中考数学一轮复习 第7期 二元一次方程组精品考点练习
中考数学总复习《二元一次方程组》专项提升练习(附答案)
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
年中考第1轮基础复习21:八(上)第七章:二元一次方程组试题
第一部分:基础复习八年级数学(上)第七章:二元一次方程组一、中考要求:1.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.2.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.3.了解二元一次方程组的图象解法,初步体会方程与函数的关系.4.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.二、中考卷研究(一)中考对知识点的考查:、年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 方程组的整数解2%2 解方程组2%3 列方程组解实际问题 2.5~6%4 二元一次方程与一次函数3~7%本章多考查二元一次方程组的解法及应用等.另外本章还多考查方程思想和转化思想以及我们收集和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.三、中考命题趋势及复习对策本章中方程组是刻画现实世界的一个有效的数学模型,考查方程组的题目约占总分的10%左右,题型有填空、选择、解答.中考对数学思想方法的考查一方程组的实际应用将进一步提高,一大批具有较强的时代气息,格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握方程组的解法,还应在方程组的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题.★★★(I)考点突破★★★考点1:方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 55(1)3(5)x yy x-=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.二、经典考题剖析:【考题1-1】(、汉中)若2x+y+4+(x-2)=0则3x+2y=_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y=3×2+2×(-6)=-6【考题1-2】(、北碚,5分)解方程组:x-y=4 2x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解.三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-194x-5y=17⎧⎨⎩①②,用加减法消去x,得到的方程为()A、2y=-2 B.2y=-36 C. 12y=-2 D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是()A.11x=x=2x=73 C. D.19y=8y=3y=3x=3B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩3.若x=-2y=1⎧⎨⎩是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b)(a-b)的值为()A.-353B.353C.-16D.164.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=154x-by=-2⎧⎨⎩①②由于甲看错了方程①中的a得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a、b为计算,求原方程组的解x与y的差.6.若a+b4b 与3a+b 是同类二次根式,求a、b的值.7.已知关于x,y的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品()A.赚50%B.赔50%C.赔25%D.不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(、南山区正题3分)如图1-7-1,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩解::B 点拨:此题关键是找出等量关系AB⊥BC,隐含x+y=90°.【考题2-3】(、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
2025年中考数学总复习专题07 二元一次方程组(附答案解析)
数(除数不能为 0),
(1)若 a=b,则a/c=b/c. (×)
所得结果仍是等式.即若 a=b,则 ac=(2)若 a/c=b/c,则a=b.(√)
bc, a b (c≠0). cc
性质 3:(对称性)若 a=b,则 b=a. 性质 4:(传递性)若 a=b,b=c,则 a=c.
2.关于方程 的基本概念
2025 年中考数学总复习专题 07 二元一次方程组
知识点一:方程及其相关概念
关键点拨及对应举例
1.等式的基 本性质
性质 1:等式两边加或减同一个数或同
一个整式,所得结果仍是等式.即若 a=失分点警示:在等式的两边同除以一个数时,这
b,则 a±c=b±c .
个数必须不为 0.
性质 2:等式两边同乘(或除)同一个例:判断正误.
根据题意,列出的方程组是()
8y x 3 A. 7 y x 4
8y x 3 B. 7 y x 4
y 8x 3
C.
7
y
x
4
8y x 3
D.
7
y
x
4
【答案】B
【分析】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,根据题意每人出 8 钱,则多 3 钱;每人出 7 钱,则差 4
钱列出二元一次方程组.
【详解】
设该物品的价格是 x 钱,共同购买该商品的由 y 人,
8y x 3 依题意可得 7 y x 4
故选:B
【点睛】
本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.
二、解答题 3.某工厂计划生产 A、B 两种产品共 60 件,需购买甲、乙两种材料.生产一件 A 产品需甲种材料 4 千克, 乙种材料 1 千克;生产一件 B 产品需甲、乙两种材料各 3 千克.经测算,购买甲、乙两种材料各 1 千克共 需资金 60 元;购买甲种材料 2 千克和乙种材料 3 千克共需资金 155 元. (1)甲、乙两种材料每千克分别是多少元? (2)现工厂用于购买甲、乙两种材料的资金不能超过 10000 元,且生产 B 产品要超过 38 件,问有哪几种 符合条件的生产方案?
