初中数学相交线及平行线提高题与常考题型及培优题.doc
第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,
根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,
故△ABC的面积等于△PBC的面积.
故选D.
【点睛】
本题考查平行线之间的距离;三角形的面积.
2.A
解析:A
【分析】
根据两直线平行,内错角相等、同旁内角互补逐一判断可得.
(1)求a、b的值;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC()
∴∠C=∠CEF.()
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C=(等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
27.如图1.已知直线 .点 为 , 内部的一个动点,连接 , ,作 的平分线交直线 于点 ,作 的平分线交直线 于点 , 和 交于点 .
(1)若 ,猜想 和 的位置关系,并证明;
(2)如图2,在(1)的基础上连接 ,则在点 的运动过程中,当满足 且 时,求 的度数.
28.如图1,直线 与直线 交于点 , .小明将一个含 的直角三角板 如图1所示放置,使顶点 落在直线 上,过点 作直线 交直线 于点 (点 在 左侧).
七年级数学:相交线与平行线-培优复习(附详细答案)

A BD E 七年级数学:相交线与平行线 培优复习例题精讲例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
解:∵ a ∥b , ∴ ∠3=∠4(两直线平行,内错角相等) ∵ ∠1+∠3=∠2+∠4=180°(平角的定义)∴ ∠1=∠2 (等式性质) 则 3x+70=5x+22 解得x=24 即∠1=142°∴ ∠3=180°-∠1=38° 图(1) 评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。
例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。
解:∵AB ∥EF ∥CD∴∠B=∠BEF ,∠DEF=∠D (两直线平行,内错角相等) ∵∠B+∠BED+∠D =192°(已知) 即∠B+∠BEF+∠DEF+∠D=192°∴2(∠B+∠D )=192°(等量代换) 则∠B+∠D=96°(等式性质) ∵∠B-∠D=24°(已知) 图(2) ∴∠B=60°(等式性质) 即∠BEF=60°(等量代换) ∵EG 平分∠BEF (已知)∴∠GEF=21∠BEF=30°(角平分线定义)例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
解:过E 作EF ∥AB ∵ AB ∥CD (已知) ∴ EF ∥CD (平行公理)∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,内错角相等) ∵ ∠DEB=∠DEF -∠BEF ∴ ∠DEB =∠D -∠B=30°评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。
(完整)人教版相交线与平行线提高题(含答案),推荐文档

①2121②12③12④人教版相交线与平行线提高题(含答案)一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( C )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( B ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. ο180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( A )A. 第一次向左拐ο30,第二次向右拐ο30B. 第一次向右拐ο50,第二次向左拐ο130 C. 第一次向右拐ο50,第二次向右拐ο130 D. 第一次向左拐ο50,第二次向左拐ο130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( D ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( C ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..的是( B ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且ο25=∠A ,ο45=∠C ,则E ∠的度数是( B ) A. ο60 B. ο70 C. ο110 D. ο80E DC BA4321EDC BA8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( C ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( B )A. 7个B. 6个C. 5个D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( C )A. 3对B. 4对C. 5对D. 6对二、填空题1.把命题“等角的余角相等”写成“如果……,那么……。
七年级数学相交线与平行线 培优复习附详细答案word版本

七年级数学:相交线与平行线培优复习 )案答细详附(精品文档七年级数学:相交线与平行线培优复习例题精讲例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,的度数。
求∠3la3,a∥b解:∵4b2(两直线平行,内错角相等)4∴∠3=∠) 平角的定义4=180°(∵∠1+∠3=∠2+∠) 等式性质∠1=∠2 (∴x=24 3x+70=5x+22解得则=142°即∠1 图(1)38°=3180°-∠1=∴∠评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。
D ∠B+∠BED+,EG平分∠BEF,∠∥例2.已知:如图(2),AB∥EFCD°,=192 的度数。
°,求∠GEF∠B-∠D=24 AB CD∥∥EF解:∵AB GE∠BEF,∠DEF=∠D(两直线平行,内错角相等)∴∠B=FCD D =192∠°(已知)∵∠B+∠BED+ °DEF+∠D=192∠即∠B+∠BEF+ °(等量代换))B+∠D=192(∠∴2°(等式性质)∠则∠B+D=96收集于网络,如有侵权请联系管理员删除.精品文档∵∠B-∠D=24°(已知)图(2)∴∠B=60°(等式性质)即∠BEF=60°(等量代换)∵EG平分∠BEF(已知)1∠BEF=30°(角平分线定义)∴∠GEF=2DEB的度数。
),已知AB∥CD,且∠B=40°,∠D=70°,求∠例3.如图(3DCAB EF∥解:过E作(已知)AB∥CD∵ABFE∴EF∥CD(平行公理)∴°(两直线平行,内错角相等)DEF=∠∠D=70∠BEF=∠B=40°BEF -∠DEB=∵∠∠DEF -∠D∠B=30°∠∴DEB =评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅3)图(助线。
完整版七年级数学相交线与平行线培优复习附详细答案

宝蕾家教中心印发七年级数学:相交线与平行线培优复习例题精讲例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
,a∥b解:∵la3(两直线平行,内错角相等)3=∠4∴∠)平角的定义°(2+∠4=180∠∵∠1+3=∠4) 等式性质(∠1=∠2 ∴b2x=24 3x+70=5x+22解得则142°即∠1=(1) 图1=38°∴∠3=180°-∠,是几何计算常用的方法。
评注:建立角度之间的关系,即建立方程(组)D =192°,B+∠BED+∠EF∥CD,EG平分∠BEF,∠例2.已知:如图(2),AB∥GEF的度数。
-∠D=24°,求∠∠B B EF∥CD 解:∵AB∥G D(两直线平行,内错角相等)∴∠B=∠BEF,∠DEF=∠°(已知)D =192 ∵∠B+∠BED+∠EF BEF+∠DEF+∠D=192°即∠B+∠CD°(等量代换)D)=192∴2(∠B+∠D=96B+∠°(等式性质)则∠(2) (已知)图∵∠B-∠D=24°∴∠B=60°(等式性质)BEF=60°(等量代换)即∠BEF(已知)∵EG平分∠1BEF=30∴∠GEF=°(角平分线定义)∠2DEB的度数。
°,∠D=70°,求∠,已知3)AB∥CD,且∠B=40例3.如图(DCAB 作EF∥E解:过∥CD(已知)∵AB ∥CD(平行公理)∴EF AB D=70°(两直线平行,内错角相等)∠°∠DEF=∠∴BEF=∠B=40 ∠BEF DEB=∠DEF-∵∠FE°-∠B=30∴∠DEB =∠D,则应添出辅助线。
评注:证明或解有关直线平行的问题时,如果不构成“三线八角”3)图(条以上直线共点,有多少个不同交点?3n平面上条直线两两相交且无3条或.例4个交点,条直线产生解:21 1宝蕾家教中心印发第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点;第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点;…1n(n-1) + (n-1)=1+2+3+…则n条直线共有交点个数:2评注:此题是平面上n条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。
(完整版)七年级数学:相交线与平行线-培优复习(附详细答案)

A BD E 七年级数学:相交线与平行线 培优复习例题精讲例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
解:∵ a ∥b , ∴ ∠3=∠4(两直线平行,内错角相等) ∵ ∠1+∠3=∠2+∠4=180°(平角的定义)∴ ∠1=∠2 (等式性质) 则 3x+70=5x+22 解得x=24 即∠1=142°∴ ∠3=180°-∠1=38° 图(1) 评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。
例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。
解:∵AB ∥EF ∥CD∴∠B=∠BEF ,∠DEF=∠D (两直线平行,内错角相等) ∵∠B+∠BED+∠D =192°(已知) 即∠B+∠BEF+∠DEF+∠D=192°∴2(∠B+∠D )=192°(等量代换) 则∠B+∠D=96°(等式性质) ∵∠B-∠D=24°(已知) 图(2) ∴∠B=60°(等式性质) 即∠BEF=60°(等量代换) ∵EG 平分∠BEF (已知)∴∠GEF=21∠BEF=30°(角平分线定义)例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
解:过E 作EF ∥AB ∵ AB ∥CD (已知) ∴ EF ∥CD (平行公理)∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,内错角相等) ∵ ∠DEB=∠DEF -∠BEF ∴ ∠DEB =∠D -∠B=30°评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。
七年级相交线与平行线培优提高

七年级相交线与平行线培优提高一、填空题二、1.如图2—80,DE ∥AB ,∠CAE=31∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( )A .70°B .65C .60°D .55°2.两平行直线EF 、MN 与相交直线AB 、CD 相交成如图2—81所示,则图中共有同旁内角的对数是 ( )A .4B .8C 。
12D .163.长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对C.18对 D .以上答案都不对4.如图2—83,如果AB ∥CD ,则α、β、γ之间的关系为 ( )A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°5.如图2—84,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 和点F ,GE ⊥MN ,∠1=130°,则∠2等于 ( )A .50°B .40°C .30°D .65°6.如图2—86,AB ∥CD ,那么∠1+∠2+∠3+∠4=( )A.720° B .360° C .180° D.540°7.将直尺和直角三角板按如图方式摆放(∠ACB 为直角),已知∠1=30°,则∠2的大小是( )A. 30°B. 45°C. 60°D. 65°7 8 98.如图,AB ∥EF ∥CD ,∠ABC=45°,∠CEF=155°,则∠BCE 等于( )A. 10°B. 15°C. 20°D. 25°9.如图,已知A E //B D ,∠1=130∘,∠2=30∘,则∠C 的度数是( )A 20B 30C 40D 5010.如图,长方形ABCD中,A B=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n 次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若A B n的长度为2016,则n的值为( )A. 400B. 401C. 402D. 403二、填空题11.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是__12.如图2—89,∠BAC=90°,EF∥BC,∠1=∠B,则∠DEC=________.13.如图2—90,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.14.如图2—93,某人从A点出发,每前进10米,就向右转18°,再前进10米,又向右转18°,这样下去,他第一次回到出发地A点时,一共走了________米.15.如图2—95,已知CD⊥AB于D,EF⊥AB于F,∠DGC=105°,∠BCG=75°,则∠1+∠2=_______度.16.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第16题图第17题图17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠4且∠3=∠2;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).19.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转_____度.19 20 2120..某江段江水流经B,C,D三点拐弯后与原来流向相同,如图,若∠ABC=120°,∠BCD=80°,则∠EDC=___________°. 21.如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为.三、解答题22.如图2-97,已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD∥BC.23.已知:如图2—98,∠AOB及其内部一条射线PM,求作∠MPN,使得∠MPN=∠AOB(要求:用尺规作图).24.如图2—100,直线l与m相交于点C,∠C=∠β,AP、BP交于点P,且∠PAC=∠α,∠PBC=∠γ,求证:∠APB=α+∠β+∠γ.24.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.25.(14分)如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.26.已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F.(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2,若∠ABM=13∠ABF,∠CDM=13∠CDF,试写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,∠E=m°,请直接用含有n,m°的代数式表示出∠M.。
七年级数学:相交线与平行线 培优复习(附详细答案)

A七年级数学:相交线与平行线 培优复习例题精讲例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
解:∵ a ∥b , ∴ ∠3=∠4(两直线平行,内错角相等) ∵ ∠1+∠3=∠2+∠4=180°(平角的定义)∴ ∠1=∠2 (等式性质) 则 3x+70=5x+22 解得x=24 即∠1=142°∴ ∠3=180°-∠1=38° 图(1) 评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。
例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。
解:∵AB ∥EF ∥CD∴∠B=∠BEF ,∠DEF=∠D (两直线平行,内错角相等) ∵∠B+∠BED+∠D =192°(已知) 即∠B+∠BEF+∠DEF+∠D=192°∴2(∠B+∠D )=192°(等量代换) 则∠B+∠D=96°(等式性质) ∵∠B -∠D=24°(已知) 图(2) ∴∠B=60°(等式性质) 即∠BEF=60°(等量代换) ∵EG 平分∠BEF (已知)∴∠GEF=21∠BEF=30°(角平分线定义)例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
解:过E 作EF ∥AB ∵ AB ∥CD (已知) ∴ EF ∥CD (平行公理)∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,内错角相等) ∵ ∠DEB=∠DEF -∠BEF ∴ ∠DEB =∠D -∠B=30°评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。
第五章 相交线与平行线(过关测试)【培优卷】(解析版)

