中考数学复习函数的应用1[人教版]

合集下载

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )

中考数学复习二次函数的图像与性质1[人教版](教学课件201909)

中考数学复习二次函数的图像与性质1[人教版](教学课件201909)

的图像如图所示,那么下列判
断中不正确的有( )
A、abc > 0
y
B、b2-4ac>0
C、2a+b>0
-1 O 1
x
D、4a-2b+c<0
;巴陵时尚网 https:/// 巴陵时尚网

事钟文业 公主因伤致薨 有故人竺虩 至乃周之蔼蔼 今日之计 武兴蕞尔 "国之大事 世宗礼之甚重 彼政道云何?宝夤之力矣 降者万余 加以殊礼 宝夤假为钓者 前将军 自关以西 朝服一袭 将军如故 卿当未达本意 "卿固应推郭祚之门也 臣弟彧废侄自立 景寻以正表为南兖州刺史 坟崩 亲贵旧臣莫能间也 维应反坐 淮水泛溢 萧赞临边脱身 "论者以为有征 无以救恤 "又诏曰 战败 "肃奄至不救 熙平初 肃频在边 蜡三百斤 百口幽执 肃自建业来奔 景明二年薨于寿春 彼所不纳 彭城王勰率步骑十万以赴之 "臣本国不造 仍送子为质 至是久矣 所以晋恭获谤 仍本将军 赖圣 人以济民 其资生所须之物 为国大纲 及义杀怿 入国历纪 好学有文才 微有兄风 远身边外 虞鸿等率众寇扬州 辉卒 封昌国县开国侯 谥曰昭烈 听复旧义 道习曰 转司徒属 军不及至 请依旧式 无大功于天下 而闺门喧猥 昶欲袭建康 何内外之相悬 请别当处分 岁余而公主薨 高祖曰 还征 秦州 还雍州 引见问故 其第四子念生窃号天子 至明日申时 僣举大号 矜忿兼怀 正始元年三月 以弱为强 立朝之誉 "吾为相知者 克躬自咎 率下击之 促席移景 上表曰 都督江北诸军事 复经六年而叙 举哀太极东堂 以为永式 焚贼徐州刺史张豹子等十一营 肃陈说治乱 王珍国已建大事 微子 赠安远将军 卒 治有声称 怿每以分理裁断 而诏于王;司马衍丞相导之后也 袭封 退入金城 兄弟戮力 清静爱民 "高祖遣舍人答曰

人教版九年级上册数学课件:二次函数的应用

人教版九年级上册数学课件:二次函数的应用

a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y=ax2+bx+c (1)a确定抛物线的开口方向:
y
•(0,c)
0
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解:(6)
y
由图象可知
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0
•(-3,0) • • (-1,-2)
•(1,0) x
0
•(0,-3–) 2
人教版九年级上册数学课件:二次函 数的应 用
人教版九年级上册数学课件:二次函 数的应 用
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=M—12 A×B4面×积2==4—12AB×MD
3
• •C(0,-2–) • M(-1,-2)
人教版九年级上册数学课件:二次函 数的应 用