中考数学总复习《二元一次方程组》专项测试卷(附答案)
中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。
备考2024年中考数学一轮复习-二元一次方程组的应用-和差倍分问题-综合题专训及答案
备考2024年中考数学一轮复习-二元一次方程组的应用-和差倍分问题-综合题专训及答案二元一次方程组的应用-和差倍分问题综合题专训1、(2019呼和浩特.中考真卷) 滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为公里与公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的倍,且比另一人的实际乘车时间的一半多分钟,计算俩人各自的实际乘车时间.2、(2016兴化.中考模拟) 宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B 两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?3、(2013湖州.中考真卷) 为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表候选教师王老师赵老师李老师陈老师得票数200 300(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?4、(2015南平.中考真卷) 现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;②当x的值至少为多少时,商店才不会亏本.(注:按整箱出售,利润=销售总收入﹣进货总成本)5、(2017高安.中考模拟) 如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;3 4 x﹣2 y a2y﹣x c b备用图3 4﹣2(2018青岛.中考模拟) 江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.7、(2018来宾.中考模拟) 某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.8、(2017宝丰.中考模拟) (2017·鄞州模拟) 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?9、(2017益阳.中考真卷) 我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?10、(2015湖南.中考真卷) 湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?11、(2018贵港.中考真卷) 某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批学生的人数是多少?原计划租用45座客车多少辆?;(2)若租用同一种车,要使每位学生都有座位,应该怎样租用才合算?12、(2016遵义.中考真卷) 上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.13、(2020平顶山.中考模拟) 今年疫情防控期间.某小区卫生所决定购买A,B两种口罩.以满足小区居民的需要.若购买A种口罩9包,B种口罩4包,则需要700元;若购买A种口罩3包.B 种口罩5包.则需要380元.(1)购买人A,B两种口罩每包各需名少元?(2)卫生所准备购进这两种口罩共90包,并且A种口罩包数不少于B种口罩包数的2倍,请设计出最省钱的购买方案,并说明理由.14、(2020淮滨.中考模拟) 某商场销售10台A型和20台B型加湿器的利润为2500元,销售20台A型和10台B型加湿器的利润为2000元(1)求每台A型加湿器和B型加湿器的销售利润;(2)该商店计划一次购进两种型号的加湿器共100台,其中B型加湿器的进货量不超过A 型加湿器的2倍,设购进A型加湿器x台.这100台加湿器的销售总利润为y元①求y关于x的函数关系式;②该商店应怎样进货才能使销售总利润最大?(3)实际进货时,厂家对A型加湿器出厂价下调m(0<m<100)元,且限定商店最多购进A 型加湿器70台,若商店保持两种加湿器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台加湿器销售总利润最大的进货方案.15、某快递公司为了提高工作效率,计划购买、两种型号的机器人来搬运货物,已知每台型机器人比每台型机器人每天多搬运20吨,并且3台型机器人和2台型机器人每天共搬运货物460吨.(1)求每台型机器人和每台型机器人每天分别微运货物多少吨?(2)每台型机器人售价3万元,每台型机器人售价2万元,该公司计划采购、两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出、两种机器人分别采购多少台时,所需费用最低﹖最低费用是多少?二元一次方程组的应用-和差倍分问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
(完整)第七章二元一次方程组知识点整理及配套练习,推荐文档
=x的方程组直接写出它的解.列方程组解应用题中常用的基本等量关系 1.行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程; ;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度; ②船在静水中的速度-水速=船的逆水速度; ③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题: (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4.储蓄问题: ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息× (1-利息税率) 。
5.配套问题: 解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。
6.增长率问题: 解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量; 原量×(1-减少率)=减少后的量. 7.和差倍分问题: 解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量. 8.数字问题: 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。
人教版九年级中考数学 考点复习 二元一次方程组 专题练习
人教版九年级中考数学考点复习 二元一次方程组 专题练习一.选择题(本大题共10道小题)1. 下列方程中,是二元一次方程的是( )A.xy =2B.3x =4yC.x 2D.x 2+2y =4 2. 下列方程中,①x+y=6;②x(y+1)=6;③3x+y=z+1;④mn+m=7,是二元一次方程的有( )A.1个B.2个C.3个D.43. 如果3x 3m-2n -4y n-m +12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( )A.m =2,n =3B.m =2,n =1C.m =-1,n =2D.m =3,n =4 4. 方程组的解是( ) A. B. C. D.5. 用加减消元法解二元一次方程组时,下列方法中无法消元的是( ) A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×36. 如图,在数轴上,点A 、B 分别表示数a 、b,且a+b=2.若AB=4,则点A 表示的数为( )A.-1B.-2C.2D.17. 若方程组⎩⎪⎨⎪⎧3x -y =4k -5①2x +6y =k ② 的解中x +y =16,则k 等于( ) A.15 B.18 C.16 D.178. 方程组⎩⎨⎧2x +y =□x +y =3 的解为⎩⎨⎧x =4y =□,则被遮盖的两个数分别为( ) A.9,-1 B.9,1 C.7,-1 D.5,19. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( )A.120kmB.140kmC.160kmD.180km10. 《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为( )A. ⎩⎪⎨⎪⎧x -12y =50,y -23x =50B.⎩⎪⎨⎪⎧x +12y =50,y +23x =50C.⎩⎪⎨⎪⎧2x +y =50,x +23y =50D.⎩⎪⎨⎪⎧2x -y =50,x -23y =50 二、填空题(本大题共6道小题)11. 已知x 、y 满足方程组,则x+y 的值为______.12. 写出二元一次方程3x-y=4的一组解 (写出一组即可)13. 关于x 、y 二元一次方程组2352x y x y k +=⎧⎨-=⎩的解满足6x+y=21,则k 的值为______.14. 已知二元一次方程x +3y =14,请写出该方程的一组整数解 .15. 某企业有A,B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为(4a+1)小时;在一天内,B 生产线共加工b 吨原材料,加工时间为(2b+3)小时.第一天,该企业将8吨原材料分配到A,B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为 _____.第二天开工前,该企业按第一天的分配结果分配了8吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn 的值为 _____.16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是 尺.三、解答题(本大题共6道小题)17. 列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?18. 某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B 型号篮球?19. 某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?20. 某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?21. 2020年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?22.我校组织了国学经典知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元.。
二元一次方程组(40题)【真题实战】 中考数学一轮复习精讲+热考题型(全国通用)(原卷版)
