高二数学上学期期末考试试题 文
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
高二上学期期末考试数学(文)试题及答案 (4)
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(文)试题
2018-2019学年上学期高二期末考试数学(文)试题一,选择题(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1,已知全集{}2U 1x x =>,集合{}2430x x x A =-+<,则=A C U ( )A .()1,3B .()[),13,-∞+∞C .()[),13,-∞-+∞D .()(),13,-∞-+∞ 2,某校为了研究“学生地”和“对待某一活动地态度”是否相关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生与支持活动相关系”地犯错误地概率不超过A .0.1% B .1% C .99% D .99.9%附:)(02k K P ≥0.1000.0500.0250.0100.001k 02.7063.8415.0246.63510.8283,已知抛物线地焦点()F ,0a (0a <),则抛物线地标准方程是( )A .22y ax = B .24y ax = C .22y ax =- D .24y ax =-4,命题:p x ∃∈N ,32x x <。
命题:q ()()0,11,a ∀∈+∞ ,函数()()log 1a f x x =-地图象过点()2,0,则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真5,执行右边地程序框图,则输出地A 是( )A .2912 B .7029 C .2970 D .169706,在直角梯形CD AB 中,//CD AB ,C 90∠AB = ,2C 2CD AB =B =,则cos D C ∠A =( )A C D7,已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43-或0D .43或08,32212x x ⎛⎫+- ⎪⎝⎭展开式中地常数项为( )A .8- B .12- C .20- D .209.已知函数()f x 地定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足款件地k 地个数为( )A .3 B .2 C .4 D .110,F 是双曲线C :22221x y a b-=(0a >,0b >)地右焦点,过点F 向C 地一款渐近线引垂线,垂足为A ,交另一款渐近线于点B .若2F F A =B,则C 地离心率是( )A B .2 C 11,直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则AB 地最小值为( )A .3B .2C .3212,某几何体地三视图如图所示,则该几何体地表面积为( )A .4B .21+C .12+D 12二,填空题(本大题共4小题,每小题5分,共20分.)13,已知()1,3a =- ,()1,b t = ,若()2a b a -⊥,则b = .14,已知212(1)4k dx ≤+≤⎰,则实数k 地取值范围是_____.15,在半径为2地球面上有不同地四点A ,B ,C ,D ,若C D 2AB =A =A =,则平面CDB 被球所截得图形地面积为 .16,已知x ,R y ∈,满足22246x xy y ++=,则224z x y =+地取值范围为 .三,解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17,(本小题满分12分)设数列{}n a 地前n 项和为n S ,满足()11n n q S qa -+=,且()10q q -≠.()I 求{}n a 地通项公式。
安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析
黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一,选择题(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1.若直线a平行于平面α,则下面结论错误地是( )A. 直线a上地点到平面α地距离相等B. 直线a平行于平面α内地所有直线C. 平面α内有无数款直线与直线a平行D. 平面α内存在无数款直线与直线a成90°角【结果】B【思路】【思路】由题意,依据两直线地位置关系地判定,以及直线与平面地位置关系,逐一判定,即可得到结果.【详解】由题意,直线a平行于平面α,则对于A中,直线a上地点到平面α地距离相等是正确地。
对于B中,直线a与平面α内地直线可能平行或异面,所以错误。
对于C中,平面α内有无数款直线与直线a平行是正确地。
对于D中,平面α内存在无数款直线与直线a成90°角是正确地,故选D.【点睛】本题主要考查了空间中两直线地位置关系地判定,其中解答中熟记空间中两款直线地三种位置关系是解答地关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点有关平面地对称点是( )A. B. C. D.【结果】D【思路】【思路】空间直角坐标系中任一点有关坐标平面地对称点为,即可求得结果【详解】依据空间直角坐标系中点地位置关系可得点有关平面地对称点是故选【点睛】本题考查了对称点地坐标地求法,解决此类问题地关键是熟练掌握空间直角坐标系,以及坐标系中点之间地位置关系,属于基础题。
3.已知,则“”是“直线与直线垂直”地( )A. 充分不必要款件B. 必要不充分款件C. 充要款件D. 既不充分也不必要款件【结果】A【思路】【思路】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,依据两直线垂直地性质求出地值,由此判断必要性,从而得到结果【详解】充分性:当时,两款直线分别为:与此时两款直线垂直必要性:若两款直线垂直,则,解得故“”是“直线与直线垂直”地充分不必要款件故选【点睛】本题是一道相关充分款件和必要款件地题目,需要分别从充分性和必要性两方面思路,属于基础题。
江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
2022-2023学年四川省内江市高二上学期期末考试数学(文)试题(解析版)
2022-2023学年四川省内江市高二上学期期末考试数学(文)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.从1,2,3,4,5这五个数字中随机选择两个不同的数字,则它们之和为偶数的概率为A .15B .25C .35D .45【答案】B【分析】先求出基本事件总数n 25C 10==,再求出这两个数字的和为偶数包含的基本事件个数m 2223C C =+,由此能求出这两个数字的和为偶数的概率【详解】从1、2、3、4、5、这五个数字中,随机抽取两个不同的数字,基本事件总数n 25C 10==,这两个数字的和为偶数包含的基本事件个数m 2223C C =+=4,∴这两个数字的和为偶数的概率为p m 40.4n 10===. 故选B .【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //nB .若α⊥β,l ⊂α,则l ⊥βC .若l ⊥α,m α⊂,则l ⊥mD .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线:70l x y +-=上任意一点,过点P 作两条直线与圆22:(1)4C x y ++=相切,切点分别为A 、B .则四边形PACB 面积最小值为( )A .BC .D .28【答案】A【分析】当PC l ⊥时,||PC 取得最小值,根据切线长的表达式可知,||PA 最小,此时四边形PACB面积2S PA AC PA ==最小,求解即可.【详解】圆22:(1)4C x y ++=的圆心(1,0)C -,半径为2,当PC l ⊥时,||PC 取得最小值,即||PC 的最小值为点C 到直线l 的距离|8|422d -==, ∵2224PA PC AC PC =-=-,∴||PA 的最小值为27,∵四边形PACB 面积2S PA AC PA ==, ∴四边形PACB 面积S 的最小值为47. 故选:A .12.已知棱长为1的正方体1111ABCD A B C D -中,下列数学命题不正确的是A .平面1//ACB 平面11ACD 3B .点P 在线段AB 上运动,则四面体111PA BC 的体积不变 C .与所有122D .M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,则||MN 的最32-【答案】D【解析】根据面面平行的判定定理以及平行平面的距离进行证明,即可判断选项A ; 研究四面体的底面面积和高的变化判断选项B ;与所有12棱都相切的球的直径等于面的对角线1B C 的长度,求出球半径进行计算,即可判断选项C ; 根据正方体内切球和三角形外接圆的关系可判断选项D .【详解】对于选项A ,111//,AB DC AB ⊄平面111,AC D DC ⊂平面11AC D ,1//AB ∴平面11AC D ,同理可证//AC 平面11AC D ,11,,AB AC A AB AC =⊂平面1ACB ,∴平面1//ACB 平面11AC D ,正方体的对角线13BD =B 到平面1ACB 的距离为h , 则11221311,(2)11332B ACBC ABB V V h --=⨯=⨯⨯⨯,3h ,则平面1ACB 与平面11AC D 的距离为332d h == 故A 正确;对于选项B ,点P 在线段AB 上运动,点P 到底面111A B C 的距离不变, 底面积不变,则体积不变,故B 正确;对于选项C ,与所有12条棱都相切的球直径等于面的对角线12BC 23422(3V ππ=⨯⨯=C 正确;对于选项D ,设正方体的内切球的球心和外接球的球心为O , 则1ACB 的外接圆是正方体外接球的一个小圆,M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,∴线段MN 的最小值为正方体的外接球的半径减去正方体内切球的半径,正方体1111ABCD A B C D -棱长为1, ∴线段MN 312,故D 错误.故选:D.【点睛】本题考查命题的真假判断,涉及到空间几何体的结构,面面平行的判断,球的内切问题,涉及的知识点较多,综合性较强,属于较难题.二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=. 故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若2AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||2AB =,所以圆心到直线的距离为22||12()1222AB d r =-=-=, 所以2||221k k =+,解得1k =±, 故答案为:1±.15.如图,111ABC A B C ﹣是直三棱柱,90BCA ∠=︒,点E F 、分别是1111A B AC 、的中点,若1BC CA AA ==,则BE 与AF 所成角的余弦值为__.【答案】3010【分析】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,再解三角形即可.【详解】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,设222655,(),,2222BC a MF a a a AM a AF a ==+===, 222655()()()30222cos 1065222a a a MFA a a+-∠==⨯⨯3016.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是______. 【答案】5【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,2||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn ii i i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =-(2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过()6,1A 、()3,2B -两点,且圆心C 在直线230x y +-=上.(1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程;(2)求圆C 的标准方程;(3)斜率为43-的直线l 过点B 且与圆C 相交于E F 、两点,求EF . 【答案】(1)60x y -=或70x y +-=(2)22(5)(1)5x y -++= (3)45【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答;(2)设圆心(32,)C b b -,由||||r AC BC ==解得1b,即得圆C 的标准方程;(3)求出直线l 的方程,利用弦长公式计算即可.【详解】(1)当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为1x y a a+=,将点(6,1)A 代入解得7a =,即直线的方程为70x y +-=, 故所求直线的方程为60x y -=或70x y +-=.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -,又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径r AC BC ==,=1b,则圆心(5,1)C -,圆C 的半径r =所以圆C 的标准方程为22(5)(1)5x y -++=. (3)依题意,直线l 的方程为42(3)3y x +=--,即4360x y +-=, 圆心(5,1)C -到直线的距离为115d ==,所以45EF ===. 19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD :(2)求三棱锥1F ACA -的体积.【答案】(1)见解析(2)22【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形, 所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=. 21.如图,正方形ABCD 和直角梯形ACEF 所在的平面互相垂直,FA AC ⊥,2AB =1EF FA ==.(1)求证:BE ⊥平面DEF ;(2)求直线BD 与平面BEF 所成角的大小.【答案】(1)证明见解析 (2)π4【分析】(1)设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,利用勾股定理逆定理推导出BE DE ⊥,BE EF ⊥,再利用线面垂直的判定定理可证得结论成立;(2)分析可知直线BD 与平面BEF 所成角为BDE ∠,求出BDE ∠的正弦值,即可求得BDE ∠的大小.