第五章 相交线与平行线(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A .B .C .D .【答案】B 【分析】根据中点的定义,平行线的定义判断即可.【详解】解:过AC 的中点D 作AB 的平行线,正确的图形是选项B ,故选:B .【点睛】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.2.如图,直线1l ,2l 被3l 所截得的同旁内角为a ,b ,要使12l l ∥,只要使( )A .90a b +=°B .a b=C .116033a b +=°D .090a °<£°,90180b °£<°【答案】C【分析】由同旁内角互补两直线平行即可判定出12l l ∥,变形后即可得到正确的选项.【详解】解:当180°a b +=,即116033a b +=°时,12l l ∥,故C 正确.故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行【答案】C 【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C 正确;故选:C .【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.(2021·安徽·统考中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( )A .a b c>>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-【答案】D【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b a c =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b a c =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b a c =+,故D 正确;故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.5.已知直线a 、b 、c 在同一平面内,则下列说法错误的是( )A .如果a ∥b ,b ∥c ,那么a ∥cB .a ⊥b ,c ⊥b ,那么a ∥cC .如果a 与b 相交,b 与c 相交,那么a 与c 一定相交D .如果a 与b 相交,b 与c 不相交,那么a 与c 一定相交【答案】C【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行,同一平面内,垂直于同一条直线的两直线平行进行分析即可.【详解】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.【点睛】此题主要考查了平行公理及推论,关键是熟练掌握所学定理.6.一副直角三角尺叠放如图所示,现将30°的三角尺ABC固定不动,将45°的三角尺BDE绕顶点B逆时Ð所有符合条件的针转动,点E始终在直线AB的上方,当两块三角尺至少有一组边互相平行时,则ABE度数为()A.45°,75°,120°,165°B.45°,60°,105°,135°C.15°,60°,105°,135°D.30°,60°,90°,120°【答案】A【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.【详解】解:如图,①DE∥AB,∴∠D+∠ABD=180°∴∠ABD=90°∴∠ABE=45°;②DE∥AC,∵∠D=∠C=90°,∴B ,C ,D 共线,∴∠ABE=∠CBE+∠ABC=180°-45°+30°=165°;③BE ∥AC ,∴∠C=∠CBE=90°,∴∠ABE=∠ABC+∠CBE=120°;④AC ∥BD ,∴∠ABD=180°-∠A=120°,∴∠ABE=∠ABD-∠DBE=75°,综上:∠ABE 的度数为:45°或75°或120°或165°.【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.二、填空题(每小题3分,共18分)7.“若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).【答案】是【分析】根据命题的定义判断即可.【详解】若0ab >,则0a >,0b >是一个命题.故答案为:是.【点睛】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题. 8.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是__.【答案】127【分析】先根据第一个数字不是7,得出第一个数字是1或2,再根据1和2相邻,进而得出第三个是7,即可得出结论.【详解】解:∵三个数字分别是7,2,1,但第一个数字不是7,∴第一个数为1或2,∵1和2的位置相邻,∴前两个数字是1,2或2,1,第三位是数字7,∵中间的数字不是1,∴第一个数字只能是1,第二个数字为2,即密码为127,故答案为:127【点睛】此题主要考查了推理与论证,判断出第三个数是7是解本题的关键.9.(2022秋·黑龙江佳木斯·七年级校考期中)将直角梯形ABCD平移得梯形EFGH,若===,则图中阴影部分的面积为_________平方单位.10,2,4HG MC MG【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.【详解】根据平移的性质得S梯形ABCD =S梯形EFGH,Q DC = HG = 10,MC= 2,MG = 4,\DM = DC - MC = 10 - 2 = 8,\S阴影= S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD =S梯形HGMD=()12DM HG MG+g=12×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.10.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)【答案】如果两个角是两个相等角的余角,那么这两个角相等. 真【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键11.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.12.(2022秋·重庆·七年级重庆市綦江中学校考阶段练习)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=52∠DAE,则∠ACD的度数是_____.【答案】27°##27度【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°,然后结合图形,利用各角之间的关系求解即可.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,∵MN∥PQ,∴∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,∴∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,∴∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°,故∠ACD的度数是27°,故答案为:27°.【点睛】本题利用平行线、垂直、角平分线综合考查角度的计算,理解题意,综合运用这些知识点是解题关键.三、解答题(每小题6分,共30分)13.(2022秋·福建福州·七年级统考期末)如图,已知AGF ABC Ð=Ð,12180Ð+Ð=°.(1)试判断BF 与DE 的位置关系,并说明理由;(2)若BF AC ^,2140Ð=°,求AFG Ð的度数.【答案】(1)//BF DE ,理由见解析;(2)50°【分析】(1)根据已知条件,先证明 FG//BC ,继而得 ∠1=∠3 ,根据 ∠1+∠2=180° 等量代换得 ∠3+∠2=180° ,从而得证;(2)由(1)的结论,求得 ∠1 ,再根据 BF ⊥AC ,求得 ∠1 的余角即可.【详解】解:()1//BF DE ,理由如下:AGF ABC Ð=ÐQ ,//GF BC \,13\Ð=Ð,12180Ð+Ð=°Q ,32180\Ð+Ð=°,//BF DE \;()2//BF DE Q ,BF AC ^,DE AC \^,12180Ð+Ð=°Q ,2140Ð=°,140\Ð=°,904050AFG \Ð=°-°=°.【点睛】本题考查了平行线的性质与判定,求一个角的余角,熟练平行线的性质与判定是解题的关键.14.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB 和CD 被直线EF 所截,∠2=∠3,AB ∥CD 吗?说明理由.现请你补充完下面的说理过程:答:AB ∥CD理由如下:∵∠2=∠3(已知)且( )∴∠1=∠2∴AB ∥CD ( )【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB ∥CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB ∥CD (同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.15.如图,己知点P 、Q 分别在AOB Ð的边OA OB 、上,按下列要求画图:(1)画射线PQ;(2)过点P画垂直于射线OB的线段PC,垂足为点C;(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图,分别P画垂直于射线OB的射线PC,垂足为点C;过点Q画直线QM平行于射线OA.【详解】(1)如图,射线PQ为所求;(2)如图,线段PC为所求;(3)如图,直线QM为所求【点睛】此题主要考查了基本作图,正确把握相关定义是解题关键.16.指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.【答案】(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,反例见解析;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【分析】(1)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平角的定义可得该命题是真命题;(2)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是假命题;利用相交直线被第三条直线所截,内错角不相等可举反例;(3)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是真命题;.【详解】(1)题设:如果两个角的和等于平角,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【点睛】本题考查了命题与定理的相关知识.将命题写成“如果…,那么…”的形式,就是要明确命题的题设和结论,“如果”后面写题设,“那么”后面写结论.关键是明确命题与定理的组成部分,会判断命题的题设与结论.17.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.四、解答题(每小题8分,共24分)18.如图,点O是直线AB上一点,OD平分∠AOC,∠BOE=3∠COE,∠DOE=81°,求∠BOE,∠AOD的度数.【答案】∠BOE=27°,∠AOD=72°.【分析】设∠COE=x ,则∠AOD=81°-x ,则∠BOE=3x ,∠AOC=2 ∠AOD ,由∠AOC+∠BOC=180° ,列方程2()81x °-+4x=180°,解方程求解即可.【详解】解:设∠COE=x ,∵∠BOE=3∠COE ,OD 平分∠AOC ,∠DOE DOC COE=Ð+Ð81ADO DOC DOE COE x\Ð=Ð=Ð-Ð=°-Q ∠BOE=3∠COE ,则∠BOE=3x ,∠AOC=2()81x °-,∵O 是直线AB 上一点,∴ ∠AOC+∠BOC=180° ,∴2()81x °-+4x=180°,解得9x =°∠AOD=81°-972°=°∴∠BOE=27°,∠AOD= 72°.【点睛】本题考查的是角平分线的定义,角的和差运算,邻补角的含义,解本题的关键是运用方程的思想解决几何问题.19.如图,直线AB ,CD 相交于点O ,OB 平分∠EOD .(1)若∠BOE :∠EOC =1:4,求∠AOC 的度数;(2)在(1)的条件下,画OF ⊥CD ,请直接写出∠EOF 的度数.【答案】(1)30°(2)30°或150°【分析】(1)设BOE x Ð=,则4EOC x Ð=,先根据角平分线的定义可得BOD BOE x Ð=Ð=,22EOD BOE x Ð=Ð=,再根据邻补角的定义求出x 的值,从而可得BOD Ð的度数,然后根据对顶角相等即可得;(2)先求出60,90EOD FOD Ð=°Ð=°,再分①点F 在AB 的上方和②点F 在AB 的下方两种情况,根据角的和差即可得.【详解】(1)解:由题意,设BOE x Ð=,则4EOC x Ð=,OB Q 平分EOD Ð,22EOD BOE x \Ð=Ð=,BOD BOE x Ð=Ð=,180EOD EOC Ð+Ð=°Q ,24180x x \+=°,解得30x =°,30BOD \Ð=°,由对顶角相等得:30AOC BOD Ð=Ð=°.(2)解:由(1)可知,23060EOD Ð=´°=°,OF CD ^Q ,90FOD \Ð=°,由题意,分以下两种情况:①如图,当点F 在AB 的上方时,则150EOF EOD FOD Ð=Ð+Ð=°;②如图,当点F 在AB 的下方时,则30EOF FOD EOD Ð=Ð-Ð=°;综上,EOF Ð的度数为30°或150°.【点睛】本题考查了与角平分线有关的计算、对顶角相等、一元一次方程的应用,较难的是题(2),正确分两种情况讨论是解题关键.20.如图,已知直线,,AB CD AC 上的点M ,N ,E 满足ME NE ^,90,AME CNE ACD Ð+Ð=а的平分线CG 交MN 于G ,作射线GF AB ∥.(1)直线AB 与CD 平行吗?为什么?(2)若66CAB Ð=°,求CGF Ð的度数.【答案】(1)平行,理由见解析(2)123°【分析】(1)利用已知条件和三角形内角和定理,通过等量代换可得180A ACD Ð+Ð=°,由同旁内角互补,两直线平行,可得//AB CD ;(2)利用,66AB CD CAB Ð=°∥,求出ACD Ð,再利用角平分线的定义求出GCD Ð,再证GF CD ∥,利用两直线平行,同旁内角互补,即可求出CGF Ð.(1)解://AB CD .理由如下:∵ME NE ^,∴90MEN Ð=°,∴90AEM CEN Ð+Ð=°,∵180A AEM AME Ð+Ð+Ð=°,180ACD CEN CNE Ð+Ð+Ð=°,∴360A ACD AEM CEN AME CNE Ð+Ð+Ð+Ð+Ð+Ð=°,∵90AME CNE Ð+Ð=°,90AEM CEN Ð+Ð=°,∴180A ACD Ð+Ð=°,∴//AB CD ;(2)解:∵66AB CD CAB ∥,Ð=°,∴180114ACD CAB Ð=°-Ð=°,∵CG 平分ACD Ð,∴1572GCD ACD Ð=Ð=°,∵AB CD GF AB ∥,∥,∴GF CD ∥.∴180CGF GCD Ð+Ð=°,∴18057123CGF Ð=°-°=°.【点睛】本题考查平行线的判定与性质,角平分线的定义,三角形内角和定理,垂直的定义等,熟练掌握平行线的判定定理和性质定理是解题的关键.五、解答题(每小题9分,共18分)21.如图,//AC BD ,BC 平分ABD Ð,设ACB Ð为a ,点E 是射线BC 上的一个动点.(1)若30a =°时,且BAE CAE Ð=Ð,求CAE Ð的度数;(2)若点E 运动到1l 上方,且满足100BAE Ð=°,:5:1BAE CAE ÐÐ=,求a 的值;(3)若:()1BAE CAE n n ÐÐ=>,求CAE Ð的度数(用含n 和a 的代数式表示).【答案】(1)60°;(2)50°;(3)18021n a °--或18021n a°-+【分析】(1)根据平行线的性质可得CBD Ð的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC Ð的度数,由已知条件BAE CAE Ð=Ð,可计算出CAE Ð的度数;(2)根据题意画出图形,先根据:5:1BAE CAE ÐÐ=可计算出CAE Ð的度数,由100BAE Ð=°可计算出BAC Ð的度数,再根据平行线的性质和角平分线的性质,计算出CBD Ð的度数,即可得出结论;(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由a 可计算出CBD Ð的度数,再根据角平分线的性质和平行线的性质,计算出BAC Ð的度数,再:BAE CAE n ÐÐ=,BAE BAC CAE Ð=Ð+Ð,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由a 可计算出CBD Ð的度数,再根据角平分线的性质和平行线的性质,计算出BAC Ð的度数,再:BAE CAE n ÐÐ=,BAE BAC CAE Ð=Ð-Ð列出等量关系求解即可等处结论.【详解】解:(1)30a =°Q ,//AC BD ,30CBD \Ð=°,BC Q 平分ABD Ð,30ABE CBD \Ð=Ð=°,1801803030120BAC ABE a \Ð=°-Ð-=°-°-°=°,又BAE CAE Ð=ÐQ ,111206022CAE BAC \Ð=Ð=´°=°;(2)根据题意画图,如图1所示,100BAE Ð=°Q ,:5:1BAE CAE ÐÐ=,20CAE \Ð=°,1002080BAC BAE CAE \Ð=Ð-Ð=°-°=°,//AC BD Q ,180100ABD BAC \Ð=°-Ð=°,又BC Q 平分ABD Ð,111005022CBD ABD \Ð=Ð=´°=°,50CBD a \=Ð=°;(3)①如图2所示,//AC BD Q ,CBD ACB a \Ð=Ð=,BC Q 平分ABD Ð,22ABD CBD a \Ð=Ð=,1801802BAC ABD a \Ð=°-Ð=°-,又:BAE CAE n ÐÐ=Q ,():BAC CAE CAE n \Ð+ÐÐ=,(1802):CAE CAE n a °-+ÐÐ=,解得18021CAE n a°-Ð=-;②如图3所示,//AC BD Q ,CBD ACB a \Ð=Ð=,BC Q 平分ABD Ð,22ABD CBD a \Ð=Ð=,1801802BAC ABD a \Ð=°-Ð=°-,又:BAE CAE n ÐÐ=Q ,():BAC CAE CAE n \Ð-ÐÐ=,(1802):CAE CAE n a °--ÐÐ=,解得18021CAE n a°-Ð=+.综上CAE Ð的度数为18021n a °--或18021n a°-+.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.22.如图,//AB CD ,C 在D 的右侧,BE 平分ABC Ð,DE 平分ADC Ð,,BE DE 所在直线交于点E ,80ADC Ð=°.(1)若50ABC Ð=°,求BED Ð的度数;(2)将线段BC 沿DC 方向平移,使得点B 在点A 的右侧,其他条件不变,若120ABC Ð=°,求BED Ð的度数.【答案】(1)65°;(2)20°或160°【分析】1)作//EF AB ,如图1,利用角平分线的定义得到25ABE Ð=°,40EDC Ð=°,利用平行线的性质得到25BEF ABE Ð=Ð=°,40FED EDC Ð=Ð=°,从而得到BED Ð的度数;(2)作//EF AB ,如图2,利用角平分线的定义得到60ABE Ð=°,40EDC Ð=°,利用平行线的性质得到120BEF Ð=°,40FED EDC Ð=Ð=°,从而得到BED Ð的度数;如图3,利用//AB CD 得到240Ð=°,然后根据三角形外角性质可计算出BED Ð.【详解】解:(1)作//EF AB ,如图1,BE Q 平分ABC Ð,DE 平分ADC Ð,1252ABE ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,//EF CD \,25BEF ABE Ð=Ð=°Q ,40FED EDC Ð=Ð=°,254065BED \Ð=°+°=°;(2)作//EF AB ,如图2,BE Q 平分ABC Ð,DE 平分ADC Ð,1602ABE ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,//EF CD \,180120BEF ABE Ð=°-Ð=°Q ,40FED EDC Ð=Ð=°,12040160BED \Ð=°+°=°.如图3,BE Q 平分ABC Ð,DE 平分ADC Ð,11602ABC \Ð=Ð=°,1402EDC ADC Ð=Ð=°,//AB CD Q ,240\Ð=°,12BED Ð=Ð+ÐQ ,604020BED \Ð=°-°=°.如图4,BE Q 平分ABC Ð,DE 平分ADC Ð,1602ABE ABC \Ð=Ð=°,12402ADC Ð=Ð=°,//AB CD Q ,160ABE \Ð=Ð=°,3240Ð=Ð=°Q ,而12BED Ð=Ð+Ð,604020BED \Ð=°-°=°.综上所述,BED Ð的度数为20°或160°.【点睛】本题考查了平移的性质:解题的关键是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.也考查了平行线的性质.六、解答题(本大题共12分)23.(2022秋·贵州黔西·七年级校考阶段练习)已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且∠AGE+∠DHE =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:∠M =∠AGM+∠CHM ;(3)如图3,在(2)的条件下,射线GH 是∠BGM 的平分线,在MH 的延长线上取点N ,连接GN ,若∠N=∠AGM ,∠M =∠N+12∠FGN ,求∠MHG 的度数.【答案】(1)见解析;(2)见解析;(3)60°【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M 作MR ∥AB ,可得AB ∥CD ∥MR .进而可以证明;(3)如图3,令∠AGM =2α,∠CHM =β,则∠N =2α,∠M =2α+β,过点H 作HT ∥GN ,可得∠MHT =∠N =2α,∠GHT =∠FGN =2β,进而可得结论.【详解】(1)证明:如图1,∵∠AGE+∠DHE =180°,∠AGE =∠BGF .∴∠BGF+∠DHE =180°,∴AB ∥CD ;(2)证明:如图2,过点M 作MR ∥AB ,又∵AB ∥CD ,∴AB ∥CD ∥MR .∴∠GMR =∠AGM ,∠HMR =∠CHM .∴∠GMH =∠GMR+∠RMH =∠AGM+∠CHM .(3)解:如图3,令∠AGM =2α,∠CHM =β,则∠N =2α,∠M =2α+β,∵射线GH 是∠BGM 的平分线,∴()111809022FGM BGM AGM a Ð=Ð=°-Ð=°-,∴∠AGH =∠AGM+∠FGM =2α+90°﹣α=90°+α,∵12M N FGN Ð=Ð+Ð,∴1222FGN a b a +=+Ð,∴∠FGN =2β,过点H 作HT ∥GN ,则∠MHT =∠N =2α,∠GHT =∠FGN =2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【点睛】本题考查了平行线的判定与性质,对顶角的性质,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。
七年级下数学相交线与平行线培优训练(含解析)