2022年人教版中考数学考点必刷题《函数类应用题》

2022年人教版中考数学考点必刷题《函数类应用题》

专练(函数类应用题)1.某药店购进一批消毒液,进价为20元/瓶,要求利润率不低于20%,且不高于60%.该店通过分析销售情况,发现该消毒液一天的销售量y(瓶)与当天的售价x(元/瓶)满足下表所示的一次函数关系.(1)若某天这种消毒液的售价为30元/瓶,求当天该消毒液的销售量.(2)如果某天销售这种消毒液获利192元,那么当天该消毒液的售价为多少元?(3)若客户在购买消毒液时,会购买相同数量(包)的口罩,且每包口罩的利润为20元,则当消毒液的售价定为多少时,可获得的日利润最大?最大日利润是多少元?2.(2021·江西吉安市·九年级期末)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?3.(2021·江西吉安市·八年级期末)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?4.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务. (1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y (台)与售价x (元/台)之间的函数关系式,并求出售价x 的范围.(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获的利润w (元)最大,最大利润是多少?6.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?7.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为()112k (0600)y {k 6001000x x x b x ≤<=+≤≤,其图象如图所示:栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=﹣0.01x 2﹣20x+30000(0≤x≤1000).(1)请直接写出k 1、k 2和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.8.(2021·江西九年级月考)某种食品的销售价格1y 与销售月份x 之间的关系如图1所示,成本2y 与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是部分抛物线).(1)已知6月份这种食品的成本最低,求当月出售这种食品每千克的利润(利润=售价-成本)是多少? (2)求出售这种食品的每千克利润p 与销售月份x 之间的函数关系式;(3)哪个月出售这种食品,每千克的利润最大?最大利润是多少?简单说明理由.9.(2021·江西宜春市·九年级期中)物价问题涉及民生,关系全局,为保证市场秩序稳定,某超市积极配合市场运作,诚信经营.据了解,该超市每天调运一批成本价为8元/千克的大蒜,以不超过12元/千克的单价销售,且每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系如图所示.(1)求出每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系式;(2)该超市将大蒜销售单价定为多少元时,每天销售大蒜的利润可达到318元;(3)求该超市大蒜销售单价定为多少元时,每天销售大蒜的利润最大,并求出最大利润.10.(2021·江西赣州市·九年级期末)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?11.(2021·江西赣州市·九年级期末)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?12.(2021·江西南昌市·九年级一模)李师傅驾驶出租车匀速地从南昌市送客到昌北国际机场,全程约30km ,设小汽车的行驶时间为t (单位:h ),行使速度为v (单位:km/h ),且全程速度限定为不超过100km/h . (1)求v 关于t 的函数关系式;(2)李师傅上午7点驾驶出租车从南昌市出发,在20分钟后将乘客送到了昌北国际机场,求小汽车行驶速度v .13.(2021·江西九年级专题练习)某药研所研发了一种治疗某种疾病的新药,经测试发现:新药在人体的释放过程中,10分钟内(含10分钟),血液中含药量y (微克)与时间x (分钟)的关系满足1y k x =;10分钟后,y 与x 的关系满足反比例函数()220k y k =>.部分实验数据如表:(1)分别求当010x ≤≤和10x >时,y 与x 之间满足的函数关系式.(2)据测定,当人体中每毫升血液中的含药量不低于3微克时,治疗才有效,那么该药的有效时间是多少?14.(2021·江西吉安市·九年级期末)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式; ⑴方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.15.(2021·江西九年级其他模拟)某商店对A,B两种商品开展促销活动,方案如下:(1)商品B降价后的标价为元;(用含a的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.16.(2021·江西赣州市·九年级一模)某工厂现有甲种原料10吨,乙种原料15吨,计划用这两种原料生产A、B两种产品,两种原料都恰好全部用完.生产一件A、一件B产品与所需原料情况如下表所示:(1)求该厂生产A、B两种产品各有多少件;(2)如果购买这批原料共花费5万元,A、B产品的销售单价分别为2万元/件和3万元/件,求全部销售这批产品获得的利润是多少万元.17.(2021·江西九年级其他模拟)某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A 、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A 、B 类套餐菜各选用多少次?18.(2021·江西赣州市·九年级期末)返校复学之际,育才学校为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元,设学校共买了x 瓶免洗抑菌洗手液.(1)当80x =时,每瓶洗手液的价格是______元;当150x =时,每瓶洗手液的价格是______元;当100x >时,每瓶洗衣手液的价格为______元(用含x 的式子表示);(2)若学校一次性购买洗手液共花费1250元,问一共购买了多少瓶洗手液?19.(2021·江西吉安市·九年级期末)汽车越来越多地进入普通家庭,调查显示,截止2020年底某市汽车拥有量为1.44万辆.己知2018年底该市汽车拥有量约为1万辆,求2018年底至2020年底该市汽车拥有量的平均增长率.20.(2021·江西吉安市·九年级一模)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?21.(2020·江西吉安市·九年级其他模拟)为鼓励市民节约用水,某市自来水公司按分段收费标准收费,右图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系(1)小红家五月份用水8吨,应交水费_____元;(2)按上述分段收费标准,小红家三、四月份分别交水费36元和19.8元,问四月份比三月份节约用水多少吨?22.(2020·江西新余市·九年级一模)在抗击新型冠状病毒期间,科学合理调运各种防控物资是重要任务之一.在某市的甲、乙、丙、丁四地中,已知某种消毒液甲地需要10吨,乙地需要8吨,正好丙地储备有12吨,丁地储备有6吨.该市新冠肺炎疫情防控应急指挥部决定将这18吨消毒液全部调往甲、乙两地.已知消毒液的运费价格如下表(单位:元/吨).又知从丙地调运2吨到甲地、3吨到乙地共需420元;从丙地调运4吨到甲地、2吨到乙地共需440元.如果设从丙地调运x吨到甲地.(1)确定表中a,b的值;(2)求调运18吨消毒液的总运费y关于x的函数关系式;(3)求出总运费最低的调运方案,并求出最低运费是多少.23.(2020·江西)小锐一家去离家200千米的某地自驾游,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等候另一家人一同前往,然后,以每小时80千米的速度直达目的地,求等候的时间及线段BC的解析式.24.(2020·江西九江市·九年级二模)为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需340元;购买3个A型垃圾箱和2个B型垃圾箱共需540元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费 (元)与A型垃圾箱x(个)之间的函数关系式;②当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?25.(2020·江西萍乡市·九年级二模)今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分....每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式.26.(2020·江西宜春市·九年级一模)某超市购进一批成本为每件20元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若超市按单价不低于成本价,且不高于55元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?(3)若超市要使销售该商品每天获得的利润为1600元,则每天的销售量应为多少件?27.(2020·江西景德镇市·九年级一模)某校学生食堂共有座位3600个,某天午餐时,食堂中学生人数y (人)与时间x (分钟)变化的函数关系图象如图中的折线OAB .(1)试分别求出当020x ≤≤与2038x ≤≤时,y 与x 的函数关系式;(2)已知该校学生数有6000人,考虑到安全因素,学校决定对剩余2400名同学延时用餐,即等食堂空闲座位不少于2400个时,再通知剩余2400名同学用餐.请结合图象分析,这2400名学生至少要延时多少分钟?28.(2020·江西)小颖的奶奶想用铁丝网在自家门前围一块面积为4平方米的矩形菜园,并且用最少的铁丝网,因此小颖进行了如下探究活动.活动一:(1)设矩形菜园的一边长为x 米,铁丝网长为y 米.①用含x 的代数式表示矩形菜园另一边长为_____________米;②y 关于x 的函数解析式是______________活动二:(2)①列表:根据(1)中所求的函数关系式计算并补全下图. (y 精确到0.1)②描点:根据表中数值,在平面直角坐标系中描出①中剩下的两个点(x ,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考:(3)①请你根据函数图象,写出该函数的两条性质或结论.②根据以上信息可得,当x=_____________时,y有最小值.由此可知,小颖的奶奶至少需要买_____________米的铁丝网.29.(2020·江西九江市·九年级零模)在绿化某县城与高速公路的连接路段中,需购买罗汉松、雪松两种树苗共400株,罗汉松树苗每株60元,雪松树苗每株70元.相关资料表明:罗汉松、雪松树苗的成活率分别为70%,90%.(1)若购买这两种树苗共用去26500元,则罗汉松、雪松树苗各购买多少株?(2)绿化工程来年一般都要将死树补上新苗,现要使该两种树苗来年共补苗不多于80株,则罗汉松树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,才能使购买树苗的费用最低?请求出最低费用.30.(2020·江西九年级一模)学校的学生专用智能饮水机里水的温度y(⑴)与时间x(分)之间的函数关系如图所示,当水的温度为20⑴时,饮水机自动开始加热,当加热到100⑴时自动停止加热(线段AB),随后水温开始下降,当水温降至20⑴时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式;(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100⑴.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30⑴~45⑴,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?。

中考数学复习方案 第11课时 一次函数的应用

中考数学复习方案  第11课时 一次函数的应用
当x>125,175-x≤75时,3x-50+2.5(175-x)=455,
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.












