高二数学上学期期末考试试题 文(A卷)
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
天津市部分区2024_2025学年高二数学上学期期末考试试卷含解析
天津市部分区2024-2025学年高二上学期期末考试数学试卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线﹣y2=1的焦点坐标为()A. (﹣3,0),(3,0)B. (0,﹣3),(0,3)C. (﹣,0),(,0)D. (0,﹣),(0,)【答案】C【解析】【分析】利用双曲线的标准方程干脆计算。
【详解】由双曲线﹣y2=1可得:,则所以双曲线﹣y2=1的焦点坐标为:(﹣,0),(,0)故选:C【点睛】本题主要考查了双曲线的简洁性质,属于基础题。
2.命题“∃x0∈(0,+∞),使得<”的否定是()A. ∃x0∈(0,+∞),使得B. ∃x0∈(0,+∞),使得C. ∀x∈(0,+∞),均有e x>xD. ∀x∈(0,+∞),均有e x≥x【答案】D【解析】【分析】由特称命题的否定干脆写出结果即可推断。
【详解】命题“∃x0∈(0,+∞),使得<”的否定是:“x∈(0,+∞),使得”故选:D【点睛】本题主要考查了特称命题的否定,属于基础题。
3.若复数(为虚数单位),则的共轭复数()A. B. C. D.【答案】B【解析】因为,所以,应选答案B。
4.设R,则“>1”是“>1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】试题分析:由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件5.设公比为﹣2的等比数列{a n}的前n项和为S n,若S5=,则a4等于()A. 8B. 4C. ﹣4D. ﹣8【答案】C【解析】【分析】由S5=求出,再由等比数列通项公式求出即可。
【详解】由S5=得:,又解得:,所以故选:C【点睛】本题主要考查了等比数列的前n项和公式及等比数列通项公式,考查计算实力,属于基础题。
6.已知函数f(x)=lnx﹣,则f(x)()A. 有微小值,无极大值B. 无微小值有极大值C. 既有微小值,又有极大值D. 既无微小值,又无极大值【答案】B【解析】【分析】求出,对的正负分析,即可推断函数的极值状况。
2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析
2023-2024学年北京市房山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.在三棱柱中,D为棱的中点.设,用基底表示向量,则()A. B. C. D.3.两条直线与之间的距离是()A.5B.1C.D.4.设直线l的方向向量为,两个不同的平面的法向量分别为,则下列说法中错误的是()A.若,则B.若,则C.若,则D.若,则5.如图,四棱锥中,底面ABCD是矩形,,平面ABCD,下列叙述中错误的是()A.平面PCDB.C. D.平面平面ABCD6.已知M为抛物线上一点,M到C的焦点F的距离为6,到x轴的距离为4,则()A.6B.4C.2D.17.下列双曲线中以为渐近线的是()A. B. C.D.8.已知点,若直线上存在点P ,使得,则实数k 的取值范围是()A. B.C.D.9.已知双曲线Q 与椭圆有公共焦点,且左、右焦点分别为,,这两条曲线在第一象限的交点为P ,是以为底边的等腰三角形,则双曲线Q 的标准方程为()A.B.C.D.10.如图,在棱长为2的正方体中,P 为线段的中点,Q 为线段上的动点,则下列结论正确的是()A.存在点Q ,使得B.存在点Q ,使得平面C.三棱锥的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为二、填空题:本题共6小题,每小题5分,共30分。
11.若直线与直线垂直,则a 的值为__________.12.复数的实部为__________.13.已知圆则圆的圆心坐标为__________;若圆与圆内切,则__________.14.如图,在正方体中,直线与直线所成角的大小为__________;平面ABCD 与平面夹角的余弦值为__________.15.已知直线,则与的交点坐标为__________;若直线不能围成三角形,写出一个符合要求的实数a的值__________.16.已知曲线,给出下列四个命题:①曲线关于x轴、y轴和原点对称;②当时,曲线共有四个交点;②当时,③当时,曲线围成的区域内含边界两点之间的距离的最大值是3;④当时,曲线围成的区域面积大于曲线围成的区域面积.其中所有真命题的序号是__________.三、解答题:本题共5小题,共60分。
浙江省温州市2022-2023学年高二上学期期末数学试题(A卷)
2022学年第一学期温州市高二期末教学质量统一检测数学试题(A 卷)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟。
考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上。
2.选择题的答案须用2B 铅笔将答题卷上对应题目的答案涂黑,如要改功,须将原填涂处用橡皮擦净。
3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卷上相应区城内,答案写在本试题卷上无效。
选择题部分一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3,3-是直线的一个方向向量,则该直线的倾斜角为( ) A .6πB .3π C .23π D .56π 2.已知空间的三个不共面的单位向量a ,b ,c ,对于空间的任意一个向量p ,( ) A .将向量a ,b ,c 平移到同一起点,则它们的终点在同一个单位圆上 B .总存在实数x ,y ,使得p xa yb =+C .总存在实数x ,y ,z ,使得()()p xa y a b z a b =+++-D .总存在实数x ,y ,z ,使得()()p xa y a b z a c =+++-3.已知函数()f x 在2x =的附近可导,且()22lim22x f x x →-=--,()22f =,则()f x 在()()2,2f 处的切线方程为( )A .260x y +-=B .220x y --= C.260x y +-=D .220x y -+=4.已知椭圆()222210x y a b a b+=>>的焦点为()1,0F c -,()2,0F c ,且c 是a ,b 的等比中项,则在椭圆上使1290F PF ∠=︒的点P 共有( )A .0个B .2个C .4个D .8个5.已知{}n a 是公差不为0的等差数列,n S 是其前n 项和,则“对于任意*n ∈N ,都是5n S S ≤”是“65a a <的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知椭圆1L :2212516x y +=,椭圆2L 与椭圆1L 的离心率相等,并且椭圆1L 的短轴端点就是椭圆2L 的长轴端点,据此类推:对任意的*n ∈N 且2n ≥,椭圆n L 与椭圆1n L -的离心率相等,并且椭圆1n L -的短轴端点就是椭圆n L 的长轴端点,由此得到一个椭圆列:1L ,2L ,⋅⋅⋅,n L ,则椭圆5L 的焦距等于( )A .4365⎛⎫⨯ ⎪⎝⎭B .4465⎛⎫⨯ ⎪⎝⎭C .2365⎛⎫⨯ ⎪⎝⎭D .2465⎛⎫⨯ ⎪⎝⎭7.正三棱柱111ABC A B C -中,2AB =,13AA =O 为BC 的中点,M 是棱11B C 上一动点,过O 作ON AM ⊥于点N ,则线段MN 长度的最小值为( ) A .364B .62C .334D 38.已知a ,b 为不相等的正实数,则下列命题为真的是( ) A .若e 1ba =+,则ab < B .若11ln a b=-,则a b < C .若()e 1e a b b a =+,则a b <D .若()ln ln 1a b b a =+,则a b <二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设直线1l :1110A x B y C ++=,2l :2220A x B y C ++=,下列说法正确的是( ) A .当12C C ≠时,直线1l 与2l 不重合B .当12210A B A B -≠时,直线1l 与2l 相交C .当12210A B A B -=时,12l l ∥D .当12120A A B B +=时,12l l ⊥10.已知空间向量()2,1,3a =-,()4,2,b x =-,下列说法正确的是( ) A .若a b ⊥,则103x =B .若()32,1,10a b +=-,则1x =C .若a 在b 上的投影向量为13b ,则4x =D .若a 与b 夹角为锐角,则10,3x ⎛⎫∈+∞ ⎪⎝⎭11.如图,已知点P 是椭圆2211612x y +=上第一象限内的动点,1F ,2F 分别为椭圆的左、右焦点,圆心在y 轴上的动圆T 始终与射线1PF ,2PF 相切,切点分别为M ,N ,则下列判断正确的是( )A .4PM PN ==B .212PMPF PF ≤⋅C .PMN △面积的最大值为3D .当点P 坐标为(23,3时,则直线PT 的斜率是2312.已知数列{}n a 的前n 项和为n S ,11a =,且()11431,2,n n n n a a a a n ++⋅=-=⋯,则( )A .13n n a a +<B .51243a <C .1ln 1n n a ⎛⎫<+ ⎪⎝⎭D .17114n S ≤<非选择题部分三、填空题:本大题共4小题,每小题5分,共20分。
