六年级奥数 鸡兔同笼及利润折扣问题
小学奥数--鸡兔同笼(含答案解析)
小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
最新鸡兔同笼问题(一)五种基本公式和例题讲解
最新鸡兔同笼问题(⼀)五种基本公式和例题讲解(奥数)鸡兔同笼问题(⼀)五种基本公式和例题讲解(⼀)已知总头数和总脚数,求鸡、兔各多少(假设法):假设全是鸡:⼝诀:假“鸡”得“兔”(第⼀次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者假设全是兔:⼝诀:假“兔”得“鸡”(第⼀次算得的数)(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解⼀(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解⼆(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
答:略(⼆)已知总头数和鸡、兔脚数的差数,当鸡的总脚数⽐兔的总脚数多时,可⽤公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例如:鸡和兔总共107只,鸡⽐兔多58只脚,鸡和兔各⼏只?(1)假设全是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡)※↓因为鸡脚⽐兔脚多58,所以应减去58(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔)※↓因兔脚⽐鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数⽐鸡的总脚数多时,可⽤公式。
※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
【奥数】鸡兔同笼问题
小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=( 4 × 52 - 136 )÷( 4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=( 136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。
小学数学利润与折扣问题
利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)利润=成本×利润率在利润问题里,如果题目没有特指的话,一般是以成本为单位“1”的例如:现在有100太冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问利润是多少?利润25%指的是利润率,那么每台售价就是成本的:1+25%=125%每台成本就是:1500÷125%=1200(元)每台的利润是:1500-1200=300(元) 或1200×25%=300(元)总利润就是:300×100=30000(元)[专题介绍]工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
期望利润=成本价×期望利润率。
[经典例题]例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B 级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。
六年级奥数经济利润问题含答案
经济利润问题知识框架一、解决经济问题的要点(1) 树立“进”与“出”的理念经济问题其实涉及的是两件事:一个是“进”,即到手里多少钱;一个是“出”,即给别人多少钱.二者的差价即为盈利或亏损.(2) 明确单位“1”经济问题中的单位“1”通常是成本(进价),但有时也会有所变化,例如标价等.二、基本公式(1) 涉及利润的公式=+售价成本利润1=⨯+售价成本(利润率)100%100%-=⨯=⨯售价成本利润率利润成本成本1=+售价成本利润率定价=成本×(1+期望利润的百分数)(2) 涉及存贷的公式利率=利息和本金的比利息=本金×利率×期数(3) 涉及税务的公式含税价格=不含税价格×(1+增值税税率)三、基本方法(1) 比率问题,设字母或设数(2) 多商品多状态问题,列表、设未知数重难点(1) 重点:涉及多种商品的经济问题、价格变动问题(2) 难点:涉及多种商品的经济问题、价格变动问题例题精讲一、单物品出售问题【例 1】 一千克商品随季节变化降价出售,如果按现价降价10%,仍可获利180元,如果降价20%就要亏损240元,这种商品的进价是多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 根据盈亏问题可得现价为:()()18024020%10%4200+÷-=,所以成本为:()110%42001803600-⨯-= (元)【答案】3600【巩固】 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是________元.【考点】经济问题 【难度】2星 【题型】填空【解析】 该商品的定价为:(832960)(180%)8960+÷-=(元),则购入价为:89609608000-=(元).【答案】8000【例 2】 某家商店决定将一批苹果的价格降到原价的70%卖出,这样所得利润就只有原计划的13.已知这批苹果的进价是每千克6元6角,原计划可获利润2700元,那么这批苹果共有多少千克?【考点】经济问题 【难度】2星 【题型】解答【解析】 原价的30%相当于原利润的23,所以原利润相当于原价的230%45%3÷=,则原价与原利润的比值为20:9,因此原利润为每千克96.6 5.4209⨯=-元;又原计划获利2700元,则这批苹果共有2700 5.4500÷=千克. 【答案】500【巩固】 某商家决定将一批苹果的价格提高20%,这时所得的利润就是原来的两倍.已知这批苹果的进价是每千克6元,按原计划可获利润1200元,那么这批苹果共有多少千克?【考点】经济问题 【难度】2星 【题型】解答【解析】 根据题意可知,原价的20%就等于原来的利润,所以原价和原利润的比值为1:20%5:1=,利润为每千克16 1.551⨯=-元,所以这批苹果一共有1200 1.5800÷=千克. 【答案】800【例 3】 商店以每件50元的价格购进一批衬衫,售价为70元,当卖到只剩下7件的时候,商店以原售价的8折售出,最后商店一共获利702元,那么商店一共进了多少件衬衫?【考点】经济问题 【难度】2星 【题型】解答【解析】 (法1)将最后7件衬衫按原价出售的话,商店应该获利()7027010.87800+⨯-⨯=(元),按原售价卖每件获利705020-=元,所以一共有8002040÷=件衬衫.(法2)除掉最后7件的利润,一共获利()702700.8507660-⨯-⨯=(元),所以按原价售出的衬衫一共有()660705033÷-=件,所以一共购进33740+=件衬衫.【答案】40【巩固】 某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【考点】经济问题 【难度】2星 【题型】解答【解析】 设这批笔记本的成本是“1”.因此定价是()1130% 1.3⨯+=.其中80%的卖价是1.380%⨯,20%的卖价是1.3220%÷⨯.因此全部卖价是1.380% 1.3220% 1.17⨯+÷⨯=.实际获得利润的百分数是1.1710.1717%-==.