专题07 二元一次方程组1.(2020·黑龙江齐齐哈尔·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种2.(2020·黑龙江牡丹江·中考真题)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.12种B.15种C.16种D.14种3.(2021·四川德阳·中考真题)关于x,y的方程组3212331x y kx y k+=-⎧⎨+=+⎩的解为x ay b=⎧⎨=⎩,若点P(a,b)总在直线y=x上方,那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣14.(2021·湖南郴州·中考真题)已知二元一次方程组2521x yx y-=⎧⎨-=⎩,则x y-的值为()A.2B.6C.2-D.6-5.(热考)(2021·湖北荆门·中考真题)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x尺,绳子长为y尺,则下面所列方程组正确的是()A.4.5112y xy x=+⎧⎪⎨=-⎪⎩B.4.5112y xy x=-⎧⎪⎨=+⎪⎩C.4.521y xy x=+⎧⎨=-⎩D.4.521y xy x=-⎧⎨=+⎩6.(2021·广西来宾·中考真题)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行.问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A.3229y xy x=-⎧⎨=+⎩B.3(2)29y xy x=-⎧⎨=+⎩C.3229y xy x=-⎧⎨=-⎩D.3(2)29y xy x=-⎧⎨=-⎩7.(2021·黑龙江齐齐哈尔·中考真题)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种8.(2021·甘肃武威·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A.3(2)29y xy x-=⎧⎨-=⎩B.3(2)29y xy x+=⎧⎨+=⎩C.3(2)29y xy x-=⎧⎨+=⎩D.3(2)29y xy x-=⎧⎨+=⎩9.(2020·辽宁葫芦岛·中考真题)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.223400x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩10.(2020·山东临沂·中考真题)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩11.(2020·浙江绍兴·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km12.(2021·四川广安·中考真题)若x、y满足2223x yx y-=-⎧⎨+=⎩,则代数式224x y-的值为______.13.(2021·四川凉山·中考真题)已知13xy=⎧⎨=⎩是方程2ax y+=的解,则a的值为______________.14.(2021·浙江金华·中考真题)已知2xy m=⎧⎨=⎩是方程3210x y+=的一个解,则m的值是____________.15.(2021·浙江嘉兴·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解__________________.16.(2021·四川绵阳·中考真题)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省_____元.17.(2021·内蒙古呼伦贝尔·中考真题)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是3217423x y x y +=⎧⎨+=⎩,类似的,图(2)所示的算筹图用方程组表示出来,就是______________.18.(2021·黑龙江绥化·中考真题)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买,A B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是_____元. 19.(2021·北京·中考真题)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n的值为______________. 20.(2021·山东泰安·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.21.(2020·山东日照·中考真题)《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 辆车,有y 人,则可列方程组为_____.22.(2020·贵州黔南·中考真题)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.23.(2020·湖南·中考真题)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次. 24.(2020·湖南岳阳·中考真题)《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为_____.25.(2021·重庆·中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n . 26.(2021·内蒙古呼和浩特·中考真题)计算求解(1)计算11()303--︒ (2)解方程组 1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩27.(2021·江苏扬州·中考真题)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.28.(2021·四川眉山·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩29.(2021·湖南湘西·中考真题)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A 类微课和5个B类微课需要4600元成本,制作5个A类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?30.(2021·辽宁大连·中考真题)某校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.(1)求大、小两种垃圾桶的单价;(2)该校购买8个大垃圾桶和24个小垃圾桶共需多少元?31.(2021·内蒙古赤峰·中考真题)为传承优秀传统文化,某地青少年活动中心计划分批次购进四大名著:《西游记》、《水浒传》、《三国演义》、《红楼梦》.第一次购进《西游记》50本,《水浒传》60本,共花费6600元,第二次购进《西游记》40本,《水浒传》30本,共花费4200元.(1)求《西游记》和《水浒传》每本的售价分别是多少元;(2)青少年活动中心决定再购买上述四种图书,总费用不超过32000元.如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼梦》每本售价少10元(四大名著各一本为一套),那么这次最多购买《西游记》多少本?32.(2021·辽宁本溪·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?33.(2021·湖北襄阳·中考真题)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.(1)求a ,b 的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x 斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利1y (元),销售草鱼获利2y (元)与x 的函数关系式,并写出x 的取值范围; ①端午节这天,老李让利销售,将鲢鱼售价每斤降低m 元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利W (元)的最小值不少于320元,求m 的最大值.34.(2021·贵州铜仁·中考真题)某快递公司为了提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天多搬运20吨,并且3台A 型机器人和2台B 型机器人每天共搬运货物460吨.(1)求每台A 型机器人和每台B 型机器人每天分别微运货物多少吨?(2)每台A 型机器人售价3万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出A 、B 两种机器人分别采购多少台时,所需费用最低﹖最低费用是多少?35.(2021·福建·中考真题)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?36.(2021·广西柳州·中考真题)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A 、B 两种品牌的螺蛳粉举行展销活动.若购买20箱A 品牌螺蛳粉和30箱B 品牌螺蛳粉共需要4400元,购买10箱A 品牌螺蛳粉和40箱B 品牌螺蛳粉则需要4200元.(1)求A 、B 品牌螺蛳粉每箱售价各为多少元?(2)小李计划购买A 、B 品牌螺蛳粉共100箱,预算总费用不超过9200元,则A 品牌螺蛳粉最多购买多少箱?37.(2021·浙江温州·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?①已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?38.(2021·四川资阳·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;,应(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12如何购买才能使总费用最少?并求出最少费用.39.(2021·四川泸州·中考真题)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.40.(2021·重庆·中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.。
中考数学专项复习《二元一次方程组》练习题(附答案)
中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。
中考数学一轮复习《二元一次方程组》专项练习-附含答案