广东省东莞市2013-2014学年高二数学上学期期末考试试题 文(扫描版)
广东省东莞市2013-2014学年高二数学上学期期末考试试题文(扫描版)新人教A版东莞2013—2014学年度第一学期期末教学质量检查高二文科数学(A 卷)参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分.)二、填空题(本大题共4小题,每小题5分,共20分.)11.200,10x R x ∃∈-≥ 12. 1 13. 12 14. 22n n - 三、解答题(本大题共6小题,共80分.)15.(本小题满分12分)解:若p 为真命题,则2()40a a ∆=--≥, …………2分解得0a ≤或4a ≥. …………4分若q 为真命题,则0a <;若q ⌝为真命题,则0a ≥; …………6分 ∵p ∧()q ⌝为真命题,∴p 与q ⌝均为真命题, …………8分 即有04,0.a a a ≤≥⎧⎨≥⎩或 …………10分 ∴04a a =≥或. …………12分16.(本小题满分12分)解:(1)由已知sin 2sin cos C c B A b =及正弦定理,得sin 2sin sin cos sin C C B A B=, ………2分 1cos 2A ∴=. …………4分 又0A π<<, …………5分 ∴3A π=. …………6分(2)32323421sin 21==⨯⨯⨯==c c A bc S , …………8分 2=∴c . …………10分32cos 222=-+=∴A bc c b a . …………12分17.(本小题满分14分)解:设每天生产A 型桌子x 张,B 型桌子y 张,利润为z 元, …………1分则约束条件为⎪⎪⎩⎪⎪⎨⎧∈≥∈≥≤+≤+Ny y N x x y x y x ,0,09382① …………4分 目标函数为y x z 30002000+=, …………6分不等式组①所表示的平面区域如右图中的阴影部分.……8分由y x z 30002000+=得:z x y 3000132+-=, 当直线z x y 3000132+-=经过点M 时,截距z 30001最大,即z 最大. …………10分由⎩⎨⎧==⇒⎩⎨⎧=+=+329382y x y x y x ,即M 点的坐标为(2,3). ………12分 130003*********max =⨯+⨯=∴z . …………13分 答:每天应生产A 型桌子2张,B 型桌子3张,才能获得最大利润,最大利润为13000元. ……14分18.(本小题满分14分)解:(1)方法一由题意,有1121233,9,27,a k a a k a a a k =+⎧⎪+=+⎨⎪++=+⎩ …………1分∴1233,6,18.a k a a =+⎧⎪=⎨⎪=⎩ …………2分又∵{}n a 为等比数列,∴2213a a a =,即3618(3)k =+,解得1k =-, ……4分∴31n n S =-.当1n =时,112a S ==, …………5分当2n ≥时,111(31)(31)23n n n n n n a S S ---=-=---=⋅, …………6分显然,1n =时也适合123n n a -=⋅, ∴123n n a -=⋅. …………7分方法二当1n =时,113a S k ==+; …………1分当2n ≥时,111(31)(31)23n n n n n n a S S ---=-=---=⋅. …………3分 ∵数列{}n a 是等比数列,∴213a a =, …………4分 即2333k⨯=+, …………5分解得1k =-, …………6分∴123n n a -=⋅. …………7分(2)将1k =-及123nn a +=⋅,代入21(4)2n n b n a k +=+,得2n n n b =, …………9分123123 (2222)n n n T =++++ ① 234111231 (222222)n n n n n T +-=+++++ ② …………11分 ①-②得:2341111111 (2222222)n n n n T +=+++++- …………12分 11122n n n +=--, …………13分 ∴11222222n n n n n n T -+=--=-. …………14分19.(本小题满分14分)解:(1)由题意,可设椭圆1C 的方程为12222=+bx a y ,抛物线2C 的方程为py x 22=. 42721)33()021()33()021(22222=+=++-+-+-=a ,2=∴a .………1分 又3c =,122=-=∴c a b ,∴椭圆1C 的方程为1422=+x y . …………2分 抛物线2C 的焦点到准线的距离为2,2=∴p , …………3分∴抛物线2C 的方程为y x 42=. …………4分(2)①解:设)4,(211x x A ,)4,(222x x B . 由y x 42=得:241x y =,x y 21/=∴, ∴过点A 的切线AQ 的方程为2111()42x x y x x -=-,即21124x x y x =-. ………5分同理过点B 的切线BQ 的方程为2222()42x x y x x -=-,即22224x x y x =-. …………6分 于是得交点1212(,)24x x x x Q +. …………7分 点Q 恰好在准线1-=y 上,421-=∴x x . ………8分 又21222144x x x x k AB--==124x x +, 所以直线AB 的方程为21121()44x x x y x x +-=-, 化简得121244x x x x y x +=-,即1214x x y x +=+, …………9分 所以直线AB 过定点)1,0(. ………10分② 12(,1)2x x Q +-,∴2121(,1)24x x x QA -=+,2212(,1)24x x x QB -=+, ………11分 所以2221212()(1)(1)444x x x x QA QB -⋅=-+++22121211210162x x x x =++=-+=.……13分QB QA ⊥∴,即点Q 在以线段AB 为直径的圆上. ………14分20.(本小题满分14分)解:(1)当1a =时,32()f x x x x m =+-+.∵函数有三个互不相同的零点,∴320x x x m +-+=即32m x x x =--+有三个互不相等的实数根. …………1分令32()g x x x x =--+,则2()321(31)(1)g x x x x x '=--+=--+. 令()0g x '>,解得113x -<<; 令()0g x '<,解得113x x <->或, …………2分 ∴()g x 在(,1)-∞-和1(,)3+∞上均为减函数,在1(1,)3-上为增函数, …………3分∴[]()=(1)1g x g -=-极小值, …………4分[]15()=()327g x g =极大值, …………5分 ∴m 的取值范围是5(1,)27-. …………6分 (2)∵22()323()()3a f x x a x a x x a '=+-=-+,且0a >, …………7分 ∴当x a <-或3a x >时,()0f x '>; 当3a a x -<<时,()0f x '<. ∴函数()f x 的单调递增区间为(,)a -∞-和(,)3a +∞,单调递减区间为(,)3a a -. …………8分 当[3,6]a ∈时,[1,2]3a ∈,3a -≤-. 又[1,2]x ∈-,∴()f x 的最大值为(1)f -和(2)f 中的较大者. …………9分∵2(1)(2)3390f f a a --=-->,∴[]2()(1)1f x f a a m =-=-+++max . …………10分 要使得()1f x ≤对任意[1,2]x ∈-恒成立,即[]()1f x ≤max ,亦即211a a m -+++≤, 即当[3,6]a ∈时,22m a a ≤--+恒成立. …………12分∵22a a --+在[3,6]a ∈上的最小值为40-, …………13分 ∴m 的取值范围是(,40]-∞-. …………14分。
安徽省滁州市滁州中学2023-2024学年高二上学期期末数学试题
5.若函数
f
(
x)
=
a
ln
x
+
b x
+
c x2
(a
¹
0)
既有极大值也有极小值,则(
).
A. bc > 0
B. ab > 0
C. b2 + 8ac > 0
D. ac < 0
三、填空题
6.设椭圆 C1
:
x2 a2
+
y2
= 1(a
> 1) , C2
:
x2 4
+
y2
= 1 的离心率分别为 e1, e2
.若 e2
(1)当 a = e 时,求曲线 y = f ( x) 在点(1, f (1)) 处的切线与两坐标轴围成的三角形的面
积;
(2)若不等式 f ( x) ³ 1 恒成立,求 a 的取值范围.
20.已知椭圆 C 的方程为
x2 a2
+
y2 b2
= 1(a
>b
> 0) ,右焦点为 F(
2,0) ,且离心率为
6. 3
试卷第31 页,共33 页
16.已知数列 {an }
满足
a1
=
1
,
an+1
=
ìíîaann
+1, n为奇数, + 2, n为偶数.
(1)记 bn = a2n ,写出 b1 , b2 ,并求数列{bn} 的通项公式;
(2)求{an} 的前 20 项和.