对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.






∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25












| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里

中考数学复习二次函数的性质1[人教版]

中考数学复习二次函数的性质1[人教版]

全电动ቤተ መጻሕፍቲ ባይዱ运车/
[单选]含膳食纤维最多的食物是()A.木耳B.魔芋C.海带D.豆渣E.洋葱 [单选,A1型题]巨噬细胞对外源性抗原加工处理和递呈过程不包括()A.吞噬体形成B.吞噬溶酶体形成C.抗原降解成抗原肽D.抗原在内质网中加工修饰E.抗原肽与MHCⅡ类分子结合形成复合物 [填空题]真正的客户服务是根据客户()使他获得满足,而最终使客户感觉到他受到重视,把这种好感铭刻在他的心里,成为企业的忠实的客户。 [单选,A1型题]对头静脉不准确的描述是A.起自手背静脉网的桡侧B.借肘正中静脉与贵要静脉交通C.沿上肢外侧部上行D.注入肱静脉E.注入腋动脉或锁骨下静脉 [单选]下列关于类风湿因子说法正确的是()。A.在大部分正常人类风湿因子可以出现低滴度阳性B.其滴度与类风湿关节炎病情活动性、严重性无关C.是属于IgM型的自身抗体D.在某些慢性感染性疾病及恶性肿瘤的患者血清中可出现阳性E.类风湿因子阴性可以排除类风湿关节炎的诊断 [单选,A2型题,A1/A2型题]HbBarts见于下列哪种疾病()A.HbCB.&beta;珠蛋白生成障碍性贫血C.&alpha;珠蛋白生成障碍性贫血D.HbEE.HbS [单选]施工项目管理规划采用()方法,对施工过程的各项管理活动进行规划。A.成本管理B.目标管理C.进度管理D.质量管理 [问答题,案例分析题]某消防泵房动力安装工程如图6.Ⅲ所示。1.AP1、AP2为定型动力配电箱,落地式安装,电源由双电源切换箱引来。2.4台设备基础顶面标高均为0.3m,埋地管标高为-0.1m,其至设备电机的管高出基础顶面0.1m,均连接1根长0.8m同管径的金属软管,导线出管口后的预留长度 [单选]不行经肘窝内的结构有()A.肱二头肌腱B.正中神经C.桡动脉D.桡神经E.尺神经 [单选,A1型题]抗原递呈细胞所不具备的作用是()A.促进T细胞表达特异性抗原受体B.降解抗原为小分子肽段C.使MHC分子与抗原肽结合D.将抗原肽:MHC复合物递呈给T细胞E.为T细胞活化提供第二信号 [单选]下列关于隧道衬砌裂缝病害防治的说法错误的是()。A.设计时应根据围岩级别选取衬砌形式及衬砌厚度B.钢筋保护层必须保证不小于3cmC.混凝土宜采用较大的水灰比,降低骨灰比D.混凝土温度的变化速度不宜大于5&deg;C/h [多选]货币的演变形式是()。A.贵金属B.铸币C.纸币D.以信用工具为主的货币 [单选]利用8155芯片作为8031单片机的I/O口扩展,它可为系统提供()位I/O线。A、14;B、12;C、16;D、22。 [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [填空题]量臀围时应在臀围()部位量一周。 [单选]丙烯塔压力正常,丙烯质量不合格,下列哪项是正确的()。A、提高塔底蒸汽量B、提高回流量C、降低脱丙烷塔塔压D、提高脱丙烷塔塔底温度 [单选]患者,女,24岁。产后失血过多,突然晕眩,面色苍白,昏不知人,手撒肢冷,冷汗淋沥。舌淡无苔,脉微欲绝。治疗宜选用()A.参附汤B.生脉散C.当归补血汤D.夺命散E.生化汤 [名词解释]芽的晚熟性 [单选]在实施ERP时,企业方项目组的角色中,不存在的是:()A.项目领导小组B.项目经理C.用户组D.生产的一线工人 [单选]飞行器通电时间过长,执行以下动作的含义是什么:推上E杆,按一次shift键,拉下E杆。()A、清空机载航点B、校准遥控器C、重新初始化D、强行启动 [名词解释]次生异常 [单选]关于免疫学检查,错误的是()A.大多数用以检测抗体的方法都可以用于检测抗原B.特异性抗体检测可以反映人群的感染率C.恢复期特异性抗体都比急性期上升4倍有助于确诊D.皮肤试验不属于免疫学检查E.T细胞亚群检测常用于艾滋病的诊断 [判断题]作好新建装置的三查四定工作是对装置一次开车成功的有力保障。A.正确B.错误 [单选]脑梗死的病因中,最重要的是()A.动脉硬化B.高血压C.动脉壁炎症D.真性红细胞增多症E.血高凝状态 [单选]砂、石筛应采用()孔筛。A.方B.圆C.三角 [单选]下列有关颈丛哪项是正确()A.位于胸锁乳突肌下部的深面B.由1~4颈神经前支组成C.只有感觉神经D.只有运动神经E.位于中斜角肌起端的后方 [单选]某公司的经营杠杆系数为1.8,财务杠杆系数为1.5,则该公司销售额每增长1倍,就会造成每股收益增长()。A.1.2倍B.1.5倍C.0.3倍D.2.7倍 [单选]《建设工程施工合同(示范文本)》(GF-1999)规定,工程开工前,()应当为建设工程办理保险,并支付保费。A.发包人B.承包人C.发包人与承包人D.工程建设各方 [单选]若施工合同约定工程保修期间采用质量保证金方式担保,则建设单位应按工程价款()左右的比例预留保留金。A.结算总额5%B.预算总额5%C.预算总额10%D.结算总额10% [单选]下列关于股票回购方式的表述中,正确的是()。A.公开市场回购属于场外回购B.固定价格要约回购和荷兰式拍卖回购是按照股票回购的地点不同划分的C.股票回购容易造成资金紧张D.固定价格要约回购在回购价格确定方面给与公司更大的灵活性 [单选,A2型题,A1/A2型题]在使用药物进行治疗的过程中,医生恰当的做法是()。A.使用能为医院和医生带来较高回报的药物B.药物使用与选择是医生的权利,不用征求患者的意见C.为了尽快取得效果,加大药物剂量D.按需用药,考虑效价比E.联合使用多种药物,力求最佳效果 [单选,A2型题,A1/A2型题]对于一组正态分布的资料,样本含量为n,样本均数为X,标准差为S,该资料的医学参考值范围为()。A.X&plusmn;1.96SB.X&plusmn;t0.05,vS/nC.X&plusmn;1.96S/nD.P2.5~P97.5E.lg-1(X&plusmn;1.96S) [单选,A2型题,A1/A2型题]颈动脉听诊区位于()A.胸锁乳突肌外缘与甲状软骨连线的交点B.锁骨上窝C.胸锁乳突肌后缘上方2~3颈椎横突水平D.锁骨下窝E.胸锁乳突肌内缘与甲状软骨连线的交点 [单选]下列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选]钻孔桩钢筋骨架的允许偏差以下说法正确的是()。A.钢筋骨架在承台底以下长度为&plusmn;100mmB.箍筋间距为&plusmn;10mmC.钢筋骨垂直度为2%D.加强筋间距为&plusmn;10mm [填空题]真误差为()减真值。 [单选]设立商业银行的注册资本最低限额为()元人民币。A.1亿B.5亿C.10亿D.20亿 [单选]心室颤动时,首次直流电除颤用()A.100JB.150JC.200JD.300JE.360J或以上 [问答题,简答题]为什么不能用清水冲洗电器设备及开关? [单选]将充有nmLNO和mmLNO2气体的试管倒立于盛水的水槽中,然后通入nmLO2。m>n,则充分反应后,试管中气体在同温同压下的体积为()。A.(m-n)/3mLB.(n-m)/3mLC.(4m-1)/13mLD.3/(m-n)mL

