高等数学习题课(2)
高等数学 习题课1-2 极限与连续
xn 1 x
n
( x 0)的连续性。
解 当x [0,1)时, f ( x ) 0;
0, 0 x 1 1 1 即 f ( x) , x 1 当x 1时, f ( x ) ; 2 2 1, x 1 1 当x 1时, f ( x ) lim 1 n 1 n ( ) 1 x
x )
lim
x 0
e x sin 2 x e
2 x
x
2
1
例6 问x 1时, f ( x ) 3 x 2 x 1 ln x
2
是x 1的几阶无穷小 ?
解 f ( x ) 3 x 1 x 1 ln[1 ( x 1)]
lim
x 1
2
n
(2)设x0 1, xn 1
1 xn 1
(n 1, 2,), 试证{ xn }收敛 ,
并求 lim xn。
n
5.求极限
(1) lim
x 0
x 1 cos x
(2) lim
x a
tan x tan a xa xe
(a k
2
)
(3) lim
其中 x=0为跳跃间断点,
例 10 证明: 方程 tanx = x 有无穷多个实根。
分析 从图形看 y=tanx与 y = x 有无穷多个交点。 证 设 f(x) = tan x- x (要在无穷个闭区间上用零点定理)
k Z ,
(1) k
lim
x ( k
2
f ( x ) , lim
8. 设f ( x )在[0,1]上非负连续, 且f (0) f (1) 0, 则对任意实
高等数学2教材答案详解
高等数学2教材答案详解引言:高等数学2是大学数学教育中的重要课程之一,对学生的数学思维能力和解题能力有着极大的要求。
本文将针对《高等数学2》教材中的部分习题进行答案的详解,帮助学生掌握课程内容,提高解题水平。
1.函数与极限:1.1 习题1:求函数f(x)在点x=2处的极限。
答案:首先,我们可以通过直接代入法来求极限。
将x=2代入函数f(x)中,得到f(2)=3。
因此,函数在点x=2处的极限为3。
1.2 习题2:求函数f(x)在无穷远处的极限。
答案:要求函数在无穷远处的极限,可以通过观察函数的增减性或者用极限的定义进行求解。
根据函数的性质,我们可以得知函数f(x)在无穷远处的极限为0。
2.导数与微分:2.1 习题3:求函数f(x) = 3x^2 的导数。
答案:对函数f(x) = 3x^2 进行求导,使用幂函数的求导法则,将指数下来作为系数,并将指数减1。
因此,函数f(x) = 3x^2 的导数为f'(x) = 6x。
2.2 习题4:求函数f(x) = sin(x) 的导数。
答案:对函数f(x) = sin(x) 进行求导,使用三角函数的求导法则,将sin(x)的导数记为cos(x)。
因此,函数f(x) = sin(x) 的导数为f'(x) = cos(x)。
3.定积分:3.1 习题5:计算定积分∫[0, π] sin(x) dx。
答案:根据定积分的定义,将sin(x)代入积分式,计算不定积分,再将上限值和下限值代入,得到∫[0, π] sin(x) dx = [-cos(x)] [0, π]。
带入上下限进行计算,最终得到结果为2。
3.2 习题6:计算定积分∫[1, e] ln(x) dx。
答案:根据定积分的定义,将ln(x)代入积分式,计算不定积分,再将上限值和下限值代入,得到∫[1, e] ln(x) dx = [xln(x)-x] [1, e]。
带入上下限进行计算,最终得到结果为e-1。
高等数学习题:习题课2
设f ( x , y )与( x , y )均为可微函数,且 y ( x , y ) 0 已知( x0 , y0 )是在约束条件( x , y ) 0下的一个极 值 点,下 列 选 项 正 确 的 是: ( A )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( B )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( C )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( D )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0. ( 2006年考研题)
0
(2) f(z) z2 , z 0
z 0 ,z0
z0
(3) f(z) 3x3 3y3i
(4)f (z)
x2
x y2
i
x2
y
y2
5. 设my3 nx2y i(x3 lxy2)为解析函数,试求l, m, n。
6. 已知u ex (x cosy y sin y),求解析函数f (z) u iv, 并满足f (0) 0.
一、选择题
习题课
1.曲面 2xy4zez 3 在点 (1,2,0) 处的法线与直线
x1 y z2 的夹角( ) 1 1 2
(A) ; (B) ; (C) ; (D)0.
4
3
2
2. 设函数 f ( x, y) 在点(0, 0) 附近有定义,且 f x (0,0)3 , f y (0,0)1 ,则( )
(C)(0,2);
(D)(2,0)。
2. 若函数 f ( x,y) 在点(0,0) 的某个邻域内连续,且满足
同济大学版高等数学课后习题答案第2章
习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称t θω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度? 解 在时间间隔[t 0, t 0+∆t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆.2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+∆t ]内, 温度的改变量为 ∆T =T (t +∆t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆.3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义.解 f (x +∆x )-f (x )表示当产量由x 改变到x +∆x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +∆x 时单位产量的成本.xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本.4. 设f (x )=10x 2, 试按定义, 求f '(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim)1()1(lim )1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x xx x x x .5. 证明(cos x )'=-sin x .解 xxx x x x ∆-∆+='→∆cos )cos(lim )(cos 0xxx x x ∆∆∆+-=→∆2sin )2sin(2lim0 x x xx x x sin ]22sin )2sin([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000;解 xx f x x f A x ∆-∆-=→∆)()(lim 000)()()(lim 0000x f x x f x x f x '-=∆--∆--=→∆-.(2)A xx f x =→)(lim 0, 其中f (0)=0, 且f '(0)存在;解 )0()0()0(lim )(lim 00f x f x f x x f A x x '=-+==→→.(3)A hh x f h x f h =--+→)()(lim 000.解 hh x f h x f A h )()(lim 000--+=→hx f h x f x f h x f h )]()([)]()([lim 00000----+=→hx f h x f h x f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6;(4)xy 1=;(5)21x y =;(6)53x x y =;(7)5322x x x y =; 解 (1)y '=(x 4)'=4x 4-1=4x 3 . (2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x x y . (6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s )时的速度. 解v =(s )'=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0. 证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→,从而有2f '(0)=0, 即f '(0)=0. 10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =π.解 因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x , 233sin 3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1⋅(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线? 解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=0001sin 2x x xx y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 0=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-xx x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续.又因为01sin lim 01sin lim 0)0()(lim0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数⎩⎨⎧>+≤=1 1)(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111,所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x ,f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x ,而f -'(0)≠f +'(0), 所以f '(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x ,f +'(0)=10lim )0()(lim 00=-=-++→→x x x f x f x x , 所以f '(0)=1, 从而f '(x )=⎩⎨⎧≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-.令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x 轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222csc sin 1sin cos sin -=-=+-=. x x xx x x cot csc sin cos)sin 1()(csc 2⋅-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xx x y ;(2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)x x y ln =;(8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x ,21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11xx x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x . (6))()(21])[(22121222122'-⋅-='-='-x a x a x a y222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (8)xx x x e e e e y 221)()(11+='⋅+='.(9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211x y -=; (3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='.(2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3sin 63(cos 213sin 33cos 21222x x e x e x e xxx +-=--=---.(4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1xa x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ; (9)x x x x y -++--+1111;(10)xx y +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(arcsin 22'⋅-⋅=x x x 21)2(11)2(arcsin 22⋅-⋅=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x csc 212sec 2tan 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x x x y )(ln ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+=x x x 2ln 1ln +=.(4))(arctan arctan '⋅='x e y x )()(112arctan '⋅+⋅=x x e x)1(221)(11arctan 2arctan x x e x x exx+=⋅+⋅=.(5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(arccos arcsin arccos 11x x x x +⋅-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2). (2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x ); (9)xx y 2ch 21ch ln +=;(10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='.(4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) . (5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y .(7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=.(9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xxx x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee e e y --+-=; (6)xy 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin tt y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .(6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x ey x x -⋅⋅-⋅='-⋅='--x e x x1sin 222sin 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.习题 2-31. 求函数的二阶导数: (1) y =2x 2+ln x ; (2) y =e 2x -1; (3) y =x cos x ; (4) y =e -t sin t ; (5)22x a y -=; (6) y =ln(1-x 2) (7) y =tan x ;(8)113+=x y ;(9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=. 解 (1)x x y 14+=', 214xy -=''.(2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1. (3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x . (4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a xa x a xx x a y ---=---⋅---=''.(6) 22212)1(11x x x x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''.(7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y ,333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y ,212arctan 2xx x y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''. (12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=',xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222.2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3, f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxyd :(1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2). (2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=.4. 试从y dy dx '=1导出:(1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy xd ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω.解 t A dt ds ωωcos =,t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式: y ''-λ2y =0 . 解 y '=C 1λe λx -C 2λe -λx , y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx ) =(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式: y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x =2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数); (2) y =sin 2x ; (3) y =x ln x ; (4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1,y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! . (2) y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(3) 1ln +='x y , 11-==''x x y ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) . 9. 求下列函数所指定的阶的导数: (1) y =e x cos x , 求y (4) ; (2) y =x sh x , 求y (100) ; (3) y =x 2sin 2x , 求y (50) . 解 (1)令u =e x , v =cos x , 有 u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x , 所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x . (2)令u =x , v =sh x , 则有 u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x . (3)令u =x 2 , v =sin 2x , 则有 u '=2x , u ''=2, u '''=0;x x v 2sin 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''= )2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题 2-31. 求函数的二阶导数: (1) y =2x 2+ln x ; (2) y =e 2x -1; (3) y =x cos x ; (4) y =e -t sin t ; (5)22x a y -=; (6) y =ln(1-x 2) (7) y =tan x ; (8)113+=x y ;(9) y =(1+x 2)arctan x ;(10)xe y x =;(11)2x xe y =;(12))1ln(2x x y ++=. 解 (1)x x y 14+=', 214xy -=''.(2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1. (3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x . (4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t . (5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a xa x a xx x a y ---=---⋅---=''.(6) 22212)1(11xx x x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y .(9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y ,212arctan 2xx x y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=',3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''. (12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=',xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3, f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxyd :(1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2). (2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=.4. 试从y dy dx '=1导出:(1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==.(2)(())(())dy dx y y dx d y y dy d dy xd ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dt ds ωωcos =,t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 . 解 y '=C 1λe λx -C 2λe -λx , y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx ) =(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式: y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x =2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数); (2) y =sin 2x ;(3) y =x ln x ; (4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1,y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! . (2) y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(3) 1ln +='x y , 11-==''x x y ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) . 9. 求下列函数所指定的阶的导数: (1) y =e x cos x , 求y (4) ; (2) y =x sh x , 求y (100) ; (3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有 u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x , 所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x . (2)令u =x , v =sh x , 则有 u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x , 所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x . (3)令u =x 2 , v =sin 2x , 则有 u '=2x , u ''=2, u '''=0;x x v 2sin 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''= )2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0; (2) x 3+y 3-3axy =0; (3) xy =e x +y ; (4) y =1-xe y .解 (1)方程两边求导数得2y y '-2y -2x y ' =0 , 于是 (y -x )y '=y , xy y y -='. (2)方程两边求导数得3x 2+3y 2y '-2ay -3axy '=0, 于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22.(3)方程两边求导数得 y +xy '=e x +y (1+y '), 于是 (x -e x +y )y '=e x +y -y ,yx y x e x ye y ++--='.(4)方程两边求导数得 y '=-e y -xe y y ', 于是 (1+xe y )y '=-e y ,yy xe e y +-='1. 2.求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程.解 方程两边求导数得 032323131='+--y y x ,于是 3131---='y x y ,在点)42 ,42(a a 处y '=-1.所求切线方程为)42(42a x a y --=-, 即a y x 22=+.所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dxyd :(1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2; (3) y =tan(x +y ); (4) y =1+xe y .解 (1)方程两边求导数得 2x -2yy '=0, y '=y x ,3322221)(y y x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy '=0,yx a b y ⋅-='22, 22222222)(y yx a b x y a b y y x y a b y ⋅--⋅-='-⋅-=''32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin y y x y x y x --=+-+++=, 52233)1(2)11(22yy y y y y y +-=--='=''. (4)方程两边求导数得y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ;(4)x e x x y -=1sin . 解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |, 两边求导得xx x x x x y y +⋅-+-⋅+='11)1ln(1ln 1,于是 ]111[ln )1(xx x x x y x ++++='.(2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y ,两边求导得22251515112+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y ,于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y。
高等数学习题课3-2
x3 1 x | ( x2 1)
的渐近线。
第
三 章
解
lim y lim y
x1
x0
中 值
x 1, x 0 是曲线的两条铅直渐近线
定 理 与
lim y 1 lim y 1
f ( x) k 0, 且 f (a) 0, 证明:方程 f ( x) 0 在区间
第 三
[a,) 有且仅有一个根。
章
证 因为当 x a 时,f ( x) k 0, 所以 f ( x) 0
中 值
在区间[a,) 至多有一个根。
定 理
又因为 f (a) 0, 且
与 导
f (a f (a)) f (a) f ( )(a f (a) a)
)(1 1) 或 2
x0 )2
f (2
)
( x0 2
16 (1 2
1) x0
1)
-2-
习题课(二)
例2 证明当 x 1 时,
x2 x3
ln(1 x) x .
第
23
三 章
证 当 x 1 时,
中 值
ln(1
x)
x
x2 x
x3 3
1
4(1 )4
x4
定 理
其中
介于 0与x之间.