【答案】17%【例 4】 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格【考点】经济问题 【难度】1星 【题型】填空【解析】 100%÷80%-1=0.25,所以此商品应提价25%.【答案】25%【巩固】 某公司股票当年下跌20%,第二年上涨多少才能保持原值?【考点】经济问题 【难度】1星 【题型】解答【解析】 本题需要了解股票下跌和上涨之间的关系,因为上涨值未知,所以可设某公司股票为1,第二年上涨x 才能保持原值,则可列方程为:(1-20%)×(1+x )=1,所以x =25%,则第二年应该上涨25%才能保持原值.【答案】25%【例 5】 王老板以2元/个的成本买入菠萝若干个,按照定价卖出了全部菠萝的45后,被迫降价为:5个菠萝只卖2元,直至卖完剩下的菠萝,最后一算,发现居然不亏也不赚,那么王老板一开始卖出菠萝的定价为 元/个.【考点】经济问题 【难度】2星 【题型】填空【解析】 降价后5个菠萝卖2元,相当于每个菠萝卖0.4元,则降价后每个菠萝亏20.4 1.6-=元,由于最后不亏也不赚,所以开始按定价卖出的菠萝赚得的与降价后亏损的相等,而开始按定价卖出的菠萝的量为降价后卖出的菠萝的4倍,所以按定价卖出的菠萝每个菠萝赚:1.640.4÷=元,开始的定价为:20.4 2.4+=元.【答案】2.4【巩固】 某商品按每个5元的利润卖出4个的钱数,与按每个20元的利润卖出3个的钱数一样多,这种商品每个成本是多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 方法一:根据题意存在下面的关系(5元+成本)×4=(20元+成本)×3,经过倒退可以列式子为:()()203544340⨯-⨯÷-=(元),所以成本为40元方法二:成本不变,每件利润多20515-=(元),3件多15345⨯=(元),多与少恰好相等,少卖1个少45元,原价利润5元+成本,成本为45540-=(元).【答案】40【例 6】 成本0.25元的练习本1200本,按40%的利润定价出售.当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%,问剩下的练习本出售时是按定价打了什么折扣?【考点】经济问题 【难度】2星 【题型】解答【解析】 先销掉80%,可以获得利润0.2540%120080%96⨯⨯⨯=(元).最后总共获得86%的利润,利润共0.2540%120086%103.2⨯⨯⨯=(元),那么出售剩下的20%,要获得利润103.2967.2-=(元),每本需要获得利润()7.2120020%0.03÷⨯=(元),所以现在售价是0.250.030.28+=(元),而定价是()0.25140%0.35⨯+=(元).售价是定价的0.28100%80%0.35⨯=,故出售时是打8折. 【答案】8折【巩固】 某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售.由于定价过高,无人购买.后来不得不按38%的利润重新定价,这样出售了其中的40%.此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果.结果,实际获得的总利润是原定利润的30.2%.那么第二次降价后的价格是原定价的百分之多少? 【考点】经济问题 【难度】2星 【题型】解答【解析】 第二次降价的利润是:(30.2%40%38%)(140%)25%-⨯÷-=,价格是原定价的(125%)(1100%)62.5%+÷+=.【答案】62.5%【例 7】 某商店到苹果产地去收购苹果,收购价为每千克1.2元.从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.5元.如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 以1千克苹果为例,收购价为1.2元,运费为1.540010000.6⨯÷=元,则成本为1.20.6 1.8+=元,要想实现25%的利润率,应收入1.8(125%) 2.25⨯+=元;由于损耗,实际的销售重量为1(110%)0.9⨯-=千克,所以实际零售价为每千克2.250.9 2.5÷=元.【答案】2.5元【巩固】 果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为________元.【考点】经济问题 【难度】2星 【题型】填空【解析】 成本是0.98 5.210000184052800⨯⨯+=(元),损耗后的总量是5.210000(11%)51480⨯⨯-=(千克),所以,最后定价为52800(117%)51480 1.2⨯+÷=(元).【答案】1.2元【例 8】 某汽车工厂生产汽车,由于钢铁价格上升,汽车的成本也上升了10%,于是工厂以原售价提高5%的价格出售汽车,虽然如此,工厂每出售一辆汽车所得的利润还是减少了20%,求钢铁价格上升之前的利润率.【考点】经济问题 【难度】2星 【题型】解答【解析】 由题目的条件可知,原来出售一辆汽车的利润的20%等于汽车成本的10%减去汽车原售价的5%,设每辆原来的利润为a ,汽车的成本为b ,那么可列出方程:()20%10%5%a b a b =-+⨯,解得5a b =,所以0.2a b=,即利润率为20%. 【答案】20%【巩固】 某种商品的利润率是20%.如果进货价降低20%,售出价保持不变,那么利润率将是多少?【考点】经济问题 【难度】2星 【题型】解答【解析】 设原来成本为100元,则相应的利润为20元,定价为120元;成本降低20%,变成80元,而售价不变,在现在的利润率为12080100%50%80-⨯=. 【答案】50%【例 9】 春节期间,原价100元/件的某商品按以下两种方式促销:第一种方式:减价20元后再打八折;第二种方式:打八折后再减价20元.那么,能使消费者少花钱的方式是第 种.【考点】经济问题 【难度】1星 【题型】填空【关键词】2008年,第六届,希望杯,一试,六年级【解析】 方法一:设原价是a 元,第一种促销价为()0.8200.816a a -=-(元),第二种促销价为(0.820)a -元,由于0.8160.820a a ->-,所以少花钱的方式是第二种.方法二:第一种促销价格为()100200.864-⨯=,第二种促销价格为1000.82060⨯-=(元),所以选第二种.【答案】第二种【巩固】 甲、乙两店都经营同样的某种商品,甲店先涨价10%后,又降价10%;乙店先涨价15%后,又降价15%.此时,哪个店的售价高些?【考点】经济问题 【难度】2星 【题型】解答【解析】 甲店原价:()()110%110%99%+⨯-=;对于乙店原价为:()()115%115%97.75%+⨯-= ,所以甲店售价更高些.【答案】97.75%,甲店售价更高些.【例 10】 某商店到苹果产地去收购苹果,收购价为每千克1.2元.从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.5元.如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 以1千克苹果为例,收购价为1.2元,运费为1.540010000.6⨯÷=元,则成本为1.20.6 1.8+=元,要想实现25%的利润率,应收入1.8(125%) 2.25⨯+=元;由于损耗,实际的销售重量为1(110%)0.9⨯-=千克,所以实际零售价为每千克2.250.9 2.5÷=元.【答案】2.5元【巩固】 果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为________元.