【详解】(1)证明:设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,因为平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AF AC ⊥,AF ⊂平面ACEF , AF ∴⊥平面ABCD ,因为四边形ABCD 222AC AB =, 在直角梯形ACEF 中,//EF AC ,O 为AC 的中点,则AO EF =且//AO EF ,又因为AF EF =,AF AC ⊥,故四边形AFEO 是边长为1的正方形,所以,//AF EO ,所以,EO ⊥平面ABCD ,且1EO AF ==,BD ⊂平面ABCD ,EO BD ∴⊥,则222BE DE EO OB =+=所以,222DE B D E B +=,BE DE ∴⊥,AF ⊥平面ABCD ,AB ⊂平面ABCD ,AF AB ∴⊥,223BF AB AF =+=,222EF BE BF ∴+=,BE EF ∴⊥,DE EF E ⋂=,DE 、EF ⊂平面DEF ,BE ∴⊥平面DEF .(2)解:由(1)可知,BE ⊥平面DEF ,所以,直线BD 与平面BEF 所成角为BDE ∠,BE DE ⊥,2sin 2BE BDE BD ∠==, 又因为π02BDE <∠≤,故π4BDE ∠=,因此,直线BD 与平面BEF 所成角为π4. 22.已知圆22:(3)9M x y -+=,设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于,P Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于,E F 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N .证明:点N 在定直线6x =-上.【答案】(1)S 的最大值为17.(2)证明见详解【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l 的距离为:1223211k kk d k k -=++所以222222122289223292111k k k PQ r d k k k ⎛⎫+=--=- ⎪+++⎝⎭由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号, 所以四边形EPFQ 的面积S 的最大值为17. (2)证明:设()()1122,,,P x y Q x y ,直线PQ 过点D , 则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N ,所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。
内蒙古包头市2022-2023学年高二上学期期末考试数学(文)试题含解析
2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学(答案在最后)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“00x ∃>,200x x >”的否定是()A .0x ∀>,2x x ≤B .00x ∃>,200x x ≤C .00x x ∃≤,200x x ≤D .0x ∀≤,2x x ≤2.抛物线2y x =-的焦点坐标为() A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .1,04⎛⎫- ⎪⎝⎭D .1,04⎛⎫⎪⎝⎭3.已知a ,b ∈R ,则“0a b >>”是方程“22220x y ax b +++=表示圆”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.在空间直角坐标系中,点A 、B 坐标分别为()3,0,1A -,()2,3,3B -.则A 、B 两点的距离为() A .25B .2C .10D .5055A .22123x y -=B .2214y x -=C .2214y x -=D .22132y x -=6.P 是椭圆22143x y +=上的一点,F 是椭圆的左焦点,O 是坐标原点,已知点M 是线段PF 的中点,且34OM =,则PF =() A .54B .32C .52D .1347.已知圆O :224x y +=与圆22260x y x +--=交于A 、B 两点,则AB =() A .23B 3C .2D .48.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的()A .离心率相等B .焦距相等C .实轴长相等D .虛轴长相等9.M 是椭圆Γ:()222210x y a b a b+=>>上一点,1F ,2F 是椭圆的两个焦点,若122MF MF =,且12MF MF ⊥,则椭圆Γ的离心率为()A .12B 3C 25D 510.已知命题p :椭圆()22210,1x y a a a +=>≠的离心率为e ,若2a >.则230,4e ⎛⎫∈ ⎪⎝⎭;命题q :双曲线()222210,0x y a b a b -=>>的两条渐近线的夹角为θ,若a b =,则90θ=︒.下列命题正确的是() A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.M 、N 是双曲线2213y x -=上关于原点O 对称的两点,1F 、2F 是左、右焦点.若12MN F F =,则四边形12MF NF 的面积是() A .23B .3C .4D .612.在平面直角坐标系中,()2,0A ,()0,2B .以下各曲线:①22132x y +=;②()2222x y ++=;③22y x =;④221x y -=中,存在两个不同的点M 、N ,使得MA MB =且NA NB =的曲线是() A .①②B .③④C .②④D .①③二、填空题:本大题共4小题,每小题5分,共20分.13.以双曲线22135x y -=的焦点为顶点,以双曲线22135x y -=的顶点为焦点的椭圆方程为______.14.抛物线24y x =上一点M 到x 轴的距离为6,则点M 到抛物线焦点的距离为______.15.在平面直角坐标系中,过()1,3P -作圆O :221x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为______.16.设1F 、2F 为椭圆Γ:2212521x y +=的两个焦点,P 为Γ上一点且在第二象限.若112PF F F =,则点P的坐标为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题考生根据要求作答. (一)必考题:共60分17.(12分)已知圆C 过()4,3A ,()0,1B -,且圆心C 在直线l :10x y --=上.经过点()4,0M 的直线m 交圆C 于P 、Q 两点. (1)求圆C 的标准方程;(2)若CP CQ ⊥,求直线m 的方程.18.(12分)抛物线()220y px p =>的准线被圆22230x y y +--=截得的弦长为23(1)求p 的值;(2)过点()4,0M 的直线交抛物线于点A 、B ,证明:OA OB ⊥.19.(12分)已知椭圆Γ的对称中心为原点O ,焦点在y 3 (1)求椭圆Γ的离心率;(2)若椭圆Γ的一个焦点为()0,2F ,过F 且斜率为1的直线l 交椭圆于两点A 、B .求椭圆的标准方程并求AOB △的面积.20.(12分)在平面直角坐标系中,点A 、B 的坐标分别为()1,0A -,()1,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为2. (1)求M 的轨迹方程;(2)记M 的轨迹为曲线Γ,过点()1,1P 能否作一条直线l ,与曲线Γ交于两点D 、E ,使得点P 是线段DE 的中点?21.(12分)已知椭圆Γ:()222210x y a b a b+=>>左右焦点分别为1F 、2F 3k 的直线l 交椭圆于两点A 、B ,当直线l 过1F 时,2AF B △的周长为8. (1)求椭圆Γ的方程;(2)设OA 、OB 斜率分别为1k 、2k ,若12k =,求证:1214k k ⋅=,并求当AOB △面积为74时,直线l的方程.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错误、漏涂均不给分,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,曲线C 的参数方程为cos cos 2x y m ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为cos 24πρθ⎛⎫-= ⎪⎝⎭(1)当0m =时,求曲线C 与x 轴交点的直角坐标; (2)直线l 与曲线C 有唯一公共点,求实数m 的值. 23.【选修4-5:不等式选讲】(10分)已知x 、y 、z 均为正实数,且22243x y z ++=. (1)求2x y z ++的最大值; (2)若2y x =,证明:113x z+≥. 2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学参考答案一、选择题1.A 2.C 3.A 4.B 5.C 6.C 7.A 8.B 9.D 10.C 11.D 12.D 二、填空题13.22185x y +=14.10 15.310x y -+=16.5372⎛-⎝⎭三、解答题17.解:(1)直线AB 的垂直平分线方程为3y x =-+ 与10x y --=联立得,2x =,1y =,即()2,1C 圆C 半径22R CA ==所以,圆C 的标准方程为()()22218x y -+-=.(2)∵22CP CQ ==,CP CQ ⊥∴圆心C 到直线m 的距离2d = 当直线m 的斜率存在时,设直线m 的方程为()4y k x =- 由22121k d k +==+得34k =当直线m 的斜率不存在时,直线m 方程为4x =,C 到m 距离为2 综上可得,直线m 方程为34120x y --=或40x -=. 18.解:(1)圆22230x y y +--=的圆心()0,1C ,半径为2;所以C 到准线距离为1,所以准线方程为1x =- 所以2p =.(2)由(1)得,抛物线标准方程为24y x =. 设直线AB 方程为4x my =+,()11,A x y ,()22,B x y4x my =+与24y x =联立得24160y my --=216640m =+>∆,由韦达定理1216y y ⋅=-,2212121644y y x x ⋅=⋅=12120OA OB x x y y ⋅=+=,即以线段AB 为直径的圆过点M .19.解:(1)设椭圆标准方程为()222210y x a b a b+=>>则有232a b =,因为222c a b =- 所以椭圆离心率63c e a ==. (2)椭圆标准方程为22162y x +=,直线l 的方程为2y x =+设()11,A x y ,()22,B x y ,直线l 方程代入椭圆方程得22210x x +-=. 解得1,2132x -±=所以AOB △的面积12132S OF x x =⋅⋅-= 20.解:(1)设(),M x y ,则1AM y k x =+,1BM yk x =-由2AM AN k k ⋅=得211y yx x ⋅=+-整理得()22221y x x =-≠±所以,点M 得轨迹方程为()22112y x x -=≠.(可以不化为标准方程的形式,限制条件也可以为0y ≠)(2)设()11,D x y ,()22,E x y ,可得221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩两式相减得()()()()12121212102x x x x y y y y +--+-= 由题意,122x x +=,122y y +=,所以12122AB y y k x x -==-直线AB 方程为21y x =-代入()22112y x x -=≠±得,22430x x -+=.∵80∆=-<,∴不存在这样的直线l . 21.解:(1)由题意,48a =,3c e a ==5c =1b = 椭圆Γ的方程为2214x y +=.(2)设直线l 的方程为()10,12y x m m m =+≠≠±,()11,A x y ,()22,B x y , 与椭圆方程联立得,222220x mx m ++-=122x x m +=-,21222x x m =-可得2121211112222y y x m x m m ⎛⎫⎛⎫=++=-⎪⎪⎝⎭⎝⎭所以12121214y y k k x x == ()2222121621115222m AB k x m -⎛⎫=+-=+=- ⎪⎝⎭O 到直线AB 得距离25m d =OAB 的面积()2272S m m =-=解得12m =±,或7m =所以直线l 方程为1122y x =±,或172y x =±. 22.解:(1)2cos 2cos 10y ϕϕ==-=,得2cos ϕ= 所以曲线C 与x 轴交点得坐标为2,02⎛⎫± ⎪ ⎪⎝⎭. (2)cos cossin sin244ππρθρθ+=得22222x y +=2x y +=为直线l 的方程 曲线C 的普通方程为221y x m =+-方程221y x m =+-与2x y +=联立得2230x x m ++-=()1830m ∆=--=得258m =. 23.解:(1)由柯西不等式()()()222211142x y zx y z ++++≥++所以23x y x ++≤,当且仅当21x y z ===时等号成立. (2)证明:因为2y x =,0x >,0y >,0z >, 由(1)得243x y z x z ++=+≤ 即043x z <+≤,所以1143x z ≥+因为()114445529z x z x x z x z x z x z ⎛⎫⎛⎫++=++≥+⋅=⎪ ⎪⎝⎭⎝⎭当且仅当4x zz x=,即21z x ==时,等号成立. 因为043x z <+≤,所以11934x z x z +≥≥+,即113x z+≥.。
2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版
2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。
德州市实验中学高二年级上学期期末考试数学试题(文) 2010.02