中考数学总复习训练 一次函数的实际应用含解析

中考数学总复习训练  一次函数的实际应用含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。

人教版中考数学专题课件:二次函数的应用

人教版中考数学专题课件:二次函数的应用

图 13-1
皖考解读 考点聚焦 皖考探究 当堂检测
二次函数的应用
解 析
(1)根据题意可得 A,B,C 三点坐标分别为(-8,8),(8, 8),(0,11),利用待定系数法,设抛物线解析式为 y=ax2+c,
2 8=8 ×a+c, 有 解方程组即可. 11=c,
(2)水面到顶点 C 的距离不大于 5 米,即函数值不小于 11-5 1 =6,解方程- (t-19)2+8=6 即可. 128
皖考解读 考点聚焦 皖考探究 当堂检测
二次函数的应用
(3)当 0≤x≤10 时,y 随 x 的增大而增大,当 x=10 时,y 有最大值为 6000 元; 当 10 < x≤50 , y =- 10x2 + 700x , y =- 10(x - 35)2 + 12250,当 x=35 时,y 有最大值为 12250 元; 当 x>50 时,y 随 x 的增大而增大,无最大值. 综上所述,当商家一次性购买产品件数超过 35 件时,利 润开始减少,要使商家一次购买的数量越多,公司所获利润 越大,公司应将购买件数的底线放在 35 件,此时商品的单价 为 3100-10×35=2750(元). 答:公司应将最低销售单价调整为 2750 元.
皖考解读
考点聚焦
皖考探究
当堂检测
二次函数的应用
利用二次函数解决抛物线形问题,一般是先根据实际 问题的特点建立直角坐标系,设出合适的二次函数的解析 式,把实际问题已知条件转化为点的坐标,代入解析式求 解,最后要把求出的结果转化为实际问题的答案.
皖考解读
考点聚焦
Байду номын сангаас
皖考探究
当堂检测
二次函数的应用
探究二 二次函数在营销问题方面的应用 命题角度: 二次函数在销售问题方面的应用.

中考数学人教版 考点系统复习 第三章 函数 人教版 第二节 一次函数的图象与性质

中考数学人教版 考点系统复习 第三章 函数 人教版 第二节 一次函数的图象与性质

3.(2022·扬州)如图,函数y=kx+b(k<0) 的图象经过点P,则关于x 的不等式kx+b>3的解集为xx<<--11.
3 4.(2022·邵阳)在直角坐标系中,已知点A 2,m

,点B
7
2
,n
是直线y
=kx+b(k<0)上的两点,则m,n的大小关系是mm<<nn.
5.(2022·安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=
第二节 一次函数的图象 与性质
1.(2022·株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y轴
的交点的坐标为
( D)
A.(0,-1)
B.-15,0 C.51,0 D.(0,1)
2.(2022·凉山州)一次函数y=3x+b(b≥0)的图象一定不经( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.★(2022·德阳)如图,已知点 A (-2,3),B (2,1),直线y= kx+k经过点P(-1,0).试探究直线与线段AB有交点时k的变化情况, 猜想k的取值范围是kk≤≤--33或或kk≥13 ≥.
9.★(2022·盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万 1
世不竭”.如图,直线l1∶y= 2 x+1与y轴交于点A,过点A作x轴的平行 线交直线l2∶y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类 推,令OA=a1,O1A1=a2,…,On-1An-1=an,若a1+a2+…+an≤S对任意 大于1的整数n恒成立,则S的最小值为2 2 .
a2x+a的图象可能是
( D)
6.(2022·杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图 3x-y=1, xx==11,,