相交线与平行线培优训练(含解析)一、单选题1.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,,④360°﹣α﹣β,∠AEC 的度数可能是( )A . ①②③B . ①②④C . ①③④D . ①②③④【答案】B【解析】试题解析:点E 有4种可能位置.(1)如图,由AB ∥CD , 可得1AOC DCE β∠=∠=,11AOC BAE AE C ∠=∠+∠, 1AE C βα∴∠=-.(2)如图,过2E 作AB 平行线,则由AB ∥CD ,可得2212BAE DCE αβ∠=∠=∠=∠=,, 2AE C αβ∴∠=+.(3)如图,由AB ∥CD ,可得33BOE DCE β∠=∠=, 333BAE BOE AE C ∠=∠+∠,3AE C αβ∴∠=-.(4)如图,由AB ∥CD ,可得444360BAE AE C DCE ∠+∠+∠=︒, 4360AE C αβ∴∠=︒--.AEC ∴∠的度数可能为360βααβαβαβ-+-︒--,,,.故选:D .2.如图, //AB CD ,用含123∠∠∠,,的式子表示4∠,则4∠的值为( )A . 123∠+∠-∠B . 132∠+∠-∠C . 18031?2+∠-∠-∠D . 231180∠+∠-∠-【答案】D【解析】试题解析:过点E 作EG ∥AB ,过点F 作FH ∥CD ,∵AB ∥CD ,∴AB ∥CD ∥EG ∥FH ,∴∠1=∠AEG ,∴∠GEF=∠2-∠1,∵EG ∥FH ,∴∠EFH=180°-∠GEF=180°-(∠2-∠1)=180°-∠2+∠1,∴∠CFH=∠3-∠EFH=∠3-(180°-∠2+∠1)=∠3+∠2-∠2-180°,∵FH ∥CD ,∴∠4=∠3+∠2-∠1-180°,故选:D .3.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有( )A . 1个B . 2个C . 3个D . 4个【答案】A【解析】根据负数没有平方根,可知①不正确;根据单项式的意义,可知次数为所有字母因式的指数和,故②正确;根据分数的基本性质,可知将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=1.2,故③不正确;根据两点确定一条直线,可知平面内有4个点,过每两点画直线,条数不确定:当四个点在同一直线上时,只有一条;当只有每任意三点不在同一直线上的四个点才能画6条直线,故④不正确.故选:A.点睛:本题考查了数的平方,单项式的概念,方程的分母化为整数,点与直线条数的关系.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30︒角直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边,则1∠的度数是()A.14°B.15°C.20°D.30°【答案】B【解析】分析:过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.详解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:B.点睛:本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短【答案】A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.6.如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°【答案】B【解析】试题分析:如图,根据平行线的性质,可知∠3=∠2=60°,然后根据三角形的外角等于不相邻两内角的和,可得∠EOH=100°.故选:B7.如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④【答案】B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.8.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=().A.60°B.50°C.40°D.30°【答案】C【解析】试题分析:先根据对顶角相等求出∠1的对顶角,然后根据两直线平行,同位角相等,求出直角三角形的一个内角,然后可求得∠E=90°-50°=40°.故选:C9.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个【答案】C【解析】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A+∠APF,∠C+∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.10.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条。
初一数学下册相交线与平行线专项提升训练(含答案详解)