德州市实验中学高二年级上学期期末考试数学试题(文) 2010.02一、 选择题(本大题共12小题,每小题5分,共60分)1、在ABC ∆中,满足B b A a cos cos =,则ABC ∆为( )(必修5P6练习B3) A、等腰三角形 B 、直角三角形 C 、等腰直角三角形 D 、等腰或直角三角形 2、“x >5 ”的一个必要而不充分条件是( )(选修1-1 P20练习A3(4)(6)) A、x <6 B 、x >4 C 、x >5 D 、x >63、抛物线2y ax =(其中0a >)的焦点坐标是( )(选修1-1 P58练习A2(2))A、(,0)4a B 、(0,)4a C 、1(,0)4a D 、1(0,)4a4、椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( )(选修1-1 P69自测与评估2) A .20 B .22 C .28 D .245、已知数列{}n a的通项公式n a =,在它的前12项中最大的项是( )(必修5P28练习B2)A 、9aB 、10aC 、11aD 、12a 6、当x R +∈时可得到不等式1x x +≥2, x +24x=2x +2x+2)2(x ≥3, 由此可以推广为x +nx p≥n +1, 取值p 等于( )(均值定理与归纳法) A 、n n B 、2n C 、n D 、1n +7、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则221()b a a -= ( ) (必修5P37例4+P46例4)A.8B.-8C.±8D.8、已知数列{}n a 为公比为3的等比数列,100147283a a a a = ,那么36930a a a a = ( )(必修5P52习题2-3B1)A 、1003B 、1103C 、1203D 、13039、不等式210x mx -+≥对于任意的x R ∈均成立,则实数m 的取值范围为( )(必修5P79练习B2)A 、(,2][2,)-∞-⋃+∞B 、(,2)(2,)-∞-⋃+∞C 、(2,2)-D 、[]2,2- 10、为抵御国际金融危机带来的影响,国家决定降低存款利息,现有四种降息方案.方案Ⅰ:先降息0.27%,后降息0.41%;方案Ⅱ:先降息0.41%,后降息0.27%;方案Ⅲ:先降息0.34%,再降息0.34%;方案Ⅳ:一次降息0.68%.在上述四种方案中,降息最少的是( )(必修5P73习题3-2B1) A 、方案Ⅰ B 、方案ⅡC 、方案Ⅲ D 、方案Ⅳ11、设椭圆,12222=+n y m x 双曲线,12222=-ny m x 抛物线)0()(22>>+=n m x n m y 的离心率分别为321,,e e e ,则( )(对3种离心率的定义及比较大小的综合考察) A 、321e e e > B 、321e e e < C 、321e e e = D 、321e e e 与关系不确定12、设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )(必修5P96习题3-5A2)AB.89C .D .二、 填空题(本大题共4小题,每小题4分,共16分)13、如果方程22112x y m m +=++表示双曲线,那么m 的取值范围是 。
湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析
荆州中学高二圆月期末考数学(文科)试题一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设,则地一个必要不充分款件是()A. B. C. D.【结果】A【思路】【思路】当时,是成立,当成立时,不一定成立,依据必要不充分款件地判定方式,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是地必要不充分款件,故选A.【点睛】本题主要考查了必要不充分款件地判定问题,其中解答中熟记必要不充分款件地判定方式是解答本题地关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【结果】8【思路】由椭圆地长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故结果为:7.3.已知直线和平面,若,,则过点且平行于地直线()A. 只有一款,不在平面内B. 只有一款,且在平面内C. 有无数款,一定在平面内D. 有无数款,不一定在平面内【结果】B【思路】【思路】假设m是过点P且平行于l地直线,n也是过点P且平行于l地直线,则与平行公理得出地结论矛盾,进而得出结果.【详解】假设过点P且平行于l地直线有两款m与n,则m∥l且n∥l由平行公理得m∥n,这与两款直线m与n相交与点P相矛盾,故过点且平行于地直线只有一款,又因为点P在平面内,所以过点P且平行于l地直线只有一款且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间地位置关系,空间中直线与平面地位置关系.过一点有且只有一款直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【结果】B【思路】试题思路:等差数列中考点:等差数列地性质5.“更相减损术”是《九章算术》中记录地一种求最大公约数地算法,按其算理流程有如下程序框图,若输入地,分别为165,66,则输出地为()A. 2B. 3C. 4D. 5【结果】B【思路】【思路】由题中程序框图知,该程序地功能是利用循环结构计算并输出变量地值,模拟程序地运行过程,思路循环中各变量地变化情况,即可得到结果.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构地程序框图地计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构。
安徽省黄山市2014-2021学年高二上学期期末考试数学(文)试卷 Word版含解析
2022-2021学年安徽省黄山市高二(上)期末数学试卷(文科)一.选择题1.直线x+y+3=0的倾斜角是()A.π B.π C. D.2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,则x2+x+1≥0D.若p∨q为真命题,则p,q均为真命题3.直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,则a的值为() A.﹣2 B.﹣1 C. 1 D.﹣2或14.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A. m⊂α,n⊂α,m∥β,n∥β⇒α∥β B.α∥β,m⊂α,n⊂α,⇒m∥nC. m⊥α,m⊥n⇒n∥α D. n∥m,n⊥α⇒m⊥α5.如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A. BD∥平面CB1D1B. AC1⊥BDC. AC1⊥平面CB1D1D.异面直线AC1与CB所成的角为60°6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为() A. y=±2x B. y=±x C. y=±x D. y=±x7.直线y=kx+2与抛物线y2=8x只有一个公共点,则k的值为()A. 1 B. 0 C. 1或0 D. 1或38.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣89.底面是正方形,侧面是全等的等腰三角形的四棱锥,其5个顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. 16π C. 9π D.10.已知直线交于P,Q两点,若点F 为该椭圆的左焦点,则取最小值的t值为()A.﹣ B.﹣ C. D.二.填空题11.已知某几何体的三视图如图所示,则该几何体的体积为.12.过点P(1,2)的直线l与圆C:(x+3)2+(y﹣4)2=36交于A 、B两点,当|AB|最小时,直线l的方程是.13.已知抛物线C:y2=x的焦点为F,A(x0,y0)是抛物线上一点,|AF|=x0,则x0= .14.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的标准方程为.15.如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是A1B1,CC1的中点,过D1,E,F作平面D1EGF 交BB1于G.给出以下五个结论:①EG∥D1F;②BG=3GB1;③平面D1EGF⊥平面CDD1C1;④直线D1E与FG的交点在直线B1C1上;⑤几何体ABGEA1﹣DCFD1的体积为.其中正确的结论有(填上全部正确结论的序号)三.解答题(共6小题,共75分)16.已知命题p:“∀x>1,x+≥a”,命题q:“方程x2﹣ax+2a=0有两个不等实根”,p∧q为假命题,p∨q为真命题,求实数a的取值范围.17.已知圆C 的圆心为坐标原点O,且与直线l1:x﹣y﹣2=0相切.(1)求圆C的方程;(2)若与直线l1垂直的直线l2与圆C交于不同的两点P、Q,且以PQ为直径的圆过原点,求直线l2的方程.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE ;(3)求三棱锥E﹣ABC的体积.19.一个几何体是由圆柱ADD1A1和三棱锥E﹣ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC ,AB⊥AC,AB=AC,AE=2.(1)求证:AC⊥BD;(2)求三棱锥E﹣BCD的体积.20.在平面直角坐标系xOy 中,直线l 与抛物线y2=2x相交于P、Q两点,假如•=3,O为坐标原点.证明:直线l过定点.21.已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(Ⅰ)求椭圆方程;(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:为定值.2022-2021学年安徽省黄山市高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题1.直线x+y+3=0的倾斜角是()A.π B.π C. D.考点:直线的倾斜角.专题:直线与圆.分析:先求出直线的斜率,再求直线的倾斜角.解答:解:∵直线x+y+3=0的斜率k=﹣,∴直线x+y+3=0的倾斜角α=.故选:A.点评:本题考查直线的倾斜角的求法,是基础题,解题时要留意直线的性质的合理运用.2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,则x2+x+1≥0D.若p∨q为真命题,则p,q均为真命题考点:命题的真假推断与应用.专题:简易规律.分析:直接写出命题的逆否命题推断A正确;由充分条件、必要条件的概念推断B正确;直接写出特称命题的否定推断C正确;由复合命题的真假推断说明D错误.解答:解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.命题A正确;对于B,由x=1,能够得到x2﹣3x+2=0.求解x2﹣3x+2=0得到x=1或x=2.∴“x=1”是“x2﹣3x+2=0”的充分不必要条件.命题B正确;对于C,命题p:∃x0∈R,使得x02+x0+1<0的否定为﹁p:∀x∈R,则x2+x+1≥0.命题C为真命题;对于D,∵若p,q中只要有一个为真命题,则p∨q为真命题.∴p∨q为真命题,则p,q均为真命题错误.命题D为假命题.故选:D.点评:本题考查了命题的真假推断与应用,解答的关键是熟记教材有关基础学问,属中档题.3.直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,则a的值为()A.﹣2 B.﹣1 C. 1 D.﹣2或1考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由题意求出两条直线的斜率,利用两条直线的垂直条件,求出a的值.解答:解:由于直线方程:x+ay+1=0,直线方程:(a+1)x﹣2y+3=0,所以两条直线的斜率是:和,由于直线x+ay+1=0与直线(a+1)x﹣2y+3=0相互垂直,所以()×=﹣1,则a=1,故选:C.点评:本题考查两直线垂直的条件:斜率之积等于﹣1,留意斜率不存在时对应的特殊状况.4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A. m⊂α,n⊂α,m∥β,n∥β⇒α∥β B.α∥β,m⊂α,n⊂α,⇒m∥nC. m⊥α,m⊥n⇒n∥α D. n∥m,n⊥α⇒m⊥α考点:空间中直线与平面之间的位置关系.分析:结合题意,由面面平行的判定定理推断A,面面平行的定义推断B,线面垂直的定义推断C,利用平行和垂直的结论推断.解答:解:A不正确,m、n少相交条件;B不正确,分别在两个平行平面的两条直线不肯定平行;C不正确,n可以在α内;故选D点评:本题主要考查了面面平行的判定定理及定义,线面垂直的定义及一些结论来推断空间线面的位置关系,培育规律思维力量.5.如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A. BD∥平面CB1D1B. AC1⊥BDC. AC1⊥平面CB1D1D.异面直线AC1与CB所成的角为60°考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:借助于正方体图形,利用空间中线线、线面、面面间的位置关系判定A、B、C、D选项正确与否,从而确定答案.解答:解:∵BD∥B1D1,BD不包含于平面CB1D1,B1D1⊂平面CB1D1,∴BD∥平面CB1D1,故A正确;∵BD⊥CC1,BD⊥AC,CC1∩AC=C,∴BD⊥平面ACC1,又AC1⊂平面ACC1,∴AC1⊥BD,故B正确;∵由三垂线定理知AC1⊥B1D1,AC1⊥B1C,∴AC1⊥平面CB1D1,故C正确;由CB∥C1B1,得∠AC1B1,其正切值为,故D错误.故选:D.点评:本题考查命题真假的推断,是中档题,解题时要认真审题,留意空间思维力量的培育.6.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为() A. y=±2x B. y=±x C. y=±x D. y=±x考点:双曲线的简洁性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.解答:解:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=x,即有y=x.故选D.点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程的求法,属于基础题.7.直线y=kx+2与抛物线y2=8x只有一个公共点,则k的值为()A. 1 B. 0 C. 1或0 D. 1或3考点:抛物线的简洁性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:由,得(kx+2)2=8x,再由直线y=kx+2与抛物线y2=8x有且只有一个公共点,知△=(4k﹣8)2﹣16k2=0,或k2=0,由此能求出k的值.解答:解:由,得(kx+2)2=8x,∴k2x2+4kx+4=8x,整理,得k2x2+(4k﹣8)x+4=0,∵直线y=kx+2与抛物线y2=8x有且只有一个公共点,∴△=(4k﹣8)2﹣16k2=0,或k2=0,解得k=1,或k=0.故选C.点评:本题考查直线与抛物线的位置关系,解题时要认真审题,认真解答,留意合理地进行等价转化.8.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是() A.﹣2 B.﹣4 C.﹣6 D.﹣8考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,求出弦心距,再由条件依据弦长公式求得a的值.解答:解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d==.再由弦长公式可得 2﹣a=2+4,∴a=﹣4,故选:B.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.9.底面是正方形,侧面是全等的等腰三角形的四棱锥,其5个顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. 16π C. 9π D.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用射影定理,求出球的半径,即可求出球的表面积.解答:解:设球的半径为R ,则()2=4•(2R﹣4),∴R=,∴球的表面积为4πR2=4=.