【考点】经济问题 【难度】1星 【题型】填空【解析】 成本是0.98 5.210000184052800⨯⨯+=(元),损耗后的总量是5.210000(11%)51480⨯⨯-=(千克),所以,最后定价为52800(117%)51480 1.2⨯+÷=(元).【答案】1.2元二、多物品出售问题【例 11】 某人在某国用5元钱买了两块鸡腿和一瓶啤酒,当物价上涨20%后,5元钱恰好可买一块鸡腿和一瓶啤酒,当物价又上涨20%,这5元钱能否够买一瓶啤酒?【考点】经济问题 【难度】2星 【题型】解答【解析】 方法一:以原来鸡腿和啤酒的价格为基准,所以可列下面的式子:两块鸡腿+一瓶啤酒=5元(一块鸡腿+一瓶啤酒)×(1+20%)=5元;1瓶啤酒=4块鸡腿,所以原来一瓶啤酒要20/6元.物价上涨两次20%以后,啤酒的价格为:20/6×(1+20%)(1+20%)=4.8元.所以还能买到一瓶啤酒.方法二:物价上涨20%后,如果钱也增加20%,那么就仍然可买两块鸡腿和一瓶啤酒.两块鸡腿 + 一瓶啤酒=6元.但是现在一块鸡腿+一瓶啤酒=5元,则一块鸡腿=1元.一瓶啤酒=4元.再上涨20%以后,一瓶啤酒为:4×(1+20%)=4.8元.【答案】能【巩固】 甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价.后来都按定价的90%打折出售,结果仍获利131元.甲种商品的成本是 元.【考点】经济问题 【难度】2星 【题型】填空【解析】 甲种商品的实际售价为成本的()120%90%108%+⨯=,所以甲种商品的利润率为8%;乙种商品的实际售价为成本的()115%90%103.5%+⨯=,所以乙种商品的利润率为3.5%.根据“鸡兔同笼”的思想,甲种商品的成本为:()()1312200 3.5%8% 3.5%1200-⨯÷-=(元).【答案】1200三、利率纳税问题【例 12】 银行整存整取的年利率是:二年期为11.7%,三年期为12.24%,五年期为13.86%.如果甲、乙二人同时各存人一万元,甲先存二年期,到期后连本带利改存三年期;乙存五年期.五年后,二人同时取出,那么谁的收益多,多多少元?【考点】经济问题 【难度】1星 【题型】解答【解析】 甲存二年期,则两年后获得利息为:1×11.7%×2=0.234(万),再存三年期则为:(1+23.4%)×12.24%×3=0.453(万元),乙存五年期,则五年后获得1×13.86%×5=0.693(万元),所以乙比甲多,0.693-0.453=0.24(万元).【答案】乙比甲多0.24万元【巩固】 王明把3000元钱存入银行,年利率2.1%,每年取出后在次存入,这样三年后一共能取出多少元钱?【考点】经济问题 【难度】2星 【题型】解答【解析】 ()()()30001 2.1%1 2.1%1 2.1%3193⨯+⨯+⨯+=【答案】3193课堂检测【随练1】 一千克商品按20%的利润定价,然后又按8折售出,结果亏损了64元,这千克商品的成本是多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 ()641120%80%1600÷-+⨯=⎡⎤⎣⎦(元)【答案】1600【随练2】 商店以每双13元购进一批拖鞋,售价为14.8元,卖到还剩5双时,除去购进这批拖鞋的全部开销外还获利88元.问:这批拖鞋共有多少双?【考点】经济问题 【难度】2星 【题型】解答【解析】 (法1)将剩余的5双拖鞋都以14.8元的价格售出时,总获利升至8814.85162+⨯=元,即这批拖鞋以统一价格全部售出时总利润为162元;又知每双拖鞋的利润是14.813 1.8-=元,则这批拖鞋共有162 1.890÷=双.(法2)当卖到还剩5双时,前面已卖出的拖鞋实际获利88135153+⨯=元,则可知卖出了153(14.813)85÷-=双,所以这批拖鞋共计85590+=双. 【答案】90【随练3】 文具店有一批笔记本,按照30%的利润定价.当售出这批笔记本的80%的时候,经理决定开展促销活动,按照定价的一半出售剩余的笔记本.这样,当这批笔记本完全卖出后,实际获得利润的百分比是 .【考点】经济问题 【难度】2星 【题型】解答【关键词】2006年,迎春杯,高年级,初赛【解析】 ()()()()130801302180110413117⎡⎤+%%++%-%-%+%-%⎣⎦⨯÷⨯==【答案】17%家庭作业【作业1】 一件衣服,第一天按原价出售,没人来买,第二天降价20%出售,仍无人问津,第三天再降价24元,终于售出.已知售出价格恰是原价的56%,这件衣服还盈利20元,那么衣服的成本价多少钱?【考点】经济问题 【难度】3星 【题型】解答【解析】 我们知道从第二天起开始降价,先降价20%然后又降价24元,最终是按原价的56%出售的,所以一共降价44%,因而第三天降价24%.24÷24%=100元.原价为100元.因为按原价的56%出售后,还盈利20元,所以100×56%-20=36元.所以成本价为:36元.【答案】36【作业2】 某书店出售一种挂历,每售出1本可获得18元利润.售出一部分后每本减价10元出售,全部售完.已知减价出售的挂历本数是原价出售挂历的2/3.书店售完这种挂历共获利润2870元.书店共售出这种挂历多少本?【考点】经济问题 【难度】2星 【题型】解答【解析】 方法一:减价出售的本数是原价出售挂历本数的2/3,所以假设总共a 本数,则原价出售的为3/5a ,减价后的为2/5a ,所以3/5a×18+2/5a×8=2870,所以a=205本.方法二:我们知道原价和减价后的比例为3:2,所以可求平均获利多少,即(3×18+2×8)÷5=14元.所以2870÷14=205本.【答案】205本【作业3】 商店以80元一件的价格购进一批衬衫,售价为100元,由于售价太高,几天过去后还有150件没卖出去,于是商店九折出售衬衫,又过了几天,经理统计了一下,一共售出了180件,于是将最后的几件衬衫按进货价售出,最后商店一共获利2300元.求商店一共进了多少件衬衫?【考点】经济问题 【难度】3星 【题型】解答【解析】 (法1)由题目条件,一共有150件衬衫以90元或80元售出,有180件衬衫以100元或90元售出,所以以100元售出的衬衫比以80元售出的衬衫多18015030-=件,剔除30件以100元售出的衬衫,则以100元售出的衬衫和以80元售出的衬衫的数量相等,也就是说除了这30件衬衫,剩下的衬衫的平均价格为90元,平均每件利润为10元,如果将这30件100元衬衫也以90元每件出售,那么所有的衬衫的平均价格为90元,平均利润为10元,商店获利减少3010300⨯=元,变成2000元,所以衬衫的总数有200010200÷=件.(法2)按进货价售出衬衫获利为0,所以商店获利的2300元都是来自于之前售出的180件衬衫,这些衬衫中有的按利润为10元售出,有的按利润为20元售出,于是将问题转化为鸡兔同笼问题.可求得按100元价格售出的衬衫有50件,所以衬衫一共有50150200+=件衬衫.(方法3)假设全为90元销出:()180********⨯-=(元),可以求按照100元售出件数为:()()23001800201050-÷-=(件),所以衬衫一共有50150200+=件衬衫. 【答案】200【作业4】 某种商品的利润率为25%,如果现在进货价提高了20%,商店也随之将零售价提高8%,那么此时该商品的利润率是多少?【考点】经济问题 【难度】2星 【题型】解答【解析】 设原来该商品的进货价为a 元,则原来的零售价为1.25a 元,现在该商品的进货价为1.2a 元,零售价为1.25 1.08 1.35a a ⨯=元,所以现在该商品的利润率为()1.35 1.21100%12.5%a a ÷-⨯=.