中考数学一轮复习《二元一次方程组》专项练习-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列方程组中是二元一次方程组的是()A.B.C.D.2.七年级某班由于布置班级的需要,用彩纸剪出了一些“星星”和“花朵”,一张彩纸可以剪出6个“星星”或4个“花朵”,已知剪出的“星星”数量是“花朵”数量的3倍,该班级共用了12张彩纸,设用x张彩纸剪“星星”,y张彩纸剪“花朵”,根据题意,可列方程组为()A.B.C.D.3.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元设大圆珠笔为x元枝,小圆珠笔为y元枝,根据题意,列方程组正确的是()A.B.C.D.4.二元一次方程组的解是()A.B.C.D.5.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知方程组的解满足方程,则()A.4 B.-3 C.3 D.不能确定7.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将20元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.2种B.3种C.4种D.5种8.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和◆,则这两个数●和◆的值为()A.B.C.D.二、填空题9.若关于x、y的方程组有整数解,则正整数a的值为.10.已知关于x,y的二元一次方程组,则.11.已知方程组与有相同的解,则.12.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有种.13.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题14.解方程组 .15.已知是关于x、y的二元一次方程组的解,求a+b的值16.甲、乙两人同时解方程组时,甲看错了方程(1)中的a,解得,乙看错了(2)中的b,解得,求原方程组的正确解.17.因强降雨天气,有500名群众被困,某救援队前往救援,已知3艘小型船和2艘大型船一次可救援125名群众,1艘小型船和3艘大型船一次可救援135名群众.(1)每艘小型船和每艘大型船各能坐多少名群众?(2)若安排m艘小型船和n艘大型船,一次救援完,且恰好每艘船都坐满,请设计出所有的安排方案.18.巴川河是铜梁的母亲河,为打造巴川河风光带,现有一段长为米的河道整治任务由A、B两个工程队先后接力完成A工程队每天整治米,B工程队每天整治米,共用时天.(1)求A、B两工程队分别整治河道多少天?(用二元一次方程组解答)(2)若A工程队整改一米的工费为元,B工程队整改一米的工费为元,求完成整治河道时,这两工程队的工费共是多少?参考答案:1.A2.A3.B4.D5.A6.B7.B8.B9.2、4、810.111.14412.613.1:814.解:①+②,得解得①-②,得解得:∴15.解:将x=4,y=3代入方程组得:解得:则a+b=−1+2=1.16.解:17.(1)解:设每艘小型船能坐x名群众,每艘大型船能坐y名群众.由题意得解得答:每艘小型船能坐15名群众,每艘大型船能坐40名群众.(2)解:由题意得,所以.因为n,m是正整数所以.有四种安排方案:方案一:安排28艘小型船和2艘大型船;方案二:安排20艘小型船和5艘大型船;方案三:安排12 艘小型船和8艘大型船;方案四:安排4艘小型船和11艘大型船.18.(1)解:设A工程队整治河道x天,B工程队整治河道y天根据题意得:解得:.答:A工程队整治河道天,B工程队整治河道天;(2)解:根据题意得:元.答:完成整治河道时,这两工程队的工费共是元。
九年级数学中考一轮专题训练——二元一次方程组
中考一轮专题训练——二元一次方程组(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.3.二元一次方程3x +2y =15的正整数解为_______________.4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或1011.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +112.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( ) (A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为 ( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m的值.24.当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c 的值;(2)当x=-2时,ax2+bx+c的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.参考答案(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1.【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x -,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值.【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C . 【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( ) (A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B .【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法.(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解. 【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值. 【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y 再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式.【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x x y y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800. 【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
中考专题复习第七讲二元一次方程(组)(含详细参考答案)
2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。
专题07 二元一次方程组(原卷版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练
专题07二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用技巧3:二元一次方程(组)的解的五种常见应用【题型】一、二元一次方程组的有关概念【题型】二、用代入法解二元一次方程组【题型】三、用加减法解二元一次方程组【题型】四、用整体消元法解二元一次方程组【题型】五、同解方程组【题型】六、列二元一次方程组【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
【考点总结】一、二元一次方程组【注意】1.解二元一次方程组的步骤(1)代入消元法①变:将其一个方程化为y =ax +b 或者为x =ay+b 的形式②代:将y =ax +b 或者为x =ay+b 代入另一个方程③解:解消元后的一元一次方程④求:将求得的未知数值代入y =ax +b 或x =ay+b ,求另一个未知数的值⑤答:写出答案(2)加减消元法①化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,②加减:将变形后的方程组通过加减消去一个未知数③解:解消元后的一元一次方程方程组的解.加减法解二元一次方程组的一般步骤:a .方程组的两个方程中,如果同一个未知数的系数不互为相反数又不相等,就用适当的数去乘方程的两边,使它们中同一个未知数的系数相等或互为相反数;b .把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;c.解这个一元一次方程;d.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.常见运用题型解应用题的步骤:①审清题意;②找等量关系;③设未知数;④列方程;⑤解方程;⑥验根;⑦作答.工作(或工程)问题:工作量=工作效率×工作时间利息问题:利息=本金×利率×期数;本息和=本金+利息行程问题:路程=速度×时间;其中,相遇问题:s 甲+s 乙=s 总;追及问题:(同地异时)前者走的路程=追者走的路程;(异地同时)前者走的路程+两地间的距离=追者走的路程利润问题:利润=卖价-进价;利润率=进价利润×100%.数字问题:两位数=10×十位数字+个位数字;三位数=100×百位数字+10×十位数字+个位数字④求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法【技巧归纳】技巧1:二元一次方程组的五种特殊解法【类型】一、引入参数法解二元一次方程组1.用代入法解方程组:+y 6=0,①x -y )-4(3y +x )=85.②【类型】二、特殊消元法解二元一次方程组题型1:方程组中两未知数系数之差的绝对值相等2015x +2016y =2017,①016x +2017y =2018.②题型2:方程组中两未知数系数之和的绝对值相等3+14y =40,①+13y =41.②【类型】三、利用换元法解二元一次方程组4y )+4(x -y )=20,-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y -by =4,-y =5+by =16,-7y =1的解相同,求(a -b)2018的值.【类型】五、运用主元法解二元一次方程组6-3y -3z =0,-3y -z =0(x ,y ,z 均不为0),求xy +2yz x 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用【类型】一、整体思想1.先阅读,然后解方程组.-y-1=0,①(x-y)-y=5②时,由①,得x-y=1,③然后再将③代入②,得4×1-y=5,解得y=-1,从而进一步求得x=0.=0,=-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:0,2y=9.2.若x+2y+3z=10,4x+3y+2z=15,求x+y+z的值.【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:+18y=17,①+16y=15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x+2y=2,所以x+y=1.