故选:A.点评:本题考查球的表面积,考查同学的计算力量,确定球的半径是关键.10.已知直线交于P,Q两点,若点F 为该椭圆的左焦点,则取最小值的t值为()A.﹣ B.﹣ C. D.考点:椭圆的简洁性质;平面对量数量积的运算.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定F的坐标,设出P,Q 的坐标,表示出,即可求得结论.解答:解:由题意,F(﹣4,0)由椭圆的对称性,可设P(t,s),Q(t,﹣s),则=(t+4,s)•(t+4,﹣s)=(t+4)2﹣s2=∴t=﹣时,取最小值故选B.点评:本题考查椭圆的性质,考查向量学问的运用,考查同学的计算力量,属于基础题.二.填空题11.已知某几何体的三视图如图所示,则该几何体的体积为8 .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体为三棱锥,PA⊥底面ABC,PA=4,OB=OC=2,OA=3.解答:解:由三视图可知:该几何体为三棱锥,PA⊥底面ABC,PA=4,OB=OC=2,OA=3.体积V==8.故答案为:8.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.12.过点P(1,2)的直线l与圆C:(x+3)2+(y﹣4)2=36交于A、B两点,当|AB|最小时,直线l的方程是y=2x .考点:直线与圆相交的性质.专题:直线与圆.分析:要使|AB|最小时,则圆心到直线的距离最大,即CP⊥AB,求出直线的斜率即可.解答:解:圆心C坐标为(﹣3,4),半径R=6,要使|AB|最小时,则圆心到直线的距离最大,即CP⊥AB,此时CP的斜率k=,则AB的斜率k=2,则l的方程为y﹣2=2(x﹣1),即y=2x,故答案为:y=2x.点评:本题主要考查直线和圆的位置关系的应用,依据弦长最小,确定直线的位置关系是解决本题的关键.13.已知抛物线C:y2=x的焦点为F,A(x0,y0)是抛物线上一点,|AF|=x0,则x0= 1 .考点:抛物线的简洁性质.专题:圆锥曲线的定义、性质与方程.分析:抛物线C:y2=x的准线方程为x=﹣,由抛物线的定义可得,A到焦点的距离即为A到准线的距离,可得x0+=,解方程即可得到所求值.解答:解:抛物线C:y2=x的准线方程为x=﹣,由抛物线的定义可得,A到焦点的距离即为A到准线的距离,即有|AF|=x0+=,解得x0=1.故答案为:1.点评:本题考查抛物线的定义、方程和性质,主要考查准线方程的运用,留意定义法解题,属于基础题.14.已知椭圆C:+=1(a>b>0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的标准方程为.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由已知得,由此能求出椭圆方程.解答:解:由已知得,解得a=,b=,c=1,∴.故答案为:.点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,留意椭圆性质的合理运用.15.如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是A1B1,CC1的中点,过D1,E,F作平面D1EGF 交BB1于G.给出以下五个结论:①EG∥D1F;②BG=3GB1;③平面D1EGF⊥平面CDD1C1;④直线D1E与FG的交点在直线B1C1上;⑤几何体ABGEA1﹣DCFD1的体积为.其中正确的结论有①②④⑤(填上全部正确结论的序号)考点:棱柱、棱锥、棱台的体积;棱柱的结构特征;平面与平面垂直的判定.专题:空间位置关系与距离.分析:①利用面面平行的性质定理即可推断出正误;②如图所示,取BB1的中点M,连接A1M,FM.则四边形A1D1FM是平行四边形,再利用三角形的中位线定理可得G是B1M的中点,即可推断出正误;③由A1D1⊥平面CDD1C1,可得平面A1D1FM⊥平面CDD1C1,即可推断出正误;④直线D1E与FG的交点既在平面A1B1C1D1上,又在平面BCC1B1上,因此在平面A1B1C1D1与平面BCC1B1的交线上,即可推断出正误;⑤先计算三棱台B1EG﹣C1D1F的体积V1.利用几何体ABGEA1﹣DCFD1的体积为=﹣V1,即可推断出正误解答:解:对于①,∵平面ABB1A1∥平面DCC1D1,平面D1EGF∩平面ABB1A1=EG,平面D1EGF∩平面DCC1D1=D1F,∴EG∥D1F;对于②,如图所示,取BB1的中点M,连接A1M,FM.则四边形A1D1FM是平行四边形,∴A1M∥D1F,∴A1M∥EG,又点E是A1B1的中点,∴G是B1M的中点,∴BG=3GB1;对于③,∵A1D1⊥平面CDD1C1,∴平面A1D1FM⊥平面CDD1C1,可得平面D1EGF与平面CDD1C1不行能垂直,因此不正确;对于④,直线D1E与FG的交点既在平面A1B1C1D1上,又在平面BCC1B1上,因此在平面A1B1C1D1与平面BCC1B1的交线B 1C1上,正确;对于⑤,∵==1,==,高B1C1=2,∴三棱台B1EG﹣C1D 1F的体积V1==.∴几何体ABGEA1﹣DCFD1的体积为=﹣V1=23﹣=,因此正确.故答案为:①②④⑤.点评:本题考查了空间线面面面位置关系及其判定方法、三棱台的体积计算公式,考查了空间想象力量、推理力量,属于中档题.三.解答题(共6小题,共75分)16.已知命题p:“∀x>1,x+≥a”,命题q:“方程x2﹣ax+2a=0有两个不等实根”,p∧q为假命题,p∨q为真命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;不等式的解法及应用;简易规律.分析:别求出命题p,q为真命题时的取值范围,然后利用若p∨q为真命题,p∧q为假命题,求实数a的取值范围.解答:解:命题p为真命题时:∀x>1,x﹣1>0,依据基本不等式,a ≤x﹣1++1≤2+1=2+1=3(当且仅当x﹣1=即x=0时取相等),此时a≤3;命题q为真命题时,方程x2﹣ax+2a=0有两个不等实根,则△>0,即a2﹣8a>0,解得a<0或a>8;∵p∧q为假命题,p∨q为真命题,∴命题p 和q一真一假,p真q假时,有,则0≤a ≤3,p假q真时,有,则a>8,∴实数a的取值范围:[0,3]∪(8,+∞).点评:本题主要考查复合命题的真假与简洁命题真假之间的关系,比较基础.17.已知圆C的圆心为坐标原点O,且与直线l1:x﹣y﹣2=0相切.(1)求圆C的方程;(2)若与直线l1垂直的直线l2与圆C交于不同的两点P、Q,且以PQ为直径的圆过原点,求直线l2的方程.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)依据点到直线的距离确定圆的半径,则圆的方程可得.(2)设出直线l2的方程,推断出△OPQ为等腰直角三角形,求得圆心到直线l2的距离进而利用点到直线的距离求得c.则直线方程可得.解答:解:(1)由已知圆心到直线的距离为半径,求得半径r==2,∴圆的方程为x2+y2=4.(2)设直线l2的方程为x+y+c=0,由已知△OPQ为等腰直角三角形,则圆心到直线l2的距离为1,利用点到直线的距离公式得=,求得c=±2.所以直线l2的方程为x+y+2=0或x+y﹣2=0.点评:本题主要考查了直线与圆的方程问题的应用.点到直线的距离公式是解决此类问题的常用公式,应机敏运用.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)证明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;(2)证明C1F∥平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∥EG;(3)利用V E﹣ABC =S△ABC•AA1,可求三棱锥E﹣ABC的体积.解答:解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴V E﹣ABC =S△ABC•AA1=×(××1)×2=.点评:本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.19.一个几何体是由圆柱ADD1A1和三棱锥E﹣ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.(1)求证:AC⊥BD;(2)求三棱锥E﹣BCD的体积.考点:棱柱、棱锥、棱台的体积;简洁空间图形的三视图;直线与平面垂直的性质.专题:计算题.分析:(1)由已知中EA⊥平面ABC,AB⊥AC,结合线面垂直的定义及线面垂直的判定定理,我们易求出AC ⊥平面EBD,进而得到答案.(2)要求三棱锥E﹣BCD的体积,我们有两种方法,方法一是利用转化思想,将三棱锥E﹣BCD的体积转化为三棱锥C﹣EBD的体积,求出棱锥的高和底面面积后,代入棱锥体积公式,进行求解;方法二是依据V E﹣BCD=V E﹣ABC+V D﹣ABC,将棱锥的体积两个棱次的体积之差,求出两个帮助棱锥的体积后,得到结论.解答:(1)证明:由于EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC.又由于AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.由于BD⊂平面EBD,所以AC⊥BD.(4分)(2)解:由于点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.设圆O的半径为r,圆柱高为h,依据正(主)视图、侧(左)视图的面积可得,(6分)解得所以BC=4,.以下给出求三棱锥E﹣BCD体积的两种方法:方法1:由(1)知,AC⊥平面EBD,所以.(10分)由于EA⊥平面ABC,AB⊂平面ABC,所以EA⊥AB,即ED⊥AB.其中ED=EA+DA=2+2=4,由于AB⊥AC ,,所以.(13分)所以.(14分)方法2:由于EA⊥平面ABC,所以.(10分)其中ED=EA+DA=2+2=4,由于AB⊥AC ,,所以.(13分)所以.(14分)点评:本题考查的学问点是棱锥的体积公式,简洁空间图形的三视图,直线与平面垂直的性质,其中依据已知中三视图的体积,推断出几何体中相关几何量的大小,结合已知中其中量,进而推断出线面关系是解答本题的关键.20.在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于P、Q 两点,假如•=3,O为坐标原点.证明:直线l过定点.考点:平面对量数量积的运算.专题:平面对量及应用.分析:设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,依据根与系数的关系表示出数量积,依据数量积等于3,做出数量积表示式中的b的值,即得到定点的坐标.解答:证:由题意,直线的斜率不为0,所以设l:ky=x+b,代入抛物线y2=2x,消去x得y2﹣2ky+2b=0,设P(x1,y1),Q(x2,y2)则y1+y2=2k,y1y2=2b,∵•=3,∴x1x2+y1y2=3,即(k2+1)y1y2﹣kb(y1+y2)+b2=3代入得2(k2+1)b﹣2k2b+b2=3,解得b=﹣3或者b=1,∴直线方程为ky=x﹣3或者ky=x+1,故直线l过定点(3,0)或者(﹣1,0).点评:本题主要考查向量的数量积的运算,以及直线与抛物线的位置关系.21.已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(Ⅰ)求椭圆方程;(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M (),证明:为定值.考点:直线与圆锥曲线的综合问题;平面对量的坐标运算;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(I)先求出圆心坐标,再依据题意求出a、b,得椭圆的标准方程.(II)依据直线的斜率是否存在,分状况设直线方程,再与椭圆方程联立方程组,设出交点坐标,结合韦达定理根与系数的关系,利用向量坐标运算验证.解答:解:(I)∵圆x2+y2+2x=0的圆心为(﹣1,0),依据题意c=1,a﹣c=﹣1,∴a=.∴椭圆的标准方程是:+y2=1;(II)①当直线L与x轴垂直时,L的方程是:x=﹣1,得A(﹣1,),B(﹣1,﹣),•=(,)•(,﹣)=﹣.②当直线L与x轴不垂直时,设直线L的方程为 y=k(x+1)⇒(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,=(x1+,y1)•(x2+,y2)=x1x2+(x1+x2)++k2(x1x2+x1+x2+1)=(1+k2)x1x2+(k2+)(x1+x2)+k2+=(1+k2)()+(k2+)(﹣)+k2+=+=﹣2+=﹣综上•为定值﹣.点评:本题考查直线与圆锥曲线的综合问题及向量坐标运算.依据韦达定理,奇妙利用根与系数的关系设而不求,是解决本类问题的关键.。
四川省成都市树德中学2022-2023学年高二上学期期末检测数学(文)试题(含答案)
成都树德中学高2021级高二上期期末检测数学(文科)试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是A.①用随机抽样法,②用系统抽样法 B.①用系统抽样法,②用分层抽样法C.①用分层抽样法,②用随机抽样法 D.①用分层抽样法,②用系统抽样法2.下面命题正确的是A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若1x <,则21x <”的否定是“存在1≥x ,则21x ≥”;C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件.3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为A.3π B.3π-或3πC.3π或23π D.6π或56π4.执行下面的程序框图,如果输入的3N =,那么输出的S =A.1B.32C.53D.525.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为A.y =B.3y x =±C.12y x =±D.2y x=±6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球7.已知点()M ,x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是A .[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦ B .12,2⎡⎤-⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为A .24B .25C .25.5D .26取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852B .0.8192C .0.8D .0.7511.已知O 为坐标原点,双曲线)0(14:222>=-b b y x C 的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点,,B A 若||332||||AB OB OA =+,则ABF ∆的周长为A.6B.36C.324+D.344+12.