【答案】12.5%【作业5】 某商品按定价出售,每个可获利润45元,如果按定价的70%出售10件,与按定价每个减价25元出售12件所获的利润一样多,那么这种商品每件定价 元.【考点】经济问题 【难度】2星 【题型】解答【解析】 每个减价25元也就是说每个利润变为20元,则12件获利润240元.按定价的70%出售10件也获利润240元,所以每个获利润24元,比按定价出售少了21元.说明这21元是定价的30%,所以定价是2130%70÷=元.【答案】70元【作业6】 甲、乙两商店中某种商品的定价相同.甲商店按定价销售这种商品.销售额是7200元;乙商店按定价的八折销售,比甲商店多售出15件.销售额与甲商店相同.则甲商店售出件这种商品.【考点】经济问题 【难度】2星 【题型】解答【关键词】2010年,第8届,希望杯,5年级,1试【解析】 方法一:乙商店按定价的八折出售,则数量之比为:4:5,现在乙商店比甲商店多售出15件,则甲商店售出15×4=60件.方法二:假如乙商店和甲商店售出一样多的商品,它的销售额应是72000.85760⨯=,但是他多卖了15件,也就多卖了7200-5760=1440元,说明一件商品价格是96元,那么甲商店卖出的总件数就是57609660÷=.【答案】60件【作业7】 昨天和今天,学校食堂买了同样多的蔬菜和肉,昨天付了250元,今天付了280元,原因如图所示,那么,今天蔬菜付了 元.【考点】经济问题 【难度】2星 【题型】解答【关键词】2009年,希望杯,第七届,六年级,二试【解析】 采用假设法.如果都涨价10%,那么应该多付25010%25⨯=元,所以今天肉的总价为(3025)(20%10%)50-÷-=元,那么蔬菜的总价为25050200-=元.【答案】200元【作业8】 商店购进1000个十二生肖玩具,运途中破损了一些.未破损的好玩具卖完后,利润率为50%;破损的玩具降价出售,亏损了10%.最后结算,商店总的利润率为39.2%.商店卖出的好玩具有多少个?【考点】经济问题 【难度】2星 【题型】解答【解析】 设商店卖出的好玩具有x 个,则破损的玩具有()1000x -个.根据题意,有:()50%100010%100039.2%x x ⨯--⨯=⨯,解得820x =.故商店卖出的好玩具有820个.【答案】820个【作业9】 “新新”商贸服务公司,为客户出售货物收取销售额的3%作为服务费,代客户购买物品收取商品定价的2%作为服务费.今有一客户委托该公司出售自产的某种物品和代为购置新设备,已知该公司共扣取了客户服务费264元,客户恰好收支平衡.问所购置的新设备花费了多少元?【考点】经济问题 【难度】3星 【题型】解答【解析】 “该客户恰好收支平衡”,这表明该客户出售物品的销售额的13%97%-=,恰好用来支付了设备与代为购买设备的服务费,即等于所购置新设备费用的()12%102%+=.从而求得出售商品所得与新设备价格之比;再以新设备价格为“1”,可求出两次服务费相当于新设备的多少,从而可解得新设备价格.出售商品所得的13%97%-=等于新设备价格的12%102%+=.设新设备价格为“1”,则出售商品所得相当于102102%97%97÷=.该公司的服务费为10253%12%9797⨯+⨯=,故而新设备花费了52645121.697÷=(元). 【答案】5121.6【作业10】 某体育用品商店进了一批篮球,分一级品和二级品.二级品的进价比一级品便宜20%.按优质优价的原则,一级品按20%的利润率定价,二级品按15%的利润率定价,一级品篮球比二级品篮球每个贵14元.一级品篮球的进价是每个多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 设一级品的进价每个x 元,则二级品的进价每个0.8x 元.由一、二级品的定价可列方程:()()120%0.8115%14x x ⨯+-⨯+=,解得50x =,所以一级品篮球的进价是每个50元.【答案】50【作业11】 《中华人民共和国个人所得税法》中的个人所得税税率表(工资、薪金所得适用)如下:表中“全月应纳税所得额’’是指从工资、薪金收入中减去800元后的余额.已知王老师某个月应交纳此项税款280元,求王老师这个月的工资、薪金收入.【考点】经济问题 【难度】2星 【题型】解答【关键词】2005年,希望杯,第三届,五年级,二试【解析】 分别以全月工资、薪金所得为900元,1300元,2800元,5800元计算应交纳此项税款额依次为(1300-800)×5%=25(元); (3分)500×5%+(2800-800-500)×10%=25+150=175(元); (3分)500×5%+(2000—500)×lO %+(5800-800-2000)×15%=25+150+450=625(元). (4分)因为 175<280<625,所以 王老师这个月的工资、薪金收入大于2800元而小于5800元. (6分) 从而知,王老师这个月的工资、薪金收入中大于2800元的部分应交纳此项税款额为280-175-105(元). 又因为 105÷15%=700(元), (8分)所以 王老师这个月的工资、薪金收入应比2800元多700元,即3500元. (10分)【答案】3500元.【作业12】 某商家按定价的80%(八折)出售,仍能获得20%的利润,定价时期望的利润百分数是多少?【考点】经济问题 【难度】2星 【题型】解答【解析】 设定价时“1”,卖价是定价的80%,就是0.8.因为获得20%的利润,卖价是成本乘以(1+20%),即1.2倍,所以成本是定价的28 1.23÷=,定价的期望利润的百分数是22150%33⎛⎫-÷= ⎪⎝⎭ 【答案】50%【作业13】 某商品按照零售价10元卖出20件所得到的利润和按照零售价9元卖出30件所得到的利润相等,求该商品的进货价.【考点】经济问题 【难度】2星 【题型】解答【解析】 该商品按照零售价10元所得利润和按照9元所得的利润之比为30:203:2=,所以按照第一种方式得利润为()()1093233-÷-⨯=元,该商品的进货价为1037-=元.【答案】7元【作业14】 王老师到木器厂订做240套课桌椅,每套定价80元.王老师对厂长说:“如果1套桌椅每减价1元,我就多订10套.”厂长想了想,每套桌椅减价10%所获得的利润与不减价所获得的利润同样多,于是答应了王老师的要求.那么每套桌椅的成本是 元【考点】经济问题 【难度】2星 【题型】解答【关键词】2006年,迎春杯,高年级,初赛【解析】 48,减价10%就是每套减8元,王老师要多订80套.设每套桌椅的成本是x 元,则()()8024072320--x x ⨯=⨯,解得48x =(元).【答案】48元【作业15】 电器厂销售一批电冰箱,每台售价2400元,预计获利7.2万元,但实际上由于制作成本提高了16,所以利润减少了25%.求这批电冰箱的台数. 【考点】经济问题 【难度】2星 【题型】解答【解析】 电冰箱的售价不变,因此减少的利润相当于增加的成本,也就是说原成本的16等于原利润的25%,从而原先成本与利润的比是125%:3:26=,而售价为2400元,所以原来每台电冰箱的利润是2240096023⨯=+元,那么这批电冰箱共有7.21000096075⨯÷=台. 【答案】75【作业16】 某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客再在8折的基础上要求再让利150元,如果真是这样,商店是盈利还是亏损?