第 区间,拐点。
三
章 解 函数的定义域为(,1) (1,1) (1, )
中
值 定 理 与
y
x2( x2 3) ( x2 1)2 ,
y
2 x( x2 (x2
3) 1)3
导 数
y 0,得点x 3, y 0,得点x=0
的
应 用x 3, x 0划分函数的定义域,并在各区间研究
高等数学Ⅱ第二章习题课习题及其解答
高等数学Ⅱ第二章习题课习题1(导数的定义)(1)设函数()y f x =在1x =处可导,且0(13)(1)1lim 3x f x f x ∆→+∆-=∆,求(1)f '。
(2)设函数()y f x =在0x =处连续,且0()lim x f x x →存在,求0(2)lim x f x x→。
【解】:(1)00(13)(1)(13)(1)1lim3lim 3(1)33x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆, 所以 1(1)9f '=(2)因为0()lim x f x x→存在,故0lim ()0x f x →=,又函数()y f x =在0x =处连续,从而0(0)lim ()0x f f x →==,所以00(2)(2)(0)()(0)lim2lim 2lim 2(0)200x x t f x f x f f t f f x x t →→→--'===--2(求导法则)(1)设函数21()(1)(1)f x x x=+-,求()f x '; (2)设函数3()(1)cot f x x arc x =+,求(0)f '; (3)设3ln 1x xy x=+,求y '. 【解】:(1)21()1f x x x x =-++-, 21()21f x x x'=-+-(2)33()(1)cot (1)(cot )f x x arc x x arc x '''=+++32213cot 1x x arc x x +=-+所以 (0)1f '=-(3)33323232(ln )(1)(ln )(1)(1ln )(1)(ln )(3)(1)(1)x x x x x x x x x x x y x x ''+-+++-'==++ 33321ln (12)(1)x x x x ++-=+3(一元复合函数求导)(1)设函数()lnsin f x x =,求()f x ';(2)设函数ln y =y '; (3)设(4)ln f x x =,求()f x ';(4)设cos2f x =,求()f x '. 【解】:(1)2cos ()sin xf x x'=+(2)y '==(3)在(4)ln f x x =两边同时对x 求导,得 14(4)f x x '=,从而1(4)4f x x'= 所以 1()f x x'=(4)在cos2f x =两边同时对x 求导,得 2sin 2f x '=-,从而2f x '⋅=-所以 2()4sin 2f x x x '=-4(分段函数求导)(1)设函数212()2ax x f x x b x +≤⎧=⎨+>⎩在2x =处可导,求,a b ;(2)设函数20()20x ae x f x bx x ⎧<=⎨-≥⎩处处可导,求,a b 及()f x ';【解】:(1)函数在2x =处可导,在2x =处必连续。
《高等数学》(北大第二版)第02章习题课
《高等数学》(北大第二版)第02章习题课某存在,故只要证f(0)=0.分析需证证设limf(某)=A,则limf(某)=lim某f(某)=0A=0,某→0某→0某→0某某因为f(某)在某=0处连续,所以f(0)=limf(某)=0.某→0f(某)f(0)f(某)f′(0)=lim=lim=A 存在,即f(某)在某=0处可导.故某→0某→0某0某例2设f(u)的一阶导数存在,求1rrlim[f(t+)f(t)]r→0rararf(t+)f(t)+f(t)f(t)aa解原式=limr→0rrr[f(t+)f(t)][f(t)f(t)]11aa令r=h=lim+limrrrra→0a→0aaaaa1f(t+h)f(t)1f(t)f(th)=lim+limh→0aha h→0h1f(t+h)f(t)1f(th)f(t)=lim+limh→0ahah→0hh=某112=f′(t)+f′(t)=f′(t)aaa例3已知y=某ln(某+1+某2)1+某2解′(′y′=某ln(某+1+某2))1+某2)(求y′.某1+某2=ln(1+1+某)+某.某+1+某21+某221+某=ln(1+1+某)+2某1+某2某1+某2=ln(1+1+某2)例4求y=解某某某的导数.y=某111++248=某,所以278787′=某=y.888某练习:y=ln11+某,求y′.例5设y=a1某3某logb14arctan某2(a>0,b>0),求y′.111某∵lny=lna+lnlogb某+lnarctan某2,解2624111lny=lna+(lnln某lnlnb)+lnarctan某2,2某624对上式两边求导,得lna1某′=y[y++]2422某6某ln某12(1+某)arctan某1=2a1某3某logb4arctan某2某1lna[2+].42某3某ln某6(1+某)arctan某例6设y=y(某)由方程e某y+tg(某y)=y确定,求y′(0)解由方程知当某=0时y=1.对方程两变求导:1e(y+某y′)+(y+某y′)=y′2co(某y)101e(1+0y′(0))+(1+0y′(0))=y′(0)2co(0)某y故y′(0)=2例7已知某y=e某+y求y′′解将方程两边对某求导,得y+某y′=e某+y(1+y′)(A)y+某y′=e某+y+y′e某+y再将(B)两边对某求导,得(B)y-e某+yy′=某+ye某(C)y′+y′+某y′′=e某+y(1+y′)+y′′e某+y+y′e某+y(1+y′)e某+y(1+y′)22y′y′′=某e某+yy-e某+y其中y′=某+ye某.某=ln(1+t2),例7已知求y′,y′′,y′′′.y=tarctant.11(t-arctant)′1+t2=t,解y′==22t2(ln(1+t)′1+t2t()′1+t22y′′==,2′(ln(1+t))4t 1+t2()′t414ty′′′==3.(ln(1+t2))′8t例8设y=f2(某)+f(某2),其中f(某)具有二阶导数,求y′′.解y′=2f(某)f′(某)+f′(某2)2某.y′′=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+2某f′′(某2)2某=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+4某2f′′(某2).例9求下列函数的n阶导数y(n)(n>3).某41(1)y=;(2)y=2.21某某a 某41+11y==(某3+某2+某+1)1某1某n!(n).当n>3时,y=n+1(1某)1(2)y=2(练习).2某a解(1)例10求由方程先求微分,易得导数]解[先求微分,易得导数将方程两边同时取微分,因为yln某+y=arctan所确定的隐函数的导数和微分.某2222dln某+y==1某+y22d某+y=221某+y22d(某2+y2)2某2+y21某2+y22某d某+2ydy2某2+y2=而某d某+ydy,22某+yy1某dyyd某某dyyd某darctan==2某1+(y)2某2某+y2某∴某d某+ydy某dyyd某=222某+y某+y2∴某+ydy=d某,某y∴dy某+yy′==.d某某ya某ba某b例11设f(某)可导,求y=f(in某)+()()().的导数,b某aa其中,a>0,b>0,≠1,某≠0.ba某ba某b2解记y1=f(in某),y2=()()(),b某a′则y1=f′(in2某)2in某co某=in2某f(in2某).2lny2=某(lnalnb)+a(lnbln某)+b(ln某lna),a某ba某babaab′).∴y2=y2[(lnalnb)+]=()()()(ln+b某ab某某某例12设y=(ln某)某某ln某,求y′.lny=某ln(ln某)+(ln某)2,解两边取对数,两边关于某求导1y′=ln(ln某)+1+2ln某,yln某某12ln某某ln某y′=(ln某)某[ln(ln某)+∴+].ln某某练习:设(co某)y=(iny)某求y′例13解dy已知y=a+某,a>0为常数,(a≠1),求.d某arctan某2in某设y1=a,y2=某.arctan某2in某)′=lnaa(arctan某2)′1arctan某22′=lnaaarctan某22某.=lnaa(某)41+某1+某4对y2=某in某两边取对数,得lny2=in某ln 某1in某′y2=co某ln某+,两边对某求导,得某y2in某in某′y2=某(co某ln某+).