2020年中考数学热身三角形无答案47
2020年中考数学三角形专题练习(含答案)
2020年中考数学三角形专题练习【名师精选全国真题,值得下载练习】一.选择题(每题3分,共30分)1.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边中线的交点B.三条角平分线的交点C.三边高的交点D.三边垂直平分线的交点2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AC,则∠BCD的度数等于()A.20°B.30°C.40°D.50°4.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°5.适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°,(3)a=5,b=12,c=13,(4)a=52,b=122,c=132,A.1个B.2个C.3个D.4个6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为()A.36°B.39°C.38°D.40°7.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a,最大等边三角形的边长为b,则a与b的关系为()A.b=3a B.b=5a C.b=a D.b=a8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE.分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH =45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④10.如图,在Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P 作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=P A;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共30分)11.如图,△ABC为等边三角形,D、E分別是AC、BC上的点,且AD=CE,AE与BD 相交于点P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为.12.已知等腰△ABC中,顶角∠A为36°,BD平分∠ABC交AC于D,那么AD:AC =.13.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA ⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)14.已知点O是三角形ABC的重心,DE经过点O且平行于BC,则△ADE与四边形DBCE的面积比为.15.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =5cm,AC=3cm,BC=4cm,则△DEB的周长为.16.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=.18.如图,在△ABC中,中线BD,CE相交于点O,若S△ABC=4,则S△DOE=.19.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.20.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造根.三.解答题(每题8分,共40分)21.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC 于E,点F是AE的中点.(1)线段FD与线段FC的数量关系,位置关系;(2)如图2,将△BDE绕点B逆时针旋转a(0°<a<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.24.已知,如图,∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC.求证:E是CD的中点.25.△ABC是等边三角形,BD是角平分线,过点D作DE⊥AB于E,交BC边的延长线于点F,AE=2.(1)求证:△DCF是等腰三角形;(2)求BF的长.参考答案一.选择题1.解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选:A.2.解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.解:∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B.4.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.5.解:(1)∵a=b,∠A=45°,∴∠A=∠B=45°,∴∠C=90°,∴△ABC是直角三角形;(2)∵∠A=32°,∠B=58°,∴∠C=90°,∴△ABC是直角三角形;(3)a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形;(4)a=52,b=122,c=132,∴a2+b2≠c2,∴△ABC不是直角三角形.∴是直角三角形的有(1)(2)(3).故选:C.6.解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠P=38°,∴∠C=2×38°﹣40°=36°,故选:A.7.解:设第二个小的等边三角形的边长为x,则第三个小的等边三角形的边长为:x+a,第四个小的等边三角形的边长为:x+2a,最大的个小的等边三角形的边长b=x+3a,又∵b=3x,∴3x=x+3a,∴x=a,∴b=3x=a,故选:D.8.解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.解:∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°,∵EH平分∠AEG,∴∠AEH=∠GEH∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG,∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°,∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确,∴∠AFE=∠CFG=90°,∴∠FCG=∠FGC=45°,∴CF=FG,∵∠ADC=∠GFC=90°,∠ACD=∠GCF,AC=GC,∴△ADC≌△GFC(AAS),∴AD=CF=FG,∵AE=EG,∴EF=DE,∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠ECD=∠DBG,EC=GB,∵∠DHC=∠DHB,∠HCD=∠HBD,HD=HD,∴△HDC≌△HDB(AAS),∴HC=HB,∴HE=EG,∵∠DHE=∠DHG,DH=DH,∴△HDE≌△HDG(SAS),∴∠HDG=∠HDE=45°,故①正确,∴DE=DM,EF=DE≠2DM,故③错误,作ET∥AC交CD于T.∵∠DET=∠A=45°,∠DTE=∠ACD=45°,∴DE=DT=DG,∵DA=DC,∴AE=CT,∴CG=CT+TG=AE+2DG,故④正确,故选:B.10.解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,故②正确.