【考点】经济问题 【难度】2星 【题型】解答【解析】 该皮衣的成本为:()11500.8115%800⨯÷+=元,在8折的基础上再让利150元为:11500.8150770⨯-=元,所以商店会亏损30元.【答案】30【作业17】 某公司要到外地去推销产品,产品成本为3000元.从公司到的外地距离是400千米,运费为每件产品每运1千米收1.5元.如果在运输及销售过程中产品的损耗是10%,那么公司要想实现25%的利润率,零售价应是每件多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 以1件商品为例,成本为3000元,运费为1.5×400=600元,则成本为3000+600=3600元,要想实现25%的利润率,应收入3600×(1+25%)=4500元;由于损耗,实际的销售产品数量为1×(1-10%)=90% ,所以实际零售价为每千克4500÷90%=5000元.【答案】5000元【作业18】 体育用品商店用3000元购进50个足球和40个篮球.零售时足球加价9%,篮球加价11%,全部卖出后获利润298元.问:每个足球和篮球的进价是多少元?【考点】经济问题 【难度】2星 【题型】解答【解析】 如果零售时都是加价9%,那么全部卖出后可获利润30009%270⨯=元,比实际上少了29827028-=元,可见所有篮球的总成本为28(11%9%)1400÷-=元,那么足球的总成本为300014001600-=元,故每个足球的进价为16005032÷=元,每个篮球的进价为14004035÷=元. 【答案】35【作业19】 甲、乙两种商品成本共200元.商品甲按30%的利润定价,商品乙按20%的利润定价.后来两种商品都按定价的九折销售,结果仍获得利润27.7元.问甲种商品的成本是多少元?【考点】经济问题 【难度】2星 【题型】解答【关键词】2008年,创新杯,六年级,二试[](27.716)(30%20%)90%130-÷-⨯=【解析】 假设把两种商品都按20%的利润来定价,那么可以获得的利润是200(120%)90%20016⨯+⨯-=元,由于在计算甲商品获得的利润时,它成本所乘的百分数少了[](130%)(120%)90%+-+⨯,所以甲商品的成本是元.【答案】130【作业20】 小李现有一笔存款,他把每月支出后剩余的钱都存入银行.已知小李每月的收入相同,如果他每月支出1000元,则一年半后小李有存款8000元(不计利息);如果他每月支出800元,则两年后他有存款12800元(不计利息).小李每月的收入是______元,他现在存款_______元.【考点】经济问题 【难度】2星 【题型】解答【关键词】2007年,希望杯,第五届,六年级,一试【解析】 如果小李不支出,则一年半后有存款8000+1000×18=26000元,两年后有12800+800×24=36800元.所以半年存款增加32000-26000=6000元,每月增加6000÷6=1000元.所以小李月收入为1000元,原来的存款有12800-(1000-800)×24=8000元.【答案】月收入为1000元,存款8000元.。
鸡兔同笼问题全汇总
鸡兔同笼问题全汇总“鸡兔同笼”是一个古老而有趣的数学问题,常常出现在小学奥数和数学教材中。
它看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,让我们对鸡兔同笼问题来个全面的汇总。
一、鸡兔同笼问题的基本形式通常,鸡兔同笼问题会这样描述:在一个笼子里,有若干只鸡和兔。
从上面数,有若干个头;从下面数,有若干只脚。
问鸡和兔各有多少只?例如:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有 26 只脚。
问鸡和兔各有几只?二、常见的解题方法1、假设法假设全是鸡,那么脚的总数就应该是头的数量乘以 2。
如果总脚数比这个假设的脚数多,多出来的就是兔子比鸡多的脚数。
因为每只兔子比每只鸡多2 只脚,所以用多出来的脚数除以2 就得到兔子的数量,再用总数减去兔子的数量就是鸡的数量。
以刚才的例子来说,假设 8 个头全是鸡,那么脚应该有 8×2 = 16 只。
但实际有 26 只脚,多出来 26 16 = 10 只脚。
这 10 只脚就是兔子多出来的,每只兔子比鸡多 2 只脚,所以兔子有 10÷2 = 5 只,鸡就有8 5 = 3 只。
假设全是兔的方法也是类似的,先算出假设全是兔时的脚数,与实际脚数比较,少的部分除以 2 就是鸡的数量。
2、方程法设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量和脚的数量可以列出两个方程:x + y = 8 (头的总数)2x + 4y = 26 (脚的总数)通过解方程组,可以求出 x 和 y 的值,从而得到鸡和兔的数量。
3、列表法依次列举鸡和兔可能的数量组合,计算对应的脚数,直到找到符合条件的组合。
这种方法比较繁琐,但对于数量较小的情况还是可行的。
三、鸡兔同笼问题的变形1、已知头和脚的数量差比如:笼子里鸡和兔共有 30 个头,鸡脚比兔脚少 20 只,问鸡和兔各有多少只?这种情况下,可以先假设鸡和兔的脚数一样多,然后根据脚数差逐步调整鸡和兔的数量。
2、已知脚和头的数量比例如:笼子里鸡和兔的脚数比是 2:3,头共有 20 个,问鸡和兔各有多少只?可以根据脚数比得出鸡和兔数量的关系,再结合头的数量求解。
鸡兔同笼六年级应用题
鸡兔同笼六年级应用题
鸡兔同笼六年级应用题是一道常见的数学题,通常用于计算笼子里有多少只鸡和兔子。
下面是一份鸡兔同笼六年级应用题的解答: 假设笼子里有 x 只鸡和 y 只兔子,根据题意可以列出以下方程组:
x + y = 总数
2x + 4y = 总腿数
第一个方程式表示总数量 + 总只数 = 总数,第二个方程式表示鸡和兔子的总腿数 = 总腿数。
通过解方程组,可以求出 x 和 y 的值。
具体步骤如下:
1. 将第一个方程式乘以 2,得到 2x + 2y = 总腿数。
2. 将第二个方程式减去上式,得到 2x + 4y - 2x - 2y = 总腿数 - 总脚数,化简后得到 2y = 总脚数 - 总腿数。
3. 将 2y 的式子两边都乘以 2,得到 4y = 总脚数,因此 y = 总脚数 / 4。
4. 将 y 的值代入第一个方程式,得到 x + 4(总脚数 / 4) = 总数。
5. 将 x 的值代入第一个方程式,得到 x + 总脚数 = 总数。
6. 将 x 和 y 的值代入任意一个方程式,得到唯一的解 x = 总数 / 2 - 总脚数 / 2 和 y = 总数 / 2 + 总脚数 / 2。
7. 最后,将 x 和 y 的值代入任意一个方程式,得到唯一的解 x = 鸡的数量 and y = 兔子的数量。
因此,鸡兔同笼六年级应用题的答案为:笼子里有 x 只鸡和 y 只兔子,x 和 y 的值为 (总数 / 2 - 总脚数 / 2) 和 (总数 / 2 + 总脚数 / 2)。
小学数学鸡兔同笼知识点总结
小学数学鸡兔同笼知识点总结一、鸡兔同笼问题这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
二、数量关系第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)三、解题思路解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
四、鸡兔同笼问题五种基本题型1、小学奥数应用题鸡兔同笼:已知总头数和总脚数(两数之和)已知总头数和总脚数(两数之和)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