17.记
Sn
为数列 {an }
的前
n
项和,已知
a1
高二数学期末考试2012-2013学年A卷
潞城职业高中2012——2013学年第一学期高二数学期末试卷一、选择题(本大题共12个小题,每小题3分,共36分)。
1.点P(-8)到原点的距离等于……………………………………………………( ) A.8 B.4 C.-8 D.02.若直线l 的斜率不存在,则它的倾斜角为…………………………………… ( ) A.0° B.45° C.180° D.90°3.过点A (4,-1)与B (0,7)的直线的斜截式方程是………………………( ) A.y=-2x+7 B.y=-2x-1 C.y=2x+7 D.y=-2x+44.下列直线和x轴平行的是………………………………………………………( ) A.x=0 B.x=3 C.y= 2 D.y=x5.圆(x+2)2+(y-3)2=81的圆心坐标是……………………………………( ) A.(2,3) B. (-2,-3) C. (2,-3) D. (-2,3)6.5名男生和4名女生,组成班级乒乓球混合双打代表队,不同的组队方法为 ( )A.7B.8C.16D.207.两直线4x+y+3=0与x+4y-1=0的位置关系是()。
A.相交 B.平行 C.重合 D.垂直8.若直线和圆相切,则下列说法不正确的是……………………………………( ) A.直线方程和圆方程组成的方程组无解 B.直线和圆只有一个交点 C.圆心到直线的距离等于半径 D.过切点的半径垂直于半径9.已知A (4,-1),B (1,3),则|AB|=…………………………………………( ) A.25 B.5 C.29 D.±510.点A (-2),B (1)的中点坐标是………………………………………………( ) A.a =1,b=-1 B.a =-1,b=-1 C.a =-1,b =1 D.a =1,b =1 11.在直线2x-3y+1=0上的点是…………………………………………………( ) A.(0,0) B.(1,1) C.(2,2) D.(-2,1) 12.过点(1,2)且斜率为3的直线的点斜式方程是………………………………( ) A.y-2=3(x-1) B.y+2=3(x+1) C.y-1=3(x-2) D.y-3=x-2 二.填空题(每题3分,共24分).1.某班级有3名男三好学生,4名女三好学生,从中任意选出一人去领奖,有( )种选法。
上海市上海交通大学附属中学2023-2024学年高二上学期期末考试数学试卷
上海市上海交通大学附属中学2023-2024学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________二、单选题13.已知双曲线G:224-=,直线l过()x y0,2.“直线l平行于双曲线G的渐近线”是“直线l与双曲线G恰有一个公共点”的().A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件14.空间中,设P 是直线l外一点,a 是一个平面,则以下列命题中,错误的是( ).A .过点P 有且仅有一条直线平行于l B .过点P 有且仅有一条直线垂直于lC .过点P 有且仅有一条直线垂直于aD .过点P 有且仅有一个平面垂直于l15.已知00(,)P x y 是圆222:(0)C x y r r +=>内异于圆心的一点,则直线200x x y y r +=与圆C 的位置关系是( )A .相交B .相切C .相离D .不能确定16.在长方体1111ABCD A B C D -中,1AA AD =,():,0AB AD l l =>,E 是棱11A B 的中点,点P 是线段1D E 上的动点,给出以下两个命题:①无论l 取何值,都存在点P ,使得PC BD ^;②无论l 取何值,都不存在点P ,使得直线1AC ^平面PBC .则( ).A .①成立,②成立B .①成立,②不成立C .①不成立,②成立D .①不成立,②不成立三、解答题17.在空间直角坐标系中,设()0,2,3A 、()2,1,6B -、()1,1,5C -、()3,3,4D .(1)设()2,0,8a =--r,b AB AD =+r uuu r uuu r ,求b r 的坐标,并判断a r 、b r 是否平行;(2)求AB uuu r 、AC uuu r 的夹角q ,以及AB uuu r 、AC uuu r 为相邻两边的三角形面积S .18.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为BC 的中点,N 为AB 的中点,P 为1BB 中点.(1)求证:1BD ^平面MNP ;(2)求异面直线1B D 与1C M 所成角的余弦值.19.在如图所示的圆锥中,P 是顶点,O 是底面的圆心,A 、B 是圆周上两点,且【点睛】关键点睛:本题第三问,x 0MQ NQ k +=,联立直线l ¢与双曲线G 21.(1)xOy 平面截曲面C 所得交线是平面见解析。
2023-2024学年北京市石景山区高二上学期期末考试数学试卷+答案解析
2023-2024学年北京市石景山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若直线的倾斜角为,则直线的斜率为()A. B. C. D.2.直线关于x轴对称的直线方程为()A. B. C. D.3.已知,是两个不同的平面,直线m满足,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知双曲线的离心率是2,则()A.12B.C.D.5.用可以组成无重复数字的两位数的个数为()A.25B.20C.16D.156.在空间直角坐标系中,点,则()A.直线坐标平面xOyB.直线坐标平面xOyC.直线坐标平面xOzD.直线坐标平面xOz7.已知直线,直线若,则实数()A. B. C. D.38.棱长为2的正方体中,P是中点,则异面直线PD与所成角的余弦值是()A. B. C. D.9.P为直线上一点,过P总能作圆的切线,则k的最小值()A. B. C. D.10.庑殿图是中国古代传统建筑中的一种屋顶形式,多用于宫殿、坛庙、重要门楼等高级建筑上,庑殿的基本结构包括四个坡面,坡面相交处形成5根屋脊,故又称“四阿殿”或“五脊殿”.图2是根据庑殿顶构造的多面体模型,底面ABCD是矩形,且四个侧面与底面的夹角均相等,则A. B.C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,的系数为__________.12.直线与直线之间的距离为__________.13.已知圆的半径为3,则a的值为__________.14.方程表示的曲线是__________,其标准方程是__________.15.如图,在正四棱柱中,为棱上的一个动点,给出下列四个结论:①;②三棱锥的体积为定值;③存在点E,使得平面;④存在点E,使得平面其中所有正确结论的序号是__________.三、解答题:本题共5小题,共60分。
北京市西城区2022高二数学上学期期末考试试题(含解析)
【详解】每年的费用是首项为 ,公差为 的等差数列,所以总费用
.平均费用为 ,当且仅当 时,等号成立,也即 时,该渔船年平均花费最低.
故答案为:(1). (2).
【点睛】本小题主要考查等差数列前 项和,考查数列在实际生活中的应用,考查数列最值的求法,属于基础题.
【分析】
求得 , , ,由此判断出正确选项.
【详解】由于 ,所以 ,所以 ,即三个数为 .而 , ,所以数列 , , 不是等差数列,也不是等比数列
故选:D
【点睛】本小题主要考查新定义函数的理解,考查等差数列、等比数列的性质,属于基础题.
9.设有四个数的数列 ,该数列前 项成等比数列,其和为m,后 项成等差数列,其和为 . 则实数m的取值范围为( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【解析】
【详解】当“直线a和直线b相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立;
当“平面α和平面β相交”,则“直线a和直线b可以没有公共点”,即必要性不成立.
故选A.
【此处有视频,请去附件查看】
【详解】(Ⅰ)依题意 , ,
解得 , ,
所以椭圆 的方程为 .
(Ⅱ)设点 ,因为点 在椭圆上,所以 …①,
因为 ,所以 ,得 …②,
由①②消去 得, ,
解得 (舍), ,
代入方程②得 ,所以 ,
所以 ,又 ,
所以 的面积
【点睛】本小题主要考查椭圆 标准方程的求法,考查椭圆内的三角形面积问题,属于基础题.
【答案】C
浙江省宁波市镇海中学2021-2022学年高二上学期期末考试 数学试题含答案
16.己知不等式 有且只有两个整数解,则实数a的范围为___________.
【答案】
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知 的展开式中前三项的二项式系数之和为46,
(1)求n;
(2)求展开式中系数最大的项.
【答案】(1)9(2)
A.任意 B.任意
C.任意 D.任意
【答案】BCD
三、填空题:本题共4小题,每小题5分,共20分.
13. 的展开式中所有项的系数和为_________.
【答案】 ##0.015625
14.函数 在 处 切线方程为_________.
【答案】
15.已知某次数学期末试卷中有8道4选1的单选题,学生小王能完整做对其中5道题,在剩下的3道题中,有2道题有思路,还有1道完全没有思路,有思路的题做对的概率为 ,没有思路的题只好从4个选项中随机选一个答案.小王从这8题中任选1题,则他做对的概率为___________.
【答案】C
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.在 的展开式中,若第六项为二项式系数最大的项,则n的值可能为()
A. 11B. 10C. 9D. 8
【答案】ABC
10.若 ,则一定有()
A. B.
镇海中学2021学年第一学期期末考试
高二年级数学试卷
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.用1,2,3,4这4个数字可写出()个没有重复数字的三位数.