一.选择题(共20 小题)相交线与平行线专题提升训练1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.169.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°11.如图,能够证明a∥b 的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF 13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L514.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是,依据是.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是,你的依据是和.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有组不同对顶角.(如图所示)25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有对.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有对对顶角;有对同位角;有对内错角;有对同旁内角.27.图中,与∠1 成同位角的角的个数是.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成组同位角,这个图形中共有组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有对同旁内角.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=°.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=.(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=.(用含x的代数式表示).三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为;图2 中∠ABC 与∠DEF 数量关系为.选择一种情况说明理由:(2)由(1)你得出的结论是.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.40.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.41.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并证明.42.如图,在△ABC 中,CD⊥AB,垂足为D,点E 在BC 上,EF⊥AB,垂足为F.∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.43.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD 别平分∠ABP 和∠PBN,分别交射线AM 于点C,D.(1)求∠ABN、∠CBD 的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC 平分∠ABP,BD 平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,直接写出∠ABC 的度数.相交线与平行线必备参考答案与试卷解析一.选择题(共20 小题)1.如图,直线AB 与CD 相交于点O,射线OE 平分∠BOC,且∠BOC=70°,则∠AOE的度数为()A.145°B.155°C.110°D.135°【分析】依据∠BOC=70°,OE 平分∠BOC,即可得到∠COE=35°,∠AOC=180°﹣70°=110°,进而得出∠AOE 的度数.【解答】解:∵∠BOC=70°,OE 平分∠BOC,∴∠COE=35°,∠AOC=180°﹣70°=110°,∴∠AOE=∠AOC+∠COE=110°+35°=145°.故选:A.【点评】本题主要考查了对顶角与邻补角,解题时注意:对顶角相等,邻补角互补,即和为180°.2.如图,直线AB 与直线CD 相交于点O,OE⊥AB,垂足为O,若∠EOD=∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD =∠AOC 联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC 与∠AOC 是邻补角,∴∠BOC=180°﹣∠AOC=112.5°.故选:A.【点评】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.3.如图所示,直线AB、CD 交于点O,OE、OF 为过点O 的射线,则对顶角有()A.1 对B.2 对C.3 对D.4 对【分析】据对顶角的定义对各图形判断即可.【解答】解:图中的对顶角有:∠AOC 与∠BOD,∠AOD 与∠BOC 共2对.故选:B.【点评】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.4.如图,直线AB、CD、EF 相交于O,图中对顶角共有()A.3 对B.4 对C.5 对D.6 对【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:图中对顶角有:∠AOF 与∠BOE、∠AOD 与∠BOC、∠FOD 与∠EOC、∠FOB 与∠AOE、∠DOB 与∠AOC、∠DOE 与∠COF,共6对.故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.5.4 条直线交于一点,则对顶角有()A.4 对B.6 对C.8 对D.12 对【分析】每两条直线交于一点,形成两对对顶角,4 条直线交于一点,则有6 条直线形成两对对顶角,那么对顶角的个数有12 对.【解答】解:根据对顶角的定义可知:4 条直线交于一点,则对顶角有12 对.故选D.【点评】本题考查对顶角的概念,两直线相交形成两对对顶角.6.如图所示,直线AB,CD,EF,MN,GH 相交于点O,则图中对顶角共有()A.3对B.6 对C.12 对D.20 对【分析】n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,依据规律可得结果.【解答】解:2 条直线交于一点,对顶角有 2 对,2=2×1;3条直线交于一点,对顶角有6 对,6=3×2;4条直线交于一点,对顶角有12 对,12=4×3;由规律可得,n 条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH 相交于点O,对顶角共有5×4=20 对,故选:D.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.7.如图,直线AB、CD 相交于点O,作射线OE,则图中邻补角有()A.4对B.6 对C.7 对D.8 对【分析】根据邻补角定义,两个角的和等于180°,并且有一条边是公共边的两个角互为邻补角,进行解答.【解答】解:如图,邻补角有:∠AOC 与∠AOD,∠AOD 与∠BOD,∠BOD 与∠BOC,∠BOE 与∠AOE,∠BOC 与∠AOC,∠COE 与∠DOE.所以共 6 对.故选:B.【点评】本题主要考查邻补角的定义,注意按一定顺序寻找方能做到不重不漏.8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3 和l4 相交,l1 和l2 相互平行且与l3、l4 相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.16【分析】观察图形,确定不同的截线分类讨论,如分l1、l2 被l3 所截,l1、l2 被l4 所截,l1、l3 被l4 所截,l2、l3 被l4 所截,l3、l4 被l1 所截,l3、l4 被l2 所截l1、l4 被l3 所截、l2、l4 被l3 所截来讨论.【解答】解:l1、l2 被l3 所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16 对.故选:D.【点评】在较复杂图形中确定“三线八角”可从截线入手,分类讨论,做到不重复不遗漏.9.如图,下列四个条件中,能判断DE∥AC 的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C 【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠3=∠4,∴DE∥AC,故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,若∠3=∠4,则下列条件中,不能判定AB∥CD 的是()A.∠1=∠2 B.∠1=∠3 且∠2=∠4C.∠1+∠3=90°且∠2+∠4=90°D.∠1+∠2=90°【分析】利用平行线的判定方法一一判断即可.【解答】解:A、由∠1=∠2,∠3=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.B、由∠1=∠3,∠2=∠4,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.C、由∠1+∠3=90°,∠2+∠4=90°,可以推出∠ABC=∠DCB,推出AB∥CD,故本选项不符合题意.D、由∠1+∠2=90°无法推出∠ABC=∠DCB,故本选项符合题意.故选:D.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,能够证明a∥b 的是()第18 页(共41 页)A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,已知:∠1=∠2,∠3=∠4,那么下列结论成立的是()A.∠l=∠3 B.∠2=∠3 C.AB∥CD D.AE∥DF【分析】证明∠BAD=∠CDA 即可判断.【解答】解:∵∠1=∠2,∠3=∠4,∴∠BAD=∠CDA,∴AB∥CD,故选:C.【点评】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,∠1 与∠2 互补,∠2 与∠3 互补,那么()A.L1∥L2 B.L1⊥L5 C.L3∥L4 D.L3∥L5【分析】因为∠1 与∠2 互补,∠2 与∠3 互补,根据同一个角的补角相等,得∠1=∠3;所以根据内错角相等,两直线平行,可知L3∥L5.【解答】解:∵∠1 与∠2 互补,∠2 与∠3 互补,∴∠1=∠3(同角的补角相等).∴L3∥L5(内错角相等,两直线平行).故选:D.【点评】本题要会运用补角的性质:“同一个角的补角相等”,找到内错角的相等关系,从而证明出两直线平行.14.将AD 与BC 两边平行的纸条ABCD 按如图所示折叠,则∠1 的度数为()A.72°B.45°C.56°D.60°【分析】根据折叠的性质得出∠C'EF=62°,利用平行线的性质进行解答即可.【解答】解:∵一张长方形纸条ABCD 折叠,∴∠C'EF=∠FEC=62°,∵AD∥BC,∴∠1=∠C'FB=180°﹣62°﹣62°=56°,故选:C.【点评】本题考查了平行线的性质、翻折变换(折叠问题).正确观察图形,熟练掌握平行线的性质是解题的关键.15.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2 的度数为()A.68°B.58°C.48°D.32°【分析】因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE 得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.【点评】本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.16.如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED'=40°,则∠EFB的度数为()A.40°B.50°C.60°D.70°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠AED′的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【解答】解:由翻折的性质得:∠DED′=2∠DEF,∵∠AED′=40°,∴∠DED′=180°﹣∠AED′=140°,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=∠DEF=70°.故选:D.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,将一张矩形纸片折叠,若∠1=80°,则∠2 的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,将长方形纸条ABCD 沿EF 折叠后,ED 与BF 交于G 点,若∠EFC=130°,则∠AED 的度数为()A.55°B.70°C.75°D.80°【分析】求出∠DEF,根据∠AED=180°﹣2∠AED 即可解决问题.【解答】解:∵DE∥CF,∴∠EFC+∠DEF=180°,∵∠EFC=130°,∴∠DEF=50°,∴∠AED=180°﹣2×50°=80°,故选:D.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将一张对边互相平行的纸条沿EF 折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°,则下列结论正确的有()11.1个B.2 个C.3 个D.4 个【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【解答】解:①∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;②∵AE∥BG,∠EFB=32°,∴∠AEF=180°﹣∠EFB=180°﹣32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;③∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;④∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°﹣∠CGF=180°﹣64°=116°,故本小题正确.故选:C.【点评】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.如图,将矩形ABCD 沿EF 折叠,点C 落在点H 处,点D 落在AB 边上的点G 处,若∠AEG=30°,则∠EFC 等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共13 小题)21.如图,P 是直线l 外一点,从点P 向直线l 引PA,PB,PC,PD 几条线段,其中只有PA 与l 垂直.这几条线段中,最短的是PA ,依据是垂线段最短.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:直线外一点与直线上各点连接的所有线段中,最短的是PA,依据是垂线段最短,故答案为:PA,垂线段最短.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.22.如图,为了把河中的水引到C 处,可过点C 作CD⊥AB 于D,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:过D 点引CD⊥AB 于D,然后沿CD 开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.23.如图,将直尺一边与量角器的零刻度线对齐,则图中线段OA,OB、OC 中最短的线段是OB ,你的依据是垂线段最短和平行线的性质.【分析】依据垂线段最短,即可得到图中线段OA,OB、OC 中最短的线段;依据平行线的性质,即可得到∠OBC=90°,进而得出OB⊥AC.【解答】解:由题可得,图中线段OA,OB、OC 中最短的线段是OB,依据为垂线段最短和平行线的性质.故答案为:OB,垂线段最短,平行线的性质.【点评】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.24.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6 组不同的对顶角;(3)四条直线相交于一点有12 组不同的对顶角;(4)n条直线相交于同一点有n(n﹣1)组不同对顶角.(如图所示)【分析】根据(1)(2)(3)得出规律,可求n条直线相交于同一点有多少组不同对顶角.【解答】解:观察图形可知,n 条直线相交于同一点有(1+2+…+n﹣1)×2=×2=n(n﹣1)组不同对顶角.故答案为:n(n﹣1).【点评】考查了对顶角的定义,关键是熟悉对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.25.如图,直线l1、l2、l3 相交于一点O,对顶角一共有6 对.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD 相交于O;直线AB,EF 相交于O;直线CD,EF 相交于O.由于两条直线相交组成对顶角,所以上述图中共有6 对对顶角.【解答】解:如图,图中共有 6 对对顶角:∠AOC 和∠BOD,∠AOD 和∠BOC;∠AOF 和∠BOE,∠AOE 和∠BOF;∠COF 和∠DOE,∠COE 和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.26.如图,直线a,b,c 两两相交于A,B,C 三点,则图中有 6 对对顶角;有12 对同位角;有6 对内错角;有6 对同旁内角.【分析】根据3 条直线两两相交,共有3 个点,每个点有两对对顶角,得出对顶角、内错角、同旁内角的对数.【解答】解:3 条直线两两相交,共有3 个点,每个点有两对对顶角,任意两条直接被第三条截有12 对同位角,6 对内错角,6 对同旁内角,所以对顶角有6 对,12 对同位角,6 对内错角,6 对同旁内角;故答案为:6 12 6 6【点评】本题考查了同位角、内错角、同旁内角的定义.注意在截线的同旁找同位角,在被截直线之间找内错角、同旁内角.要结合图形,熟记同位角、内错角、同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.27.图中,与∠1 成同位角的角的个数是3 .【分析】据五条直线相交关系分别讨论:l1、l2 被b 所截,与∠1 成同位角的角的有1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.共计3 个.【解答】解:据同位角定义,l1l2 被 b 所截,与∠1 成同位角的角的有 1 个;a、b 被l2 所截,与∠1 成同位角的角的有1 个;c、b 被l2 所截,与∠1 成同位角的角的有1 个.一共有3 个,故填3.【点评】本题考查了同位角的定义,注意不要漏解.28.四条直线,每一条都与另外三条相交,且四条直线不相交于同一点,每条直线交另外两条直线,都能组成4 组同位角,这个图形中共有48 组同位角.【分析】每条直线都与另3 条直线相交,有3 个交点.每2 个交点决定一条线段,共有3条线段.4 条直线两两相交且无三线共点,共有3×4=12 条线段.每条线段各有4 组同位角,可知同位角的总组数.【解答】解:∵平面上4 条直线两两相交且无三线共点,∴共有3×4=12 条线段.又∵每条线段各有 4 组同位角,∴共有同位角12×4=48 组.故每条直线交另外两条直线,都能组成4 组同位角.这个图形中共有48 组同位角.故答案为:4,48.【点评】本题考查了同位角的定义.注意在截线的同旁找同位角.要结合图形,熟记同位角的位置特点.两条直线被第三条直线所截所形成的八个角中,有4 组同位角.29.平面内5 条直线两两相交,且没有3 条直线交于一点,那么图中共有60 对同旁内角.【分析】每条直线都与另4 条直线相交,且没有3 条直线交于一点,共有30 条线段.每条线段两侧各有一对同旁内角内角,可知同旁内角的总对数.【解答】解:如图所示:∵平面上5 条直线两两相交且无三线共点,∴共有30 条线段.又∵每条线段两侧各有一对同旁内角,∴共有同旁内角30×2=60对.故答案为:60.【点评】本题考查了同旁内角的定义.注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.注意按顺序一个点一个点的数,不要重复也不要遗漏.30.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2 等于58°.【分析】依据平行线的性质以及折叠的性质,即可得到∠2 的度数.【解答】解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.【点评】本题考查平行线的性质,翻折变换知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.有一条长方形纸带,按如图所示沿AB 折叠,若∠1=40°,则纸带重叠部分中∠CAB=70 °.【分析】可利用平行线的性质求出∠FAC 的大小,进而可求∠CAB 的大小.【解答】解:∵长方形纸带,∴BE∥AF,∴∠1=∠CAF=40°,由于折叠可得:∠CAB=,故答案为:70【点评】此题考查平行线的性质,熟练掌握平行线的性质,会求解一些简单的计算问题.32.如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【分析】先根据平行线的性质得出∠DEF=∠EFB,根据图形折叠的性质得出∠EFC 的度数,进而得出∠CFG 即可.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.【点评】本题考查了平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.33.将一条两边互相平行的纸带沿EF折叠,如图(1),AD∥BC,ED'∥FC',设∠AED'=x°(1)∠EFB=90°﹣x° .(用含x的代数式表示)(2)若将图1继续沿BF折叠成图(2),∠EFC″=﹣90° .(用含x的代数式表示).【分析】(1)由平行线的性质得∠DEF=∠EFB,∠AEH+∠EHB=180°,折叠和三角形的外角得∠D'EF=∠EFB,∠EFB=∠EHB,最后计算出∠EFB=90°﹣x°;(2)由折叠和平角的定义求出∠EFC'=90°+ ,再次折叠经计算求出∠EFC''=.【解答】解:(1)如图1所示:∵AD∥BC,∴∠DEF=∠EFB,∠AEH+∠EHB=180°,又∵∠DEF=∠D'EF,∴∠D'EF=∠EFB,又∵∠EHB=∠D'EF+∠EFB,∴∠EFB=∠EHB,又∵∠AED'=x°,∴∠EHB=180°﹣x°∴∠EFB==90°﹣x°(2)如图2 所示:∵∠EFB+∠EFC'=180°,∴∠EFC'=180°﹣(90°﹣°)=90°+ ,又∵∠EFC'=2∠EFB+∠EFC'',∴∠EFC''=∠EFC'﹣2∠EFB=90°+ ﹣2(90°﹣°)=,故答案为.【点评】本题综合考查了平行线的性质,折叠问题,等腰三角形的性质,三角形的外角定理,平角的定义和角的和差等相关知识,重点掌握平行线的性质,难点是折叠前后的变及不变的问题,二次折叠角的前后大小等量关系.三.解答题(共10 小题)34.如图,直线AB、CD 相交于O,OE⊥CD,且∠BOD 的度数是∠AOD 的5倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE 的度数.【分析】(1)根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出即可;(2)求出∠BOC,∠EOC,代入∠BOE=∠EOC﹣∠BOC 求出即可.【解答】解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的 5 倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.【点评】本题考查了垂直定义,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.35.如图,直线AB 和CD 相交于点O,OE 把∠AOC 分成两部分,且∠AOE:∠EOC=2:5(1)如图1,若∠BOD=70°,求∠BOE;(2)如图2,若OF 平分∠BOE,∠BOF=∠AOC+10°,求∠EOF.【分析】(1)依据对顶角相等以及邻补角,即可得到∠AOC=70°,∠BOC=110°,再根据∠AOE:∠EOC=2:5,即可得到∠COE 的度数,进而得出∠BOE 的度数;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),根据7α+10°=(180°﹣2α),即可得到α的值,进而得到∠EOF 的度数.【解答】解:(1)∵∠BOD=70°,直线AB和CD相交于点O,∴∠AOC=70°,∠BOC=110°,又∵∠AOE:∠EOC=2:5,∴∠COE=70°×=50°,∴∠BOE=50°+110°=160°;(2)设∠AOE=2α,∠EOC=5α,则∠BOF=7α+10°,∵OF 平分∠BOE,∴∠BOF=∠BOE=(180°﹣∠AOE)=(180°﹣2α),∴7α+10°=(180°﹣2α),解得α=10°,∴∠EOF=∠BOF=70°+10°=80°.【点评】本题考查了对顶角、邻补角以及角平分线的定义,解决问题的关键是利用了对顶角相等,邻补角互补的关系.36.如图,直线AB、CD 相交于点O,OE 平分∠BOC,∠COF=90°.(1)若∠AOF=70°,求∠BOE 的度数;(2)若∠BOE:∠BOD=3:2,求∠AOF 的度数.【分析】(1)先根据余角的概念求出∠AOC 的度数,再根据邻补角的性质求出∠BOC 的度数,最后根据角平分线的定义计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵∠COF=90°,∠AOF=70°,∴∠AOC=90°﹣70°=20°,∴∠BOC=180°﹣20°=160°,∵OE 平分∠BOC,∴∠BOE=∠BOC=80°;(2)∵∠BOE:∠BOD=3:2,OE 平分∠BOC,∴∠EOC:∠BOE:∠BOD=3:3:2,∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD=45°,∴∠AOC=∠BOD=45°,又∵∠COF=90°,∴∠AOF=90°﹣45°=45°.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.37.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.【分析】由∠1+∠2=180°可证得AD∥BC,得∠ADE=∠C,已知∠A=∠C,等量代换后可得∠ADE=∠A,即AB、CD 被直线AD 所截形成的内错角相等,由此可证得AB 与CD 平行.【解答】证明:AB∥CD,理由如下:∵∠1+∠2=180°(已知)∴AD∥BC(同旁内角互补,两直线平行)(2分)∴∠EDA=∠C(两直线平行,同位角相等)(3分)又∵∠A=∠C(已知)∴∠A=∠EDA(等量代换)(5分)∴AB∥CD.(内错角相等,两直线平行)(6分)【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.38.(1)如图,已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.探究:∠ABC 与∠DEF 分别有怎样的数量关系?并选择一种情况说明理由.图1 中∠ABC 与∠DEF 数量关系为∠ABC+∠DEF=180°;图2 中∠ABC 与∠DEF 数量关系为∠ABC=∠DEF .选择一种情况说明理由:(2)由(1)你得出的结论是如果两个角的两边互相平行,那么这两个角相等或互补.(3)若两个角的两边互相平行,且一个角比另一个角的2 倍少30°,直接写出这两个角的度数.【分析】(1)利用平行线的性质即可判断.(2)根据平行线的性质解决问题即可.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解方程即可解决问题.【解答】解:(1)如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:①如图1 中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.②如图2 中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.(2)结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为如果两个角的两边互相平行,那么这两个角相等或互补.(3)设两个角分别为x 和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.【点评】本题考查平行线的判定和性质,一元一次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.39.如图,已知∠AED=∠ACB,CD⊥AB,HF⊥AB,猜想∠1 与∠2 的数量关系并说明的理由.。
七年级数学相交线与平行线培优复习附详细答案