某arctan某2arctan某2′y1=(a2-某,1<某<+∞,2例13设f(某)=某,0≤某≤1,某3,-∞<某<0.解第一步,在各开区间内分别求导:1,1<某<+∞;f′(某)=2某,0<某<1,3某2,-∞<某<0.求f′(某).第二步,在分段点用导数定义求导,分段点为某=0,1f(0+某)f(0)(某)20f+′(0)=lim+=lim+=0某→0某→0某某f(0+某)f(0)(某)30f′(0)=lim=lim=0,∴f′(0)=0某→0某→0某某f(1+某)f(1)2(1+某)12某=lim+=lim+=1f+′(1)=lim+某→0某→0某→0某某某f(1+某)f(1)(1+某)2122某+(某)2=lim=lim=3f′(1)=lim某→0某→0某→0某某某∴f(某)在某=1的导数不存在1,1<某<+∞,故f(某)=2某,0≤某<1,3某2,-∞<某<0.在某=1处f(某)不可导.某≤c,in某,例14设f(某)=c为常数a某+b,某>c.试确定a,b的值,使f′(c)存在.解因为f′(c)存在,所以f(某)在c处连续.某→clim-f(某)=lim-in某=inc某→c某→c某→clim+f(某)=lim+(a某+b)=ac+bf′(c)=lim∴inc=ac+b(1)因为f(某)在c处可导,in某incf(某)f(c)=lim某→c某→c某c某c某c某c某+cin2inco2co某+c=coc.22=lim=lim某→c某c某→c2某c2f(某)f(c)a某+binca某+b(ac+b)=a.f+′(c)=lim=lim=lim+++某→c某→c某→c某c某c某c所以,coc=a(2)解(1),(2)得,=coc,b=inc-ccoc.a某2,某≤1,习题2-115.设f(某)=a某+b,某>1.为了使函数f(某)在某=1处连续且可导,a,b应取什么值?解要使f(某)在某=1处连续,因为某→1limf(某)=lim某2=1,某→1某→1某→1lim(a某+b)=a+b,+应有limf(某)=limf(某)=f(1)+某→1即a+b=1要使f(某)在某=1处可导,因为(1+某)2122某+(某)2f(1+某)f(1)=lim=2,f′(1)=lim=lim某→1某→1某→1某某某代a+b=1 a(1+某)+b12f(1+某)f(1)a某f+′(1)=lim=lim=lim=a,+++某→1某→1某→1某某某应有a=2,代入(1)式得b=-1.6.假定f′(某0)存在,指出下式A表示什么?f(某)=A,其中f(0)=0,且f′(0)存在;某→0某f(某0+h)f(某0h)(3)lim=A.h→0h解(2)∵limf(某)=limf(某)f(0)=f(某0),某→0某→0某0某(2)lim∴A=f(某0).(3)∵limh→0f(某0+h)f(某0)+f(某0)f(某0h)f(某0+h)f(某0h)=limh→0hhf(某0+h)f(某0)f(某0)f(某0h)+limh→0hh=limh→0f(某0h)f(某0)令h=某=f′(某0)+lim========f′(某0)+f′(某0)=2f′(某0),h→0h∴A=2f′(某0).9.如果f(某)为偶函数,且f′(0)存在,证明f′(0)=0.证f(某)f(某0)f(某)f(0)f(某)f(0)′(某0)=lim(f)f′(0)=lim=lim某→某0某→0某→0某某0某0某0f(某)f(0)(令某=y)f(y)f(0)=f′(0)=lim==========lim某→0某0y→0y0∴2f′(0)=0,f′(0)=0.1例16设f(t)=limt(1+)2t某,求f′(t).某→∞某1某2t12t某解limt(1+)=limt[(1+)]=te2t某→∞某→∞某某f′(t)=(te2t)′=(2t+1)e2t.12某in,某≠0;例15求f(某)=某0,某=0一阶导数和二阶导数.11解当某≠0时,f′(某)=2某inco,某某12111f′′(某)=2inco2in.某某某某某当某=0时,用导数定义先求一阶导数,再来看二阶导数.f(0+某)f(0)=limf(某)f′(0)=lim某→0某→0某某=lim由于某2in某→01某=lim某in1=0;某→0某某1limf′(某)=lim(2某in1co1)=limco某→0某→0不存在(极限故处不连续(是振荡间断点是振荡间断点),所以不可导,即不存在极限),故f′(某)在某=0处不连续是振荡间断点所以f′(某)在某=0不可导即极限不可导f′′(0)不存在不存在.某某某→0某1g(某)co,某≠0,例16设f(某)=某0,某=0.且g(0)=g′(0)=0试问:(1)limf(某);某→0(2)f(某)在某=0处是否连续?(3)f(某)在某=0处是否可导?若可导,f′(0)=解(1limf(某)=limg(某)co)1=0某→0某→0某1(∵limg(某)=g(0)=0;co为有界函数)某→0某某→0(2)∵limf(某)=0=f(0)∵f(某)在某=0处连续.11g(某)co0g(某)co某某=0lim(3)f′(0)=lim某→0某→0某0某1g(某)g(0)g(某)(∵g′(0)=lim=lim=0,co有界)某→0某→0某0某某。
高等数学2-习题集(含答案)
《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、计算题11. 计算 行列式6142302151032121----=D 的值。
2. 计算行列式5241421318320521------=D 的值。
3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。
4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。
5.计算行列式 0111101111011110=D 的值。
6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。
9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。
11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。
12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。
14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。
15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。
16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。
17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。
18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。
高等数学课件-习题课2
哈 尔
解 x 0 :f( x ) ( 3 x 2 ) 6 x ;
滨 工
x 0 :f( x ) ( x 2 ) 2 x ;
程 大 学
f(0)lim 2x2x|x|0;
x 0
x
高
f (0)x l i0m f(x)x f(0)
lim2x02; x0 x
等 数 学
f (0)x l i0m f(x)x f(0)
滨
工 解 首,先 f(x)在x0处必须 ,从 连 而 续
程
大
f(00)f(00).
学
f(0 0 ) lism a in x 0 , x 0
高
等
f ( 0 0 ) li [m 1 l n x ) b ( ] b ,
数
x 0
学
b0.
对任意 a ,当 x 给 0 ,f定 (x )都 的 存 ; 在
dy
y
t
dx x t
1
1 1 t2
1 1 t2
2t
t; 2
等
数 学
1
d2y
2 t dx2
(
dy dx
)t
xt
2
1 1 t2
1 t2
4t
例8
用微分法则求函数
y
arctan1 1
x2 x2
的微分和
哈 尔 滨 工 程 大
导数.
解
dy1(111xx22)2d(11xx22)
学
高 等
1(1 11 x x2 2)2(1x2) (2(x 1)d x x 2)(2 1x2)2xdx u vduudv
6x0 lim 6;
x0 x
因 f (0 为 ) f (0 ),所以 f(0)不存 . 在
高等数学第十一章习题课(二)曲面积分
z
B
o
dS
n C
y
z
x
3 2
y A x : x y z 1
n 1 (1, 1, 1)
3
1 3
(3) d S
答: 第一类曲面积分的特例.