A.24B.12C.81D.64
2020-2021学年高二上学期期末考试数学试卷(含解析)
2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
贵州省六盘水市盘州市第一中学2023-2024学年高二上学期期末考试数学试题
贵州省六盘水市盘州市第一中学2023-2024学年高二上学期期末考试数学试题一、单选题1.已知集合{}{}3,0,5,0A B x x =-=>,则A B =I ( )A .{}3-B .{}3,0-C .{}5D .{}0,5 2.已知复数31213i,i (,)z z a b a b =-+=+∈R 且12z z =,其中i 为虚数单位,则a b +=() A .-4 B .-3 C .-2 D .03.抛物线28y x =的焦点到其准线的距离为( )A .132 B .116 C .18 D .44.若方程222141x y m m -=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,5.数列262,4,,20,3--L 的一个通项公式可以是( )A .()12nn a n =-⋅ B .()31n n n na n ⋅-=-C .()1221n n n a n +-=-⋅ D .()311n n n a n -=-⋅6.函数2cos 1()22x x x f x --=-的部分图象大致是A .B .C .D .7.已知向量(1,2,1),(,1,)m n t t =-=-r r ,且m ⊥r 平面,n α⊥r 平面β,若平面α与平面β的夹角t 的值为( ) A .12或-1 B .15或1 C .-1或2 D .12- 8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为( )A .3B .4C .5D .6二、多选题9.在等比数列{n a }中,262,32a a ==,则{n a }的公比可能为( )A .1-B .2-C .2D .410.若直线a ⊄平面α,且直线a 不平行于平面α.给出下列结论正确的是( )A .α内的所有直线与a 异面B .α内存在直线与a 相交C .α内存在唯一的直线与a 平行D .α内不存在与a 平行的直线 11.设点1F ,2F 分别为椭圆C :22195x y +=的左、右焦点,点P 是椭圆C 上任意一点,若使得12PF PF m ⋅=u u u r u u u u r 成立的点恰好是4个,则实数m 的取值可以是( )A .1B .3C .5D .412.已知抛物线C :212y x =,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点(4,3)M ,则下列说法正确的是( )A .抛物线C 的准线方程为3x =-B .若7PF =,则△PMF 的面积为32C .|PF PM -|D .△PMF 的周长的最小值为7三、填空题13.设,a b r r 为单位向量,且||1a b +=r r ,则||a b -=r r .14.过点(31)A -,且在两坐标轴上截距相等的直线方程是. 15.已知四位数4521,任意交换两个位置的数字之后,两个奇数相邻的概率为. 16.已知各项均为正数的递增等差数列{}n a ,其前n 项和为n S ,公差为d,若数列也是等差数列,则182a d ++的最小值为.四、解答题17.已知等差数列{}n a 的前n 项和为312,15,222n S S S ==.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 18.已知半径为2的圆C 的圆心在射线(0)y x x =>上,点(1,1)A -在圆C 上.(1)求圆C 的标准方程;(2)求过点(1,0)B -且与圆C 相切的直线方程.19.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,设ABC V 的面积为S﹐且满足222)S a b c =+-. (1)求角C 的大小;(2)求sin sin A B ⋅的最大值.20.已知双曲线C :22212x y b-=(0b >),直线l 与双曲线C 交于P ,Q 两点. (1)若点()4,0是双曲线C 的一个焦点,求双曲线C 的渐近线方程;(2)若点P的坐标为(),直线l 的斜率等于1,且83PQ =,求双曲线C 的离心率. 21.如图,在长方体1111ABCD A B C D -中,14AB AA ==,2AD =,14AE AB =u u u r u u ur .(1)证明:AC ⊥平面1DD E ;(2)求直线1D E 与平面1DEC 所成角的正弦值.22.已知椭圆C :()222210x y a b a b+=>>的短轴长和焦距相等,长轴长是 (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 相交于P ,Q 两点,原点O 到直线l .点M 在椭圆C 上,且满足OM OP OQ =+uuu r uu u r uuu r ,求直线l 的方程.。
山东省泰安市2021-2022学年高二上学期期末考试数学试题
高二数学试题第页(共4页)试卷类型:A高二年级考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线3x -y -1=0的倾斜角α=A.30° B.60° C.120° D.150°2.已知椭圆x 249+y 224=1的焦点分别为F 1,F 2,椭圆上一点P 与焦点F 1的距离等于6,则△PF 1F 2的面积为A.24B.36C.48D.603.在各项均为正数的等比数列{a n }中,若a 1a 7=9,则(a 2a 6)2-a 4=A.6 B.12 C.56 D.784.已知直线l 1:x +(1+a )y +a -2=0与l 2:ax +2y +8=0平行,则a 的值为A.1 B.-2 C.-23 D.1或-25.如图,在三棱锥S -ABC 中,E ,F 分别为SA ,BC 的中点,点G 在EF 上,且满足EG GF =2,若 SA =a , SB =b , SC =c ,则 SG =A.13a -12b +16c B.16a +13b +13c C.16a -13b +13c D.13a +12b +16c 2022.011高二数学试题第页(共4页)6.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且渐近线经过点(1,-2),则此双曲线的方程为A.x 24-y 216=1 B.x 24-y 2=1 C.x 2-y 24=1 D.x 216-y 24=17.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文D.戊分得25文,己分得28文8.已知曲线C :y =-4-(x -1)2与直线l :mx +y -4m -2=0(m ∈R )总有公共点,则m 的取值范围是A.[25,125] B.[25,2] C.[-2,-25] D.[-125,-25]二、选择题:本题共4小题,每小题5分,共20分。
浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
2020-2021学年山东省菏泽市高二(上)期末数学试卷(A卷) (解析版)
2020-2021学年山东省菏泽市高二(上)期末数学试卷(A卷)一、单项选择题(共8小题).1.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A.98B.99C.100D.1012.“a=﹣1”是“直线x+ay+6=0和直线(a﹣2)x+3y+2a=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在正四面体P﹣ABC中,棱长为1,且D为棱AB的中点,则的值为()A.B.C.D.4.日常生活的饮用水通常是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t水净化到纯净度为x%时所需费用(单位:元)为.设将1t水净化到纯净度为92%,98%时,所需净化费用的瞬时变化率分别为t1,t2,则=()A.B.16C.D.255.已知双曲线的离心率为,则点(2,0)到C的渐近线的距离为()A.B.2C.D.6.如图,在菱形ABCD中,AB=2,∠DAB=60°,E是AB的中点,将△ADE沿直线DE 翻折至的位置△A1DE,使得面A1DE⊥面BCDE,则点A1到平面BCDE的距离为()A.1B.2C.D.7.若函数e x f(x)(e=2.718⋅⋅⋅,e为自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数具有M性质的为()A.f(x)=x2﹣1B.f(x)=x3C.f(x)=sin x D.f(x)=lnx 8.某养猪场2021年年初猪的存栏数1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头.设该养猪场从今年起每年年初的计划存栏数依次为a1,a2,a3,….则2035年年底存栏头数为()(参考数据:1.0814≈2.9,1.0815≈3.2,1.0816≈3.4)A.1005B.1080C.1090D.1105二、多项选择题(共4小题).9.已知直线l:mx﹣(2﹣m)y+1﹣m=0,圆C:x2+y2﹣2x=0,则下列结论正确的是()A.直线l与圆C恒有两个公共点B.圆心C到直线l的最大距离是C.存在一个m值,使直线l经过圆心CD.当m=1时,圆C与圆x2+(y﹣1)2=1关于直线l对称10.某地2020年12月20日至2021年1月23的新冠肺炎每日确诊病例变化曲线如图所示.若该地这段时间的新冠肺炎每日的确诊人数按日期先后顺序构成数列{a n},{a n}的前n项和为S n,则下列说法正确的是()A.数列{a n}是递增数列B.数列{S n}不是递增数列C.数列{a n}的最大项为a11D.数列{S n}的最大项为S1111.设函数f(x)=x(x﹣1)(x﹣a),则下列结论正确的是()A.当a=﹣4时,函数f(x)在上的平均变化率为B.当a=1时,函数f(x)的图象与直线y=﹣1有1个交点C.当a=2时,函数f(x)的图象关于点(0,1)中心对称D.若函数f(x)有两个不同的极值点x1,x2,则当a≥2时,f(x1)+f(x2)≤0 12.已知椭圆C:的左、右焦点分别为F1,F2,其长轴长是短轴长的,若点P是椭圆上不与F1,F2共线的任意点,且△PF1F2的周长为16,则下列结论正确的是()A.C的方程为B.C的离心率为C.双曲线的渐近线与椭圆C在第一象限内的交点为D.点Q是圆x2+y2=25上一点,点A,B是C的左、右顶点(Q不与A,B重合),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,则25k1=16k2三、填空题(共4小题).13.