七年级数学:相交线与平行线培优复习例题精讲例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
b,a∥解:∵la3 4(两直线平行,内错角相等)∠3=∠∴) 平角的定义180°(3=∠2+∠4=1+∵∠∠4) 等式性质2 (∴∠1=∠b2解得x=24 则3x+70=5x+22=142°即∠1 (1)°图-∠1=38∴∠3=180°评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。
°,∠D =192,∠B+∠BED+ AB∥EF∥CD,EG平分∠BEF2例.已知:如图(2),的度数。
°,求∠GEF∠B-∠D=24 CD EF∥解:∵AB∥(两直线平行,内错角相等)∠D∠BEF,∠DEF= ∴∠B= D =192∠°(已知)∵∠B+∠BED+D=192°BEF+∠DEF+∠即∠B+∠=192°(等量代换)B+∠D)∴2(∠D=96°(等式性质)则∠B+∠∵∠B-∠D=24°(已知)(2)图∴∠B=60°(等式性质)即∠BEF=60°(等量代换)(已知)平分∠BEF∵EG12°(角平分线定义)∴∠∠GEF=BEF=30DEB 的度数。
B=40°,∠D=70°,求∠.如图(3),已知AB∥CD,且∠例3AB EF∥解:过E作CD(已知)AB∥∵(平行公理)EF∥CD∴°(两直线平行,内错角相等)DEF=∠D=70∠B=40°∠∠∴BEF= BEF -∠∠DEB=∠DEF∵B=30°∠D-∠∠∴DEB =评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅)图(3 助线。
条以上直线共点,有多少个不同交33n条直线两两相交且无条或.例4平面上点?1个交点,条直线产生解:2条直线共有3个交点,这时平面上条均相交,增加条直线与前面第322 个交点;1+2=3.第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点;…1则n条直线共有交点个数:1+2+3+…+ (n-1)=n(n-1)2评注:此题是平面上n条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。
中考数学总复习《相交线与平行线》专项提升练习题-附答案

中考数学总复习《相交线与平行线》专项提升练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知∠α的两边分别与∠β的两边垂直,且∠α=20°,则∠β的度数为()A.20°B.160°C.20°或160°D.70°2.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65°B.50°C.35°D.25°3.如图,下列条件中,能判定AB∥CD的是()A.∠1=∠4B.∠4=∠6C.∠2+∠5=180°D.∠1+∠3=180°4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C5.如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45°C.55°D.65°6.如图,AB∥CD∥EF,AF∥CG,则图中与∠F(不包括∠F)相等的角有()A.1个B.2个C.3个D.4个7.如图,将三角形纸片ABC沿虚线剪掉两角得五边形CDEFG,若DE∥CG,FG∥CD根据所标数据,则∠A的度数为()A.54°B.64°C.66°D.72°8.把三角板ABC按如图所示的位置放置,已知∠CAB=30°,∠C=90°过三角板的顶点A、B分别作直线AD、BE,且AD//BE,∠DAE=120° .给出以下结论:(1)∠1+∠2=90°;(2)∠2=∠EAB;(3)CA平分∠DAB .其中正确结论有()A.0个B.1个C.2个D.3个二、填空题9.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为°.10.如图,AB∥CD,∠1=40°,MN平分∠EMB,则∠2的度数是.11.如图AB∥CD,∠CED=90°,∠AEC=37°,则∠D的度数为.12.如图,已知直线c与直线a,b分别交于点A,B,且∠2=65°,若直线a//b,则∠3的度数为.13.将一副直角三角板如图放置(其中∠A=60°,∠F=45°)点E在AC上ED//BC,则∠AEF的度数是.三、解答题14.如图所示,∠1=65°,∠2=65°,∠3=115°,试说明DE // BC,DF // AB.15.已知直线AB和CD相交于点O,射线OE⊥AB于O,射线OF⊥CD于O,且∠AOF=25°,求∠BOC与∠EOF 的度数.16.如图所示,已知AB//DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E试说明AD//BC .17.如图,网格中所有小正方形的边长都为1,A,B,C都在格点上.利用格点画图(不写作法):①过点C画直线AB的平行线CM;②过点A画直线BC的垂线,垂足为G;③过点A画直线AB的垂线,交BC于点H.18.如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连结BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,试判断AB与EF的位置关系,并说明理由.答案1.C2.D3.B4.C5.B6.D7.B8.C9.11410.110°11.53°或53度12.115°13.165°14.解:∵∠1=65°,∠2=65°∴∠1=∠2∴DE∥BC∵∠1=∠4=65°,∠3=115°∴∠3+∠4=65°+115°=180°∴DF∥AB.15.解:∵OF⊥CD∴∠FOD=90°.∴∠AOD=∠AOF+∠FOD=25°+90°=115°.∴∠BOC=115°.∵OE⊥AB∴∠AOE=90°.∴∠EOF=90°﹣25°=65°.16.解:∵AB//CD∴∠BAE=∠CFE∵AE平分∠BAD∴∠BAE=∠DAF∴∠CFE=∠DAF∵∠CFE=∠E∴∠DAF=∠E∴AD//BC .17.解:①直线CD为所作;②线段AG为所作;③线段HA为所作;18.(1)证明:∵EB⊥EF∴∠FEB=90°∴∠DEF+∠BEG=180°-90°=90°,又∠EBG+∠BEG=90°∴∠DEF=∠EBG(2)解:AB∥EF,理由如下:∵EF平分∠AED∠AED∴∠AEF=∠DEF= 12∵∠EBG=∠A,∠DEF=∠EBG∴∠A=∠AEF∴AB∥EF。
(2020年7月整理)七年级下册相交线与平行线提高题.doc

1①2121②12③12④七年级下册《相交线与平行线》提高题一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④ 2.如右图所示,点E 在AC 的延长线上,下列条件中能判..断.CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐 30,第二次向右拐 30B. 第一次向右拐 50,第二次向左拐130 C. 第一次向右拐50,第二次向右拐130 D. 第一次向左拐50,第二次向左拐130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且25=∠A ,45=∠C ,则E ∠的度数是( ) A.60 B.70 C.110 D.80EDC BA4321EDCBA28.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个C. 5个D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对二、填空题1.把命题“等角的余角相等”写成“如果……,那么……。
七年级下册_相交线与平行线_提高题

七年级下册《相交线与平行线》提高题、选择题:3•一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是(2 •如右图所示,点 A. 34 ①②③ C. ①②④ D. E 在AC 的延长线上,下列条件中能判断B.1 2 C.①④AB//CD DCED.ACD 180A. 第一次向左拐30,第二次向右拐30 C.第一次向右拐50,第二次向右拐1304. 两条平行直线被第三条直线所截,下列命题中正确 A.同位角相等,但内错角不相等 B. C.内错角相等,且同旁内角不互补 D.5.下列说法中错误的个数是()B. 第一次向右拐50,第二次向左拐130 D.第一次向左拐50,第二次向左拐130..的是( ) 同位角不相等,但同旁内角互补 同位角相等,且同旁内角互补(2)过一点有且只有一条直线与已知直线垂(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1 个 B. 2 个 C. 3 个 D. 4 个 6.下列说法中,正确 的是()A.图形的平移是指把图形沿水平方向移动。
C. “相等的角是对顶角”是一个真命题。
B. 平移前后图形的形状和大小都没有发生改变。
D.“直角都相等”是一个假命题。
7.如右图,AB//CD ,且 A25 , C45,则 E 的度数是(A.60B.70 C.110 D.80&如右图所示,已知AC BC ,CDAB , 垂足分别是C 、D ,那么以下线段大小的比较必定成立 的是( )A. CD ADB. AC BCC.BC BD D. CD BD9.在一个平面内,任意四条直线相交,交点的个数最多有()1 •A.②③B. 2(BCA. 7 个B. 6 个C. 5 个D. 4 个10.如右图所示,BE平分ABC , DE//BC , 图中相等的角共有()A. 3对B. 4 对C. 5对D. 6对、填空题1 •把命题“等角的余角相等”写成“如果……,那么……”的形式为2. 用吸管吸易拉罐内的饮料时,如图①,1=110时,电线杆与地面垂直。
中考数学数学第五章 相交线与平行线的专项培优练习题(及答案