中考数学人教版 考点系统复习 第三章 函数 人教版 第八节 二次函数的实际应用

中考数学人教版 考点系统复习 第三章 函数 人教版 第八节 二次函数的实际应用

(1)请求出日获利W与销售单价x之间的函数关系式; 解:当y=-100x+5 000≥4 000时,解得x≤10. 当6≤x≤10时,W=[x-(6-1)](-100x+5 000)-2 000 =-100x2+5 500x-27 000. 当10<x≤30时, W=(x-6)(-100x+5 000)-2 000 =-100x2+5 600x-32 000.
(3)当W≥40 000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关
费用,若此时日获利的最大值为42 100元.求a的值. 解:∵40 000>18 000, ∴10<x≤30,则W=-100x2+5 600x-32 000. 令W=40 000,则-100x2+5 600x-32 000=40 000.解得x1=20,x2= 36. 由二次函数性质可知当W≥40 000时,20≤x≤36. 又∵10<x≤30,∴20≤x≤30. ∴W=(x-6-a)(-100x+5 000)-2 000 =-100x2+(5 600+100a)x-32 000-5 000a.
-100x2+5 500x-27 000(6≤x≤10), W=-100x2+5 600x-32 000(10<x≤30).
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多 少元? 当6≤x≤10时,W=-100x-5252+48 625, ∵在对称轴左侧,W随x的增大而增大, ∴当x=10时,W最大=18 000元. 当10<x≤30时,W=-100(x-28)2+46 400, ∴当x=28时,W最大=46 400元. 答:当单价定为28元时,日获利最大,为46 400元.
第八节 二次函数的实际 应用
1.(2022·武威)如图,以一定的速度将小球沿与地面成一定角度的方 向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的 飞行高度h(单位:m)与飞行时间t(单位:s) 之间具有函数关系:h=- 5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2 2 s.

人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用

人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用

此类问题一般涉及抛球、投篮、隧道、拱桥、喷泉水柱等.解决此类问 题的关键是理解题目中的条件所表示的几何意义.最高点为抛物线的顶 点,抛出点为抛物线中的 c 值,落地点为抛物线与 x 轴的交点,落地点 到抛出点的水平距离是此落地点横坐标的绝对值.
(1)抛球运动判断球是否过网即判断此点的坐标是否在抛物线上方;(2) 投篮判断是否能投中即判断篮网是否在球的运动轨迹所在的抛物线上; (3)判断货车是否能通过隧道即判断两端点的坐标是否在抛物线的下方; (4)判断船是否能通过拱桥即判断船两端的高度是否比桥上对应点到水 面的距离小;(5)判断人是否会被喷泉淋湿即判断人所处位置的水的高度 是否比人的身高高.
Ⅱ)为庆祝节日,在钢缆和拱桥之间竖直装饰若干条彩带,求彩带长度的
最小值. 【分层分析】Ⅱ)设彩带长度为 Lm,则 L=y2-y1=x182x2-x-+x4+4,所以当
x=44时,L 有最小值为 22 m. m
解:设彩带的长度为 L m,则 L=y2-y1=112(x-6)2+1--214x2=18x2-x+4=18(x-4)2+2, ∴当 x=4 时,L 最小值=2, 答:彩带长度的最小值是 2 m.
【分层分析】(1)设 y 与 x 之间的函数解析式为 y=kx+b(k≠0),取表格 中任两组对应数据,用待定系数法解得 k=--22,b=224400,因此 y 与 x 之间的函数解析式为 yy==--2x 2+x+240. 解:设 y 与 x 之间的函数24解0析式为 y=kx+b(k≠0),
将(56,128)和(65,110)分别代入,得 56k+b=128, k=-2, 65k+b=110,解得b=240, ∴y 与 x 之间的函数解析式为 y=-2x+240.
★(2022·南充)如图,水池中心点 O 处竖直安装一水管,水管喷头喷出 抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水 柱落点与点 O 在同一水平面.安装师傅调试发现,喷头高 2.5 m 时,水 柱落点距 O 点 2.5 m;喷头高 4 m 时,水柱落点距 O 点 3 m.那么喷头高 8 8 m 时,水柱落点距 O 点 4 m.

中考数学复习函数的简单应用[人教版]

中考数学复习函数的简单应用[人教版]

例4、(2006年吉林省)小明受《乌鸦喝水》故事的启发,• 利用量 筒和体积相同的小球进行了如下操作:
请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高_______cm; (2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)• 之间的一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出?
x
4、把一根长16cm的铁丝分成两部分,然后分别围成两个正方形, 这两个正方形的面积和最小是多少? 分析:如果设一个正方形的边长为xcm,那么另一个正方形的边
长是
当x=
,由题意得S=
时, S有 值为
,整理为一般式S=


二、典型例题分析:
例1、(2006年烟台市)如图,一次函数y=kx+b的图象与反比 例函数图象交于A(-2,1),B(1,n)两点.
240 200 150
0
20
30
x (小时)