若点是曲线上一点,直线l为点P处的切线,则直线l 的方程为.14.两圆(x+1)2+y2=9和x2+y2+4x﹣4y=0相交于两点M,N,则线段MN的长为.15.正方体ABCD﹣A1B1C1D1的棱AB和A1D1的中点分别为E,F,则直线EF与平面AA1D1D 所成角的余弦值为.16.已知抛物线C:y2=4x的焦点F与双曲线的右焦点相同,则双曲线的方程为,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A,B 两点,直线l2与抛物线C交于D,E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为.四、解答题(共6小题).17.已知圆C的圆心在直线y=x上,圆心到x轴的距离为2,且截y轴所得弦长为.(1)求圆C的方程;(2)若圆C上至少有三个不同的点到直线l:y=kx的距离为,求实数k的取值范围.18.已知数列{a n}的前n项和是A n,数列{b n}的前n项和是B n,若a1=1,a n+1=2a n+1,n∈N*,再从三个条件:①B n=﹣n2+21n;②B n+1﹣b n=B n﹣2,b1=20;③b n=22﹣2log2(a n+1),中任选一组作为已知条件,完成下面问题的解答.(1)求数列{a n},{b n}的通项公式;(2)定义:a*b=,记c n=a n*b n,求数列{c n}的前n项和T n.19.如图,一海岛O,离岸边最近点B的距离是120km,在岸边距点B300km的点A处有一批药品要尽快送达海岛.已知A和B之间有一条快速路,现要用海陆联运的方式运送这批药品,若汽车时速为100km,快艇时速为50km.设点C到点B的距离为x.(参考数据:.)(1)写出运输时间t(x)关于x的函数;(2)当点C选在何处时运输时间最短?20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,BC=4,M为线段AD上一点,,N为PC的中点.(1)证明:MN∥平面PAB;(2)若平面AMN与平面PAD所成的锐二面角的正弦值为,求直线MN与直线PA 所成角的余弦值.21.已知P是圆上任意一点,F2(1,0),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)记曲线C与x轴交于A,B两点,在直线x=4上任取一点T(4,m)(m≠0),直线TA,TB分别交曲线C于M,N两点,判断直线MN是否过定点,若是,求出该定点的坐标;若不是,请说明理由.22.已知函数f(x)=x2+ax+2lnx(a为常数).(1)当a≤4时,讨论函数f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,且|x1﹣x2|≤,证明:|f(x1)﹣f(x2)|≤﹣4ln2.参考答案一、单项选择题(共8小题).1.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A.98B.99C.100D.101解:等差数列﹣5,﹣9,﹣13…中,a1=﹣5,d=﹣9﹣(﹣5)=﹣4∴a n=﹣5+(n﹣1)×(﹣4)=﹣4n﹣1令﹣401=﹣4n﹣1,得n=100∴﹣401是这个数列的第100项.故选:C.2.“a=﹣1”是“直线x+ay+6=0和直线(a﹣2)x+3y+2a=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:直线x+ay+6=0和直线(a﹣2)x+3y+2a=0平行,由a(a﹣2)﹣3=0,解得a=3或﹣1.经过验证a=3时两条直线重合,舍去.∴“a=﹣1”是“直线x+ay+6=0和直线(a﹣2)x+3y+2a=0平行”的充要条件.故选:C.3.在正四面体P﹣ABC中,棱长为1,且D为棱AB的中点,则的值为()A.B.C.D.解:如图所示,P﹣ABC为正四面体,则∠APC=∠BPC=∠APB=60°,D是棱AB中点,所以=(+),所以•=•(+)=•+•=×1×1×cos60°+×1×1×cos60°=.故选:D.4.日常生活的饮用水通常是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t水净化到纯净度为x%时所需费用(单位:元)为.设将1t水净化到纯净度为92%,98%时,所需净化费用的瞬时变化率分别为t1,t2,则=()A.B.16C.D.25解:因为,所以,故,,故.故选:B.5.已知双曲线的离心率为,则点(2,0)到C的渐近线的距离为()A.B.2C.D.解:双曲线的离心率为,可得,所以==1,所以双曲线的渐近线方程为x±y=0,点(2,0)到C的渐近线的距离为:=.故选:A.6.如图,在菱形ABCD中,AB=2,∠DAB=60°,E是AB的中点,将△ADE沿直线DE翻折至的位置△A1DE,使得面A1DE⊥面BCDE,则点A1到平面BCDE的距离为()A.1B.2C.D.解:在菱形ABCD中,AB=2,∠DAB=60°,所以△ABD是边长为2的等边三角形,又因为E为AB的中点,所以DE⊥A1E,又面A1DE⊥面BCDE,面A1DE∩面BCDE=DE,A1E⊂平面A1DE,所以A1E⊥平面BCDE,又A1E=,故A1E为点A1到平面BCDE的距离为1.故选:A.7.若函数e x f(x)(e=2.718⋅⋅⋅,e为自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数具有M性质的为()A.f(x)=x2﹣1B.f(x)=x3C.f(x)=sin x D.f(x)=lnx解:对于A:f(x)=x2﹣1,则g(x)=e x f(x)=e x(x2﹣1),g′(x)=e x(x2﹣1)+2xe x=e x(x2+2x﹣1)≥0在实数集R上不恒成立,∴g(x)=e x f(x)在定义域R上不是增函数,对于B:f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,当x>﹣3时,g′(x)>0,∴g(x)=e x f(x)在定义域R上先减后增;对于C:f(x)=sin x,则g(x)=e x sin x,g′(x)=e x(sin x+cos x)=e x sin(x+),显然g(x)不单调;对于D:f(x)=lnx,则g(x)=e x lnx,则g′(x)=e x(lnx+)>0,函数g(x)递增,∴具有M性质的函数的为D,故选:D.8.某养猪场2021年年初猪的存栏数1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头.设该养猪场从今年起每年年初的计划存栏数依次为a1,a2,a3,….则2035年年底存栏头数为()(参考数据:1.0814≈2.9,1.0815≈3.2,1.0816≈3.4)A.1005B.1080C.1090D.1105解:由题意得:a1=1200,a2=1200×1.08﹣100,a3=1200×1.082﹣100×1.08﹣100,×1.08﹣100,1.082﹣100×1.08﹣100,…∴2035年年底存栏头数为:﹣100(1.0814+1.0813+1.0812+…+1.08+1)≈1200×3.2﹣100×=1090.故选:C.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知直线l:mx﹣(2﹣m)y+1﹣m=0,圆C:x2+y2﹣2x=0,则下列结论正确的是()A.直线l与圆C恒有两个公共点B.圆心C到直线l的最大距离是C.存在一个m值,使直线l经过圆心CD.当m=1时,圆C与圆x2+(y﹣1)2=1关于直线l对称解:由直线l:mx﹣(2﹣m)y+1﹣m=0,即m(x+y﹣1)﹣2y+1=0,得,解得,则直线l过定点P(,),圆C:x2+y2﹣2x=0化为(x﹣1)2+y2=1,圆心坐标为C(1,0),∵|PC|=<1,点P在圆C内部,∴直线l与圆C恒有两个公共点,故A正确;圆心C到直线l的最短距离为|PC|=,故B错误;∵直线系方程mx﹣(2﹣m)y+1﹣m=0不包含直线x+y﹣1=0(无论m取何值),而经过P(,)的直线只有x+y﹣1=0过C(1,0),故C错误;当m=1时,直线l为x﹣y=0,圆C的圆心坐标为(1,0),半径为1,圆x2+(y﹣1)2=1的圆心坐标为(0,1),半径为1,两圆的圆心关于直线x﹣y=0对称,半径相等,则当m=1时,圆C与圆x2+(y﹣1)2=1关于直线l对称,故D正确.故选:AD.10.某地2020年12月20日至2021年1月23的新冠肺炎每日确诊病例变化曲线如图所示.若该地这段时间的新冠肺炎每日的确诊人数按日期先后顺序构成数列{a n},{a n}的前n项和为S n,则下列说法正确的是()A.数列{a n}是递增数列B.数列{S n}不是递增数列C.数列{a n}的最大项为a11D.数列{S n}的最大项为S11解:因为12月27日新增确诊人数小于12月26日新增确证人数,即a7>a8,所以{a n}不是递增数列,所以A错误;因为1月22日新增确诊病例为0,即S33>S34,所以{S n}不是递增数列,所以B错误;因为12月31日新增确诊病例最多,从12月20日算起,12月31日是第11天,所以数列{a n}的最大项是a11,所以C选项正确,数列{S n}的最大项是最后一项,所以选项D错误,故选:BC.11.设函数f(x)=x(x﹣1)(x﹣a),则下列结论正确的是()A.当a=﹣4时,函数f(x)在上的平均变化率为B.当a=1时,函数f(x)的图象与直线y=﹣1有1个交点C.当a=2时,函数f(x)的图象关于点(0,1)中心对称D.若函数f(x)有两个不同的极值点x1,x2,则当a≥2时,f(x1)+f(x2)≤0解:对于A,当a=﹣4时,f(x)=x(x﹣1)(x+4),则f(x)在上的平均变化率为,故A正确;对于B,当a=1时,f(x)=x(x﹣1)2=x3﹣2x2+x,则f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),令f'(x)=0,则x=或x=1,∴当x>1或x<时,f'(x)>0;当<x<1时,f'(x)<0,∴f(x)在和(1,+∞)上单调递增,在上单调递减,∵,结合f(x)的单调性可知,方程f(x)=﹣1有一个实数根,故B正确;对于C,当a=2时,f(x)=x(x﹣1)(x﹣2)=(x﹣1)[(x﹣1)2﹣1]=(x﹣1)3+(x﹣1),则f(x)+f(﹣x)=(x﹣1)3+(x﹣1)+(﹣x﹣1)3+(﹣x﹣1)=﹣2(3x2+2)≠2,∴f(x)的图象不关于点(0,1)中心对称,故C错误;对于D,f(x)=x(x﹣1)(x﹣a),f′(x)=(x﹣1)(x﹣a)+x(2x﹣a﹣1)=3x2﹣2(a+1)x+a,令f′(x)=0,则3x2﹣2(a+1)x+a=0,∵△=4(a2﹣a+1)=(2a﹣1)2+3>0,且函数f(x)有两个不同的极值点x1,x2,∴x1,x2为方程3x2﹣2(a+1)x+a=0的两个实数根,则,∴f(x1)+f(x2)=x1(x1﹣1)(x1﹣a)+x2(x2﹣1)(x2﹣a)===,∵a⩾2,∴f(x1)+f(x2)⩽0,故D正确.