③③×16,得16x+16y=16,④②-④,得x=-1,将x=-1代入③,得y=2.=-1,=2.018x+2017y=2016,016x+2015y=2014.【类型】三、方程思想4.已知(5x-2y-3)2+|2x-3y+1|=0,求x+y的值.5.若3x2m+5n+9+4y4m-2n-7=2是二元一次方程,求(n+1)m+2018的值.【类型】四、换元思想6+x-y3=6,y)-5(x-y)=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8-y =5,+by =-1+y =9,-4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用【类型】一、已知方程(组)的解求字母的值1.若关于x ,y-y =m ,+my =n=2,=1,则|m -n|的值为()A .1B .3C .5D .22=2,=3=-4,=2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y+2y =3m ,-y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y+ny =60,-y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y+5y =-6,-by =-4-5y =16,+ay =-8有相同的解,求(2a +b)2018的值.【类型】五、已知二元一次方程组的误解求字母的值6+y =5,-by =13时,由于粗心,甲看错了方程组中的a=72,=-2;乙看错了方程组中的b=3,=-7.(1)甲把a 错看成了什么?乙把b 错看成了什么?(2)求出原方程组的正解.【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为()A.3B.3,-3CD.【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x,y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a,b的值为()A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392x yx y⎧=+⎪⎪⎨⎪+=⎪⎩B.2392x yx y⎧=-⎪⎪⎨-⎪=⎪⎩C.2392x yx y⎧=+⎪⎪⎨-⎪=⎪⎩D.2392x yx y⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是()A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y +=⎧⎨=⎩的解是()A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是().A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是()A .1xy =B .210x -=C .1x y -=D .11x y+=5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b -的值是()A .2-B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法:解:由①得x ﹣y =1③将③代入②得:4×1﹣y =5,即y =﹣1把y =﹣1代入③得x =0,∴方程组的解为01x y =⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x y x y y -=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3aa 、b 的值分别是()A .2和1B .1和2C .2和2D .1和12.(2022·福建·平潭翰英中学一模)已知12x y =⎧⎨=⎩是二元一次方程组m −n =8m +n =1的解,则43m n +的立方根为()A .±1BC .±D .1-3.(2022··二模)我们知道二元一次方程组233345x y x y -=⎧⎨-=⎩的解是31x y =⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x y x y +--=⎧⎨+--=⎩,它的解是()A .123x y =-⎧⎪⎨=⎪⎩B .123x y =-⎧⎪⎨=-⎪⎩C .123x y =⎧⎪⎨=⎪⎩D .123x y =⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x 辆车,y 人,根据题意,列方程组是()A .2932y x y x =+⎧⎨=-⎩B .293(2)y x y x =+⎧⎨=-⎩C .2932y x y x =-⎧⎨=-⎩D .()2932y x y x =-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x ,y 的方程组436626x y x my -=⎧⎨+=⎩的解是整数,那么整数m 的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组:(1)1223334m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩;(3)0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩;(4)23433x y x y ⎧=⎪⎨⎪-=⎩.8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元.(1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。
2023年中考苏科版数学一轮复习专题练习-二元一次方程
2023年中考数学一轮复习专题练习二元一次方程一、选择题1. 下列方程是二元一次方程的是( )A .321=+y xB .2x –3y =xyC .32=-yx D .x =y 2. 下列各式是二元一次方程组的是( )A .⎩⎨⎧=-=-31z y y xB .⎪⎩⎪⎨⎧=-=-3103x y y x C .⎩⎨⎧-=-=121x y xy D .⎩⎨⎧=-=21x y x 3. 若3x m –n –2y m +n –2=4是关于x ,y 的二元一次方程,则m ,n 的值分别为( )A .m =1,n =0B .m =0,n =– 1C .m =2,n =1D .m =2,n =–34. 若二元一次方程组⎩⎨⎧=-=+453,3y x y x 的解为⎩⎨⎧==,,b y a x 则=-b a ( ) A .1 B .3 C .41 D .47 5. 某企业决定投资不超过20万元建造A ,B 两种类型的温室大棚(两种类型都要建).经测算,投资A 种类型的大棚6万元/个,B 种类型的大棚7万元/个,那么建造方案有( )A. 2种B. 3种C. 4种D. 5种 6. 已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .3 7. 已知关于x . y 的二元一次方程组⎩⎨⎧=+=-0425y kx y x 中x =–4,则k 的值为( ) A .–12B .12C .–3D .3 8. 若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-+12)1(2y bx y a x 的解,则a +b 的值是( )A .2B .–2C .1D .–1 9. 用加减法解方程组⎩⎨⎧=+=-5273y x y x 时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是( )① ② ③ ④.A .②B .②③C .①③D .④ 二、填空题10. 将方程527x y 变形成用y 的代数式表示x ,则x =______.再用x 的代数式表示y ,则y =______.11. 在432-=x y 中,如果x =6,那么y =____;如果y =—2,那么x =___ 12. 写出一个以23x y =⎧⎨=⎩为解的二元一次方程组__________________ .13. 已知ax=by + 2012的一个解是⎩⎨⎧-==11y x ,则a +b=________________ 14. 已知二元一次方程x + 3y =10,请写出一组正整数解________15. 用图象法解二元一次方程组,小英所画图象如图所示,则方程组的解为 .16. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = 。
第7章《二元一次方程组》中考题集(06):7.3 二元一次方程组的应用
第7章《二元一次方程组》中考题集(06):7.3二元一次方程组的应用第4章中考题集二元一次方程组的应用选择题1.(2007•济宁)同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()2.(2006•双流县)我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是()3.(2006•日照)某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时4.(2006•仙桃潜江江汉)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,那么小刚的弹珠颗数是()5.(2005•宜宾)如图,有甲、乙、丙三种地砖,其中甲、乙是正方形,边长分别为a,b,丙是长方形,长为a,宽为b(其中a>b),如果要用它们拼成若干个边长为(a+2b)的正方形,那么应取甲、乙、丙三种地砖块数的比是()6.(2005•绵阳)如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()7.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()8.(2009•台湾)某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,9.(2009•乐山)在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()C.倍倍10.(2008•白银)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()11.(2006•大兴安岭)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可12.(2005•毕节地区)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案.小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小13.