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P在线段AB 上,则12PF PF ⋅的取值范围为()A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线28y x =的焦点到其准线的距离为________.14.已知“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是假命题,则实数m 的取值范围为.15.在区间[0,1]上随机取两个数x、y ,则满足13x y -≥的概率为___________.16.已知直线y kx =与椭圆C :222212x yb b+=交于,A B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有__________.①椭圆C 的离心率为2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .x2223242526y2324▲2628三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知圆C 上有两个点()()2,3,4,9A B ,且AB 为直径.(1)求圆C的方程;(2)已知()0,5P ,求过点P 且与圆C 相切的直线方程.18.(本小题满分12分)某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.19.(本小题满分12分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .20.(本题满分12分)某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:=J1 (−p(−p(−p2,=−.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?22.(本小题满分12分)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.公众号高中僧试题下载高2021级期末考试数学(文)试题参考答案一、1-5CDCCA6-10BCABD11-12BD二、13、11614、2m≤15、9216、②③④18、(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a+⨯+++⨯=,解得a=0.006;(2)由频率分布的直方图可得设中位数为m,故可得()()0.004 0.006 0.023210700.0280.5m++⨯+-⨯=,解得m=76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a,分数在[50,60)内的3人为123,,b b b,则在这5人中抽取2人的情况有:()12,a a,()11,a b,()12,a b,()13,a b,()21,a b,()22,a b,()23,a b,()12,b b,()13,b b,()23,b b,共有10种情况,其中分数在在[50,60)内的2人有()12,b b,()13,b b,()23,b b,有3种情况,所以概率为P=310.…………………………………12分19、(1)因为焦点在x轴上,设双曲线C的标准方程为22221(0,0)x y a ba b-=>>,由题意得24c=,所以2c=,①又双曲线C的一条渐近线为y x=,所以3ba=,②又222+=a b c,③联立上述式子解得a=1b=,故所求方程为2213x y-=;(2)设11(,)A x y,22(,)B x y,联立2211213y xx y⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x+-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x+=-,1224x x=-,即AB===20、(1)由表格数据得=18+19+20+21+225=20,=61+56+50+48+455=52.则J15 (i−)(y i−)=﹣40,J15 (i−)2=10,则=−4010=−4,=−=52﹣(﹣4)×20=132,则y关于的回归直线方程为=−4x+132;(2)获得的利润z=(x﹣10)(﹣4x+132)=﹣4x2+172x﹣1320,对应抛物线开口向下,则当x=−1722×(−4)=21.5时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.22、(1)由题意得12p=,即2p=,所以抛物线的准线方程为1x=-.(2)设(,),(,),(),A AB B c cA x yB x yC x y,重心(,)G GG x y.令2,0Ay t t=≠,则2Ax t=.由于直线AB过F,故直线AB方程为2112tx yt-=+,代入24y x=,得222(1)40ty yt---=,故24Bty=-,即2Byt=-,所以212(,Bt t-.又由于11(),(3)3G A B c G A B cx x x x y y y y=++=++及重心G在x轴上,故220ct yt-+=,得422211222((),2()),(3t tC t t Gt t t-+--.所以直线AC方程为222()y t t x t-=-,得2(1,0)Q t-.由于Q在焦点F的右侧,故22t>.从而424222124422242221|1||2|||223221222211||||1||||2||23Act t tFG yS t t ttt tS t tQG y t tt t-+-⋅⋅--====--+--⋅--⋅-.令22m t=-,则0m>,1221223434S mS m m mm=-=-++++3212≥-=+.当m=12SS取得最小值12+,此时(2,0)G.。
高二数学上学期期末考试 文
2011—2012学年度上学期期末考试高二数学试卷(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟,注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效。
2.答题前,考生务必将自己的“姓名”、“班级”、和“考号”写在答题卷上。
3.考试结束,只交答题卷。
第Ⅰ卷(选择题共50分)一、选择题(每小题5分,共10个小题,本题满分50分) 1.如果命题“()p q ⌝或”为假命题,则( )A .p ,q 均为真命题B .p ,q 中至少有一个为真命题C .p ,q 均为假命题D .p ,q 中至多有一个为真命题 2.下列说法正确的是( )A .命题“若22am bm <”,则“a b <”的逆命题是真命题 B .命题“若2,0x R x x ∃∈->”,的否定是“2,0x R x x ∀∈-≤”C .命题“p 或q ”,则命题“p ”和命题“q ”均为真命题D .已知x R ∈,则“x>1”是“x>2”的充分不必要条件 3.根据右边程序判断输出结果为( ) A .8 B . 9 C .10 D .114.函数20()32,[5,5]f x x x x =-+∈-,任取0x 使0()0f x ≥的概率为( ) A .110 B .15 C .910 D .455.下列命题中真命题的是( )A .在同一平面内,动点到两定点的距离之差(大于两定点间的距离)为常数的点的轨迹是双曲线B . 在平面内,F 1,F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是椭圆C .“若-3<m<5则方程22153x y m m +=-+是椭圆” D .存在一个函数,它既是奇函数,又是偶函数 6.记定点M 10(3,)3与抛物线22y x =上的点P 之间的距离为d 1,P 到抛物线的准线l 距离为d 2,则当d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .C .(2,2)D .11(,)82-7.已知双曲线中心在原点,且一个焦点为F ,直线y=x-1与其相交于M 、N 两点,MNi=0s=0Do s=s+i i=i+1Loop while s<40输出 i中点的横坐标为23,则此双曲线方程为( ) A .22134x y -= B .22143x y -= C .22152x y -= D .22125x y -= 8.若点00(,)x y 满足2004y x <,就叫点00(,)x y 在抛物线24y x =的内部。
江西省宜丰中学2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析
高二期末考试数学试题(文科)一,选择题(每小题5分,共60分)1.命题“”地否定是( )A. B.C. D.【结果】C【思路】【思路】依据特称命题地否定是全称命题即可得到结论.【详解】依据题意,先改变量词,然后否定结论,可得原命题地否定是:“”,故选C.【点睛】本题主要考查特称命题地否定,其方式是先改变量词,然后否定结论。
全称性命题地否定地方式也是如此.2.为了解名学生地学习情况,采用系统抽样地方式,从中抽取容量为地样本,则分段地间隔为()A. B. C. D.【结果】C【思路】试题思路:由题意知,分段间隔为,故选C.考点:本题考查系统抽样地定义,属于中等题.3.以下茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中地成绩(单位:分).已知甲组数据地中位数为15,乙组数据地平均数为16.8,则x,y地值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8【结果】C【思路】【思路】识别茎叶图,依据中位数,平均数地定义,可求出x,y地值.【详解】依据茎叶图中地数据可得:甲组数据是9,12,10+x,24,27。
它地中位数是15,可得10+x=15,解得:x=5。
乙组数据地平均数为:,解得:y=8,所以x,y地值分别为5和8,故选C.【点睛】本题主要考查茎叶图及中位数,平均数地定义,依据茎叶图得到各数据进行求解是解题地关键.4.已知椭圆地左焦点为则m=()A. 2B. 3C. 4D. 9【结果】B【思路】试题思路:由题意,知该椭圆为横椭圆,所以,故选B.考点:椭圆地几何性质.5.执行如图所示地程序框图,输出地s值为( )A. 2B.C.D.【结果】C【思路】试题思路:时,成立,第一次进入循环:。
成立,第二次进入循环:。
成立,第三次进入循环:,不成立,输出,故选C.【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并依据各自地特点执行循环体。
第二,要明确图中地累计变量,明确每一次执行循环体前和执行循环体后,变量地值发生地变化。
河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析
石家庄市2018~2019学年度第一学期期末考试试题高二数学(文科)第Ⅰ卷(选择题,共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.命题“若则”地逆否命题是()A. 若则B. 若则C. 若则D. 若则【结果】B【思路】本题主要考查命题及其关系。
逆否命题是将原命题地款件与结论否定,然后再将否定后地款件和结论互换,故命题“若则”地逆否命题是“若,则”。
故选2.一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19地学生留下进行交流,这里运用地是A. 分层抽样法B. 抽签法C. 随机数表法D. 系统抽样法【结果】D【思路】【思路】依据系统抽样地定义进行判断即可.【详解】每个班同学以1﹣50排学号,要求每班学号为19地同学留下来交流,则数据之间地间距差相同,都为50,所以依据系统抽样地定义可知,这里采用地是系统抽样地方式.故选:D.【点睛】本题主要考查抽样地定义和应用,要求熟练掌握简单抽样,系统抽样和分层抽样地定义,以及它们之间地区别和联系,比较基础.3.抛物线地焦点坐标是A. B. C. D.【结果】B【思路】【思路】先将方程化简为标准形式,即可得焦点坐标.【详解】由抛物线可得x2=4y,故焦点坐标为(0,1)故选:B.【点睛】本题主要考查抛物线地简单性质,属于基础题.4.已知命题:,。
命题:,,则下面表达中正确地是A. 是假命题B. 是真命题C. 是真命题D. 是假命题【结果】C【思路】【思路】先判断命题地真假,进而求得复合命题真假判断真值表得到结果.【详解】命题p,,即命题p为真,对命题q,去 ,所以命题q为假,为真所以是真命题故选:C.【点睛】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可。
(2)对于复合命题地真假判断应利用真值表。
(3)也可以利用“互为逆否命题”地等价性,通过判断其逆否命题地真假来判断原命题地真假.5.阅读下边地程序框图,运行相应地程序,则输出地值为A. -1B. 0C. 3D. 4【结果】D【思路】【思路】直接依据程序框图计算得出结果.【详解】由程序框图可知。
四川省广安市2018-2019学年高二上学期期末考试数学(文)试题(解析版)
四川省广安市2018-2019学年高二上学期期末考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1.直线的倾斜角是A. B. C. D.【答案】B【解析】解:直线的斜率为,直线的倾斜角满足,故选:B.由方程可得直线的斜率,由斜率和倾斜角的关系可得所求.本题考查直线的倾斜角和斜率,属基础题.2.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件那么此样本的容量A. 60B. 70C. 80D. 90【答案】C【解析】解:由题意知,总体中中A种型号产品所占的比例是,因样本中A种型号产品有16件,则,解得.故选:C.先求出总体中中A种型号产品所占的比例,是样本中A种型号产品所占的比例,再由条件求出样本容量.本题考查了分层抽样的定义应用,即保证样本结构与总体结构一致按一定的比例进行抽取,再由条件列出式子求出值来.3.命题p:,的否定是A. ,B. ,C. ,D. ,【答案】A【解析】解:命题“,”是特称命题命题的否定为,.故选:A.根据命题“,”是特称命题,其否定为全称命题,将“”改为“”,““改为“”即可得答案本题主要考查全称命题与特称命题的相互转化问题这里注意全称命题的否定为特称命题,反过来特称命题的否定是全称命题.4.已知抛物线的准线方程为,则抛物线的标准方程为A. B. C. D.【答案】A【解析】解:由题意,设抛物线的标准方程为,准线方程是,抛物线的准线方程为,,解得,故所求抛物线的标准方程为.故选:A.设抛物线方程为,根据题意建立关于p的方程,解之可得,得到抛物线方程.本题给出抛物线的准线,求抛物线的标准方程,着重考查了抛物线的定义与标准方程的知识,属于基础题.5.设,则“”是“直线:与直线:平行”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:当时,直线:与直线:,两条直线的斜率都是,截距不相等,得到两条直线平行,故前者是后者的充分条件,当两条直线平行时,得到,解得,,后者不能推出前者,前者是后者的充分不必要条件.故选:A.运用两直线平行的充要条件得出与平行时a的值,而后运用充分必要条件的知识来解决即可.本题考查必要条件充分条件和充要条件的问题,考查两条直线平行时要满足的条件,本题解题的关键是根据两条直线平行列出关系式,不要漏掉截距不等的条件,本题是一个基础题.6.圆M:与圆N:的位置关系是A. 相交B. 内切C. 外切D. 相离【答案】A【解析】解:圆M:的圆心为,半径为;圆N:的圆心为,半径为;则,且,两圆的位置关系是相交.