故选:ABD.12.已知椭圆C:的左、右焦点分别为F1,F2,其长轴长是短轴长的,若点P是椭圆上不与F1,F2共线的任意点,且△PF1F2的周长为16,则下列结论正确的是()A.C的方程为B.C的离心率为C.双曲线的渐近线与椭圆C在第一象限内的交点为D.点Q是圆x2+y2=25上一点,点A,B是C的左、右顶点(Q不与A,B重合),设直线PB,QB的斜率分别为k1,k2,若A,P,Q三点共线,则25k1=16k2解:根据题意可得,解得a=5,b=4,c=3,对于A:椭圆的方程为+=1,即A正确;对于B:e==,即B错误;对于C:双曲线的渐近线为y=±x=±x,联立,且x>0,y>0,解得x=,y=,∴双曲线的渐近线与椭圆C在第一象限内的交点为,即C正确;对于D:由题意知,A(﹣5,0),B(5,0),设P(x1,y1),则k1=,∵Q在圆x2+y2=25上,且A,P,Q三点共线,∴AQ⊥BQ,∴k2==,∴===,即25k1=16k2,故选项D正确.故选:ACD.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.若点是曲线上一点,直线l为点P处的切线,则直线l 的方程为2x+3y﹣π=0.解:由,得y′=﹣sin(),∴,又,∴直线l的方程为y=,即2x+3y﹣π=0.故答案为:2x+3y﹣π=0.14.两圆(x+1)2+y2=9和x2+y2+4x﹣4y=0相交于两点M,N,则线段MN的长为.解:根据题意,设圆C为:(x+1)2+y2=9,其圆心C为(﹣1,0),半径r=3,圆C:(x+1)2+y2=9,即x2+y2+2x﹣8=0,联立,则有2x﹣4y+8=0,即x﹣2y+4=0,即两圆公共弦MN所在直线的方程为x﹣2y+4=0,圆心C到直线x﹣2y+4=0的距离d==,则|MN|=2×=2×=.故答案为:.15.正方体ABCD﹣A1B1C1D1的棱AB和A1D1的中点分别为E,F,则直线EF与平面AA1D1D 所成角的余弦值为.解:如图,在正方体ABCD﹣A1B1C1D1中,AB⊥平面AA1D1D,连接AF,则∠AFE为直线EF与平面AA1D1D所成角.设正方体的棱长为2a,则AE=A1F=a,AF=a,EF=a,∴cos∠AFE==.即直线EF与平面AA1D1D所成角的余弦值为.故答案为:16.已知抛物线C:y2=4x的焦点F与双曲线的右焦点相同,则双曲线的方程为,过点F分别作两条直线l1,l2,直线l1与抛物线C 交于A,B两点,直线l2与抛物线C交于D,E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为24.解:由抛物线的方程可得F(1,0),所以c=1,即,解得λ=4,所以双曲线的方程为:,由题意设直线l1的方程为:y=k1(x﹣1),直线l2的方程为:y=k2(x﹣1),则k,联立方程,消去y整理可得:k x,设A(x1,y1),B(x2,y2),则x,同理可得x,由抛物线的性质可得|AB|=x,|DE|=x,所以|AB|+|DE|=8+=8+,当且仅当k时取等号,此时|AB|+|DE|的最小值为24,故答案为:24.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知圆C的圆心在直线y=x上,圆心到x轴的距离为2,且截y轴所得弦长为.(1)求圆C的方程;(2)若圆C上至少有三个不同的点到直线l:y=kx的距离为,求实数k的取值范围.解:(1)设圆心为(t,t),半径为r,根据题意圆心到x轴的距离为2,且截y轴所得弦长为,可得,所以圆C的方程为(x﹣2)2+(y﹣2)2=18或(x+2)2+(y+2)2=18.(2)由(1)知圆C的圆心为(﹣2,﹣2)或(2,2),半径为,由圆C上至少有三个不同的点到直线l:y=kx的距离为,可知圆心到直线l:y=kx的距离:.即,所以1+k2﹣4k≤0,解得,所以直线l斜率的取值范围为.18.已知数列{a n}的前n项和是A n,数列{b n}的前n项和是B n,若a1=1,a n+1=2a n+1,n∈N*,再从三个条件:①B n=﹣n2+21n;②B n+1﹣b n=B n﹣2,b1=20;③b n=22﹣2log2(a n+1),中任选一组作为已知条件,完成下面问题的解答.(1)求数列{a n},{b n}的通项公式;(2)定义:a*b=,记c n=a n*b n,求数列{c n}的前n项和T n.解:(1)由a n+1=2a n+1,得a n+1+1=2(a n+1),又a1=1,则a1+1=2,∴数列{a n+1}是以2为首项,2为公比的等比数列,∴即.若选①当n=1时,b1=B1=20,当n≥2时,b n=B n﹣B n﹣1=22﹣2n,∴b n=22﹣2n.若选②由B n+1﹣b n=B n﹣2得b n+1﹣b n=﹣2,所以数列{b n}是以20为首项,﹣2为公差的等差数列,b n=22﹣2n.若选③b n=22﹣2log2(a n+1)=22﹣2n.(2)由(1)知,∴当1≤n≤3时,,当n≥4时,,所以:.19.如图,一海岛O,离岸边最近点B的距离是120km,在岸边距点B300km的点A处有一批药品要尽快送达海岛.已知A和B之间有一条快速路,现要用海陆联运的方式运送这批药品,若汽车时速为100km,快艇时速为50km.设点C到点B的距离为x.(参考数据:.)(1)写出运输时间t(x)关于x的函数;(2)当点C选在何处时运输时间最短?解:(1)由题意知,|AC|=300﹣x,∴;(2),令t'(x)=0,得,当时,t'(x)<0,故f(x)单调递减,当时,t'(x)>0,故f(x)单调递增,所以时t(x)取最小值,所以当点C选在距B点68km时运输时间最短.20.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,BC=4,M为线段AD上一点,,N为PC的中点.(1)证明:MN∥平面PAB;(2)若平面AMN与平面PAD所成的锐二面角的正弦值为,求直线MN与直线PA 所成角的余弦值.【解答】(1)证明:∵,AD=3,∴AM=2,取BP的中点T,连接AT,TN,∵N为PC的中点,∴TN∥BC,=AM,又AD∥BC,故TN∥AM,∴四边形AMNT为平行四边形,∴MN∥AT,∵AT⊂平面PAB,MN⊄平面PAB,∴MN∥平面PAB.(2)解:取BC的中点E,连接AE,∵AB=AC,∴AE⊥BC,∴AE⊥AD,,以A为原点,AE,AD,AP所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,设P(0,0,h),则A(0,0,0),,∴,设平面AMN的法向量为,则,即,令x=h,则y=0,z=﹣,∴,又平面PAD的法向量为,且平面AMN与平面PAD所成的锐二面角的正弦值为,∴|cos<,>|=||=||=,解得h=2,∴P(0,0,2),,∴,设直线MN与直线PA所成角为θ,则cosθ=|cos<,>|=||==,∴直线MN与直线PA所成角的余弦值为.21.已知P是圆上任意一点,F2(1,0),线段PF2的垂直平分线与半径PF1交于点Q,当点P在圆F1上运动时,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)记曲线C与x轴交于A,B两点,在直线x=4上任取一点T(4,m)(m≠0),直线TA,TB分别交曲线C于M,N两点,判断直线MN是否过定点,若是,求出该定点的坐标;若不是,请说明理由.解:(1)由已知|QF1|+|QF2|=|QF1|+|QP|=|PF1|=4,∴点Q的轨迹是以为F1,F2焦点,长轴长为4的椭圆,故2a=4,a=2,c=1,b2=a2﹣c2=3,∴曲线C的方程为.(2)由(1)可得A(﹣2,0),B(2,0),AT:,BT:,将与联立,消去y整理得(m2+27)x2+4m2x+4m2﹣108=0,∴,∴,∴,故,同理,当m≠±3时,直线MN方程为,直线MN恒过定点(1,0);当m=3时,,直线MN:过点(1,0);同理可知,当m=﹣3时直线MN恒过点(1,0),综上,直线MN恒过定点(1,0).22.已知函数f(x)=x2+ax+2lnx(a为常数).(1)当a≤4时,讨论函数f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,且|x1﹣x2|≤,证明:|f(x1)﹣f(x2)|≤﹣4ln2.解:(1)∵f(x)=x2+ax+2lnx,x∈(0,+∞),∴,设g(x)=2x2+ax+2,x∈(0,+∞),当﹣4≤a≤4时,△≤0,2x2+ax+2≥0成立,则有f'(x)>0,所以函数f(x)在(0,+∞)单调递增,当a<﹣4时,△>0,由2x2+ax+2>0得x>或x<(舍),由2x2+ax+2<0得<x<,令﹣4+>0,解得:a>4(舍)或a<﹣4,故﹣4≤a<﹣4时,<0,故f(x)在(0,+∞)递增,a<﹣4时,f(x)在(,+∞)单调递增,在(0,)单调递减,综上:当﹣4≤a≤4,时,函数f(x)在(0,+∞)的单调递增,当a<﹣4时,函数f(x)在(,+∞)单调递增,在(0,)单调递减;(2)证明:由(1)知函数f(x)的两个极值点x1,x2满足2x2+ax+2=0,∴,不妨设0<x1<1<x2,则f(x)在(x1,x2)上是减函数,故f(x1)>f(x2),∴==,令,则t>1,又,即,解得1<x2≤2,故,∴1<t≤4,设,则,∴h(t)在(1,4]上为增函数,∴,所以.。
广东省汕头市潮阳区2023-2024学年高二上学期期末考试 数学含答案