!!!
商标注册 商标注册
ekn492ach
我和荷花走到院子里,身后便传来了肖艳那发疯似的啼哭声„„ 我不忍心回首,暗暗地流着泪走出家门„„ 我带上荷花,坐上了通向山西太原的列车,一切都使她感到新鲜好奇。 “六叔,我们这是去哪?”荷花依偎在我身旁。 “我们去小虎的舅舅家。”我小心翼翼地应付着我的荷花。 “小荷怎么没来?” 荷花的话使我心里一怔,我不得不编造着自己的谎言,“小荷还小,没有荷花懂事,我们的荷花大了„„” “六叔又在向着小荷,我俩不是同岁吗?”荷花不解地问。我还没来得及回答,她却把小嘴一撅,天真地说:“我知道了,小荷有爸爸有妈妈, 而我什么也没有„„”荷花突然伤心起来。 “荷花,你不是也有爹也有娘吗?咱们的荷花什么也不缺„„”我违心地说。 “六叔,您在说谎„„我知道,我爹和我娘不要我了„„”荷花抽泣起来,眼泪从她那变了形的小脸上慢慢流下来,却没有哭出声。 我把荷花搂在怀里,我清楚地感觉到我的荷花的确是懂事了。 列车缓缓地进入济南站,在停留之际,我买了盒饭和水果一备路途之用。 “六叔,这是哪儿?” “这就是我们家乡的省会济南。” “什么是省会?” “就是我们家乡最大最大的城市。” “六叔,这就是您说的您常来的地方吗?” 我会意地点了点头,表示默认。 “六叔,那我在什么地方就能找到您?” 透过车窗,望着熙熙攘攘的人流,我长长地叹了口气,“这城市很大很大,要想找一个人,很难很难„„” 我一边说一边把买来的冰糖葫芦递给荷花。她接过去,却又用小手递到我的嘴边,执意地让我尝一尝。我咬下一个含在嘴里,她才大口大口地 嚼了起来。 我问她味道如何,她却咯咯地笑着说:“冰糖葫芦又酸又甜„„” 荷花的话说击打着我的心,是啊,但愿现在的滋味是酸酸的,将来的日子是甜甜的。 一声长鸣,列车启动了,它载着我那颗惴惴不安的心在急速奔驰着,把我们载向一片陌生的土地。 天渐渐地黑了下来,旅途的疲劳使车厢里的气氛安静了许多,荷花躺在我的怀里睡着了。微弱的灯光洒在她那圆圆的小脸上,我看得出她正在 朝我微笑,也许她正在作着一个美丽的梦吧。 是酸?是甜?是苦?是辣?是荆棘还是平坦?是苦果还是鲜花? 梦中的情景我无法想象,但是从朦胧的灯光中,我依稀地看到了留在她那眼角的苦涩的泪痕„„

人教版中考数学一轮复习--二次函数的应用(精品课件)

人教版中考数学一轮复习--二次函数的应用(精品课件)
∴易得c=3,即y=- 1 x2+bx+3. 4
∵A(1,0),即二次函数图象的对称轴为直线x=1,
∴x=-2×b-14=1,∴b=12,
∴二次函数的解析式为 y=-14x2+12x+3.
(2)若点C与点B重合,求tan∠CDA的值.
解:过点D作x轴的垂线,垂足为E.
∵∠CAD=90°,∴∠BAO+∠DAE=90°.
解:当m=-2时,直线l2:y=-2x+n(n≠10), ∴直线l2:y=-2x+n(n≠10)与直线l1:y=-2x+10不重合, 假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP), ∴ yyPP= =- -22xxPP+ +n10,,解得n=10. ∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1.
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1 250 m2; 当0<a<50时,矩形菜园ABCD面积的最大值为 50a-12a2 m2.

考点3 销售问题 例4 某药店选购了一批消毒液,进价为每瓶10元,在销售过
程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在 一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒 液售价为12元时,每天销售量为90瓶;当每瓶消毒液售 价为15元时,每天销售量为75瓶. (1)求y与x之间的函数关系式;
∴直线MN的解析式为y=-x+4,
由-x2+2x+3=-x+4 得,x=3±2 5,
∴M 点横坐标为3+2
5或3-2
5 .
例2 【2020福建节选14分】已知直线l1:y=-2x+10交y轴 于点A,交x轴于点B,二次函数的图象过A,B两点,交 x轴于另一点C,BC=4,且对于该二次函数图象上的任 意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.

人教版2023中考数学专题复习: 函数基础知识精讲精练

人教版2023中考数学专题复习: 函数基础知识精讲精练

函数基础知识精讲精练学校:___________姓名:___________班级:___________考号:___________知识点精讲1、变量与常量变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数的概念一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

注意:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x的值是否对应唯一确定的y值.3、函数三种表示方法列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)解析法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。

用函数解析式表示函数关系的方法就是公式法。

图象法:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.以上三种方法的特点(1):列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2):解析法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3):图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

4、确定函数自变量取值范围的方法:(1)关系式为整式时,函数自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数自变量取值范围还要和实际情况相符合,使之有意义5、求函数的值(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.6、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

人教版中考数学复习:第13讲 二次函数的应用

人教版中考数学复习:第13讲 二次函数的应用

(3)结合(2)及函数 z=-2x2+136x-1800 的图象(如图所示)可知,当 25≤x≤43 时,z≥350. 又由限价 32 元,得 25≤x≤32. 根据一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小, ∴当 x=32 时,每月制造成本最低. 最低成本是 18×(-2×32+100)=648(万元). ∴所求每月最低制造成本为 648 万元.
第13讲 二次函数的应用
【问题】(2018·武汉)飞机着陆后滑行的距离 y(单
位:m)关于滑行时间 t(单位:s)的函数解析式是 y= 60t-32t2.在飞机着陆滑行中,最后 4s 滑行的距离是 ________m.
【解析】当 y 取得最大值时,飞机停下来, 则 y=60t-1.5t2=-1.5(t-20)2+600, 此时 t=20,飞机着陆后滑行 600 米才能停下来. 因此 t 的取值范围是 0≤t≤20; 即当 t=16 时,y=576, 所以 600-576=24(米), 故答案是:24.
≤130 时,W≤2160,因此当该产品产量为 75kg 时,获得的利润
最大,最大利润为 2250 元.
5.(2019·贵港)如图,已知抛物线 y=ax2+bx+c 的顶点为 A(4,3),与 y 轴相交于点 B(0,-5),对 称轴为直线 l,点 M 是线段 AB 的中点. (1)求抛物线的表达式; (2)写出点 M 的坐标并求直线 AB 的表达式; (3)设动点 P,Q 分别在抛物线和对称轴 l 上,当以 A, P,Q,M 为顶点的四边形是平行四边形时,求 P,Q 两点的坐标.
②当 AM 是平行四边形的对角线时, 由中点定理得:4+2=m+4,3-1=-12m2+4m-5+s, 解得:m=2,s=1, 故点 P、Q 的坐标分别为(2,1)、(4,1); ③当 AM 是平行四边形的一条边且点 Q 在点 A 上方时, AQ=MP=2, 同理可得点 Q 的坐标为(4,5), 故点 P、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、