故选:A.计算两圆的圆心距,比较两圆的半径得出两圆的位置关系.本题考查了两圆的位置关系判断问题,是基础题.7.对于平面、、和直线l、m、n、p,下列命题中真命题是A. 若,,,,则B. 若,,则C. 若,,,,则D. 若,,,则【答案】D【解析】解:由平面、、和直线l、m、n、p,知:在A中,若,,,,则只有当m,n相交时,才有,故A错误;在B中,若,,则或,故B错误;在C中,若,,,,则与相交或平行,故C错误;在D中,若,,,则由面面平行的性质定理得,故D正确.故选:D.在A中,只有当m,n相交时,才有;在B中,或;在C中,与相交或平行;在D中,由面面平行的性质定理得.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.8.甲、乙两位同学连续五次地理考试成绩用茎叶图表示如图所示,甲、乙两人这五次地理考试成绩的平均数分别为甲,乙;方差分别是甲,乙,则有A. 甲乙,甲乙B. 甲乙,甲乙C. 甲乙,甲乙D. 甲乙,甲乙【答案】B【解析】解:甲、乙两位同学连续五次地理考试成绩用茎叶图表示如图所示,甲、乙两人这五次地理考试成绩的平均数分别为甲,乙,方差分别是甲,乙,则甲,,乙.甲,乙,甲乙.甲乙故选:B.由茎叶图分别求出甲、乙两人这五次地理考试成绩的平均数和方差,由此能求出结果.本题考查平均数和方差的求法,考查茎叶图、平均数、方差等基础知识,考查运算求解能力,是基础题.9.秦九韶是我国南宋时期的数学家,普州现四川省安岳县人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A. 35B. 20C. 18D. 9【答案】C【解析】解:输入的,,故,,满足进行循环的条件,,,满足进行循环的条件,,,满足进行循环的条件,,不满足进行循环的条件,故输出的v值为:故选:C.根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.10.的周长是8,,,则顶点A的轨迹方程是A. B.C. D.【答案】A【解析】解:的两顶点,,周长为8,,,,点A到两个定点的距离之和等于定值,点A的轨迹是以B,C为焦点的椭圆,且,,,所以椭圆的标准方程是.故选:A.根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.11.抛物线与直线交于A、B两点,其中点A的坐标为,设抛物线的焦点为F,则等于A. 7B.C. 6D. 5【答案】A【解析】解:把点,代入抛物线和直线方程,分别求得,抛物线方程为,直线方程为,联立消去y整理得解得x和1或4,的横坐标为1,点横坐标为4,根据抛物线定义可知故选:A.把点,代入抛物线和直线方程,分别求得p和a,得到直线和抛物线方程,联立消去y,可分别求得A和B的横坐标,再根据抛物线的定义求得答案.本题主要考查抛物线的应用属基础题.12.双曲线C的渐近线方程为,一个焦点为,点,点P为双曲线第二象限内的点,则当点P的位置变化时,周长的最小值为A. 16B.C.D. 18【答案】D【解析】解:双曲线C的渐近线方程为,一个焦点为,可得,,,.双曲线方程为,设双曲线的上焦点为,则,的周长为,当P点在第二象限时,的最小值为,故的周长的最小值为.故选:D.利用已知条件求出a,b求出双曲线方程,利用双曲线的定义转化求解三角形的最小值即可.本题考查双曲线定义的相关知识,双曲线的性质的应用.二、填空题(本大题共4小题,共20.0分)13.转化为十进制数是______.【答案】5【解析】解:.故答案为:5.利用“2进制”与“十进制”之间的换算关系即可得出.本题考查了“k进制”与“十进制”之间的换算关系,属于基础题.14.在区间上任取一数,则此数不小于2的概率是______.【答案】【解析】解:由于此数不小于2,则所求事件构成的区域长度为:,在区间上任取一个数x构成的区域长度为3,则此数不小于2的概率是,故答案为:.根据题意先确定是几何概型中的长度类型,由“此数不小于2“求出构成的区域长度,再求出在区间上任取一个数x构成的区域长度,再求两长度的比值.本题主要考查概率的建模和解模能力,本题是长度类型,思路是先求得试验的全部构成的长度和构成事件的区域长度,再求比值.15.正三角形的一个顶点位于原点,另外两个顶点在抛物线上,则这个正三角形的边长为______.【答案】【解析】解:由题意,依据抛物线的对称性,及正三角形的一个顶点位于原点,另外两个顶点在抛物线上,可设另外两个顶点的坐标分别为,,,解得,故这个正三角形的边长为,故答案为:.设另外两个顶点的坐标分别为,,由图形的对称性可以得到方程,解此方程得到m的值.本题考查抛物线的标准方程,以及简单性质的应用,直角三角形中的边角关系,设出另外两个顶点的坐标,是解题的突破口.16.已知椭圆,M,N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM,PN的斜率分别为,,若椭圆的离心率为,则______.【答案】【解析】解:椭圆的离心率为,可得,可得,设,,,可得,,相减可得,即有.故答案为:.由椭圆的离心率公式可得a,b的关系,设,,,代入椭圆方程作差,结合直线的斜率公式,即可得到所求值.本题考查椭圆的方程和性质,考查方程思想和运算能力,属于基础题.三、解答题(本大题共6小题,共70.0分)17.已知命题p:实数m满足,其中:命题q:实数m满足.若,且为真,求实数m的取值范围;若¬是¬的充分不必要条件,求实数a的取值范围.【答案】解:命题p:实数m满足,其中,解得;命题q:实数m满足,解得.若,则p:.由为真,,即.实数m的取值范围是;若¬是¬的充分不必要条件,则q是p的充分不必要条件.,解得.实数a的取值范围是.【解析】命题p:实数m满足,其中,解得;命题q:实数m满足,解得m范围.若,则p:根据为真,可得实数m的取值范围;若¬是¬的充分不必要条件,则q是p的充分不必要条件即可得出.本题考查了一元二次不等式的解法,简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.18.2016年“双节”期间,高速公路车辆较多,某调查公司在一服务区从小型汽车中按进服务区的先后每间隔35辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段:,,,,,后得到如图的频率分布直方图.Ⅰ求这40辆小型车辆车速的众数和中位数的估计值;Ⅱ若从车速在的车辆中任抽取2辆,求车速在的车辆至少有一辆的概率.【答案】解:Ⅰ根据频率分布直方图,得:众数的估计值为最高的矩形的中点,即众数的估计值等于;设图中虚线所对应的车速为x,则中位数的估计值为:,解得,即中位数的估计值为;Ⅱ根据频率分布图知,车速在的车辆数为:辆,分别记为A、B;车速在的车辆数为:辆,分别记为c、d、e、f;从这6辆车中任抽取2辆,基本事件数是,AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共有15种;则车速在的车辆至少有一辆的基本事件数是,Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共有14种;故所求的概率为:.【解析】Ⅰ选出直方图中最高的矩形求出其底边的中点即为众数;求出从左边开始小矩形的面积和为对应的横轴的左边即为中位数;利用各个小矩形的面积乘以对应矩形的底边的中点的和为数据的平均数.Ⅱ利用列举法求出从车速在内抽取2辆的基本事数,计算对应的概率即可.本题考查了利用频率分布直方图求众数中位数的应用问题,也考查了用列举法求古典概型的概率问题,是基础题目.19.如图,ABCD是正方形,O是正方形的中心,底面ABCD,E是PC的中点求证:Ⅰ平面BDE;Ⅱ平面平面BDE.【答案】证明:是AC的中点,E是PC的中点,,又平面BDE,PA平面BDE.平面BDE.底面ABCD,,又,且平面PAC,而平面BDE,平面平面BDE【解析】根据线面平行的判定定理证出即可;根据面面垂直的判定定理证明即可.本题考查了线面平行的判定定理,面面垂直的判定定理,是一道基础题.20.已知圆C的圆心坐标,直线l:被圆C截得弦长为.Ⅰ求圆C的方程;Ⅱ从圆C外一点向圆引切线,求切线方程.【答案】解:Ⅰ设圆C的标准方程为:,则圆心到直线的距离为:,分则,圆C的标准方程:;分Ⅱ当切线的斜率不存在时,切线方程为:,此时满足直线与圆相切;分当切线的斜率存在时,设切线方程为:,即;则圆心到直线的距离为:,分化简得:,解得,切线方程为:;分综上,切线的方程为:和分【解析】Ⅰ根据题意设出圆C的标准方程,由圆心到直线的距离d和半径r、弦长AB的关系,求出r的值,从而写出圆的标准方程;Ⅱ讨论切线的斜率不存在和斜率存在时,求出对应切线的方程.本题考查了直线与圆的位置关系的应用问题,是中档题.21.某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:由数据知,销量y与单价x之间呈线性相关关系.求y关于x的回归直线方程;附:,.预计以后的销售中,销量与单价服从中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?【答案】解:由表格数据得,.则,,则,,则y关于x的回归直线方程为;获得的利润,对应抛物线开口向下,则当时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为元.【解析】根据线性回归方程求出,的值即可;结合二次函数的性质进行求解即可.本题主要考查线性回归方程的求解和应用,考查学生的计算能力.22.已知椭圆C:的左、右焦点分别为、,椭圆C过点,与x轴垂直.求椭圆C的方程;设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为,,且,证明:直线AB过定点.【答案】解:椭圆C:的左、右焦点分别为、,椭圆C过点,与x轴垂直.,解得,,椭圆C的方程为.当直线AB的斜率不存在时,设,则,由得,得.当直线AB的斜率存在时,设AB的方程为,,,,,,,,即,,由,,,即,故直线AB过定点.【解析】由椭圆C过点,与x轴垂直,列出方程组能求出,,由此能求出椭圆C的方程.对直线AB的斜率分类讨论:当直线AB的斜率不存在时,利用,及其斜率计算公式即可得出当直线AB的斜率存在时,设AB的方程为,,,直线方程与椭圆方程联立化为关于x 的一元二次方程,利用根与系数的关系、斜率计算公式即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、一元二次方程的根与系数的关系、斜率计算公式、点到直线的距离公式,考查了分类讨论方法、推理能力与计算能力,属于难题.。
2022-2023学年四川省泸州市高二上学期期末考试数学(文)试题【含答案】
2022-2023学年四川省泸州市高二上学期期末考试数学(文)试题一、单选题1.抛物线22y x =的焦点坐标为()A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .1,02⎛⎫ ⎪⎝⎭D .()1,0【答案】C【分析】由标准方程可确定焦点位置和焦点横坐标,从而得到结果.【详解】由抛物线方程知其焦点在x 轴上且122p =,∴其焦点坐标为1,02⎛⎫ ⎪⎝⎭.故选:C.2.完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是()A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样【答案】B【分析】可以从总体的个体有无差异和总数是否比较多入手选择抽样方法,①中某社区420户家庭的收入差异较大;②中总体数量较少,且个体之间无明显差异.【详解】①中某社区420户家庭的收入有了明显了差异,所以选择样本时宜选用分层抽样法;②个体没有差异且总数不多可用简单随机抽样法.故选:B【点睛】本题主要考查抽样方法的特点及适用范围,属于容易题.3.点(0,0)与点(2,2)-关于直线l 对称,则l 的方程是()A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --=【答案】B【分析】求出两个定点的中点坐标及这两个定点确定的直线斜率作答.【详解】过点(0,0)与点(2,2)-直线的斜率为20120-=---,则直线l 的斜率为111-=-,点(0,0)与点(2,2)-的中点为(1,1)-,所以直线l 的方程为11y x -=+,即20x y -+=.故选:B4.下列叙述中,错误的是()A .数据的标准差比较小时,数据比较分散B .样本数据的中位数不受少数几个极端值的影响C .数据的极差反映了数据的集中程度D .任何一个样本数据的改变都会引起平均数的改变【答案】A【分析】利用样本数字特征的基本概念逐项判断,可得出合适的选项.【详解】数据的标准差比较小时,数据比较集中,故A 错误;样本数据的中位数不受少数几个极端值的影响,故B 正确;数据的极差反映了数据的集中程度,故C 正确;任何一个样本数据的改变都会引起平均数的改变,故D 正确.故选:A.二、多选题5.已知a ,b ,c 满足c b a <<,且0ac <,那么下列各式中不一定成立的是()A .ab ac>B .()0c b a ->C .22cb ab <D .()0ac a c -<【答案】C【分析】由已知可得0a >,0c <,再由不等式的基本性质逐一判断即可.【详解】解:因为c b a <<,且0ac <,所以0a >,0c <,对于A ,0a >,0b c ->,所以()0ab ac a b c -=->,所以ab ac >,故A 正确;对于B ,()0c b a ->,故B 正确;对于C ,当0b =时,22cb ab =,故C 错误;对于D ,0ac <,0a c ->,所以()0ac a c -<,故D 正确.故选:C .三、单选题6.某研究机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据.由表中数据,求得线性回归方程为45y x a =+.若某儿童的记忆能力为12时,则他的识图能力约为()记忆能力x46810识图能力y 3568A .9.2B .9.7C .9.5D .9.9【答案】C 【分析】求出,x y ,线性回归方程 45y x a =+恒过(),x y ,代入即可求出a ,再令x =12,代入求解即可.【详解】由表中数据可得,()14681074x =⨯+++=,()13568 5.54y =⨯+++=,线性回归方程为45y x a =+,则45.575a =⨯+,解得0.1a =-,故41510y x =-,当x =12时, 41129.5510y =⨯-=.故选:C.7.设l ,m ,n 表示不同的直线,α,β,y 表示不同的平面,给出下列三个命题:①若m ∥l ,且m ⊥α,则l ⊥α;②若α⊥β,β⊥y ,则α∥y ;③若α∩β=l ,β∩y =m ,α∩y =n ,则l ∥m ∥n .其中正确命题的个数是()A .0B .1C .2D .3【答案】B【分析】由线面、面面的平行、垂直的判定与性质逐一判断即可.【详解】l ,m ,n 表示不同的直线,α,β,y 表示不同的平面,对于①,若m ∥l ,且m ⊥α,则由线面垂直的判定定理得l ⊥α,故①正确;对于②,若α⊥β,β⊥y ,则α与y 相交或平行,故②错误;对于③,如图,若α∩β=l ,β∩y =m ,α∩y =n ,结合图形得l ,m ,n 交于同一点,故③错误.故选:B.8.《九章算术》中介绍了一种研究两个整数间关系的方法即“更相减损术”,该方法的算法流程图如图所示,若输入a =12,b =8,i =0,则输出的结果为()A .a =6,i =2B .a =5,i =3C .a =4,i =2D .a =4,i =3【答案】D 【分析】模拟程序运行的过程,分析循环中各变量值的变化,可得答案.