潮阳区2023—2024学年度第一学期高二级教学质量监测试卷数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动用橡皮擦千净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡对应答题区域上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.拼音chao 所有字母组成的集合记为A ,拼音yang 所有字母组成的集合记为B ,则A B = ()A .{}cB .{}hC .{}a D .{}02.设31iiz +=,则z =()A .1B .CD .23.已知A 为抛物线C :22y px =(0p >)上一点,点A 到C 的焦点的距离为8,到y 轴的距离为5,则p =()A .2B .3C .6D .94.已知函数()21log 3xf x x ⎛⎫=- ⎪⎝⎭,若实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值()A .恒为正B .等于0C .恒为负D .不大于05.设22tan 251tan 25a ︒=-︒,2sin 25cos 25b =︒︒,c =,则有()A .b c a <<B .a b c<<C .a c b<<D .c b a<<6.若等差数列{}n a 的前项和为n S ,且10a >,3100a a +>,670a a <,则满足0n S >的最大自然数n 的值为()A .6B .7C .12D .137.已知函数()()ln ln 2f x x x =+-,则()A .()f x 在()0,2单调递增B .()f x 在()0,2单调递减C .()y f x =的图像关于点()1,0对称D .()y f x =的图像关于直线1x =对称8.如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为1S ;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为2S .以此类推,操作n 次,若1220232024n S S S ++⋅⋅⋅+≥,则n 的最小值是()A .12B .11C .10D .9二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,至少有两项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.若直线y b =+与圆221x y +=相切,则b 的取值可以是()A .2-B .C .2D 10.已知一组样本数据1x ,2x ,…,15x ,其中2i x i =(1,2,,15i =⋅⋅⋅),由这组数据得到另一组新的样本数据1y ,2y ,…,15y ,其中20i i y x =-,则()A .两组样本数据的样本方差相同B .两组样本数据的样本平均数相同C .1y ,2y ,…,15y 样本数据的第30百分位数为10-D .将两组数据合成一个样本容量为30的新的样本数据,该样本数据的平均数为511.在长方体1111ABCD A B C D -中,已知4AB =,12BC AA ==,点P 在线段1AD 上运动(不含端点),则下列说法正确的是()A .4,BP ⎡∈⎣B .三棱锥111B A BC -的体积为83C .平面11CD P ⊥平面1B CPD .若点P 是线段1AD 的中点,则三棱锥P ABD -的外接球的表面积为20π12.设1F ,2F 为椭圆C :2212516x y +=的两个焦点,()00,P x y 为C 上一点且在第一象限,()11,I x y 为12F PF △的内心,且12F PF △内切圆半径为1,则()A .2IP =B .083y =C .OI =D .O 、I 、P 三点共线第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.将函数sin y x =的图象纵坐标不变,横坐标扩大为原来的3倍,则得到了函数为______.14.已知数列{}n a 为等比数列,11a =,516a =,则3a =______.15.如图,正方形ABCD 中,2DE EC =,P 是线段BE 上的动点且AP xAB y AD =+ (0x >,0y >),则31x y+的最小值为______.16.定义:点P 为曲线L 外的一点,A ,B 为L 上的两个动点,则APB ∠取最大值时,APB ∠叫点P 对曲线L 的张角.已知点P 为双曲线C :2218y x -=上的动点,设P 对圆M :()2231x y -+=的张角为θ,则cos θ的最小值为______.四、解答题:本题共6小题,第17题满分10分,其它5个小题满分均为12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2sin b A a B =.(1)求A ;(2)若2a =,ABC △,求ABC △的周长.18.(12分)2023年上海书展于8月16日至22日在上海展览中心举办.展会上随机抽取了50名观众,调查他们每个月用在阅读上的时长,得到如图所示的频率分布直方图:(1)求x 的值,并估计这50名观众每个月阅读时长的平均数;(2)用分层抽样的方法从[)20,40,[)80,100这两组观众中随机抽取6名观众,再若从这6名观众中随机抽取2人参加抽奖活动,求所抽取的2人恰好都在[)80,100这组的概率.19.(12分)已知正项数列{}n a 的前n 项和n S ,满足:212nn a S +⎛⎫= ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)记n b =,设数列{}n b 的前n 项和为n T ,求n T .20.(12分)如图,已知长方体1AC 中,1AB BC ==,12BB =,连接1B C ,过B 点作1B C 的垂线交1CC 于E ,交1B C 于F.(1)求证:1A C ⊥平面EBD ;(2)求点A 到平面11A B C 的距离;(3)求直线DE 与平面11A B C 所成角的正弦值.21.(12分)随着科技的发展,手机上各种APP 层出不穷,其中抖音就是一种很火爆的自媒体软件,抖音是一个帮助用户表达自我,记录美好生活的视频平台.在大部分人用来娱乐的同时,部分有商业头脑的人用抖音来直播带货,可谓赚得盆满钵满,抖音上商品的价格随着播放的热度而变化.经测算某服装的价格近似满足:()1012hb b J J J J ⎛⎫=+- ⎪⎝⎭,其中0J (单位:元)表示开始卖时的服装价格,J (单位:元)表示经过一定时间t (单位:天)后的价格,b J (单位:元)表示波动价格,h (单位:天)表示波动周期.某位商人通过抖音卖此服装,开始卖时的价格为每件120元,波动价格为每件20元,服装价格降到70元每件时需要10天时间.(1)求h 的值;(2)求服装价格降到60元每件时需要的天数.(结果精确到整数)参考数据:lg 20.3010≈22.(12分)已知1F ,2F 分别为椭圆E :22221x y a b+=(0a b >>)的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,1F AB △的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.潮阳区2023—2024学年度第一学期高二级教学质量监测试卷数学参考答案一、单项选择题:1.C 2.B3.C4.A5.D6.C7.D8.B二、多项选择题:9.AC10.AC11.BCD12.BC三、填空题:13.1sin 3y x=14.415.16316.12四、解答题:【解】由sin 2sin b A a B =,得2sin cos sin b A A a B =由正弦定理得:2sin sin cos sin sin B A A A B =,由于sin sin 0A B ≠,则1cos 2B =.因为0A π<<,所以3A π=.由余弦定理得:2222cosA a b c bc =+-,又2a =,则224b c bc =+-①又ABC △,则1sin 2bc A =即1sin 23bc π=4bc =②由①②得228b c +=,则222()28816b c b c bc +=++=+=,则4b c +=.所以ABC △的周长为6.18.【解】(1)由频率分布直方图得:()0.0040.020.0080.002201x ++++⨯=,解得0.016x =,阅读时长在区间[20,40),[40,60),[60,80),[80,100),[100,120]内的频率分别为0.08,0.32,0.40,0.16,0.04,所以阅读时长的平均数0.08300.32500.40700.16900.0411065.2x =⨯+⨯+⨯+⨯+⨯=.(2)由频率分布直方图,得数据在[)[)20,40,80,100两组内的频率比为0.004:0.0081:2=,则在[)20,40内抽取2人,记为12,A A ,在[)80,100内抽取4人,记为1234,,,B B B B ,从这6名志愿者中随机抽取2人的不同结果如下:()()()()()()()()()121112131421222324,,,,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B ()()()()()()121314232434,,,,,,,,,,,B B B B B B B B B B B B ,共15个,其中抽取的2人都在[)80,100内的有()()()()()()121314232434,,,,,,,,,,,B B B B B B B B B B B B ,共6个,所以所抽取2人都在[)80,100内的概率62155P ==.19.【解】(1)当1n =时,21112a a +⎛⎫= ⎪⎝⎭,解得11a =.当2n ≥时,由212n n a S +⎛⎫= ⎪⎝⎭①,可得21112n n a S --+⎛⎫= ⎪⎝⎭,②①-②得:2211422n n n n n a a a a a --=-+-,即()()1120n n n n a a a a --+--=.0n a > ,12n n a a -∴-=.{}n a ∴是以1为首项,以2为公差的等差数列,∴数列{}n a 的通项公式1(1)221n a n n =+-⨯=-.(2)由(1)可得2(121)2n n nS n +-==,111(1)1n b n n n n ∴==-++1211111111112233411n n T b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,1111nn n =-=++20.【解】(1)如图,分别以AB ,AD ,1AA 为x 轴、y 轴、z 轴,建立空间直角坐标系,()()()()()10,0,0,0,0,2,1,0,0,0,1,0,1,1,0A A B D C ,()11,0,2B ,因为E 在1CC 上,故可设()1,1,E t ,又1BE B C ⊥,所以()()10,1,0,1,20120BE B C t t ⋅=⋅-=+-= ,解得12t =,所以11,1,2E ⎛⎫ ⎪⎝⎭,()1111,1,2,0,1,,1,0,22A C BE DE ⎛⎫⎛⎫∴=-== ⎪ ⎪⎝⎭⎝⎭ ()11·1011202A C BE =⨯+⨯+-⨯= ,()11·1110202A C DE =⨯+⨯+-⨯= 11,AC BE AC DE ∴⊥⊥ ,即11,A C BE A C DE ⊥⊥BE DE E = ,,BE DE ⊂平面EBD .所以1A C ⊥平面EBD .(2)设平面11A B C 的一个法向量为(),,m x y z = ,()()1111,0,0,0,1,2A B B C ==-,则111·0·0A B m B C m ⎧=⎪⎨=⎪⎩,02x y z =⎧∴⎨=⎩,令1z =,得()0,2,1m = ,()10,0,2AA = ,所以所求的距离为1·AA m d m === (3)由(2)知,()0,2,1m = ,11,0,2ED ⎛⎫=-- ⎪⎝⎭ ,ED设与m 所成角为θ,则·1sin 5·m ED m ED θ==所以直线ED 与平面11A B C 所成角的正弦值为15.21.