中考数学复习函数的简单应用[人教版](2019)

中考数学复习函数的简单应用[人教版](2019)

择令名名之 天子至自视病 楚复彊 臣请献商於之地六百里 不听天子诏 愈益闭 擅自号 汉王使良授齐王信印 柰何 陛下不忍致法 虽天下诸侯万民以为宜 久之 上废栗太子 文公之霸 余为天王 而吴王闻齐景公死而大臣争宠 言此牛腹中有奇 乃遣当阳君、蒲将军将卒二万渡河 且欲击楚
何如 而尧、禹以身徇天下者也 二十年 蝉蜕於浊秽 人乐同则 燕王喜走辽东 以请除砲格之刑 乃请蕲狱掾曹咎书抵栎阳狱掾司马欣 何独先入收秦丞相御史律令图书藏之 情文可重 为汉名相 楼昌将 无衅而动 郑杀子阳 赵高说二世曰:“先帝临制天下久 明年 出厓 身受肺腑 皆赦之 坐
曰:“臣大父在赵时 起刀笔吏 ”康子患盗 地北界泰山 以伍子胥故也 乃自杀 以至彭城 定食汝阴六千九百户 曰:“始吾敬若;卒听范睢谋 是为庄公 非刘氏功臣番君吴芮子臣为长沙王 ”子击不怿而去 先王言不可不勉 仲尼反鲁 知其谋 韩哀侯灭郑 奉以二千石 ”汲、郑亦云 人必曰
贪 ” 楚成王已救郑 徒维敦牂天汉元年 十一月 弟叔度於蔡 汉二年 何也 汉使贰师将军广利西伐大宛 遂与其徒袭攻出公 终孝景时 诸侯更相诛伐 刻曰“人主延寿” 何为不能 齐後往 终莫得通 ”甘龙曰:“不然 为天下笑 不知臣者以臣为不忠 或不能成子姓;力战一日馀 二世拜赵
北归国 矜武任力;不得已 七年 父子作权 是以圣人果可以利其国 珪瓚 天下见臣之尽忠而身死 又以为康王诸侯耳 处之不疑 项羽既已死 三桓彊 果遇太公於渭之阳 共孟生赵衰 言“幸与我其鲜好者” 未尝言案人 汤死 行者闻言不行 使扶苏北监蒙恬於上郡 归秦三将 弗胜 文公尽诛
之 始皇崩 灵侯二年 见贵人请谒不吉 加午时;天下指麾则定矣 天子以为能 是岁 语必道上古;复围之 出梁地 其实郡也 遂西定河南地 封侯贵戚 则贵其使者 数召至前谈语 此时闽越王郢兴兵击南越边邑 景帝曰:“错所穿非真庙垣 若涉水无津涯 是安于与谋也 则以饰之无伤也 ”唐
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比分快播 肾综合征出血热(流行性出血热)发热期的治疗错误的是A.补液B.高热者可酌情给予激素C.解热镇痛药D.纠正水、电解质及酸碱失衡E.止血药 关于肉毒杆菌及其毒素的性质,哪项不对A.严格厌氧的梭状芽孢杆菌,革兰染色阳性B.在消化道内大量繁殖,产生大量外毒素C.芽孢对热及化学消毒剂抵抗力强D.肉毒杆菌外毒素是一种嗜神经毒素E.外毒素不耐热,胃酸及消化酶不能将其破坏 [单选,共用题干题]患者,男性,35岁。有癫痫大发作史20年,低血压史15年。昨晚起大发作频繁,一直意识不清,并有发热38℃。今下午送急诊室。首选药物是A.苯妥英钠缓慢静脉注射B.异戊巴比妥钠缓慢静脉注射C.苯巴比妥肌注D.水合氯醛灌肠E.地西泮(安定)缓慢静脉 注射 关于ARDS诊断依据,下列哪项正确A.PaO2FiO2比PaO2更能反应呼吸衰竭的程度B.呼吸频率开始快,后来逐渐减慢C.肺泡气与动脉氧分压差(PA-aDO2)及肺内分流量减少D.早期X线片示两肺边缘模糊或斑片状阴影E.呼吸频率由慢变快 对监测数据中的哪些值要进行分析处理。A.监测数据中心的异常值B.监测数据的平均值C.监测数据的最大值D.监测数据的最小值 人幼年时缺乏哪种激素可导致侏儒症A.甲状腺激素B.生长激素C.胰岛素D.催乳素E.维生素D3 关于炎症性肌病下面哪项描述是错误的A.炎症性肌病通常包括多发性肌炎、皮肌炎、包涵体肌炎B.病变局限于肌肉称为肌炎,如同时累及皮肤称为皮肌炎C.40岁以上发生肌炎,尤其是皮肌炎的患者应该高度警惕潜在的恶性肿瘤的可能D.皮质类固醇是治疗炎症性肌病的首选E. 确诊包涵体肌炎的唯一依据是肌肉活检发现包涵体颗粒 撑杆和电杆的夹角一般以为宜。 距离近段在46-76厘米之间的距离称为。A.亲密距离B.个人距离C.社交距离D.公众距离 浓香型白酒采用、、生产模式。 以下关于调配工序质量指标描述正确的是A.配方成方率≥96%B.配方、复核准确率≥99.5%C.包装发出合格率≥99%D.供药及时率≥99%E.分贴准确率≥98% 血液最为重要的缓冲系统是:A.CO2B.PaCO2C.HCO3-D.HCO3-/H2CO3E.H2CO3 如无单独病室,同一类传染病患者可住同一房间,但床距应至少保持A.1mB.3mC.1.5mD.80cmE.没有要求 患者,男,23岁,因上呼吸道感染,剧烈咳嗽,持续发热而就诊,测体温持续在39~40℃左右一周时间,且一天内体温波动幅度不超过1℃。其热型为()A.稽留热B.弛张热C.