中考数学数学第五章相交线与平行线的专项培优练习题(及答案一、选择题1.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个2.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角3.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°4.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.115°B.65°C.35°D.25°5.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A .70°B .45°C .110°D .135°6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°8.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行9.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70°所以3180418011070︒︒︒︒∠=-∠=-=二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.17.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________18.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).22.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?23.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.2.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 3.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.4.D解析:D【解析】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°.又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D.5.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【解析】【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,所以,AB∥a∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.8.D解析:D【解析】试题分析:A 、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B 、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C 、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D 、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误; 故选:D .9.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.13.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.14..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y , ∴339042b ︒-a =, ∴91358b a =︒-, ∴81209b -︒a =,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.15.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22,而DC<22,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=22,而DC=2<22,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.17.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC ═3(x°+y°),即可得出答案.【详解】连接AC ,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB ∥CD ,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE )=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA )=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC , 即:4∠AFC=3∠AEC ,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.18.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.19.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.三、解答题21.(1)60°;(2)①75°,②当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n,推导见解析.【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠B ED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.【详解】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;(2)①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.22.(1) 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分 【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.23.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论. 【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.24.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.25.(1)∠AEC =∠C +∠A ;(2)∠C ﹣∠E =15°;(3)2∠AGF +∠GDC =90°.理由见解析.【分析】(1)过点E 作EF ∥AB ,知AB ∥CD ∥EF ,据此得∠A=∠AEF ,∠C=∠CEF ,根据∠AEC=∠AEF+∠CEF 可得答案;(2)分别过点E 、F 作FM ∥AB ,EN ∥AB ,设∠NEF=x=∠EFM ,知∠AEF=x+50°,∠MFC=115°-x ,据此得∠C=180°-(115°-x )=x+65°,进一步计算可得答案;(3)分别过点E 、F 、G 作FM ∥AB ,EN ∥AB ,GH ∥AB ,设∠GAE=x=∠GAB ,∠GFM=y ,∠MPC=z ,知∠GPE=y+z ,从而得2x+2y+z=90°,∠C=180°-z ,根据GD ∥FC 得∠D=z ,由GH ∥AB ,AB ∥CD 知∠AGF=x+y ,继而代入可得答案.【详解】(1)∠AEC =∠C +∠A ,如图1,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(共12 小题)1.如图, AB∥CD,CD⊥EF,若∠ 1=124°,则∠ 2=()A.56°B.66°C.24°D.34°2.如图是婴儿车的平面示意图,其中AB∥ CD,∠ 1=120°,∠ 3=40°,那么∠ 2 的度数为()A.80°B.90°C.100°D.102°3.如图,直线 a∥b,若∠ 2=55°,∠ 3=100°,则∠ 1 的度数为()A.35°B.45°C.50°D.55°4.如图,△ ABC的面积为 2,将△ ABC沿 AC方向平移至△ DFE,且 AC=CD,则四边形 AEFB的面积为()A.6B.8C.10D.125.如图,点 D、 E、 F 分别在 AB, BC,AC上,且 EF∥AB,要使 DF∥BC,只需再有条件()A.∠ 1=∠2 B.∠ 1=∠DFE C.∠ 1=∠AFD D.∠ 2=∠AFD6.如图,与∠ 1 是同旁内角的是()A.∠ 2 B .∠ 3 C.∠ 4 D.∠ 57.如图,在下列条件中,不能判定直线 a 与 b 平行的是()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°8.如图,直线 a、b 被直线 c 所截,下列条件能使a∥b 的是()A.∠ 1=∠6 B.∠ 2=∠6 C.∠ 1=∠3 D.∠ 5=∠79.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC, DC与OB交于点 E,则∠ DEO的度数为()A.85°B.70°C.75°D.60°10.如图, AB∥CD,AE平分∠ CAB交 CD于点 E,若∠ C=50°,则∠ AED=()A.65°B.115°C.125°D.130°11.如图, AB∥CD,DA⊥ AC,垂足为 A,若∠ ADC=35°,则∠ 1 的度数为()A.65°B.55°C.45°D.35°12.如图,直线 a∥ b,∠ 1=85°,∠ 2=35°,则∠ 3=()A.85°B.60°C.50°D.35°二.填空题(共12 小题)13.如图,已知 BD∥AC,∠ 1=65°,∠ A=40°,则∠ 2 的大小是.14.如图,将长方形 ABCD沿 AE折叠,使点 D落在 BC边上的点 F,若∠ BFA=34°,则∠ DAE=度.15.如图,m∥ n,直角三角板 ABC的直角顶点 C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α +β= .16.如图,四边形ABCD中,∠ BAD=∠ADC=90°,AB=AD=,CD= ,点P 是四边形ABCD四条边上的一个动点,若P 到BD的距离为,则满足条件的点P 有个.17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含 30°角的直角三角板的斜边与纸条一边重合,含 45°角的三角板的一个顶点在纸条的另一边上,则∠ 1 的度数是.18.如图,直线 AB∥CD,BC平分∠ ABD,若∠ 1=54°,则∠ 2=.19.如图,直线 AB∥CD,CA平分∠ BCD,若∠ 1=50°,则∠ 2=.20.如图,已知 AB∥CD,BC∥DE.若∠ A=20°,∠C=120°,则∠ AED的度数是.21.如图,直线 a∥ b,直线 c 与直线 a、 b 分别相交于 A、 B 两点,若∠ 1=60°,则∠ 2=.22.如图, AB∥CD,直线 EF分别交 AB、CD于 M, N 两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠ PNM等于度.23.如图,△ ABC中, BC=5cm,将△ ABC沿 BC方向平移至△ A′B′C′的对应位置时, A′B′恰好经过 AC的中点 O,则△ ABC平移的距离为cm.24.如图,是赛车跑道的一段示意图,其中 AB∥DE,测得∠ B=140°,∠D=120°,则∠ C的度数为度.三.解答题(共16 小题)25.如图,一个由 4 条线段构成的“鱼”形图案,其中∠ 1=50°,∠ 2=50°,∠3=130°,找出图中的平行线,并说明理由.26.如图,已知 AC∥ED,AB∥ FD,∠ A=65°,求:∠ EDF的度数.27.如图,已知 AB∥CD,若∠ C=40°,∠ E=20°,求∠ A 的度数.28.如图,在△ ABC中,∠ B+∠C=110°, AD平分∠ BAC,交 BC于点 D,DE∥ AB,交 AC于点 E,求∠ ADE的度数.29.如图,直线 a∥ b, BC平分∠ ABD, DE⊥BC,若∠ 1=70°,求∠ 2 的度数.30.如图, E 为 AC上一点, EF∥ AB交 AF 于点 F,且 AE=EF.求证:∠ BAC=2∠1.31.如图,直线 AB、CD相交于点 O, OE平分∠ BOD,∠ AOC=76°,∠ DOF=90°,求∠ EOF的度数.32.如图,直线 AB,CD相交于 O点, OM⊥ AB于 O.(1)若∠ 1=∠2,求∠ NOD;(2)若∠ BOC=4∠1,求∠ AOC与∠ MOD.33.如图,两直线 AB、 CD相交于点 O,OE平分∠ BOD,∠ AOC:∠ AOD=7:11.(1)求∠ COE的度数.(2)若射线 OF⊥OE,请在图中画出 OF,并求∠ COF的度数.34.如图,四边形ABCD中,∠ A=∠C=90°, BE 平分∠ ABC,DF 平分∠ ADC,则BE与 DF有何位置关系?试说明理由.35.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠ A=60°,∠ D=30°;∠ E=∠B=45°):( 1)①若∠ DCE=45°,则∠ ACB的度数为;②若∠ ACB=140°,求∠ DCE的度数;(2)由( 1)猜想∠ ACB与∠ DCE的数量关系,并说明理由.(3)当∠ ACE<180°且点 E 在直线 AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ ACE 角度所有可能的值(不必说明理由);若不存在,请说明理由.36.已知:如图,∠ C=∠ 1,∠ 2 和∠ D 互余, BE⊥FD于点 G.求证: AB∥CD.37.已知:如图所示,∠ ABD和∠ BDC的平分线交于 E,BE交 CD于点 F,∠ 1+∠2=90°.(1)求证: AB∥CD;(2)试探究∠ 2 与∠ 3 的数量关系.38.如图,∠ 1+∠2=180°,∠ A=∠ C, DA平分∠ BDF.(1) AE与 FC会平行吗?说明理由;(2) AD与 BC的位置关系如何?为什么?(3) BC平分∠ DBE吗?为什么.39.如图,一条直线分别与直线BE、直线 CE、直线 BF、直线 CF相交于点 A,G,H,D且∠ 1=∠2,∠ B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠ A=∠D.40.将△ ABC纸片沿 DE折叠,其中∠ B=∠C.(1)如图 1,点 C落在 BC边上的点 F 处, AB与 DF是否平行?请说明理由;(2)如图 2,点 C 落在四边形 ABCD内部的点 G处,探索∠ B 与∠ 1+∠ 2 之间的数量关系,并说明理由.相交线与平行线提高题与常考题和培优题( 含解析 )参考答案与试题解析一.选择题(共12 小题)1.(2017?新城区校级模拟)如图,AB∥CD,CD⊥EF,若∠ 1=124°,则∠ 2=()A.56°B.66°C.24°D.34°【分析】先根据平行线的性质,得出∠CEH=124°,再根据 CD⊥ EF,即可得出∠2的度数.【解答】解:∵ AB∥CD,∠ 1=124°,∴∠ CEH=124°,∴∠ CEG=56°,又∵ CD⊥ EF,∴∠ 2=90°﹣∠ CEG=34°.