(2008•义乌市)已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是.C D.填空题14.(2010•威海)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与_________个砝码C的质量相等.15.(2009•济宁)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为_________只,树为_________棵.16.(2009•河北)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是_________cm.17.(2008•西宁)如图中标有相同字母的物体的质量相同,若A的质量为20克,当天平处于平衡状态时,B的质量为_________克.18.(2008•温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元,《数学趣题》每本8元,则《数学趣题》买了_________本.19.(2008•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完成.整个工作量作“1”,如图是完成的工作量y随时间x(天)变化的图象,如果两个工程队合做,完成这项工程所需的天数是_________天.20.(2008•绍兴)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_________元.21.(2008•河北)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是_________g.22.(2007•江苏)某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学共有_________名.23.(2007•仙桃潜江江汉)母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知一束鲜花的价格是_________元.24.(2007•济宁)甲、乙两同学同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是距离山脚下_________m.25.(2006•临沂)甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲、乙两种糖果的混合比例应为甲:乙=_________.26.(2006•临安市)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_________.27.(2006•防城港)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_________cm.28.(2006•巴中)根据图中提供的信息,求出每个篮球和足球的单价分别是_________元,_________元.29.(2005•潍坊)某电视台在每天晚上的黄金时段的3分钟内插播长度为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元.若要求每种广告播放不少于2次,且电视台选择收益最大的播放方式,则在这一天黄金时段3分钟内插播广告的最大收益是_________元.30.(2005•泰州)如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_________.第4章4.3 二元一次方程组的应用参考答案与试题解析选择题1.(2007•济宁)同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为(),2.(2006•双流县)我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是()所以有解之,得3.(2006•日照)某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时4.(2006•仙桃潜江江汉)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,那么小刚的弹珠颗数是()给我,我就有加小刚弹珠颗数等于.5.(2005•宜宾)如图,有甲、乙、丙三种地砖,其中甲、乙是正方形,边长分别为a,b,丙是长方形,长为a,宽为b(其中a>b),如果要用它们拼成若干个边长为(a+2b)的正方形,那么应取甲、乙、丙三种地砖块数的比是()6.(2005•绵阳)如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()解之,得7.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()8.(2009•台湾)某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,9.(2009•乐山)在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的().C倍倍的方程组,再求即可.由题意得z==10.(2008•白银)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()11.(2006•大兴安岭)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可12.(2005•毕节地区)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案.小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小13.(2008•义乌市)已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是.C D.填空题14.(2010•威海)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与2个砝码C的质量相等.15.(2009•济宁)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为20只,树为5棵..16.(2009•河北)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是20cm.x=据此可列:,×17.(2008•西宁)如图中标有相同字母的物体的质量相同,若A的质量为20克,当天平处于平衡状态时,B的质量为10克.18.(2008•温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元,《数学趣题》每本8元,则《数学趣题》买了7本.y=y=y=y=19.(2008•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完成.整个工作量作“1”,如图是完成的工作量y随时间x(天)变化的图象,如果两个工程队合做,完成这项工程所需的天数是10天.天做了,则每天做天做了,则每天做,x=÷=1020.(2008•绍兴)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需12元.21.(2008•河北)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g.由题意列方程组得:.22.(2007•江苏)某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学共有40名.23.(2007•仙桃潜江江汉)母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知一束鲜花的价格是15元.,24.(2007•济宁)甲、乙两同学同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是距离山脚下240m.+=,﹣﹣﹣,×25.(2006•临沂)甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲、乙两种糖果的混合比例应为甲:乙=3:2.=k=:26.(2006•临安市)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=109.中,==10×27.(2006•防城港)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是50cm.,根据题意得解:根据题意得,28.(2006•巴中)根据图中提供的信息,求出每个篮球和足球的单价分别是130元,160元.,29.(2005•潍坊)某电视台在每天晚上的黄金时段的3分钟内插播长度为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元.若要求每种广告播放不少于2次,且电视台选择收益最大的播放方式,则在这一天黄金时段3分钟内插播广告的最大收益是50000元.30.(2005•泰州)如图,正方形是由k个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=8.,。
数学中考一轮复习专题07二元一次方程组课件
知识点1:二元一次方程(组)的有关概念
知识点梳理
2.二元一次方程组:
由两个二元一次方程组成的方程组叫做二元一次方程组.方程组中同一个字母代表
同一个量,其一般情势为
aa12xx
b1 y=c1 b2 y=c2
,其解一般写成
x m
y
n
的情势.
知识点1:二元一次方程(组)的有关概念
知识点梳理
3.二元一次方程的解: 使二元一次方程两边的值相等的两个未知数的值,叫做这个二元一次方程的 一个解,一个二元一次方程有 无数 个解. 4.二元一次方程组的解: 使二元一次方程组两边的值相等的两个未知数的值,叫做二元一次方程组的 解.检验一对数值是否是某个二元一次方程组的解,常用的方法是将这对数 值分别代入方程组中的每个方程.只有当这对数值同时满足所有方程时,才 能说这对数值是此方程组的解;如果这对数值不满足其中的某个方程,那么 它就不是此方程组的解.
知识点2:二元一次方程组的解法
知识点梳理
3.加减法:在方程两边同乘以一个数,将两个方程中同一个未知数的系数变为相同 的数(或互为相反数),再将方程两边分别相减(或相加). 加减消元法的一般步骤:①变形:先视察系数特点,将同一个未知数的系数化为相 等的数或相反数. ②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程 组转化为一元一次方程. ③解方程:解一元一次方程,求出一个未知数的值. ④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的 值,从而得到方程组的解.
图(2)所示的算筹图用方程组表示出来,就是
2 4
x x
y 12 3y 26
,
2x y 12
故答案为:4x 3y 26 .