【解】(1)在()012htb b J J J J ⎛⎫=+-⎪⎝⎭中,070,20,120,10b J J J t ====,则有()1017020120202h⎛⎫=+-⎪⎝⎭,整理得102121h⎛⎫=⎪⎝⎭,即101h=,解得10h =,所以h 的值为10.(2)由(1)知,101220100t J ⎛⎫⎪⎝⎭=+,当60J =时,10201006012t ⎛⎫= ⎪⎭+⎝,即有105122t⎛⎫= ⎪⎝⎭,取常用对数得:12lg lg 1025t =,解得()10lg 5lg 21110210213.22lg 2lg 20.3010t -⎛⎫⎛⎫==-≈≈ ⎪ ⎪⎝⎭⎝⎭,而N t *∈,则14t =,所以服装价格降到60元每件时需要14天.22.【解】(1)解:由题意,椭圆E 的离心率为12,可得12c a =,又由椭圆的定义,可知1248AB AF AF a ++==,所以2a =,所以1c =,又因为222a b c =+,所以23b =,所以椭圆E 的标准方程为22143x y +=.(2)解:设()()1122,,A x y B x y ,直线l 的方程为1x my =+,由221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,则有122634m y y m -+=+,122934y y m -⋅=+,故221 1234m AB m +===⨯+,同理,直线l '的方程为11x y m=--,设()33,C x y ,()44,D x y ,则222211112123434m m CD m m++=⨯=⨯++,所以四边形ABCD 的面积:22221117223443m m S AB CD m m ++==⨯⨯++()()22221172311411m m m m ++=⨯⨯+++-2272113411m m =⎛⎫⎛⎫+- ⎪⎪++⎝⎭⎝⎭,因为222221134114911341124m m m m ⎛⎫++-⎪⎛⎫⎛⎫+++-≤= ⎪ ⎪⎪++⎝⎭⎝⎭ ⎪⎝⎭,当且仅当21m =时,等号成立,所以227228811493411S m m =≥⎛⎫⎛⎫+- ⎪⎪++⎝⎭⎝⎭,。
菲翔学校高二数学上学期期末考试试题A卷
墨达哥州易旺市菲翔学校十八中11-12高二上学期期末考试数学〔文〕试题A卷一、选择题。
“假设,x y >那么22x y >〕A.假设x y ≤那么22x y ≤B.假设22x y >那么,x y >C.假设,x y >那么22x y ≤ D.假设22x y ≤那么x y ≤“x z ∈使220x x m ++≤〞的否认是〔〕“x z ∈使220xx m ++<“x z ∈使220x x m ++>x z ∈,都有220x x m ++≤ D.对任意x z ∈,都有220x x m ++>3.假设集合A={}21,m ,B={}2,4,那么“2m =〞是{}4AB =的是〔〕A.充分不必要条件B.必要不充分条件22214x y b-=〔b>0〕的渐近线方程式是,y x =那么b=()A.2B.12,F F 是椭圆22259x y +=1的焦点,p 是椭圆上的一点,那么12PF F 的周长为〔〕A.16B.18 C6.双曲线2214x y K+=的离心率2e <,那么K 的范围〔〕 A.-12<k<1B.k<0 C.-12<k<0D.-5<k<07.椭圆221164x y +=上的点到直线:20l x y +=的最大间隔是〔〕C.2249x y -=1上的一点,12,F F 分别是双曲线的左、右焦点。
假设13pF =,那么2pF =〔〕A1或者5B.6 C212x y =上,且p 到抛物线焦点的间隔为7,那么p 点的坐标是〔〕A 〔4〕B.〔±4〕C.〔4,43〕D.〔4±,43〕 22148sin x y +=∂表示焦点在y 轴上的椭圆,那么锐角∂的取值范围是〔〕 A.〔6π,2π〕B.,62ππ⎡⎫⎪⎢⎣⎭C.〔3π,2π〕D.,32ππ⎡⎫⎪⎢⎣⎭2212y x -=的右焦点作直线,交双曲线于A.B.两点,假设AB=4,那么这样的直线有〔〕条A.1B.2 C12.12,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 在椭圆上,2poF ∆的正三角形,那么2b 的值是〔〕A.C.4二零二零—二零二壹上学期高二数学期末考试卷〔文科〕A 答题卡一、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延安市实验中学大学区校际联盟2016—2017学年度第一学期期末考试试题
高二数学文科(A )
考试时间:100分钟 总分:100分
说明:卷面考查分(3分)由教学处单独组织考评,计入总分。
第I 卷(选择题,共60分)
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知命题p :存在x ∈R ,使得2x
=1,则﹁p 是( ) A.存在x ∉R ,2x
≠1 B.任意x ∉R ,2x
≠1 C.存在x ∈R ,2x ≠1
D.任意x ∈R ,2x
≠1
2.在等差数列{a n }中,若a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .4 B .3 C .2
D .1
3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知C 3
π
=,a =2,b =1,则c 等于( )
A .1
B C
D
4.设a ,b ,c ,d ∈R ,且a>b ,c<d ,则下列结论中正确的是( ) A .a +c>b +d
B .a -c>b -d
C .ac>bd
D .a b d c
>
5.抛物线x 2
=14
y 的焦点到准线的距离是( )
A.1
B.14
C.18 D .1
16
6.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( )
A .(-3,4)
B .(-3,2)
C .(0,-3)
D .(-3,-4) 7.已知f(x)=x n
,若f ′(-1)=-4,则n 等于( )
A.4
B.-4
C.5
D.-5
8.若椭圆x 2
16+y 2
b
2=1过点(-2,3),则其焦距为( )
A .2 5
B .2 3
C .4 5
D .4 3
9.过点(2,4)作直线与抛物线y 2
=8x 只有一个公共点,这样的直线有( )
A.1条
B.2条
C.3条
D.4条
10.椭圆的焦点为F 1,F 2,过F 1的最短弦PQ 的长为10,△PF 2Q 的周长为36,则此椭圆的离心率为( )
A.
33 B.13 C.2
3
D.6
3
二、填空题(本大题共5小题,每小题3分,共15分.请把正确答案填在题中横线上) 11.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程为________. 12.已知数列{a n }满足a 1=2,a n+1-a n -1=0(n ∈N +),则此数列的通项a n = ________. 13. 已知函数y=x 2
+2在点(1,3)处的切线斜率为________.
14.已知x ,y 为正实数,且x +4y =1,则xy 的最大值为________. 15. 已知函数f(x)=x 2
²f ′(2)+3x ,则f ′(2)=________.
三、解答题(本大题共5小题,共45分,解答时应写出必要的文字说明、证明过程或演算步骤) 16. (本小题8分)已知双曲线M 的标准方程x 24- y 2
2=1.求双曲线M 的实轴长、虚轴长、焦距、离心率。
17.(本小题8分)在等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .
18. (本小题9分)在△ABC 中,若AB =3,AC =1,B =30°,求△ABC 的面积。
19. (本小题10分)若函数f(x)=ax 3
-bx+4,当x=2时,函数f(x)有极值- . (1)求函数的解析式.
(2)判断函数的极值点并求极大值.
20. (本小题10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (2,0),离心率为2
2
,直线y =x -1
与椭圆C 交于不同的两点M 、N .
(1)求椭圆C的方程;
(2)求△AMN的面积.
高二数学文科(A )参考答案
一、选择题:
1、D
2、C
3、B
4、B
5、C
6、A
7、A
8、D
9、B 10、C
二、填空题(本大题共5小题,每小题3分,共15分.请把正确答案填在题中横线上) 11. y 2
=8x 12. n+1 13. 2 14. 116
15.-1
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
16.(8分)答案 2
17.(8分)【解析】(1)设{a n }的公比为q,由已知得16=2q 3
,解得q=2,∴a n =2n
. (2)()n n 1n 212S 2212
+-=
=--
18.(9分)解析 如图所示,由正弦定理,得
sin C =
c ²sin B b =3
2
.而c >b , ∴C =60°或C =120°. ∴A =90°或A =30°. ∴S △ABC =12bc sin A =32或3
4
.
19.(10分)若函数f(x)=ax 3
-bx+4,当x=2时,函数f(x)有极值-. (1)求函数的解析式.
(2)若方程f(x)=k 有3个不同的根,求实数k 的取值范围. 【解析】f ′(x)=3ax 2
-b. (1)由题意得
解得
故所求函数的解析式为f(x)=x 3
-4x+4.
(2)由(1)可得f ′(x)=x 2
-4=(x-2)(x+2), 令f ′(x)=0,得x=2或x=-2.
当x 变化时,f ′(x),f(x)的变化情况如表:
因此,当x=-2时,f(x)有极大值,
当x=2时,f(x)有极小值-,
20.(10分)答案 (1)x 24+y 2
2=1 (2) 10
3
解析 (1)∵a =2,e =c a
=2
2
,∴c =2,b = 2. 椭圆C :x 24+y 2
2
=1.
(2)设M (x 1,y 1),N (x 2,y 2),则由⎩⎪⎨⎪⎧
y =k x -1 ,x 24+y
2
2
=1,消y ,得(1+2k 2)x 2-4k 2x +2k 2
-4=0.
∵直线y =k (x -1)恒过椭圆内一点(1,0), ∴Δ>0恒成立.
由根与系数的关系,得x 1+x 2=4k 21+2k 2,x 1x 2=2k 2
-4
1+2k
2.
S △AMN =12³1³|y 1-y 2|=12
³|kx 1-kx 2|
=|k |2 x 1+x 2 2
-4x 1x 2=|k |216+24k 2
1+2k =103. 即7k 4
-2k 2
-5=0,解得k =±1.。