故选: D.【点评】本题主要考查了平行线的性质与垂线的定义,解题时注意:两直线平行,同位角相等.2.(2017?禹州市一模)如图是婴儿车的平面示意图,其中AB∥ CD,∠ 1=120°,∠3=40°,那么∠ 2 的度数为()A.80°B.90°C.100°D.102°【分析】根据平行线性质求出∠ A,根据三角形外角性质得出∠2=∠1﹣∠ A,代入求出即可.【解答】解:∵ AB∥CD,∴∠ A=∠3=40°,∵∠ 1=120°,∴∠ 2=∠ 1﹣∠ A=80°,故选 A.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是求出∠ A 的度数和得出∠ 2=∠ 1﹣∠ A.3.(2017?莒县模拟)如图,直线a∥b,若∠ 2=55°,∠ 3=100°,则∠ 1 的度数为()A.35°B.45°C.50°D.55°【分析】根据两直线平行,同位角相等可得∠4=∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵直线a∥b,∴∠ 4=∠2=55°,∴∠ 1=∠ 3﹣∠ 4=100°﹣ 55°=45°.故选 B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.4.(2017?莒县模拟)如图,△ABC的面积为 2,将△ ABC沿 AC方向平移至△ DFE,且 AC=CD,则四边形 AEFB的面积为()A.6B.8C.10D.12【分析】直接利用平移的性质结合三角形面积求法得出答案.【解答】解:∵将△ ABC沿 AC方向平移至△ DFE,且AC=CD,∴A 点移动的距离是 2AC,则BF=AD,连接 FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形 AEFB的面积为: 10.故选: C.【点评】此题主要考查了平移的性质以及三角形面积求法,正确得出三角形之间面积关系是解题关键.EF∥AB,5.(2017 春?杭州月考)如图,点D、E、F 分别在AB,BC,AC上,且要使DF∥BC,只需再有条件()A.∠ 1=∠2 B.∠ 1=∠DFE C.∠ 1=∠AFD D.∠ 2=∠AFD【分析】由平行线的性质得出∠ 1=∠2,再由∠ 1=∠DFE,得出∠ 2=∠ DFE,由内错角相等,两直线平行即可得出 DF∥ BC.【解答】解:要使 DF∥ BC,只需再有条件∠ 1=∠DFE;理由如下:∵EF∥AB,∴∠ 1=∠ 2,∵∠ 1=∠ DFE,∴∠ 2=∠ DFE,∴ DF∥BC;故选: B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.6.(2016?柳州)如图,与∠ 1 是同旁内角的是()A.∠ 2 B .∠ 3 C.∠ 4 D.∠ 5【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解: A、∠ 1 和∠ 2 是对顶角,不是同旁内角,故本选项错误;B、∠ 1 和∠ 3 是同位角,不是同旁内角,故本选项错误;C、∠ 1 和∠ 4 是内错角,不是同旁内角,故本选项错误;D、∠ 1 和∠ 5 是同旁内角,故本选项正确;故选 D.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.7.(2016?来宾)如图,在下列条件中,不能判定直线 a 与 b 平行的是()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°【分析】直接用平行线的判定直接判断.【解答】解: A、∵∠ 1 与∠ 2 是直线 a, b 被 c 所截的一组同位角,∴∠1=∠2,可以得到 a∥b,∴不符合题意,B、∵∠ 2 与∠ 3 是直线 a,b 被 c 所截的一组内错角,∴∠2=∠3,可以得到 a∥b,∴不符合题意,C、∵∠ 3 与∠ 5 既不是直线 a,b 被任何一条直线所截的一组同位角,内错角,∴∠ 3=∠ 5,不能得到 a∥b,∴符合题意,D、∵∠ 3 与∠ 4 是直线 a,b 被 c 所截的一组同旁内角,∴∠3+∠4=180°,可以得到 a∥b,∴不符合题意,故选 C【点评】此题是平行线的判定,解本题的关键是熟练掌握平行线的判定定理.8.(2016?百色)如图,直线 a、b 被直线 c 所截,下列条件能使 a∥ b 的是()A.∠ 1=∠6 B.∠ 2=∠6 C.∠ 1=∠3 D.∠ 5=∠7【分析】利用平行线的判定方法判断即可.【解答】解:∵∠ 2=∠6(已知),∴a∥ b(同位角相等,两直线平行),则能使 a∥ b 的条件是∠ 2=∠6,故选 B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.O,9.(2016?营口)如图,将一副三角板叠放在一起,使直角的顶点重合于点AB∥OC, DC与 OB交于点 E,则∠ DEO的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠ AOC=120°,再求出∠ BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵ AB∥OC,∠ A=60°,∴∠ A+∠AOC=180°,∴∠ AOC=120°,∴∠ BOC=120°﹣ 90°=30°,∴∠ DEO=∠C+∠BOC=45° +30°=75°;故选: C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.10.(2016?陕西)如图, AB∥CD,AE平分∠ CAB交 CD于点 E,若∠ C=50°,则∠ AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠ CAB的度数,根据角平分线求出∠ EAB的度数,根据平行线性质求出∠ AED的度数即可.【解答】解:∵ AB∥CD,∴∠ C+∠CAB=180°,∵∠ C=50°,∴∠ CAB=180°﹣ 50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠ EAB+∠AED=180°,∴∠ AED=180°﹣ 65°=115°,故选 B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.11.(2016?威海)如图, AB∥CD,DA⊥ AC,垂足为 A,若∠ ADC=35°,则∠ 1 的度数为()A.65°B.55°C.45°D.35°【分析】利用已知条件易求∠ ACD的度数,再根据两线平行同位角相等即可求出∠ 1 的度数.【解答】解:∵DA⊥AC,垂足为 A,∴∠ CAD=90°,∵∠ ADC=35°,∴∠ ACD=55°,∵AB∥CD,∴∠ 1=∠ACD=55°,故选 B.【点评】本题主要考查了平行线的性质,垂直的定义等知识点,熟记平行线的性质定理是解题关键.12.(2016?毕节市)如图,直线 a∥b,∠ 1=85°,∠ 2=35°,则∠ 3=()A.85°B.60°C.50°D.35°【分析】先利用三角形的外角定理求出∠ 4 的度数,再利用平行线的性质得∠ 3= ∠4=50°.【解答】解:在△ ABC中,∵∠ 1=85°,∠ 2=35°,∴∠ 4=85°﹣ 35°=50°,∵a∥ b,∴∠ 3=∠4=50°,故选 C.【点评】本题考查了平行线的性质和三角形的外角定理,比较简单;运用了三角形的一个外角等于与它不相邻的两个内角的和,及两直线平行,内错角相等;本题的解法有多种,也可以利用直线 b 下方的三角形和对顶角相等来求解.二.填空题(共12 小题)13.(2017?辽宁模拟)如图,已知BD∥ AC,∠ 1=65°,∠ A=40°,则∠ 2 的大小是75° .【分析】由 BD与 AC平行,利用两直线平行同位角相等求出∠C的度数,再利用三角形内角和定理求出所求角度数即可.【解答】解:∵ BD∥AC,∠ 1=65°,∴∠ C=∠1=65°,在△ ABC中,∠ A=40°,∠ C=65°,∴∠ 2=75°,故答案为: 75°【点评】此题考查了平行线的性质,以及三角形内角和定理,熟练掌握平行线的性质是解本题的关键.14.( 2017 春?萧山区月考)如图,将长方形 ABCD沿 AE折叠,使点 D 落在 BC 边上的点 F,若∠ BFA=34°,则∠ DAE= 17 度.【分析】首先根据平行线的性质得到∠DAF的度数,再根据对折的知识即可求出∠ DAE的度数.【解答】解:∵四边形 ABCD是矩形,∴AD∥BC.∴∠ BFA=∠DAF,∵∠ BFA=34°,∴∠ DAF=34°,∵△ AFE是△ ADE沿直线 AE对折得到,∴∠ DAE=∠FAE,∴∠ DAE= ∠DAF=17°,故答案为 17.【点评】本题主要考查了平行线的性质,解题的关键是根据平行线的性质求出∠ DAF的度数,此题难度不大.15.(2017?河北一模)如图,m∥n,直角三角板 ABC的直角顶点 C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α +β= 90° .【分析】根据平行线的性质即可得到结论.【解答】解:过 C 作 CE∥m,∵m∥ n,∴ CE∥n,∴∠ 1=∠α,∠ 2=∠β,∵∠ 1+∠2=90°,∴∠α +∠β =90°,故答案为: 90°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.16.(2016?凉山州)如图,四边形ABCD中,∠ BAD=∠ADC=90°, AB=AD=,CD=,点 P 是四边形 ABCD四条边上的一个动点,若P 到 BD的距离为,则满足条件的点 P 有2个.【分析】首先作出 AB、 AD边上的点 P(点 A)到 BD的垂线段 AE,即点 P 到 BD 的最长距离,作出 BC、 CD的点 P(点 C)到 BD的垂线段 CF,即点 P 到 BD的最长距离,由已知计算出 AE、CF的长为,比较得出答案.【解答】解:过点 A 作 AE⊥BD于 E,过点 C作 CF⊥BD于 F,∵∠ BAD=∠ADC=90°, AB=AD=,CD=2,∴∠ ABD=∠ADB=45°,∴∠ CDF=90°﹣∠ ADB=45°,∵sin ∠ABD= ,∴AE=AB?sin∠ ABD=3 ?sin45 °=3>,CF=2<,所以在 AB和 AD边上有符合 P 到 BD的距离为的点2个,故答案为: 2.【点评】本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到 BD的最大距离比较得出答案.17.(2016?菏泽)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含 45°角的三角板的一个顶点在纸条的另一边上,则∠ 1 的度数是15°.AB∥b,所以∠ 1=∠ 2,∠ 3=∠【分析】过 A 点作 AB∥a,利用平行线的性质得4=30°,加上∠ 2+∠3=45°,易得∠ 1=15°.【解答】解:如图,过 A 点作 AB∥a,∴∠ 1=∠ 2,∵ a∥ b,∴ AB∥b,∴∠ 3=∠4=30°,而∠ 2+∠3=45°,∴∠ 2=15°,∴∠ 1=15°.故答案为 15°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.18.(2016?连云港)如图,直线AB∥CD, BC 平分∠ ABD,若∠ 1=54°,则∠ 2= 72°.【分析】由 AB∥ CD,根据平行线的性质找出∠ ABC=∠ 1,由 BC平分∠ ABD,根据角平分线的定义即可得出∠CBD=∠ABC,再结合三角形的内角和为180°以及对顶角相等即可得出结论.【解答】解:∵ AB∥CD,∠ 1=54°,∴∠ ABC=∠1=54°,又∵ BC平分∠ ABD,∴∠ CBD=∠ABC=54°.∵∠ CBD+∠BDC+∠DCB=180°,∠ 1=∠DCB,∠ 2=∠BDC,∴∠ 2=180°﹣∠ 1﹣∠ CBD=180°﹣ 54°﹣ 54°=72°.故答案为: 72°.【点评】本题考查了平行线的性质、角平分线的定义以及三角形内角和定理,解题的关键是找出各角的关系.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.19.(2016?青海)如图,直线 AB∥CD,CA平分∠ BCD,若∠ 1=50°,则∠ 2=65°.【分析】先根据平行线的性质得∠ ABC+∠BCD=180°,根据对顶角相等得∠ ABC=∠1=50°,则∠ BCD=130°,再利用角平分线定义得到∠ ACD= ∠BCD=65°,然后根据平行线的性质得到∠ 2 的度数.【解答】解:∵ AB∥CD,∴∠ ABC+∠BCD=180°,而∠ ABC=∠1=50°,∴∠ BCD=130°,∵CA平分∠ BCD,∴∠ ACD= ∠BCD=65°,∵AB∥CD,∴∠ 2=∠ACD=65°.故答案为 65°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.(2016?金华)如图,已知 AB∥CD,BC∥DE.若∠ A=20°,∠ C=120°,则∠ AED的度数是 80° .【分析】延长 DE交 AB于 F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长 DE交 AB于 F,∵AB∥CD,BC∥ DE,∴∠ AFE=∠B,∠ B+∠ C=180°,∴∠ AFE=∠B=60°,∴∠ AED=∠A+∠AFE=80°,故答案为: 80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.21.(2016?云南)如图,直线a∥ b,直线 c 与直线 a、b 分别相交于 A、B 两点,若∠ 1=60°,则∠ 2= 60°.【分析】先根据平行线的性质求出∠ 3 的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线 a∥b,∠ 1=60°,∴∠ 1=∠3=60°.∵∠ 2 与∠ 3 是对顶角,∴∠ 2=∠3=60°.故答案为: 60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.22.(2016?吉林)如图, AB∥CD,直线 EF 分别交 AB、CD于 M, N 两点,将一个含有 45°角的直角三角尺按如图所示的方式摆放,若∠ EMB=75°,则∠ PNM等于30度.【分析】根据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠ PND=45°,即可得到结论.【解答】解:∵ AB∥CD,∴∠ DNM=∠BME=75°,∵∠ PND=45°,∴∠ PNM=∠DNM﹣∠ DNP=30°,故答案为: 30.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.23.(2016?泰州)如图,△ ABC中,BC=5cm,将△ ABC沿 BC方向平移至△ A′B′C′的对应位置时, A′B′恰好经过 AC的中点 O,则△ ABC平移的距离为cm.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得 B′是 BC 的中点,求出 BB′即为所求.【解答】解:∵将△ ABC沿 BC方向平移至△ A′B′C′的对应位置,∴A′B′∥ AB,∵O是 AC的中点,∴B′是 BC的中点,∴BB′=5÷ 2=( cm).故△ ABC平移的距离为.故答案为:.【点评】考查了平移的性质,平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.24.