中考数学一轮复习精品案例第期二元一次方程组(含答案)
丄x + y = 8第七期:二元一次方程组二元一次方程组的考查在现在的中考中比较普遍,通常与数轴相结合, 应用题出得比较多,考查形式比较多样,有选择、填空或者解答的形式,分值一般在3分左右。
知识点1 :二元一次方程及其解例1下列方程中,是二元一次方程的是()1 y —2 A . 3x — 2y=4z B . 6xy+9=0C . — +4y=6D . 4x=x4思路点拨:掌握判断二元一次方程的三个必需条件: ①含有两个未知数; ②含有未知数的项的次数是1 ;③等式两边都是整式.所以选D例2:二元一次方程 5a — 11b=21()A .有且只有一解B .有无数解C .无解D .有且只有两解思路点拨: 不加限制条件时,一个二元一次方程有无数个解.所以选 B练习 1. 如果方程x m+1y n-1是二元一次方程,那么m= ___ , n= ______2. _________________________________________ 二元一次方程 2x-y=1,则当x=3蛙,y= _______________________________________________ ;当y=3时,x= ______答案:1 . 0 2 ;2. 5 2最新考题2.(2009年西宁市)如图中标有相同字母的物体的质量相同, 若A 的质量为20克,当天平处于平衡状态时, B 的质量为 _____________ 克.答案:1. B 2. 10知识点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是()1. (2009年日照) 若关于 x , y 的二兀2x 3y =6的解,贝U k 的值为33 A .B .44次方程组丿x + y = 5k, 的解也是二元一次方程x — y = 9k44C.- -D.33思路点拨:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1 ;③每个方程都是整式方程•所以选A例2:已知丨x—1 | + (2y+1 )2=0,且2x—ky=4,贝V k= .思路点拨:由已知得x —仁0, 2y+仁0,「X =11I 1二X=1, y=—,把 1 代入方程2x —ky=4 中,2+ k=4,二k=1 .2厂2 21 X 二1练习:1.写出一个以彳为解的二元一次方程组_________ .』=2f2x - y - -32.若满足方程组4 的y的值是1,则该方程组的解是__________4x +5y =1答案:1•答案不唯一如X - 3 2. X- 1ly = —1 ly=1最新考题1. (2009绵阳)小明在解关于x、y的二元一次方程组丿x + ®y-3,时得到了正确结果3x _ 述y = 1x—㊀,后来发现“>” “”处被墨水污损了,请你帮他找出过、㊉处的值分别是()A. : = 1,二=1 B . : = 2,二=1C. : = 1,二=2 D . : = 2,二=2x = 2 丄ax by = 72. (2009年桂林市、百色市)已知是二兀一次方程组的解,则a-b(y=1 .ax_by=1的值为().A. 1B. —1C. 2D. 3答案:1.B 2.B知识点3 :二元一次方程组的应用4例1 :某校初三(2)班40名同学为希望工程”捐款,共捐款100元.捐款情况如表:4人数表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有X 名同学,捐款3元的有y 名同学,根据题意,可得方程组()思路点拨:这是一道表格信息题, 通过已知条件可发现两个等量关系: 总人数为40人, 总捐款金额100元•利用表格信息可列方程组 丿x + y = 27 ,故应选A2x + 3y = 66例2:如图,点O 在直线AB 上,OC 为射线,.1比.2的3倍少10,设.1 , . 2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是()x + y =180 A.」x = y -10仪 + y =180C.丿.X = y +10思路点拨:x + y =180B.丿x = 3y _ 10 f 3y =180D.丿x =3y -10知条件看似给了一个,其实还有一个隐含条件,即 • 1与.2互为邻补角•利用它们可列方程组/ + y"8o ,故应选B . jX =3y —10练习:2.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物 都是一样重的•驴子抱怨负担太重,骡子说: 你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多! ”那么驴子原来所驮货物的袋数是()成,其中一个小长方形的面积为()A. 400 cm 2B. 500 cm 2 2C.600 cmD.4000 cm1•如图,宽为50 cm 的矩形图案由「x + y = 27 A.丿2x +3y =66'x + y = 27B. 丿 2x +3y =100x + 27C.丿3x +2y =66x + 27D.丿3x +2y =100本题侧重考查10个全等的小长方形拼A. 5B. 6C. 7D. 8答案:1. A 2. A 最新考题1. (2009年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅 行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A . 4种B . 3种C . 2种D . 1种2. (2009年济宁市)请你阅读下面的诗句:栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何? ”诗句中谈到的鸦为只、树为 ________ 棵.答案:1. C ; 2. 20, 5过关检测、选择题1.下列各组数是二元一次方程"的解是()1 — X = 1卞=1= 0H■..V = ■B.c. < D.V = 2'= 1■ V = 02.如图,平行四边形ABCD 的周长是48,对甬线AC 与BD 相交于点0, △皿D 的周长比AAOB的周长多乩若设AD=次,AB 予 则可用列方程组的方法求也 怔的长,这个方程组可以是( )丄x y =48 C . x _ y = 63.中央电视台2套 开心辞典”栏目中,有一期的题目如图 所示,两个天平都平衡,则三个球体的重量等于( ) 个正方体的重量. A . 2 B . 3C . 4D . 54.如果3a 7x b y+7和-7a 2-4y b 2x 是同类项,则x 、y 的值是(2(x y) =48 A .x _ y = 62(x y) = 48 B .j _x = 6C .— 4A . X =—3厂2Bx =2,『=-3C .X =—2, y =3D .1 = 3,『一 2ax + y =0x=1则方呈的解■■■a ,b 为()x +by =1J = -1a = 0"a=1a=1a = 0A-B .丿C .D .丿b =1A ==0b = 1、b=0y=kx-9有公共解,则 5.k 的取值为()6 .若二元一次方程 3x-y=7 , 2x+3y=1 ,7.一副三角板按如图摆放,且/则可得到的方程组为( x = y -50A .丿x + y =180x = y-50 C .丿 x + y = 901的度数比/ 2的度数大50 )‘X = y + 50B .丿y =180"x = y + 50D .丿x + y = 90&李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是()A . 6, 10 B. 7, 9 C. 8, 8D . 9, 7、填空题9 .如果,=3是方程3x-ay=8的一个解,那么a= _______________7 = -110 .由方程3x-2y-6=0可得到用x表示y的式子是______________ .X = 111.请你写出一个二元一次方程组,使它的解为」,这个方程组是y=2■C x =112 .若方程mx • ny = 6的两个解为ly=113 .根据图提供的信息,可知一个杯子的价格是14•若(2x-3y+5)2+ x + y — 2 =0,则I = —,丁的解是{;]口^,其中y的值被墨渍盖X x py =215 .在一本书上写着方程组X 3x 2y = 5x 2 19.[2(3x+2y)=2x+83x - y + z = 422.彳 2x+3y- z = 12x + y + z = 6四、解答题16.为了合理使用电力進源,缓解用电紧张状况,我国电力部门出台了便用“峰咎电"的4 政策及收费标谁(如下表).已知王老师家4月份使用“峰谷电渺號干瓦时,樹电费」43.40元间王老师家4月份"峰电”和"谷电规各 用了多少千瓦时?设王老师家4月份"峰电"用了 K 千瓦时,"谷电'■用了 F 千瓦时,根据题意可列方■程 组 *用电时间Q 收费标准-峰电 08:00—22:00^ 0, 56元/千瓦时 谷电 22:00—06:000- 28元/千瓦时,=2 3 6 m n 三—+=.421.3 4 2x_3±=2 怡2三解据组20.23.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七期:二元一次方程组二元一次方程组的考查在现在的中考中比较普遍,通常与数轴相结合,应用题出得比较多,考查形式比较多样,有选择、填空或者解答的形式,分值一般在3分左右。