【例1】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【解】我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面的公式:"兔"数=(30-3×7)÷(5-3)=4.5,"鸡"数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.【例2 】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解】:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.2、小学奥数应用题鸡兔同笼:已知总头数和鸡兔脚数的差数首先,请先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
小学六年级数学:利润与折扣问题
小学六年级数学:利润与折扣问题工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
一、利润与折扣问题公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)二、经典例题例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。
小学奥数利润与折扣问题公式
★这篇《小学奥数利润与折扣问题公式》,是特地为大家整理的,希望对大家有所帮助! 利润与折扣问题 : 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 长度单位换算 : 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算: 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算: 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
小学数学利润与折扣问题
利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)利润=成本×利润率在利润问题里,如果题目没有特指的话,一般就是以成本为单位“1”的例如:现在有100太冰箱,每台售价就是1500元,这样每一台冰箱可获得利润25%,问利润就是多少?利润25%指的就是利润率,那么每台售价就就是成本的:1+25%=125%每台成本就就是:1500÷125%=1200(元)每台的利润就是:1500-1200=300(元) 或1200×25%=300(元)总利润就就是:300×100=30000(元)[专题介绍]工厂与商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就就是百分之几十。
利润问题也就是一种常见的百分数应用题,商店出售商品总就是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
期望利润=成本价×期望利润率。
[经典例题]例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价就是多少元?(B 级)解:定价就是进价的1+35%打九折后,实际售价就是进价的135%×90%=121、5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121、5%-1)=1200(元)答:每台DVD的进价就是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11、2元,问甲店的进货价就是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)就是乙店的定价(1-10%)×(1+20%)就是甲店的定价(1+15%)-(1-10%)×(1+20%)=7%11、2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。
鸡兔同笼问题公式解法
鸡兔同笼问题公式解法一、鸡兔同笼问题公式。
1. 假设法公式。
- 假设全是鸡:兔的只数=(总脚数 - 2×总头数)÷(4 - 2);鸡的只数 = 总头数- 兔的只数。
- 假设全是兔:鸡的只数=(4×总头数 - 总脚数)÷(4 - 2);兔的只数 = 总头数- 鸡的只数。
2. 方程法公式(设鸡有x只,兔有y只)- 对于一般的鸡兔同笼问题,头数关系:x + y=总头数;脚数关系:2x+4y=总脚数。
二、题目及解析。
1. 题目1。
- 鸡兔同笼,共有头30个,脚88只,求鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,那么兔的只数(88 - 2×30)÷(4 - 2)=(88 - 60)÷2 = 14(只),鸡的只数=30 - 14 = 16(只)。
- 方程法:设鸡有x只,兔有y只。
则x + y=30 2x + 4y=88,由第一个方程得x = 30 - y,代入第二个方程2(30 - y)+4y = 88,60-2y + 4y=88,2y=28,y = 14,x=30 - 14 = 16。
2. 题目2。
- 鸡兔同笼,头共46,足共128,鸡兔各几只?- 解析:- 假设法:假设全是鸡,兔的只数(128 - 2×46)÷(4 - 2)=(128 - 92)÷2 = 18(只),鸡的只数=46 - 18 = 28(只)。
- 方程法:设鸡有x只,兔有y只。
x + y = 46 2x+4y = 128,由x = 46 - y代入2x + 4y=128得2(46 - y)+4y = 128,92-2y+4y = 128,2y = 36,y = 18,x = 28。
3. 题目3。
- 笼子里有鸡和兔共10只,共有脚28只,鸡和兔各有多少只?- 解析:- 假设法:假设全是鸡,兔的只数(28 - 2×10)÷(4 - 2)=(28 - 20)÷2 = 4(只),鸡的只数=10 - 4 = 6(只)。
鸡兔同笼问题全解汇总
鸡兔同笼问题全解汇总“鸡兔同笼”是一个古老而有趣的数学问题,常常出现在小学奥数和各种数学考试中。
它看似简单,却能锻炼我们的逻辑思维和解题能力。
接下来,让我们一起深入探讨这个问题,并汇总各种解题方法。
一、问题概述鸡兔同笼问题的基本表述是:在一个笼子里,有若干只鸡和兔子,从上面数有一定数量的头,从下面数有一定数量的脚,求鸡和兔子各有多少只。
例如,一个笼子里有若干鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?二、解题方法1、假设法假设法是解决鸡兔同笼问题最常用的方法之一。
我们可以先假设笼子里全部都是鸡或者全部都是兔,然后根据脚的数量差异来计算实际的鸡和兔的数量。
假设全部是鸡,那么脚的总数应该是头的数量乘以 2。
以刚才的例子来说,35 个头,如果全是鸡,脚的数量应该是 35×2 = 70 只。
但实际有 94 只脚,多出来的脚就是因为把兔子当成鸡来算少算的。
每只兔子有 4 只脚,每只鸡有 2 只脚,所以每把一只兔子当成鸡就少算 2 只脚。
总共少算的脚数除以 2 就是兔子的数量。
即(94 70)÷ 2 = 12 只,所以兔子有 12 只,鸡的数量就是 35 12 = 23 只。
同样,如果假设全部是兔,那么脚的总数应该是头的数量乘以 4。
即 35×4 = 140 只。
实际有 94 只脚,多算的脚就是因为把鸡当成兔来算多算的。