【详解】初始值a =12,b =8,i =0,第一次执行循环体后,i =1,a =4,不满足退出循环的条件;第二次执行循环体后,i =2,b =4,不满足退出循环的条件;第三次执行循环体后,i =3,a =b =4,满足退出循环的条件;故输出i =3,a =4,故选:D.9.直线l 经过点()1,2A ,在x 轴上的截距的取值范围是()3,3-,则其斜率的取值范围是()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C【分析】由直线的点斜式方程即可表示出直线l 的方程,得到其在x 轴的截距,列出不等式,即可得到结果.【详解】设直线l 的斜率为k ,则方程为()21y k x -=-,令0y =,解得21x k=-,故直线l 在x 轴上的截距为21k-,∵在x 轴上的截距的取值范围是()3,3-,∴2313k-<-<,解得1k <-或12k >.故选:C.10.如图,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,已知行车道总宽度|AB |=6m ,那么车辆通过隧道的限制高度约为()A .3.1mB .3.3mC .3.5mD .3.7m【答案】B 【分析】根据题意,以抛物线的顶点为原点,对称轴为y 轴,建立直角坐标系,得到抛物线方程,即可得到结果.【详解】取隧道截面,以抛物线的顶点为原点,对称轴为y 轴,建立直角坐标系,则()4,4C -,设抛物线方程()220x py p =->,将点C 代入抛物线方程得2p =,∴抛物线方程为24x y =-,行车道总宽度6m AB =,∴将3x =代入抛物线方程,则 2.25m y =-,∴限度为6 2.250.5 3.25m --=.故选:B.11.已知底面是正三角形的直三棱柱的高是它底面边长的33倍,若其外接球的表面积为60π,则该棱柱的底面边长为()A .3B .4C .6D .8【答案】C【分析】先设底面边长为a ,从而用a 表示出棱柱的高(它的一半即为球心到底面的距离d )和底面外接圆的半径r ,再由球的表面积求出球的半径,然后利用222R r d =+即可列式求解.【详解】设该棱柱的底面边长为a ,则该棱柱的高为33a ,设正三角形的外接圆的半径为r ,则由正弦定理得2πsin 3ar =,即3a r =,设其外接球的半径为R ,则24π60π=R ,即215R =,又22236a R r ⎛⎫=+ ⎪ ⎪⎝⎭,所以236a =,即6a =,则该棱柱的底面边长为6,故选:C.12.已知F 1,F 2为双曲线C :2222x y a b-=1(a >0,b >0)的左,右焦点,过F 2作C 的一条渐近线的垂线,垂足为P ,且与C 的右支交于点Q ,若1//OQ PF (O 为坐标原点),则C 的离心率为()A .2B .3C .2D .3【答案】A【分析】因为1//OQ PF ,O 是12F F 的中点,所以Q 为PF 2的中点.又2QF OP ⊥,2F 到渐近线b y x a =的距离为b ,得出21QF F ∠的余弦值,在△QF 2F 1中,利用双曲线的定义和余弦定理列方程求解即可.【详解】根据对称性不妨设P 为第一象限的点,∵O 为F 1F 2的中点,又1//OQ PF ,∴Q 为PF 2的中点,又F 2(c ,0)到b y x a=的距离22bc d b a b ==+,∴|PF 2|=b ,∴|QF 2|=2b ,连接1QF ,所以12222b QF QF a a =+=+,又|F 1F 2|=2c ,∵PO 的斜率为b a,又QF 2⊥PO ,∴QF 2的斜率为a b -,∴21tan a QF F b ∠=,∴21cos b QF F c∠=,在△QF 2F 1中,由余弦定理可得:224242222b b c a b b c c ⎛⎫+-+ ⎪⎝⎭=⋅⋅,化简可得a =b ,∴双曲线C 的离心率为221b a+=2.故选:A.四、填空题13.写出使“方程2213x y m m+=-表示焦点在x 轴上的双曲线”的m 的一个值___.【答案】4(答案不唯一,可以是大于3的任意实数)【分析】由双曲线焦点在x 轴上的特征求解即可.【详解】∵方程2213x y m m+=-表示焦点在x 轴上的双曲线,则030m m >⎧⎨-<⎩,即3m >,∴“方程2213x y m m+=-表示焦点在x 轴上的双曲线”的m 的一个值4(答案不唯一,可以是大于3的任意实数).故答案为:4(答案不唯一,可以是大于3的任意实数).14.已知变量x ,y 满足约束条件320x y y x y +≤⎧⎪≤⎨⎪≥⎩,则2z x y =+的最大值是_____.【答案】5【分析】作出不等式组对应的平面区域,再由几何意义求解即可.【详解】作出不等式组对应的平面区域如图:由2z x y =+得1122y x z =-+,平移直线1122y x z =-+,由图象可知当直线1122y x z =-+经过点A 时,直线1122y x z =-+的截距最大,此时z 最大,由23y x x y =⎧⎨+=⎩解得(1,2)A ,此时1225z =+⨯=,故答案为:5.15.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,则圆台O ′O 的母线长为________cm.【答案】9【分析】设圆台的母线长为y ,小圆锥底面与被截的圆锥底面半径分别是x 、4x ,利用相似知识,求出圆台的母线长.【详解】:∵截得的圆台上、下底面的面积之比为1:16,∴圆台的上、下底面半径之比是1:4,如图,设圆台的母线长为y ,小圆锥底面与被截的圆锥底面半径分别是x 、4x ,根据相似三角形的性质得334x y x=+.解此方程得y=9.所以圆台的母线长为9cm .故答案为9cm .【点睛】本题考查圆锥与圆台的关系,考查计算能力.属基础题.16.关于曲线:1C x x y y +=有如下四个命题:①曲线C 经过第一、二、四象限;②曲线C 与坐标轴围成的面积为π2;③直线x y m +=与曲线C 最多有两个公共点;④直线x y m -=与曲线C 有且仅有一个公共点.其中所有真命题的序号是________(填上所有正确命题的序号).【答案】①③④【分析】分0,0x y ≥≥,0,0x y <>,0,0x y ><,0,0x y <<四种情况讨论,去绝对值符号,作出曲线的图象,根据图象逐一分析即可.【详解】当0,0x y ≥≥,可得曲线方程为221x y +=,为圆的一部分;当0,0x y <>,可得曲线方程为221y x -=,为双曲线的一部分;当0,0x y ><,可得曲线方程为221x y -=,为双曲线的一部分;当0,0x y <<,曲线方程为221x y --=,不存在这样的曲线;作出曲线得图象,如图所示,由图可知,曲线C 经过第一、二、四象限,故①正确;②中,围成的面积S =21ππ144S =⋅⋅=,故②不正确;③中,因为直线x y m +=的斜率与双曲线的渐近线的斜率相等,圆心O 到直线的距离||12m d ==,0m >,则2m =时,直线与曲线相切,只有一个交点,当()0,2m ∈时,直线与曲线有两个交点,当2m >或0m ≤时,直线与曲线无交点,所以直线x y m +=与曲线C 最多有两个公共点,故③正确;④由图象知直线x y m -=与曲线C 有且仅有一个公共点,故④正确.故答案为:①③④.【点睛】关键点点睛:去绝对值符号,作出曲线的图象,是解决本题的关键.五、解答题17.已知函数2()1f x x x m =-+,R m ∈.(1)若关于x 的不等式()0f x >的解集为R ,求m 的取值范围;(2)解关于x 的不等式()10f x x m --+<.【答案】(1)()2,2-(2)答案见解析【分析】(1)由题意可得判别式小于0,由此即可求出m 的范围;(2)化简不等式,然后讨论1m =,1m >,1m <三种情况,根据一元二次不等式的解法即可求解.【详解】(1)因为不等式()0f x >的解集为R ,则240m ∆=-<,解得22m -<<,所以实数m 的范围为()2,2-;(2)不等式()10f x x m --+<化简为2(1)0x m x m -++<,即(1)()0x x m --<,因为方程2(1)0x m x m -++=的两根分别为11x =,2x m =,当1m =时,不等式化为2(10)x -<,此时不等式无解,当1m >时,解不等式可得1x m <<,当1m <时,解不等式可得1m x <<,综上可得:当1m =时,不等式的解集为∅,当1m >时,不等式的解集为(1,)m ,当1m <时,不等式的解集为(,1)m .18.如图,在四棱锥S ABCD -中,底面ABCD 为菱形,E ,F 分别为SD 、BC 的中点.(1)证明://EF 平面SAB ;(2)若平面SAD ⊥平面ABCD ,且△SAD 是边长为2的等边三角形,120BAD ∠=︒.求四棱锥S ABCD -的体积.【答案】(1)证明见解析(2)2【分析】(1)根据题意,取SA 中点M ,连接BM ,EM ,即可证明MEFB 为平行四边形,再由线面平行的判定定理即可证明;(2)根据题意,取AD 的中点N ,连接SN ,由线面垂直的判定定理即可得到SN ⊥平面ABCD ,再由三棱锥的体积公式即可得到结果.【详解】(1)证明:取SA 中点M ,连接BM ,EM .又E 分别为SD 的中点,所以//ME AD ,且ME =12AD ,因为底面ABCD 为菱形,F 分别为BC 的中点,所以BF =12AD ,//BF AD ,所以//ME BF ,且ME =BF .所以MEFB 为平行四边形.所以//EF BM .又因为EF ⊄平面SAB ,BM ⊂平面SAB ,所以//EF 平面SAB .(2)取AD 的中点N ,连接SN ,因为SAD 是边长为2的等边三角形,所以SN ⊥AD ,因为平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SN ⊂平面SAD ,所以SN ⊥平面ABCD ,因为菱形ABCD 中,120BAD ∠=︒,AD =2,所以3sin 22232ABCD S AB AD BAD =⋅⋅∠=⨯⨯=,因为SA =AD =SD =2,N 是AD 的中点,易得SN =3.所以三棱锥S ﹣ABC 的体积V =11233233ABCD S SN ⋅=⨯⨯=.19.某线上零售产品公司为了解产品销售情况,随机抽取50名线上销售员,分别统计了他们2022年12月的销售额(单位:万元),并将数据按照[12,14),[14,16)…[22,24]分成6组,制成了如图所示的频率分布直方图.(1)根据频率分布直方图,估计该公司销售员月销售额的平均数是多少(同一组中的数据用该组区间的中间值代表)?(2)该公司为了挖掘销售员的工作潜力,拟对销售员实行冲刺目标管理,即根据已有统计数据,于月初确定一个具体的销售额冲刺目标,月底给予完成这个冲刺目标的销售员额外的奖励.若该公司希望恰有20%的销售人员能够获得额外奖励,你为该公司制定的月销售额冲刺目标值应该是多少?并说明理由.【答案】(1)18.32(万元)(2)20.8万元,理由见解析【分析】(1)根据概率和为1算出a 的值,再根据频率分布直方图即可计算结果;(2)根据频率分布直方图即可求解.【详解】(1)根据频率分布直方图可得:(0.03+a +0.12+0.14+0.1+0.04)×2=1,解得a =0.07,∴该公司销售员月销售额的平均数为:x =13×0.03×2+15×0.07×2+17×0.12×2+19×0.14×2+21×0.1×2+23×0.04×2=18.32(万元);(2)设该公司制定的月销售额冲刺目标值应该是x ,则根据频率分布直方图可得:(22﹣x )×0.1+0.08=0.2,解得x =20.8,∴该公司制定的月销售额冲刺目标值应该是20.8万元.20.已知圆心为C 的圆过点()3,0A ,()2,3B ,在①圆心在直线10x y --=上;②经过点()1,2M -这两个条件中任选一个作为条件.(1)求圆C 的方程;(2)经过直线70x y +-=上的点P 作圆C 的切线,已知切线长为4,求点P 的坐标.注:如果选择多个条件分别作答,按第一个解答计分.【答案】(1)条件选择见解析,()2214x y -+=(2)()3,4或()5,2【分析】(1)根据题意,若选①,可得直线AB 垂直平分线所在直线方程,然后与直线10x y --=联立,即可得到圆心,从而得到圆C 的方;若选②,可设圆的方程一般式,然后将点的坐标代入,即可得到结果;(2)根据题意,由条件列出方程,然后求解,即可得到结果.【详解】(1)若选①,∵圆过点()3,0A ,()2,3B ,则直线AB 的斜率为3323k ==--,所以与直线AB 垂直的直线斜率32k '=,且AB 的中点为323,22⎛⎫+ ⎪ ⎪⎝⎭,即53,22⎛⎫ ⎪ ⎪⎝⎭,则AB 的垂直平分线所在直线方程为335232y x ⎛⎫-=- ⎪⎝⎭,即310x y --=,又知圆心在直线10x y --=上,∴31010x y x y ⎧--=⎪⎨--=⎪⎩,解得1,0x y ==,所以圆心()1,0C .半径为2r AC ==.所以圆的标准方程为()2214x y -+=.若选②,设圆的方程为220x y Dx Ey F +++==,(其中2240D E F +->),则930432301420D F D E F D E F ++=⎧⎪++++=⎨⎪++-+=⎩,解得2,0,3D E F =-==-,所以,圆方程为22230x y x +--=,化为标准方程为()2214x y -+=.(2)设(),7P x x -,∵经过直线70x y +-=上的点P 作圆C 的切线,切线长为4,∴()()()22221744x x -+-=+,化简得22165020x x -+=,∴28150x x -+=,解得3x =或5x =,∴点P 的坐标为()3,4或()5,2.21.已知曲线C 上任意点到点F (1,0)距离比到直线x +2=0的距离少1.(1)求C 的方程,并说明C 为何种曲线;(2)已知A (1,2)及曲线C 上的两点B 和D ,直线AB ,AD 的斜率分别为k 1,k 2,且k 1+k 2=1,求证:直线BD 经过定点.【答案】(1)y 2=4x ,抛物线;(2)证明见解析.【分析】(1)设曲线C 上的点P (x ,y ),化简方程22(1)1|2|x y x -++=--,即得解;(2)由直线AB ,AD 的斜率之和为1,可以用齐次式方程,设直线BD 的方程,将求出C 的方程也整理,两式联立,可得齐次式方程,曲线斜率之和,整理可得直线恒过的定点的坐标.【详解】(1)设曲线C 上的点(,)P x y ,由题意22(1)1|2|x y x -++=--,且2x >-,整理可得:24y x =;可得曲线C 的方程为24y x =,曲线为抛物线;(2)证明:显然直线AB ,BD 的斜率存在,设1(B x ,1)y ,2(D x ,2)y ,11121y k x -=-,22221y k x -=-,利用齐次式方程,所以设直线BD 的方程为(1)(2)1m x n y -+-=,设抛物线的方程为2[(2)2]4[(1)1]y x -+=-+,整理可得:2(2)4(2)4(1)0y y x -+---=,将(1)(2)1m x n y -+-=代入2(2)4(2)4(1)0y y x -+---=,整理可得:2(2)4(2)[(1)(2)]4(1)[(1)(2)]0y y m x n y x m x n y -+--+----+-=,即22(14)(2)(44)(1)(2)4(1)0n y m n x y m x +-+-----=,两边同时除以2(1)x -可得:222(14)()(44)4011y y n m n m x x --+⋅+-⋅-=--,△0>,设方程的根为1k ,2k ,则124414m n k k n-+=-+,由题意可得44114m n n --=+,整理可得41m -=,与(1)(2)1m x n y -+-=对应项相等,可得14x -=-且20y -=,解得3x =-,2y =,即直线(1)(2)1m x n y -+-=恒过定点(3,2)-,即可证得直线BD 恒过定点(3,2)-.