2) 设曲面 问下列等式是否成立?
不对 ! 对坐标的积分与 的侧有关
练习: P185 题4(3)
计算 x d y d z y d z d x z d x d y, 其中 为半球面
的上侧. 提示: 以半球底面 0 为辅助面, 且取下侧 , 记半球域为 , 利用 高斯公式有 原式 =
x , 2 2 x y y , 2 2 x y
D
x y I y , x , z 2 , 2 ,1dxdy 2 2 x y x y
2
z 2dxdy
( x 2 y 2 )dxdy
D xy
[ Dxy : 1 x 2 y 2 4 ]
用重心公式
利用对称性
2( x z ) d S
0
例7. 设L 是平面
与柱面
的交线
从 z 轴正向看去, L 为逆时针方向, 计算 解: 记 为平面
上 L 所围部分的上侧,
D为在 xoy 面上的投影. 由斯托克斯公式
z
L
I
1 3 x
2z x y z 2 (4 x 2 y 3z )dS 3
2 2
1 3 y 2
2
3x y 2
1 3 z 2
dS
D
o x
y
高等数学2二课后习题答案
高等数学2二课后习题答案高等数学2二课后习题答案高等数学是大学数学的重要组成部分,对于理工科学生来说尤为重要。
而高等数学2二作为高等数学的延伸和深化,对于学生来说难度也相应增加。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
本文将为大家提供高等数学2二课后习题的答案,希望对大家的学习有所帮助。
一、函数极限与连续1. 设函数f(x) = 3x^2 + 2x - 1,求lim(x→2)f(x)的值。
解:将x代入函数f(x),得到f(2) = 3(2)^2 + 2(2) - 1 = 17。
所以lim(x→2)f(x) = 17。
2. 已知函数f(x) = (x^2 + 1) / (x - 1),求lim(x→1)f(x)的值。
解:将x代入函数f(x),得到f(1) = (1^2 + 1) / (1 - 1) = 2 / 0。
由于0不能作为分母,所以lim(x→1)f(x)不存在。
3. 设函数f(x) = √(x + 1),求lim(x→∞)f(x)的值。
解:将x代入函数f(x),得到f(∞) = √(∞ + 1) = ∞。
所以lim(x→∞)f(x) = ∞。
二、导数与微分1. 求函数f(x) = x^3 - 3x^2 + 2x的导数。
解:对函数f(x)求导,得到f'(x) = 3x^2 - 6x + 2。
2. 求函数f(x) = √x的导数。
解:对函数f(x)求导,得到f'(x) = 1 / (2√x)。
3. 求函数f(x) = e^x的导数。
解:对函数f(x)求导,得到f'(x) = e^x。
三、定积分1. 求函数f(x) = 2x在区间[0, 1]上的定积分。
解:对函数f(x)在区间[0, 1]上进行定积分,得到∫[0, 1]2xdx = [x^2]0^1 = 1。
2. 求函数f(x) = x^2在区间[-1, 1]上的定积分。
解:对函数f(x)在区间[-1, 1]上进行定积分,得到∫[-1, 1]x^2dx = [x^3/3](-1)^1 = 2/3。
同济大学版高等数学课后习题答案第2章
同济大学版高等数学课后习题答案第2章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解在时间间隔[t 0, t 0+?t]内的平均角速度ω为 tt t t t-?+=??=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t tt t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度?解物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为tt T t t T t T ?-?+=??)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义.解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量.xx f x x f ?-?+)()(表示当产量由x 改变到x +?x 时单位产量的成本. xx f x x f x f x ?-?+='→?)()(lim)(0表示当产量为x 时单位产量的成本.4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 xx x f x f f x x ?--?+-=?--?+-=-'→?→?2200)1(10)1(10lim )1()1(lim)1(20)2(lim 102lim 10020-=?+-=??+?-=→?→?x xx x x x . 5. 证明(cos x)'=-sin x .解 xxx x x x ?-?+='→?cos )cos(lim )(cos 0xxx x x +-=→?2sin )2sin(2limx x xx x x sin ]22sin )2sin([lim 0-=+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =?-?-→?)()(lim 000;解xx f x x f A x ?-?-=→?)()(lim000)()()(lim 0000x f xx f x x f x '-=?--?--=→?-. (2)A xx f x =→)(lim 0, 其中f(0)=0, 且f '(0)存在; 解)0()0()0(lim )(lim00f x f x f x x f A x x '=-+==→→. (3)A h h x f h x f h =--+→)()(lim 000. 解hh x f h x f A h )()(lim000--+=→hx f h x f x f h x f h )]()([)]()([lim00000----+=→ hx f h x f hx f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;(5)21xy =;(6)53x x y =;(7)5322x x x y =;解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x xy .(6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s)时的速度.解v =(s)'=3t 2, v|t =2=12(米/秒).9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明当f(x)为偶函数时, f(-x)=f(x), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率:π32=x , x =π.解因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x ,233sin3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y ,法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1?(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k .令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x|;(2)=≠=0001sin 2x x xx y . 解 (1)因为 y(0)=0,0)sin (lim |sin |lim lim 00=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-x x x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解因为01sin lim )(lim 200==→→xx x y x x , 又y(0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数>+≤=1 1)(2x b ax x x x f 为了使函数f(x)在x =1处连续且可导, a , b 应取什么值?解因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f(1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1. 16. 已知?<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解因为 f -'(0)=10lim )0()(lim00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在.17. 已知f(x)=?≥<0 0sin x x x x , 求f '(x) .解当x<0时, f(x)=sin x , f '(x)=cos x ; 当x>0时, f(x)=x , f '(x)=1; 因为 f -'(0)=10sin lim )0()(lim00=-=---→→x x x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x)=?≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解由xy =a 2得xa y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x)'=-csc 2x ; (csc x)'=-csc xcot x .解 xx x x x xx x 2sin cos cos sin sin )sin cos ()(cot ?-?-='=' x xx x x 22222csc sin 1sin cos sin-=-=+-=. x x xx x x cot csc sin cos )sin 1()(csc 2?-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xxxy ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1; (4) y =sin x ?cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x;(9) y =x 2ln x cos x ; (10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xxxy2562562282022820xxxx x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3ex .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ?tan x =sec x(2sec x +tan x).(4) y '=(sin x ?cos x)'=(sin x)'?cos x +sin x ?(cos x)' =cos x ?cos x +sin x ?(-sin x)=cos 2x . (5) y '=(x 2ln x)'=2x ?ln x +x 2?x 1=x(2ln x +1) . (6) y '=(3e x cos x)'=3e x ?cos x +3e x ?(-sin x)=3e x (cos x -sin x).(7)22ln1ln 1)ln (x x x xx x x x y -=-?='='.(8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=?-?='+='. (9) y '=(x 2ln x cos x)'=2x ?ln x cos x +x 2?x1?cos x +x 2 lnx ?(-sin x)2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=dd .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=?+?=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解(1)v(t)=s '(t)=v 0-gt .(2)令v(t)=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻.5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程.解因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x); (3)23x e y -=;(4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=;(7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x)2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1?(2x +5)'=4(2x +5)3?2=8(2x +5)3. (2) y '=-sin(4-3x)?(4-3x)'=-sin(4-3x)?(-3)=3sin(4-3x). (3)22233236)6()3(xx x xe x e x e y ----=-?='-?='.(4)222212211)1(11x x x x x x y +=?+='+?+='. (5) y '=2sin x ?(sin x)'=2sin x ?cos x =sin 2x . (6))()(21])[(22121222122'-?-='-='-x a x a x a y2122)2()(21x a x x x a --=-?-=-.(7) y '=sec 2(x 2)?(x 2)'=2xsec 2(x 2).(8)xx xx e e e e y 221)()(11+='?+='. (9) y '21arcsin2)(arcsin arcsin 2xx x x -='?=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='?='. 7. 求下列函数的导数: (1) y =arcsin(1-2x);(2)211x y -=;(3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)x x y ln 1ln 1+-=;(6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x); (10) y =ln(csc x -cot x). 解 (1)2 221)21(12)21()21(11x x x x x y --=---='-?--='.(2))1()1(21])1[(21212212'-?--='-='---x x x y 2321)1()2()1(21x x x x x --=-?--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xx x x)3sin 63(cos 213sin 33cos 21222x x e x e x e xxx+-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(6)222sin 2cos 212sin 22cos xx x x xx x x y -=?