每把一只鸡当成兔就多算 2 只脚。
总共多算的脚数除以 2就是鸡的数量。
即(140 94)÷ 2 = 23 只,所以鸡有 23 只,兔有 12 只。
2、方程法方程法是一种比较直接的解题方法。
我们可以设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量,我们可以得到方程:x + y = 35根据脚的数量,我们可以得到方程:2x + 4y = 94然后通过解方程组来求解 x 和 y 的值。
首先将第一个方程变形为 x = 35 y,然后将其代入第二个方程:2×(35 y) + 4y = 9470 2y + 4y = 942y = 24y = 12将 y = 12 代入 x = 35 y ,得到 x = 23所以鸡有 23 只,兔有 12 只。
小升初奥数知识点总结+鸡兔同笼+利润问题、浓度+追击、列车过桥问题
小升初奥数知识点总结+鸡兔同笼+利润问题、浓度+追击、列车过桥问题小升初奥数知识点总结小学奥数都有哪些知识点和重点?看看下面的大汇总,学习数学总归用得到哦!还包括小升初中常考的题目类型等。
有工程问题、行程问题、质数合数问题等等。
1.、小升初奥数知识点(年龄问题的三大特征)①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;2、小升初奥数知识点(植树问题总结):基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树。
3、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
4、奥数知识点(盈亏问题)盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小升初奥数知识点:鸡兔同笼问题(精选)
小升初奥数知识点:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小升初奥数知识点:简单方程代数式:用运算符号(加减乘除)连接起来的字母或者数字。
方程:含有未知数的等式叫方程。
列方程:把两个或几个相等的代数式用等号连起来。
列方程关键问题:用两个以上的不同代数式表示同一个数。
等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。
移项:把数或式子改变符号后从方程等号的一边移到另一边;移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。
加去括号规则:在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。
移项关键问题:运用等式的性质,移项规则,加、去括号规则。
乘法分配率:a(b+c)=ab+ac解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;方程组:几个二元一次方程组成的一组方程。
解方程组的步骤:①消元;②按一元一次方程步骤。
消元的方法:①加减消元;②代入消元。
鸡兔同笼、盈亏、平均数问题含问题详解
鸡兔同笼、盈亏、平均数问题一、知识地图⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎪⎨⎧⎧⎪⎪⎪⎪⎨⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎩鸡兔同笼差量比较法盈亏问题条件转化法平均数问题全鸡法假设法全兔法砍足法一元一次方程方程法二元一次方程组典型应用题盈亏型盈盈型亏亏型二、 根底知识公元855年唐朝,我国举行最早的数学选拔赛,题目如下:一批强盗在树林里商议怎样瓜分抢来的布匹。
假设每人分6匹,多5匹;每人分7匹,少8匹,问几个强盗?几匹布?(一) 鸡兔同笼问题1. 假设全是鸡例如:鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设全是鸡,如此有2×46=92〔足〕,而实际上是128足,少了128-92=36〔足〕,为什么少了36足呢?因为我们把一只兔当作一只鸡来算时,就少算了2足,所以有36÷2=18〔只〕兔被我们当作鸡来算,所以有鸡46-18=28〔只〕。
2. 假设全是兔例如:鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设全是兔,如此有4×46=184〔足〕,而实际上是128足,多了184-128=56〔足〕,为什么多了56足呢?因为我们把一只鸡当作一只兔来算时,就多算了2足,所以有56÷2=28〔只〕鸡被我们当作兔来算,所以有兔46-28=18〔只〕。
3.“砍足法〞例如:鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设砍去每只鸡、每只兔一半的足,如此鸡就变成了“独脚鸡〞,兔就变成了“双脚兔〞,如此鸡和兔足的总数就由128变成了64,而且有一只兔子,如此足的总数就比头的总数多1,所以足的总数64与总头数46的差,就是兔子的只数,即64-46=18〔只〕,如此鸡的只数就是46-18=28〔只〕。
(二)盈亏问题盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象。
盈亏问题的关键是抓住两次分配时盈亏总量的变化,我们把盈亏问题分为三类:“一盈一亏〞、“两盈〞、“两亏〞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔问题:已知“鸡兔”的总头数和总腿数。
求“鸡”和“兔”各多少只的一类应用题。
通常称为“鸡兔问题”又称鸡兔同笼问题例题:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?解题方法:一、假设法,假设全是一种动物(如全是“鸡”或全是“兔”),然后根据出现的腿数差,可推算出某一种的头数。
假设这35个头都是兔子,那么腿数就应该是35×4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。
我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。
我们可以列式为:鸡的只数=(35×4-94)÷(4-2)= 23 (只)总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
当然我们也可以把这35个头都看成鸡的,那么腿数应该是35×2=70,就比94还少,相信不说你也明白为什么少了?对,因为我们把4条腿的兔子看成了2条腿的鸡,那么每少两条腿就有1只兔子。
所以我们可以这样列式:兔的只数=(94-35×2)÷(4-2)=12 (只)总结公式为:兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)。
二、抬腿法解析:1、抬腿,即鸡“金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。
94÷2=47只脚。
2、现在鸡有一只脚,兔有两只脚。
笼子里只要有一只兔子,脚数就比头数多1。
3、那么脚数与头数的差47-35=12就是兔子的只数。
4、最后用头数减去兔的只数35-12=23就得出鸡的只数。
所以,我们可以总结出这样的公式:兔子的只数=总腿数÷2-总只数。
