围,通过讨论p真q假,p假q真,从而得到a的范围.试题解析:若为真命题,则△,所以若为真命题,则或由题设,命题和必有一真一假(1)若真假,则∴ 或(2)若假真,则∴综上所述,或或18. 为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:已知和具有线性相关关系(Ⅰ)求关于的线性回归方程;(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)参考数据及公式:,【答案】(1) (2) 当年产量约为2.7吨时,年利润最大【解析】试题分析:(Ⅰ)由表中的数据分别计算,借助于参考数据和公式,即可写出线性回归方程;(Ⅱ)由,结合二次函数性质求最值即可.试题解析:(Ⅰ)可计算得,∴,,∴关于的线性回归方程是(Ⅱ)年利润,其对称轴为,故当年产量约为2.7吨时,年利润最大19. 已知圆,直线过定点.(Ⅰ)若与圆相切,求的方程;(Ⅱ)若与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点C 是圆C的圆心)【答案】(1) (2) ,【解析】试题分析:(Ⅰ)直线l无斜率时,直线l的方程为x=1,成立;直线l有斜率时,设方程为kx-y-k=0,由圆心到直线的距离等于半径,能求出直线l的方程.(Ⅱ)△CPQ面积最大时,△CPQ是等腰直角三角形,此时圆心到直线的距离为,设直线l 的方程为kx-y-k=0,由此能求出直线l的方程.试题解析:(Ⅰ)直线无斜率时,直线的方程为,此时直线和圆相切直线有斜率时,设方程为,利用圆心到直线的距离等于半径得:,直线方程为(Ⅱ)面积最大时,,,即是等腰直角三角形,由半径得:圆心到直线的距离为设直线的方程为:,直线方程为:,点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.20. 某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(Ⅰ)求n的值;(Ⅱ)把在前排就坐的高二代表队6人分别记为,,,,,,现随机从中抽取2人上台抽奖.求和至少有一人上台抽奖的概率;(Ⅲ)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如下所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.【答案】(1) (2) (3)【解析】试题分析:(Ⅰ)根据分层抽样可得,故可求n的值;(Ⅱ)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(Ⅲ)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.试题解析:解:(Ⅰ)由题意可得,∴n=160;(Ⅱ)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(Ⅲ)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分,(指出点形成的正方形一分,不等式组一分,画出图形一分,算出阴影部分面积2分)由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1,∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为,设“该运动员获得奖品”为事件N,则该运动员获得奖品的概率P(N)==考点:程序框图;古典概型及其概率计算公式;几何概型.21. 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)当四边形面积取最大值时,求的值.【答案】(1)(2) 当四边形面积的最大值时,=2【解析】试题分析:(1)利用离心率和直线与圆相切以及的关系进行求解;(2)设,联立直线与椭圆方程,得到的横坐标,求出点到直线的距离,得到四边形面积关于的表达式,再利用基本不等式进行求解.试题解析:(Ⅰ)由题意知:=,.又圆与直线相切,,,故所求椭圆的方程为.(Ⅱ)设,其中,将代入椭圆的方程整理得:,故.①又点到直线的距离分别为,,所以四边形的面积为,当,即当时,上式取等号,所以当四边形面积的最大值时,.考点:1.椭圆的标准方程;2.直线与椭圆的位置关系;3.基本不等式.22. 已知函数.(Ⅰ)求的最大值;(Ⅱ)当时,函数有最小值.记的最小值为,求函数的值域.【答案】(1) 当x=e时,f(x)取得最大值f(e)= (2)【解析】试题分析:(1)首先求得导函数,然后根据导函数与0的关系求得函数的单调区间,从而求得的最大值;(2)首先求得,然后结合(1)分、求得函数的单调区间与最小值的函数解析式,再通过求导研究其的单调性,从而求得的值域.试题解析:(1)f′(x)=(x>0),当x∈(0,e)时,f′(x)>0,f(x)单调递增;当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,所以当x=e时,f(x)取得最大值f(e)=. …4分(2)g′(x)=lnx-ax=x(-a),由(1)及x∈(0,e]得:①当a=时,-a≤0,g′(x)≤0,g(x)单调递减,当x=e时,g(x)取得最小值g(e)=h(a)=-. …6分②当a∈[0,),f(1)=0≤a,f(e)=>a,所以存在t∈[1,e),g′(t)=0且lnt=at,当x∈(0,t)时,g′(x)<0,g(x)单调递减,当x∈(t,e]时,g′(x)>0,g(x)单调递增,所以g(x)的最小值为g(t)=h(a). …9分令h(a)=G(t)=-t,因为G′(t)=<0,所以G(t)在[1,e)单调递减,此时G(t)∈(-,-1].综上,h(a)∈[-,-1]. …12分考点:1、利用导数研究函数的单调性;2、函数最值与导数的关系.。