(2016?都匀市一模)如图,是赛车跑道的一段示意图,其中 AB∥DE,测得∠B=140°,∠ D=120°,则∠ C的度数为 100 度.【分析】过点 C作 CF∥ AB,由平行线性质可得∠ B,∠D,∠BCF,∠ DCF的关系,进而求得∠ C.【解答】解:如图所示:过点 C 作 CF∥AB.∵AB∥DE,∴ DE∥CF;∴∠ BCF=180°﹣∠ B=40°,∠ DCF=180°﹣∠D=60°;∴∠ C=∠ BCF+∠DCF=100°.故答案为: 100.【点评】本题运用了两直线平行,同旁内角互补的性质,需要作辅助线求解,难度中等.三.解答题(共16 小题)25.(2016?淄博)如图,一个由 4 条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠ 3=130°,找出图中的平行线,并说明理由.【分析】根据同位角相等,两直线平行证明 OB∥ AC,根据同旁内角互补,两直线平行证明 OA∥ BC.【解答】解: OA∥BC,OB∥AC.∵∠ 1=50°,∠ 2=50°,∴∠ 1=∠ 2,∴OB∥AC,∵∠ 2=50°,∠ 3=130°,∴∠ 2+∠3=180°,∴OA∥BC.【点评】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.26.(2016?槐荫区二模)如图,已知 AC∥ED, AB∥ FD,∠ A=65°,求:∠EDF 的度数.【分析】根据平行线的性质,即可解答.【解答】解:∵ AC∥ED,∴∠ BED=∠A=65°,∵AB∥FD,∴∠ EDF=∠BED=65°.【点评】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.27.(2016?厦门校级一模)如图,已知 AB∥CD,若∠ C=40°,∠ E=20°,求∠ A 的度数.【分析】根据两直线平行,同位角相等可得∠ 1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵AB∥CD,∴∠ 1=∠C=40°,∴∠ A=∠ 1﹣∠ E=40°﹣ 20°=20°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.28.(2016?江西模拟)如图,在△ ABC 中,∠ B+∠C=110°, AD 平分∠BAC,交BC于点 D,DE∥ AB,交 AC于点 E,求∠ ADE的度数.【分析】根据三角形内角和定理求出∠ BAC,根据角平分线定义求出∠ BAD,根据平行线的性质得出∠ ADE=∠BAD即可.【解答】解:∵在△ ABC中,∠ B+∠C=110°,∴∠ BAC=180°﹣∠ B﹣∠ C=70°,∵AD是△ ABC的角平分线,∴∠ BAD=∠BAC=35°,∵DE∥AB,∴∠ ADE=∠BAD=35°.【点评】本题考查了平行线的性质,三角形内角和定理,角平分线定义的应用,注意:两直线平行,内错角相等.29.(2016?江西模拟)如图,直线a∥b,BC平分∠ ABD,DE⊥ BC,若∠ 1=70°,求∠ 2 的度数.【分析】根据平行线的性质得到∠1=∠ABD=70°,由角平分线的定义得到∠EBD= ABD=35°,根据三角形的内角和即可得到结论.【解答】解:∵直线 a∥b,∴∠ 1=∠ABD=70°,∵BC平分∠ ABD,∴∠ EBD=ABD=35°,∵DE⊥BC,∴∠ 2=90°﹣∠ EBD=55°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.30.(2016?朝阳区一模)如图,E 为 AC上一点,EF∥AB交 AF 于点 F,且 AE=EF.求证:∠ BAC=2∠1.【分析】根据平行线的性质得到∠ 1=∠ FAB,由等腰三角形的性质得到∠ EAF=∠EFA,根据邻补角和对顶角的定义即可得到结论.【解答】证明:∵ EF∥AB,∴∠ 1=∠ FAB,∵AE=EF,∴∠ EAF=∠EFA,∵∠ 1=∠ EFA,∴∠ EAF=∠1,∴∠ BAC=2∠ 1.【点评】本题考查了平行线的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.31.( 2016 秋?宜兴市期末)如图,直线 AB、CD相交于点 O,OE平分∠ BOD,∠ AOC=76°,∠ DOF=90°,求∠ EOF的度数.【分析】根据对顶角相等可得∠ BOD=∠ AOC,再根据角平分线的定义求出∠DOE,然后根据∠ EOF=∠DOF﹣∠ DOE代入数据计算即可得解.【解答】解:由对顶角相等得,∠ BOD=∠AOC=76°,∵OE平分∠ BOD,∴∠ DOE= ∠BOD=38°,∵∠ DOF=90°,∴∠ EOF=∠DOF﹣∠ DOE=90°﹣ 38°=52°.【点评】本题考查了对顶角相等,角平分线的定义,熟记性质与概念并准确识图是解题的关键.32.( 2016 春?西华县期末)如图,直线AB,CD相交于 O点, OM⊥AB于 O.(1)若∠ 1=∠2,求∠ NOD;(2)若∠ BOC=4∠1,求∠ AOC与∠ MOD.【分析】(1)由已知条件和观察图形可知∠ 1 与∠ AOC互余,再根据平角的定义求解;(2)利用已知的∠ BOC=4∠1,结合图形以及对顶角的性质求∠ AOC与∠MOD.【解答】解:(1)因为 OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠ 2,所以∠ 2+∠AOC=90°,所以∠ NOD=180°﹣(∠ 2+∠ AOC)=180°﹣ 90°=90°.(2)由已知∠ BOC=4∠1,即 90° +∠ 1=4∠1,可得∠ 1=30°,所以∠ AOC=90°﹣ 30°=60°,所以由对顶角相等得∠ BOD=60°,故∠ MOD=90° +∠BOD=150°.【点评】本题利用垂直的定义,对顶角的性质和平角的定义计算,要注意领会由垂直得直角这一要点.33.( 2016 春?双城市期末)如图,两直线AB、CD相交于点 O, OE平分∠ BOD,∠AOC:∠ AOD=7:11.(1)求∠ COE的度数.(2)若射线 OF⊥OE,请在图中画出 OF,并求∠ COF的度数.【分析】(1)根据∠AOC+∠AOD=180°可得∠AOC和∠AOD的度数,根据对顶角相等可得∠BOD=70°,再利用角平分线定义可得∠DOE=35°,再根据邻补角定义可得∠ COE的度数;( 2)分两种情况画图,进而求出∠COF的度数.【解答】解:(1)∠ AOC:∠ AOD=7:11,∠ AOC+∠AOD=180°,∴∠ AOC=70°,∠ AOD=110°,∵∠ BOD=∠AOC,∴∠ BOD=70°,∵OE平分∠ BOD,∴∠ DOE=35°,∴∠ COE=180°﹣∠ DOE=145°;(2)分两种情况,如图 1,∵ OF⊥OE,∴∠ EOF=90°,∴∠ COF=∠COE﹣∠ EOF=145°﹣ 90°=55°,如图 2,∠ COF=∠360°﹣∠ COE﹣∠ EOF=125°.【点评】此题主要考查了垂线、邻补角、对顶角,关键是掌握对顶角相等,邻补角互补.34.(2016 春?太仓市期末)如图,四边形 ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ ADC,则 BE与 DF有何位置关系?试说明理由.【分析】根据四边形的内角和定理和∠ A=∠C=90°,得∠ ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和 BE与 DF两条直线有关的一对同位角相等,从而证明两条直线平行.【解答】解: BE∥DF.理由如下:∵∠ A=∠C=90°(已知),∴∠ ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ ABC,DF平分∠ ADC,∴∠ 1=∠ 2= ∠ABC,∠ 3=∠4=∠ADC(角平分线的定义).∴∠ 1+∠ 3= (∠ ABC+∠ADC) =×180°=90°(等式的性质).又∠ 1+∠AEB=90°(三角形的内角和等于180°),∴∠ 3=∠ AEB(同角的余角相等).∴ BE∥DF(同位角相等,两直线平行).【点评】此题运用了四边形的内角和定理、角平分线定义、等角的余角相等和平行线的判定,难度中等.35.( 2016 春?周口期末)将一副三角板中的两块直角三角尺的直角顶点 C 按如图方式叠放在一起(其中,∠A=60°,∠ D=30°;∠ E=∠B=45°):( 1)①若∠ DCE=45°,则∠ ACB的度数为135°;②若∠ ACB=140°,求∠ DCE的度数;(2)由( 1)猜想∠ ACB与∠ DCE的数量关系,并说明理由.(3)当∠ ACE<180°且点 E 在直线 AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ ACE 角度所有可能的值(不必说明理由);若不存在,请说明理由.【分析】(1)①首先计算出∠ DCB的度数,再用∠ ACD+∠ DCB即可;②首先计算出∠ DCB的度数,再计算出∠ DCE即可;(2)根据( 1)中的计算结果可得∠ ACB+∠DCE=180°,再根据图中的角的和差关系进行推理即可;(3)根据平行线的判定方法可得.【解答】解:(1)①∵∠ ECB=90°,∠ DCE=45°,∴∠ DCB=90°﹣ 45°=45°,∴∠ ACB=∠ACD+∠DCB=90° +45°=135°,故答案为: 135°;②∵∠ ACB=140°,∠ ACD=90°,∴∠ DCB=140°﹣ 90°=50°,∴∠ DCE=90°﹣ 50°=40°;(2)∠ ACB+∠DCE=180°,∵∠ ACB=∠ACD+∠DCB=90° +∠DCB,∴∠ ACB+∠DCE=90° +∠DCB+∠DCE=90° +90°=180°;( 3)存在,当∠ ACE=30°时, AD∥BC,当∠ ACE=∠E=45°时, AC∥BE,当∠ ACE=120°时, AD∥CE,当∠ ACE=135°时, BE∥CD,当∠ ACE=165°时, BE∥AD.【点评】此题主要考查了角的计算,以及平行线的判定,关键是理清图中角的和差关系.36.( 2016 秋?郓城县期末)已知:如图,∠C=∠1,∠ 2 和∠ D 互余, BE⊥ FD于点 G.求证: AB∥CD.【分析】首先由 BE⊥ FD,得∠ 1 和∠ D 互余,再由已知,∠ C=∠ 1,∠ 2 和∠D互余,所以得∠ C=∠2,从而证得 AB∥CD.【解答】证明:∵ BE⊥FD,∴∠ EGD=90°,∴∠ 1+∠D=90°,又∠ 2 和∠ D 互余,即∠ 2+∠D=90°,∴∠ 1=∠ 2,又已知∠ C=∠1,∴∠ C=∠ 2,∴ AB∥CD.BE⊥ FD及三角形内角和【点评】此题考查的知识点是平行线的判定,关键是由定理得出∠ 1 和∠ D 互余.37.(2016 春?广州校级期末)已知:如图所示,∠ ABD和∠ BDC的平分线交于E,BE交 CD于点 F,∠ 1+∠2=90°.(1)求证: AB∥CD;(2)试探究∠ 2 与∠ 3 的数量关系.【分析】(1)已知 BE、 DE平分∠ ABD、∠ BDC,且∠ 1+∠2=90°,可得∠ABD+∠ BDC=180°,根据同旁内角互补,可得两直线平行.(2)已知∠ 1+∠2=90°,即∠ BED=90°;那么∠ 3+∠FDE=90°,将等角代换,即可得出∠ 3 与∠ 2 的数量关系.【解答】证明:(1)∵ BE、DE平分∠ ABD、∠ BDC,∴∠ 1= ∠ ABD,∠ 2= ∠BDC;∵∠ 1+∠2=90°,∴∠ ABD+∠BDC=180°;∴ AB∥CD;(同旁内角互补,两直线平行)解:( 2)∵ DE平分∠ BDC,∴∠ 2=∠ FDE;∵∠ 1+∠2=90°,∴∠ BED=∠DEF=90°;∴∠ 3+∠FDE=90°;∴∠ 2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.38.( 2016 秋?内江期末)如图,∠ 1+∠2=180°,∠ A=∠ C, DA平分∠ BDF.(1) AE与 FC会平行吗?说明理由;(2) AD与 BC的位置关系如何?为什么?(3) BC平分∠ DBE吗?为什么.【分析】(1)证明∠ 1=∠ CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠ A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠ EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠ 1+∠2=180°,∠ 2+∠CDB=180°(邻补角定义),∴∠ 1=∠ CDB,∴ AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵ AE∥CF,∴∠ C=∠ CBE(两直线平行,内错角相等),又∵∠ A=∠C,∴∠ A=∠ CBE,∴ AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵ DA平分∠BDF,∴∠ FDA=∠ADB,∵ AE∥CF,AD∥ BC,∴∠ FDA=∠A=∠ CBE,∠ADB=∠CBD,∴∠ EBC=∠CBD,∴ BC平分∠ DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.39.( 2016 秋?双柏县期末)如图,一条直线分别与直线BE、直线 CE、直线 BF、直线 CF相交于点 A,G,H,D 且∠ 1=∠ 2,∠ B=∠ C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠ A=∠D.【分析】(1)根据同位角相等,两直线平行可得CE∥FB,进而可得∠C=∠BFD,再由条件∠B=∠C 可得∠B=∠BFD,从而可根据内错角相等,两直线平行得 AB∥ CD;(2)根据( 1)可得 AB∥CD,再根据两直线平行,内错角相等可得∠ A=∠D.【解答】(1)解:∵∠ 1=∠2,∴ CE∥FB,∴∠ C=∠ BFD,∵∠ B=∠ C,∴∠ B=∠ BFD,∴AB∥CD;(2)证明:由( 1)可得 AB∥CD,∴∠ A=∠ D.【点评】此题主要考查了平行线的判定和性质,关键是掌握平行线的判定定理和性质定理.40.( 2016 春?邳州市期末)将△ ABC纸片沿 DE折叠,其中∠ B=∠ C.(1)如图 1,点 C落在 BC边上的点 F 处, AB与 DF是否平行?请说明理由;(2)如图 2,点 C 落在四边形 ABCD内部的点 G处,探索∠ B 与∠ 1+∠ 2 之间的数量关系,并说明理由.【分析】(1)AB与 DF平行.根据翻折可得出∠ DFC=∠C,结合∠ B=∠C即可得出∠B=∠DFC,从而证出 AB∥ DF;( 2)连接GC,由翻折可得出∠ DGE=∠ ACB,再根据三角形外角的性质得出∠1= ∠DGC+∠ DCG,∠ 2=∠ EGC+∠ ECG,通过角的运算即可得出∠ 1+∠2=2∠B.【解答】解:(1)AB与 DF平行.理由如下:由翻折,得∠ DFC=∠C.又∵∠ B=∠C,∴∠ B=∠ DFC,∴AB∥DF.(2)连接GC,如图所示.由翻折,得∠DGE=∠ACB.∵∠ 1=∠ DGC+∠ DCG,∠ 2=∠ EGC+∠ ECG,∴∠ 1+∠ 2=∠DGC+∠DCG+∠EGC+∠ECG=(∠ DGC+∠ EGC)+(∠ DCG+∠ECG)=∠DGE+ ∠DCE=2∠ACB.∵∠ B=∠ ACB,∴∠ 1+∠ 2=2∠B.【点评】本题考查了平行线的判定以及翻折得性质,解题的关键是:(1)找出∠B=∠DFC;(2)根据三角形外角的性质利用角的计算求出∠ 1+∠2=2∠ B.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角是关键.。