知识点1:二元一次方程及其解例1:下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 思路点拨:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.所以选D例2:二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 思路点拨: 不加限制条件时,一个二元一次方程有无数个解.所以选B 练习1.如果方程x m+1y n-1是二元一次方程,那么m=_____,n=______.2.二元一次方程2x-y=1,则当x=3蛙,y=______;当y=3时,x=_____. 答案: 1.0 2 ;2.5 2 最新考题1.(2010年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A .43-B .43 C . 34D .34-2.(2010年西宁市)如图中标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为 克.答案:1. B 2. 10知识点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 思路点拨:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.所以选A例2:已知│x-1│+(2y+1)2=0,且2x -ky=4,则k=_____. 思路点拨:由已知得x -1=0,2y+1=0,∴x=1,y=-12,把112x y =⎧⎪⎨=-⎪⎩代入方程2x -ky=4中,2+12k=4,∴k=1. 练习:1.写出一个以12x y =⎧⎨=⎩为解的二元一次方程组________.2.若满足方程组23451x y x y -=-⎧⎨+=⎩的y 的值是1,则该方程组的解是________.答案:1.答案不唯一如31x y =-⎧⎨=-⎩ 2.11x y =-⎧⎨=⎩最新考题1.(2009绵阳)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 2 2.(2010年桂林市、百色市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .3 答案:1.B 2.B知识点3:二元一次方程组的应用例1 :某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ) A.⎩⎨⎧=+=+663227y x y x B.⎩⎨⎧=+=+1003227y x y xC.⎩⎨⎧=+=+662327y x y x D.⎩⎨⎧=+=+1002327y x y x思路点拨:这是一道表格信息题,通过已知条件可发现两个等量关系:总人数为40人,总捐款金额100元.利用表格信息可列方程组⎩⎨⎧=+=+663227y x y x ,故应选A .例2 :如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC.⎩⎨⎧+==+10180y x y xD.⎩⎨⎧-==1031803y x y思路点拨:本题侧重考查学生的数形结合思想.已知条件看似给了一个,其实还有一个隐含条件,即1∠与2∠互为邻补角.利用它们可列方程组⎩⎨⎧-==+103180y x y x ,故应选B .练习:1.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm2 CAB1 2 O2.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是()A. 5B. 6C. 7D. 8答案:1. A 2. A最新考题1.(2010年齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种2.(2010年济宁市)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?” 诗句中谈到的鸦为只、树为棵.答案:1. C ;2. 20,5过关检测一、选择题以是()A.2()486x yx y+=⎧⎨-=⎩B.2()486x yy x+=⎧⎨-=⎩C.486x yx y+=⎧⎨-=⎩D.486x yy x+=⎧⎨-=⎩3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .5 4.如果3a 7x b y+7和-7a 2-4y b 2x是同类项,则x 、y 的值是( )A .=-3,=2B .=2,=-3C .=-2,=3 D .=3,=-25.方程⎩⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为( )A .⎩⎨⎧==10b a B .⎩⎨⎧==01b a C .⎩⎨⎧==11b a D .⎩⎨⎧==0b a6.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的取值为( ) A . 3 B .- 3 C .-4 D .47.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( ) A .⎩⎨⎧=+-=18050y x y x B .⎩⎨⎧=++=18050y x y xC .⎩⎨⎧=+-=9050y x y x D .⎩⎨⎧=++=9050y x y x8.李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A .6,10B .7,9C .8,8D .9,7 二、填空题 9.如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.10.由方程3x -2y -6=0可得到用x 表示y 的式子是_________. 11.请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________.12.若方程6=+ny mx 的两个解为 11x y =⎧⎨=⎩ 21x y =⎧⎨=-⎩,则m =__________. 13.根据图提供的信息,可知一个杯子的价格是 .14.若(2x-3y+5)2+2x y +-=0,则= ,= .15.在一本书上写着方程组21x py x y +=⎧⎨+=⎩ 的解是 x y ⎧⎨=⎩口,其中y 的值被墨渍盖住了,不过,我们可解得出p =___________.19.32522(32)28x y x x y x +=+⎧⎨+=+⎩ 20.⎪⎪⎩⎪⎪⎨⎧=+=+244263n m nm21. 22322143=-=+y x y x 22. 6123243=++=-+=+-z y x z y x z y x四、解答题23.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?24.长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?参考答案一、AADBB,DDD.二、9.-1;10.263-x;11.答案不唯一,符合题意即可。
12.4;13.8元;14.15,9 5;15.3;16.950.560.2843.4x yx y+=⎧⎨+=⎩.三、解方程组:17.14xy=⎧⎨=⎩18.21xy=⎧⎨=-⎩19.1232xy⎧=⎪⎪⎨⎪=⎪⎩24.设甲班有x人,乙班有y人,由题意得:8109205()515x yx y+=⎧⎨+=⎩解得:5548xy=⎧⎨=⎩.。