三、砍腿法解析:砍腿法是假设法的深入拓展,我们首先砍去每只鸡、每只兔的两条腿,这样每只鸡就没有腿了,每只兔子就剩下了两条腿,腿的总数也就变成了94-35×2=24(条),那么这24条腿都是砍掉两条腿后的兔子的腿,所以兔子的只数就是24÷2=12(只),鸡的只数就是35-12=23(只)。
我们仔细观察会发现它的计算过程和假设法中先把所有的都看成鸡的做法是一样的。
只不过这种说法,我们理解起来更容易而已。
例2:买一些4分和8分的邮票,共花6元8角。
已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张。
因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张。
也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分。
以"分"作为计算单位,此时邮票总值是4×20+8×60=560,比680少,因此还要增加邮票。
为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?解析:假设全做对,应得9×12=108分,现在少了108-84=24分。
而做错一题,不但得不到9分,反而需要倒扣3分,相差了12分,所以错了24÷12=2题。
例4:鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?解析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只)。
例5:鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
问:鸡、兔各几只?解析:一只鸡换成一只兔子,增加两只脚,一只兔子换成一只鸡,减少两只脚,中间有抵消,最后少了100-92=8只脚,证明兔子比鸡多8÷2=4只,去掉这4只兔子,也就是92-4×2=84只脚.剩下的兔子和鸡一样多,有84只脚,所以鸡有84÷(4+2)=14只,兔子有14+4=18只。
或:鸡兔一共有:(100+92)÷(4+2)=32只,如果这32只都是兔,有脚:32×4=128只,多了:128-100=28只,每只鸡比兔的脚少:4-2=2只,鸡有:28÷2=14只,兔有:32-14=18只。
习题1、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?2、华买了2元和5元纪念邮票一共34张,用去98元钱。
求小华买了2元和5元的纪念邮票各多少张?3、一场抢答比赛规定,答错一题扣6分,答对一题得10分,一位选手共抢答16题,最后得16分,他答对了几道题?4、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?5、鸡兔共有脚92只,若将鸡换成兔,兔换成鸡,则共有脚100只,则鸡、兔各有多少只?利润与折扣问题工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为成本价,商家在成本价的基础上提高价格出售叫做定价,所赚的钱称为利润,利润与成本的百分比称之为利润率。
定价×折扣 = 实际售价(定价可以看做是原计划售价,打折后是实际售价)折上折问题:(定价×折扣)×折扣 = 实际售价售价—成本(进价)= 利润利润=成本价×利润率折扣 = 现价÷原价便宜的钱数= 原价—原价×折扣 = 原价×(1-折扣)利润率=(出售价-成本价)÷成本价×100%出售价=成本价×(1+利润率)成本价=出售价÷(1+利润率)期望利润 = 最初定价—进价期望利润率=期望利润÷成本价例1:一件商品的进价加上40元是定价,一位顾客按八折购买了这件商品,商场赚了12元。
求这件商品的进价是多少钱?解析:商品的进价加上12元等于售价,定价的八折也等于售价,据此可得到等量关系式:商品的进价+12元=定价×80%。
设这件商品的进价是x元,根据上面的等量关系式可以列方程解决此题。
解:设这件商品的进价是x元。
x+12=(x+40)×80%x+12=0.8x+320.2x=20x=100答:这件商品的进价是100元。
(提示解决求定价和进价等折扣问题时,要注意所给的折扣是定价的百分之几还是进份的百分之几。
)例2:把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元这套西装的成本是多少元?解析:我们可以把这套西装的成本看作单位“1”,西装的定价就是成本的(1+50%),实际销售时打八八折卖出,因此西装的售价就是成本的(1+50%)×88%=132%,那么,获得的利润就相当于成本的132%-1=32%.所以,480÷32%=1500(元).答:这套西装的成本是1500元例3:某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则他在这次买卖中()A.不赔不赚B.赚9元C.赔18元D.赚18元解析:可运用利润问题的核心公式,根据利润问题的核心公式成本=出售价÷(1+利润率)=135/(1+25%)=108,第二件上衣成本135/(1-25%)=180(亏损即利润率为负),由此可得总成本为288元,而总销售额为270元。
所以,赔了18元,正确答案为C。
例4:万隆超市的某品牌羊毛衫打七折销售赔8元,打八折销售则赚10元。
该品牌羊毛衫的进价是多少钱?解析:由题意可知:定价×七折 = 进价— 8元;定价×八折 = 进价 + 10元若按定价的70%销售赔8元,若按定价的80%销售赚10元,则这种售价的差额是10+8 =18元,相差的分率是80% —70% = 10%,即18元占定价的10% 。
18÷10% = 180元,得到定价是180元。
定价的7折是 180×70% = 126元,此时赔了8元,则进价为 126 + 8 = 134元。
例5:一种折叠式自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲商店比乙商店便宜3元.乙商店的进货价是多少元?解析:我们可以设乙商店的进货价是“1”,则甲商店的进货价是乙商店的(1-5%),乙商店的定价是(1+15%),那么,甲商店的定价是(1-5%)×(1+20%),由甲、乙两商店定价百分数的差便可以求出乙商店的进货价.所以,(1—5%)×(1+20%)=114%;1+15%=115%3÷(115%-114%)=300(元)答:乙商店的进货价是300元习题1:把一件女装按40%的利润定价,然后打九折卖出,可以获得利润130元这件女装的成本是多少元?2、“快乐书屋”的一批新书按定价的70%出售时,仍能获得40%的利润.那么,定价时所期望的利润率是多少?3、一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30%的利润定价,乙商店按25%的利润定价,结果甲商店比乙商店便宜40元商店的进货价是多少元?4、甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%:乙店则直接降价10%那么调价后对于这款兔宝宝玩具,哪家店的售价更便宜,便宜多少元?5、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。
这批钢笔的进货价每支多少元?6、某商场在十一促销期间,将一批商品降价出售。
如果减去定价的10%出售,那么可盈利215元;如果减去定价的20%出售,那么亏损125元。
此商品的购入价是多少元?7、妈妈在“天猫”商城给爷爷、奶奶各买了一件羊毛衫,都花了396元,店老板说两件羊毛衫,一件盈利10%,另外一件亏损10%,老板卖这两件羊毛衫是赚了还是亏了,赚了或亏了多少元?。