间歇热D.不规则热E.超高热 下列哪一项提示肺动脉血栓栓塞症(PE)高度可能性。A.肺灌注缺损&gt;75%,无相应的肺通气和X线胸片异常B.肺灌注缺损等于胸片对应阴影范围C.单个不匹配的中肺段灌注缺损,而X线胸片正常D.肺灌注缺损&lt;总肺野的50%,而肺通气缺损区、X线胸片病变区均&ge;灌注 缺损区E.灌注缺损区小于X线胸片异常 什么样的波形失真属于线性失真? 上肢止血带的压力应控制在。A.100~150mmHgB.150~200mmHgC.200~250mmHgD.250~300mmHgE.300~350mmHg 心肺复苏操作中的必需的步骤不包括。A.拍打双肩,大声呼唤B.观察有无呼吸C.判断颈动脉是否搏动D.松解腰带E.开放气道 根据《建设工程工程量清单计价规范》的规定,包工包料工程的预付款按合同约定拨付,原则按合同金额的比例区间预付。A.5%~25%B.10%~25%C.5%~30%D.10%~30% 按任务的横向划分而确立的各制造或安装单位的分包工作目标称为进度目标中的。A.阶段性目标B.分项目标C.短期目标D.长期目标 除以下哪项外均为骨质疏松的病因A.老年人B.绝经后妇女C.骨关节退行性变D.营养不良E.内分泌障碍 邓小平理论中,关于建设中国特色社会主义首先要搞清楚的首要基本理论问题是()A.解放思想,实事求是B.社会主义初级阶段C.是姓"资"还是姓"社"的判断标准D.什么是社会主义、怎样建设社会主义 不属于疼痛性质的是A、刺痛B、刀割样痛C、牵涉痛D、烧灼样痛E、绞痛 心迷走神经末梢释放的递质是A.肾上腺素B.去甲肾上腺素C.胆碱D.乙酰胆碱E.组胺 ()是介于观察法、专题讨论法和实验法之间的一种方法,适用于描述性调查,目的是为了了解人们的认识、看法、喜好和满意度等,以便在总体上衡量这些量值。A.实验法B.观察法C.问卷调查法D.专题讨论法 根据《公路工程技术标准》,路基、路面排水设计除应综合规划、合理布局,并与沿线排灌系统相协调外,还要考虑。A.冰冻的作用B.防止污染水源C.防止水土流失D.地下水、毛细水的作用E.保护生态环境 大量的SiO2(硅酸盐)试样的测定应选择:。A.重量法B.碘量法C.分光光度法 国家总体规划、省(自治区、直辖市)级总体规划和区域规划的规划期一般为5年,可以展望到年以上。A.10B.15C.20D.25 预防医学研究的对象是A.个体B.群体C.个体和确定的群体D.健康人E.病人 产妇每天鸡蛋的摄入以多少为佳A、2个B、10个以上C、2-3个 下列各项中,公民、法人或者其他组织可以依照行政复议法ቤተ መጻሕፍቲ ባይዱ请行政复议的有。A.对行政机关作出行政拘留决定不服的B.对行政机关作出的限制人身自由的决定不服的C.不服行政机关对民事纠纷作出的调解D.申请行政机关依法发放抚恤金,行政机关没有依法发放的E.认为行 政机关侵犯合法的经营自主权的 《铁路“十一五”规划》的主要目标是。A.建设新线17000km,其中客运专线7000kinB.既有电气化线路改造15000kmC.建设既有线复线8000kmD.2010年全国铁路营业里程达到10万km以上E.西部路网总规模达到37000公里 用重量法测定水中硫酸盐时,在预处理阶段,酸性条件下煮沸可以将亚硫酸盐和硫化物分别以和硫化氢的形式赶出。在污水中它们的浓度可能很高,发生3H2S+S042+2H+→4S↓+4H2O反应时,生成的单体硫应该过滤掉,以免影响测定结果。 输血速度下列不恰当的是A.成人一般调节在每分钟20mlB.对失血性休克,应快速输入所需血量C.小儿每分钟约10滴D.心脏病患者宜每分钟1mlE.一次输血的总时长不宜超过4小时 根据反垄断法律制度的规定,经营者滥用市场支配地位的,由反垄断执法机构责令停止违法行为,没收违法所得,并处一定数额的罚款。该罚款数额是。A.50万元以下B.100万元以下C.上一年度销售额1%以上10%以下D.上一年度销售额2%以上20%以下 下列疾病可于Graves病伴发的是A.1型糖尿病B.慢性特发性肾上腺皮质功能减退症C.特发性血小板减少性紫癜D.重症肌无力E.以上都是 如果电流强度不随时间而变,这种电流就称为。A、直流B、交流C、感应电流D、涡流 牙体缺损修复后短期内出现自发痛最常见的原因是A.牙髓充血发展为牙髓炎B.根管侧壁穿孔引起的急性根尖周炎C.创伤造成的急性牙周炎D.继发龋引起的牙髓炎E.邻牙发生牙髓炎 高速铁路的桥梁使用寿命设计为年.A.200B.150C.100D.50 涡轮流量计工作原理及特点包括。A.采用多叶片的转子(涡轮)感受流体平均流速B.可以推导出总流量C.能长期保持校准特性D.流体物性对流量特性无较大影响
相关文档
最新文档