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为105,短轴长为23.(1)求C 的方程;(2)过C 的右焦点F 的直线l 交C 于A ,B 两点,若点M 满足0MA MB += ,过点M 作AB 的垂线与x轴和y 轴分别交于D ,E 两点.记MFD △,△OED (O 为坐标原点)的面积分别为1S 、2S ,求1221S S S S +的取值范围.【答案】(1)22153x y +=(2)97,36⎛⎫+∞ ⎪⎝⎭【分析】(1)由短轴长可求出b ,由离心率的值可求出a ,即可求出椭圆方程;(2)由题意可知直线l 的斜率存在且不为0,将直线和椭圆方程联立,进而求出点M 的坐标,由直线MD 的方程可求出点D ,E 的坐标,求出MFD △,△OED 的面积的表达式,再由三角形相似,可得对应边的比,进而求出面积比,最后由函数的单调性求出范围.【详解】(1)由题意可得223b =,解得3b =,221015c b e a a ==-=,解得,25a =,所以椭圆的方程为:22153x y +=;(2)由(1)得右焦点(2F ,0),由题意可得直线l 的斜率存在且不为0,设直线l 的方程为2x my =+,设1(A x ,1)y ,2(B x ,2)y ,因为点M 满足0MA MB += ,所以M 为AB 的中点,联立222153x my x y ⎧=+⎪⎨+=⎪⎩,整理可得:22(53)6290m y my ++-=,因为F 在椭圆内部,显然0∆>,1226253m y y m +=-+,122953y y m -=+,所以AB 的中点M 的纵坐标为23253m m -+,代入直线l 的方程为22325225353m x m m m -=⋅+=++,即252(53M m +,232)53m m -+,即直线ME 的方程为225232()5353m y m x m m =---++,令0x =,解得22253E m y m=+,即222(0,)53m E m +,令0y =,解得22253D x m =+,即222(53D m +,0),12DOE S OD OE =⋅ ,12MFD S MF MD = ,由题意可得△DOE ∽△DMF ,所以DOOEDM MF =,设DO OEk DM MF ==,则212S k S =,而2222222222228||84(53)||18(1)9(1)522232()()535353OD m k DM m m m m m m +====++--++++,所以21222149(1)9(1)4S S m S S m ++=++,设211t m =+>,令12211649981()944S S t f t t S S t t ⎛⎫ ⎪=+=+=+ ⎪ ⎪⎝⎭,1t >,函数在()1,+∞单调递增,所以4997()9436f t >+=,所以1221S S S S +的取值范围为97,36⎛⎫+∞ ⎪⎝⎭.。
河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题
2018-2019学年上学期期末考试高二数学试题(文)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时长120分钟第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中地圆素个数为( )A.2B.3C.4D.52.设复数z=1+i,i是虚数单位,则+()2=( )A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∃x0∈(0,),cosx0>sinx0”地否定是( )A.∃x0∈(0,),cosx0≤sinx0B.∀x∈(0,),cosx≤sinxC.∀x∈(0,),cosx>sinx D.∃x0∉(0,),cosx0>sinx04.设各项均为正数地等差数列{a n}地前n项和为S n,且a4a8=32,则S11地最小值为A.244 C.22 D.4422 B.25.已知向量,满足•(﹣)=2,且||=1,||=2,则与地夹角为( )A.B.C.D.6.如图为教育部门对辖区内某学校地50名儿童地体重(kg)作为样本进行思路而得到地频率分布直方图,则这50名儿童地体重地平均数为( )A.27.5B.26.5C.25.6D.25.7 7.已知sin()=,则cos(2)=( )A.﹣B.﹣C.D.8.在一线性回归模型中,计算相关指数20.96R ,下面哪种表达不够妥当?( )A.该线性回归方程地拟合效果较好B.解释变量对于预报变量变化地贡献率约为96%C.随机误差对预报变量地影响约占4%D.有96%地样本点在回归直线上9.如图,B ,D 是以AC 为直径地圆上地两点,其中,,则=( )A .1B .2C .tD .2t10.已知实数x,y 满足款件|x ﹣1|+|y ﹣1|≤2,则2x+y 地最大值为( )A .3B .5C .7D .911.设函数()f x 在R 上可导, ()()2'23,f x x f x =-则()1f -与()1f 地大小关系是( )A. ()(1)1f f -=B. ()()f f ->11C. ()(1)1f f -<D.不确定12.抛物线y 2=2px (p >0)地焦点为F,已知点A,B 为抛物线上地两个动点,且满足∠AFB=120°.过弦AB 地中点M 作抛物线准线地垂线MN,垂足为N,则地最大值为( )A .B .1C .D .2 第Ⅱ卷(非选择题)二.填空题(共4题每题5分满分20分)13.已知双曲线=l (a >0,b >0)地一款渐近线与直线2x+y ﹣3=0垂直,则该双曲线地离心率为 .14.已知正四面体ABCD 地棱长为l,E 是AB 地中点,过E 作其外接球地截面,则此截面面积地最小值为 .15.若函数2()2ln f x x x =-在其定义域内地一个子区间(1,1)k k -+内不是单调函数,则实数k 地取值范围是16.设函数y=地图象上存在两点P,Q,使得△POQ 是以O 为直角顶点地直角三角形(其中O 为坐标原点),且斜边地中点恰好在y 轴上,则实数a 地取值范围是 .三.解答题:(解答题应写出必要地文字说明和演算步骤,17题10分,18-22每题12分)17.已知a,b,c 分别为△ABC 地三个内角A,B,C 地对边,a=2且(2+b )(sinA ﹣sinB )=(c ﹣b )sinC(1)求角A 地大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林油田高级中学-上学期期末考试
高二数学试题(文科)
(考试时间:120分钟,满分:150分 )
第Ⅰ卷
一、选择题: 在下列各小题的四个选项中,只有一项是符合题目要求的.请将正确选项涂到答题卡上.
1.设a ,b ,c ∈R ,且a >b ,则 ( ).
A .ac >bc
B .
C .a 2>b 2
D .a 3>b 3 2. 满足()()f x f x '=的函数是( )
A .()1f x x =-
B .()f x x =
C .()0f x =
D .()1f x =
3. ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )
A .21
B .2
3 C.1 D.3 4. “12x <<”是“2x <”成立的(
). A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
5.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于,则C 的方程是( ). A. B. C. D.
6.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )
A. 15
B. 30
C. 31
D. 64
7.若变量满足约束条件 ,则的最小值为( )
A. B. 0 C. 1 D. 2
8.在下列函数中最小值是2的是( )
11<a b
12
22134x y +
=2214x +=22142x y +=22
143x y +=x y ,111x y y x x +≥⎧⎪-≤⎨⎪≤⎩
2z x y =-1-
A .)0(55≠+=
x x x y B .1lg (110)lg y x x x =+<< C .x x y -+=33 D .)20(sin 1sin π<<+
=x x x y 9.抛物线24x y =上与焦点的距离等于4的点的纵坐标是 ( )
A.1
B.2
C.3
D.4
10. 公比为2的等比数列{} 的各项都是正数,且 =16,则=
A . 1 B. 2 C. 4 D. 8
11.从椭圆上一点向轴作垂线,垂足恰为左焦点,是椭圆与轴正半轴的交点,是椭圆与轴正半轴的交点,且(是坐标原点),则该椭圆的离心率是( )
A. B. C . D. 12.设函数()f x 是定义在()-∞,0上的可导函数,其导数为f ()x ',且2()f x +x ()f x '>2x , 则不等式2(2014)(2014)4(2)0x f x f ++-->的解集为( )
A .(),2014-∞-
B .(),2015-∞-
C .(),2016-∞-
D .(),2017-∞-
第Ⅱ卷(非选择题 共90分)
二、填空题:(本题共4个小题,每小题5分,共20分)
13.过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为_______
14. 抛物线的准线方程是__________. 15.函数313y x x =+-的极大值为__________.
16.已知是双曲线的右焦点,P 是C 左支上一点, ,当周长最小时,该三角形的面积为 .
三、解答题:(本题共6小题,17题10分,18-22每小题12分,共70分)解答题应给出必要的文字说明,证明过程或演算步骤.)
17. 设双曲线的两个焦点为
,一个顶点为,求双曲线的方程,
离心率及渐近线方程。
n a 3a 11a 5a 22
221(0)x y a b a b
+=>>P x 1F A x B y //AB OP O 412
2224
1x y =F 2
2:18y C x -=(A APF ∆C ())
()1,0C
18. 设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.
19.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asin B
b.
(1)求角A 的大小;
(2)若a =6,b +c =8,求△ABC 的面积.
20. 等差数列中,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求的值.
21.已知()ln ,(0,],f x ax x x e a R =-∈∈
(1)若1=a ,求)(x f 的极小值;
(2)是否存在实数,a 使)(x f 的最小值为3.
22. 如图,椭圆经过点,且离心率为. (I)求椭圆的方程;
(II)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),
问直线与的斜率之和是否为定值,若是,求出这个定值;若不是,请说明理由。
{}n a 24a =4715a a +={}n a 22
n a n b n -=+12310b b b b +++⋅⋅⋅+22
22:1(0)x y E a b a b
+=>>(0,1)A -2E (1,1)k E ,P Q A AP AQ
高二数学文科 参考答案
一、 DCBAD AACCA C C
二、13.(1,4)--或(1,0) 14. 15.3 16.
三、解答题:(本题共6小题,17题10分,18-22每小题12分,共70分)
17.
e =
离心率 y
x =±渐近线方程: 18. 解:若方程210x mx ++=
有两个不等的负根,则212400
m x x m ⎧∆=->⎨+=-<
⎩,
所以2m >,即:2p m >.
若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<,
即13m <<, 所以q :13m <<.
因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假. 所以,p q 一真一假,即“p 真q 假”或“p 假q 真”.
所以213m m m >⎧⎨≤≥⎩或或213
m m ≤⎧⎨<<⎩ 所以3m ≥或12m <≤.
故实数m 的取值范围为(1,2][3,)+∞.
19.【答案】(1) (2) 【解析】:(1)由2a sin B b 及正弦定理
,得sin A =. 因为A 是锐角,所以. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =36.
又b +c =8,所以. .由三角形面积公式S =bc sin A ,得△ABC . 20. 【答案】(Ⅰ);(Ⅱ).
【解析】(I )设等差数列的公差为.
由已知得, 1-=y 221x y -=π3
A =3sin sin a b A
B =2π3A =
283bc =12
2n a n =+2101{}n a d ()()11
143615a d a d a d +=⎧⎪⎨+++=⎪⎩
解得.
所以.
【考点定位】1、等差数列通项公式;2、分组求和法.
21.(1)
1,0)(,1
1
1)(,1,,==-=-=∴=x x f x x x x f a 则令
列表得:
13
1a d =⎧⎨=⎩()112n a a n d n =+-=
+
)(x f 的极小值是1. (2)x
ax x a x f 11)(,-=-= 当0)(1
,
≤≤x f e a 时,,所以)(x f 在(0,]e 单调递减,则)(x f 的最小值为 e a ae e f 4,31)(=
=-=,舍去. 当时,e
a 1>0)(),,1(,0)(),1,0(,,>∈<∈x f e a x x f a x ,则)(x f 的最小值为 2,3ln 1)1(e a a a
f ==+=. 综上,当 2e a =时)(x f 的最小值为3.
22. 【答案】(I) ; (II) 2 试题解析:(I)由题意知,综合,解得, 所以,椭圆的方程为. (II)由题设知,直线的方程为,代入,得 ,
由已知,设,
则, 从而直线与的斜率之和
. 2
212
x y +
=,12
c b a ==222a b c =
+a =2
212
x y +=PQ (1)1(2)y k x k =-+≠2
212
x y +=22(12)4(1)2(2)0k x k k x k k +--+-=0∆>()()1122,P x y Q x y 120x x ≠121222
4(1)2(2),1212k k k k x x x x k k --+==++AP AQ 12121211
1122AP AQ y y kx k kx k k k x x x x +++-+-+=+=+121212112(2)2(2)x x k k k k x x x x ⎛⎫+=+-+=+- ⎪⎝⎭
()
4(1)222(21)22(2)k k k k k k k k -=+-=--=-
【考点定位】1.椭圆的标准方程;2.圆锥曲线的定值问题.。