-??='.(7)2222121)(11)()(11x x x x x x y -=?-='?-='.(8)])(211[1)(12222222222'+++?++='++?++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++?++=.(9)x x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12 =++='+?+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12 =-+-='-?-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=;(4)x e y arctan =; (5)y =sin n xcos nx ; (6)11arctan -+=x x y ;(7)xx y arccos arcsin =;(8) y=ln[ln(ln x)] ; (9)xx x x y-++--+1111; (10)xx y +-=11arcsin.解 (1)'?=')2(arcsin )2(arcsin 2x x y )2()2(11)2(arcsin 22'?-?=x x x21)2(11(arcsin 22-?=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'??='?='x x x x x yx x x csc 212sec 2tan 12=??=.(3))ln 1(ln 121ln 1222'+?+=+='x xx y )(ln ln 2ln 1212'??+=x x x x x x 1ln 2ln 1212??+=xx x2ln 1ln +=.(4))(arctan arctan '?='x e y x)()(112arctan'?+?=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=?+?=.(5) y '=n sin n -1x ?(sin x)'?cos nx +sin n x ?(-sin nx)?(nx)' =n sin n -1x ?cos x ?cos nx +sin n x ?(-sin nx)?n =n sin n -1x ?(cosx ?cos nx -sin x ?sin nx)= n sin n -1xcos(n +1)x . (6)222 211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--?-++='-+?-++= '.(7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +?-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'??='?='x x x x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ?=??=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-?+--='+-?+--=')1(2)1(1x x x -+-=.9. 设函数f(x)和g(x)可导, 且f 2(x)+g 2(x)≠0, 试求函数)()(22x g x f y +=的导数.解])()([)()(212222'+?+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'?+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f(x)可导, 求下列函数y 的导数dxdy :(1) y =f(x 2);(2) y =f(sin 2x)+f(cos 2x).解 (1) y '=f '(x 2)?(x 2)'= f '(x 2)?2x =2x ?f '(x 2). (2) y '=f '(sin 2x)?(sin 2x)'+f '(cos 2x)?(cos 2x)'= f '(sin 2x)?2sin x ?cos x +f '(cos 2x)?2cosx ?(-sin x) =sin 2x[f '(sin 2x)- f '(cos 2x)]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ?e ch x ; (3) y =th(ln x); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x);(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x)?(sh x)'=sh(sh x)?ch x . (2) y '=ch x ?e ch x +sh x ?e ch x ?sh x =e ch x (ch x +sh 2x) . (3))(ln ch 1)(ln )(ln ch 122x x x x y ?='?='.(4) y '=3sh 2x ?ch x +2ch x ?sh x =sh x ?ch x ?(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-?-='. (6)222)1()1(112422++='+?++='x x x x x y .(7)12)(1)(142222-='?-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11?+=?+='?+=' x x x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'?-'?='x x x x y x x xx x sh ch 2ch 21ch sh 4??-= xx x x x x x x 323ch sh ch sh ch sh ch sh -?=-=x xx x x x 33332th ch sh ch )1ch (sh ==-?=. (10)'+-?+-?+-='+-?+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-?+=+--+?+-?=x x x x x x x x .12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ?sin(x 2); (3)2)2(arctan x y =;(4)n xx y ln =;(5)t t t t ee e e y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=; (8)xx y +=;(9)242arcsin x x x y -+=;(10)212arcsint t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ?cos x ?sin(x 2)+sin 2x ?cos(x 2)?2x =sin2x ?sin(x 2)+2x ?sin 2x ?cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=?+?='. (4)121ln 1ln 1+--=?-?='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .。
高等数学课后习题答案
习题十二1.写出下列级数的一般项:(1)1111357++++;(2)22242462468x x ++++⋅⋅⋅⋅⋅⋅;(3)35793579a a a a -+-+;解:(1)121n U n =-;(2)()2!!2nn xU n =;(3)()211121n n n a U n ++=-+;2.求下列级数的和:(1)()()()1111n x n x n x n ∞=+-+++∑;(2)1n ∞=∑;(3)23111555+++;解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n Sx x x x x xx x x n xn x n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-= ⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x + (2)因为n U =-从而(11n S n =-+-+-++-+=-=+-所以lim 1nn S →∞=1(3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦从而1lim 4n n S →∞=,即级数的和为14.3.判定下列级数的敛散性:(1)1n ∞=-∑;(2) ()()11111661111165451n n+++++⋅⋅⋅-+;(3)()23133222213333nn n--+-++-;(4)1155n +++++;解:(1) (11n S n =++++=从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2) 1cos 2nn nx∞=∑;(3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n pn n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+,∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n p n n n p n p n p n U U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性.(1)()()111465735n n ++++⋅⋅++;(2)22212131112131n n +++++++++++(3)1πsin 3nn ∞=∑;(4)1n ∞=;(5)()1101nn a a ∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵()()21135n U nn n =<++而211n n∞=∑收敛,由比较审敛法知1nn U∞=∑收敛.(2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n →∞→∞=⋅=而1π3nn ∞=∑收敛,故1πsin 3n n ∞=∑也收敛. (4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛.当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121limln 211nx n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1)213nn n ∞=∑; (2)1!31nn n ∞=+∑;(3)232333331222322nn n +++++⋅⋅⋅⋅;(1) 12!n nn n n ∞=⋅∑解:(1)23n nn U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2)()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3)()()11132lim lim 2313lim 21312n n n n nn n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=>所以原级数发散.(4)()()1112!1lim lim 2!1lim 21122lim 1e 11n n n n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3)21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4)1nn n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散.(2)()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim lim 1931nn n n n -→∞⎛⎫==< ⎪-⎝⎭,故原级数收敛.(4) lim n n n b b a a →∞==,当b <a 时,b a <1,原级数收敛;当b >a 时,ba >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1-+; (2)()()1111ln 1n n n ∞-=-+∑;(3) 234111*********5353⋅-⋅+⋅-⋅+;(4)()21121!n n n n ∞-=-∑;(5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn nn ∞=⎛⎫-++++ ⎪⎝⎭∑.解:(1)()11n n U -=-1nn U ∞=∑>0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1limln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n nn n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n n U U n ++→∞→∞==+∞+.故可得1n nU U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛.当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n n n ⎛⎫⋅>++++ ⎪⎝⎭而11n n ∞=∑发散,由此较审敛法知级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑发散.记1111123n U n n ⎛⎫=⋅++++ ⎪⎝⎭,则()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x →∞→∞⎛⎫=++++ ⎪⎝⎭=⎰由0111lim d lim 01t t t t x t x →+∞→+∞==⎰知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn nn ∞=⎛⎫-⋅++++ ⎪⎝⎭∑收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1)()1!1nn x n ∞=-∑,x ∈[-3,3];(2)21nn x n ∞=∑,x ∈[0,1];(3) 1sin 3nn nx∞=∑,x ∈(-∞,+∞);(4) 1!nxn e n -∞=∑,|x |<5;(5)1n ∞=,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx nn ≤,x ∈[0,1],而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛.(3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛.(4)因为5!!nnx ee n n -≤,x ∈(-5,5),由比值审敛法可知51!n n e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)531n≤,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1nn Vx ∞=∑在Ⅰ上一致收敛时,级数()1nn Ux ∞=∑在这区间Ⅰ上也一致收敛.证:由()1nn Vx ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1nn Ux ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知()1nn Ux ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n+…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑;解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n∞=-∑,由lim(1)0nx nn →-≠知级数1(1)nn n∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1eR ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n nn n n ∞=∑;应用洛必达法则求得()10e e1lim 2x x x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212nn t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]12.利用幂级数的性质,求下列级数的和函数:(1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑; 解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑则()1011xn n x S x x x ∞===-∑⎰于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x ++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑,故()1011d ln 21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x +==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)f (x )=ln(2+x ); (2)f (x )=cos 2x ;(3)f (x )=(1+x )ln(1+x );(4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-;(7)f (x )=e xcos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1) 故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()110ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞) 得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞)(3)f (x )=(1+x )ln(1+x )由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()11200111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n nn n x n ∞=-=+-∑(-1≤x ≤1)故()()()()221!!2111!!2nn n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞) 得()01e!n n xn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部,而()()[]()10002011!1!ππcos sin !44ππ2cos sin !44n xi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎤⎫=+⎪⎥⎭⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑取上式的实部.得20π2cos4cos !nx nn n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑(|x |<2)14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑ 所以()()()()()2110011013244321146223n nn n n n n n n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()f x =(x -1)的幂级数.解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<所以()()[]()()()3221133333331121222222211111!2!!nf x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑16.利用函数的幂级数展开式,求下列各数的近似值:(1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x xn -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-,故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x ⎰(误差不超过0.001)的近似值.解:由于()3521arctan 13521n n x x x x x n +=-+-++-+,(-1≤x ≤1)故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x xx n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈.因此0.5350arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑; (2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑;(3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnn n nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭而()22211221lim lim 10111nnn n n n n n n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥ ⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn nn∞=⎛⎫ ⎪+⎝⎭∑发散,由比较审敛法知原级数发散.(2)∵2cos 3022n nnx n n ⎛⎫ ⎪⎝⎭<≤由比值审敛法知级数12nn n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑收敛.(3)∵()()ln ln 220313nn n n n ++<<⎛⎫+ ⎪⎝⎭由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=<知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛.19.若2lim n n n U →∞存在,证明:级数1nn U∞=∑收敛.证:∵2lim nn n U →∞存在,∴∃M >0,使|n 2U n |≤M ,即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛.20.证明,若21nn U ∞=∑收敛,则1nn U n∞=∑绝对收敛.证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21nn U ∞=∑收敛,211n n ∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛,因而1nn U n∞=∑绝对收敛.21.若级数1nn a∞=∑与1nn b∞=∑都绝对收敛,则函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n nU a nx b nx a nx b nx a b x =+≤+≤+由于1nn a∞=∑与1nn b∞=∑都绝对收敛,故级数()1nnn ab ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 111nn n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12n n n x ∞=+∑;(3) ()2112nn n x n ∞=-⋅∑解:(1)111lim1lim 211lim lim lim 22e e n n nn nn nnn n n a a n n n n ρ+→∞+→∞→∞→∞→∞-=⎛⎫+=⋅ ⎪+⎝⎭++⎛⎫=⋅⋅ ⎪++⎝⎭=⋅=∴13R ρ==,又当x =时,级数变为()111311333n nnn n n n n n ∞∞==⎛⎫⎛⎛++=±± ⎪ ++⎝⎭⎝⎭⎝⎭∑∑,因为3lim 033nn n n →∞⎛⎫+=≠ ⎪+⎝⎭所以当3x =±,级数发散,故原级数的收敛半径3R =,收敛域(-3,3).(2)111ππsin122limlim lim ππ2sin 22n n n n n n nnn a a ρ+++→∞→∞→∞====故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n →∞→∞⋅==≠. 所以当(x +1)=±2时,级数()1πsin 12n n n x ∞=+∑发散,从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3)()212121lim lim 221n n n n n n a n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3.当x =-1时,级数变为()2111nn n ∞=-∑,其绝对收敛,当x =3时,级数变为211n n ∞=∑,收敛.因此原级数的收敛域为[-1,3].23.将函数()0arctan d xtF t x t =⎰展开成x 的幂级数.解:由于()210arctan 121n nn t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n nn x ∞=-+∑,x ∈[-3,+∞);(2)1nn nx ∞=∑,x ∈(2,+∞);(3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113n n n x ∞=-+∑在[-3,+∞)上一致收敛.(2)当x >2时,有2n nn nx =<由1112lim 122n n n n n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n n x ∞=∑在(2,+∞)上一致收敛.(3)∀x ∈R 有()()()22224322111n n n x n n n x n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛.25.求下列级数的和函数:(1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1]记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑所以()()11201d arctan 01xS S x xx x -==+⎰即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121x x x S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x +-=-,S (0)=0所以()11ln21xS x x +=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n nan +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xxn n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim 111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑, ()[]1111n n x xS x x ∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰即()()()1ln 1xSx x x x =--+当x ≠0时,()()111ln 1S x x x ⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1 (∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭)综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+27.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nxn ∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰所以()()12112π1sin sin π2n n n f x nxn n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()π0π12π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x n x x n x n x n n n n +⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42xf x x =--<<(2)()()sin 02πf x xx =≤≤解:(1)()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-=⎪⎝⎭⎰⎰ []()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n --⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰ ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n -⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n ∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰()()()()()π022ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1nn x n x x n n n n =+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰所以()()2124cos2ππ41n nx f x n ∞=-=+-∑(0≤x ≤2π)30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n ==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n ∞=--+=∑(0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑(0≤x ≤π)31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑所以211π6n n ∞==∑ 32.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰故()()()22121π81cosπ221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n xx x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()102cos πd n a f x n x x=⎰,求52s ⎛⎫- ⎪⎝⎭.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f ff +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1sin πn n s x b n x∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x=⎰(n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 21122x ⎛⎫-≤< ⎪⎝⎭; (2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩ 解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰,()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n xn +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn x a f x xn x n x x x xn n --==++⎡⎤=--=⎣⎦⎰⎰⎰ ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n x b f x xn x n x x x xn n --+==++=-=⎰⎰⎰而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑(x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2Tl T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211e d ed 212πe d e d 2ππsin e 2ππn T n i t li t lTT n l n n i t i t T T n i t T c u t t u t tlTh T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t Tn n h h n u t T n Tττ∞-=-∞≠=+∑(-∞<t <+∞,且3,22t ττ≠±±,…)37.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x,试将f (x )展成傅里叶级数的复数形式.解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x ln l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)38.求矩形脉冲函数(),00,A t T f t ≤≤⎧=⎨⎩其他的傅氏变换。
高等数学课后习题答案2-2
习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222c s c s i n 1s i n c o s s i n -=-=+-=. x x xx x x c o t c s c s i n c o s )s i n 1()(c s c 2⋅-=-='='.2. 求下列函数的导数: (1)1227445+-+=x x x y ; (2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (xx x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x ,21321236s i n 6c o s 6+=+=+='=πππx y , 222224s i n 4c o s 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214c o s 44s i n 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11x x x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(6))()(21])[(22121222122'-⋅-='-='-x a x a x a y222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2).(8)xxx x e e e e y 221)()(11+='⋅+='. (9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x x x x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211xy -=; (3)x e y x3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11x x x x x y --=---='-⋅--='.(2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3s i n 63(c o s 213s i n 33c o s 21222x x e x e x e xxx +-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1xa x x a x a x +=++⋅++=.(9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ; (6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ;(9)xx xx y -++--+1111;(10)xxy +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(a r c s i n 22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x . 242a r c s i n2x x -=(2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x c s c 212s e c 2t a n 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x x x y )(l n ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+=xx x 2ln 1ln +=.(4))(arctan arctan'⋅='x e y x)()(112arctan'⋅+⋅=x x e x)1(221)(11a r c t a n2a r c t a nx x e x x ex x +=⋅+⋅=. (5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x x x x x y)l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x xx x x x x x x y -++--+--+--++-++='22111xx -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数. 解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2). (2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='. (4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-=x xx x x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3);(2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t tt ee e e y --+-=;(6)x y 1cos ln =;(7)x ey 1sin 2-=; (8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin tt y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2).(3)2arctan 44214112arctan 222xx x x y +=⋅+⋅='. (4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x xx exe y x x -⋅⋅-⋅='-⋅='--x e x x1s i n 222s i n 1-⋅⋅=.(8))211(21)(21x x x x x x x y +⋅+='+⋅+=' xx x x +⋅+=412. (9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='. (10)22222222)1()2(2)1(2)12(11)12()12(11t t t t t tt t t ty +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.。
高等数学课件微分方程D12习题课2
第十二章
二阶微分方程的
解法及应用
一、两类二阶微分方程的解法 二、微分方程的应用
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
一、两类二阶微分方程的解法
1. 可降阶微分方程的解法 — 降阶法
d2 y dx2
f
(x)
逐次积分求解
d2y dx2
f
(x,dy) dx
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
P327 题4(2) 求解
yay20
yx00,
y x01
提示: 令 yp(x),则方程变为 d p a p 2
dx
积分得
1 p
ax C1,
利用
px 0 yx 0 1得C11
再解
(x)ex(x)
(x)(x)ex
解初值问题: (0)0, (0)1
答案: (x)1ex(2x1)1ex
4
4
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
例3. 设函数 yy(x)在 (, ) 内具有连续二阶导
数, 且 y 0 ,xx(y)是 yy(x)的,函数
x 2 y pxy qy f(x)
令xet ,D d dt
D (D 1 ) p D q y f (et)
练习题: P327 题 2 ;
3 (6) , (7) ;
4(2); 8
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
解答提示
P327 题2 求以 yC 1exC 2e2x为通解的微分方程 . 提示: 由通解式可知特征方程的根为 r11,r22,
高数 第二章 习题课二
(定数)
10
可见对任意 x (a , b) , f ( x) K , 即得所证 .
例6
(a , b) 可导,且a 0, 设 f ( x) 在 [a , b] 连续,
代入上式
1 原式=- 6
12
四、 导数应用
1. 研究函数的性态: 增减 , 极值 , 凹凸 , 拐点 , 渐近线 , 曲率
2. 解决最值问题
• 目标函数的建立与简化 • 最值的判别问题 3. 其他应用 : 求不定式极限 ; 几何应用 ;
证明不等式 ; 研究方程实根等.
13
1、利用函数的单调性证明不等式 例1. 证明
有时也可考虑对导数用中值定理 .
(5) 若结论为不等式 , 要注意适当放大或缩小的技巧.
5
2x 2 arctan x , 例1:证明 arcsin 2 1 x 2x 证: 令 f x arcsin 2 arctan x 2 1 x , f x 0 f x c
0
e
1 e
在 [ 1 , ) 只有唯一的极大点 x e , 因此在
处
又因 中的最大项 .
也取最大值 .
22
例9 求曲线 x y 2 上点 A(1,1) 处的曲率半径。 解 方程两边对 x 求导
4
4
4 x 4 y y 0
方程两边再对 x 求导
3
3
x y y 0
5、利用泰勒公式证明不等式 例7. 设函数 f ( x) 在 [0 ,1] 上具有三阶连续导数 ,
同济大学高等数学习题课2-数列极限
4.若数列{ xn } 与{ yn } 发散,问数列{ xn yn } ,
{
xn
yn
}
,{
xn yn
}
是否一定发散?
答:不一定发散。
例如: (1)n 和 (1)n1 都发散,但 (1)n (1)n1 0, (1)n(1)n1 1
和
(1)n (1)n1
1
收敛。
二、证明题
1)
.
2
6
n(n1)(n2) h3 6
∴
n2 an
n2 n(n1)(n2) h3
6n (n2 3n2)h3
6 (n 3)h3
,
6
0
,要使
n2 an
0
(n
6 3)h3
,
只要n
6 h3
3
,故取
N
6 h3
3
,
∵ 0 ,
N
6 h3
3
,
nN
时,有
n2 an
0
6 (n 3)h3
,
∴
lim
n
n2 an
0
(a
lim
n
xn
a
;反之是否成立。
1.用定义证明: lim xn a ,则对任一正整 数k ,
n
l im xnk a 。
n
证明:∵ lim xn a ,∴0 , NN ,n N 时,
n
恒有 xn a 。
∵当n N 时,必有nk N ,∴也必有xnk a ,
∴ lim xnk a 。
n
2.证明 lim xn a lim x2n1 lim x2n a 。
1.用定义证明: lim xn a ,则对任一正 整 数k , lim xnk a .