在△APH和△FPD中,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.二.填空题(共10小题)11.解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE,BD=AE,∴∠APD=∠ABP+∠P AB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴BP=2PF=8,∵PD=1,∴BD=BP+PD=9,∴AE=BD=9.故答案为9.12.解:假设AB=AC=1,那么在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC,∴AC:BC=BC:DC,而BC=BD=DA(等腰的性质)所以设AD=x,那么CD=1﹣x,1:x=x:(1﹣x),所以舍负根,得到:x=,∴AD:AC=.13.解:①∵AH是PC的垂直平分线,∴P A=AC=AB,∵AD平分∠P AB,∴∠P AD=∠BAD,在△P AD和△BAD中,,∴△P AD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠P AD,∴∠BAC=∠CAQ+∠BAQ=∠P AD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠P AB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.14.解:连接AO并延长交BC于F,如图,∵点O是三角形ABC的重心,∴OA=2OF,∴AO:AF=2:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△ADE与四边形DBCE的面积比为4:5.故答案为4:5.15.解:∵AD平分∠CAB交BC于D,DE⊥AB,DC⊥AC,∴DC=DE,在Rt△ADC和△ADE中,∴Rt△ADC≌△ADE(HL),∴AE=AC=3,∴BE=AB=5﹣3=2,∴△DEB的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).故答案为6cm.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.17.解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG===4,故答案为4.18.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=,∴△DOE∽△BOC,,∴S△DOE=S△BDE=S△ABD=S△ABC==,故答案为.19.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.故答案为:48;28.20.解:∵BC=AB,∴∠BCA=∠A=15°,∴∠DBC=∠BCA+∠A=30°.同理,∠CDB=∠DBC=30°,∴∠DCE=∠CDB+∠A=45°,∠DEC=∠DCE=45°,∴∠FDE=∠DEC+∠A=60°,∠DFE=∠FDE=60°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有5条.故答案是:5.三.解答题(共5小题)21.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.22.(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD,∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°,∵AB=AC,∴∠ABC=∠ACB=50°,∴∠A=180°﹣50°﹣50°=80°.23.解:(1)如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FCA,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC,故答案为:DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF≤3.24.证明:作EF⊥AB于点F,∵∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC,∴EF=ED,EF=EC,∴ED=EC,∴点E为CD的中点.25.证明:(1)∵△ABC是等边三角形,BD是中线,∴∠A=∠ACB=60°,AC=BC,AD=CD=AC,∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=4,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴△DCF是等腰三角形,(2)∵DC=CF,∴BF=BC+CF=2AD+AD=12。
2020年中考数学三轮复习专项练习:《三角形》(含答案)
备战2020中考数学三轮复习专项练习:《三角形》1.如图,▱ABCD 中,AE ⊥BC 于点E ,F 是AE 上一点,∠FBE =45°,FC ⊥CD 于点C . (1)若AB =2,BF =2,求△ABF 的面积;(2)如图2,连接AC ,求证:AF +BC =AC .2.如图,点A 的坐标为(﹣6,6),AB ⊥x 轴,垂足为B ,AC ⊥y 轴,垂足为C ,点D ,E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,∠DAE =45°.(1)如图1,当点D 在线段BO 上时,求△DOE 的周长;(2)如图2,当点D 在线段BO 的延长线上时,设△ADE 的面积为S 1,△DOE 的面积为S 2,请猜想S 1与S 2之间的等量关系,并证明你的猜想.3.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.4.点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在Rt△ABD外侧,以BD 为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).5.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.6.已知△ABC是等边三角形,点D为平面内一点,连接DB、DC,∠BDC=120°.(1)如图①,当点D在BC下方时,连接AD,延长DC到点E,使CE=BD,连接AE.①求证:△ABD≌△ACE;②如图②,过点A作AF⊥DE于点F,直接写出线段AF、BD、DC间的数量关系;(2)若AB=2,DC=6,直接写出点A到直线BD的距离.7.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.8.如图,在Rt△ABC中,∠ACB=90°,点O,M分别是Rt△ABC的内心和外心,连接OA,OB,OM.(1)求∠AOB的度数;(2)延长AC至点D,使AD=AB,连接BD,求证:AO⊥BD;(3)在(2)中,延长BC至点E,使BE=AB,连接DE,找出DE与OM之间的等量关系,并证明这个结论.9.若一个三角形一边长的平方等于另两边长的乘积的2倍,我们把这个三角形叫做好玩三角形.(1)在△ABC中,AB=1,BC=,AC=3,求证:△ABC是好玩三角形.(2)一个等腰三角形的腰长为m,底边长为n,当这个等腰三角形为好玩三角形时,求的值.(3)如图1,△CDE是以DE为斜边的等腰直角三角形,点A,B都在直线DE上,连结AC,BC.若∠A+∠B=45°,求证:线段AD,DE,BE三条线段组成的三角形是好玩三角形.(4)如图2,在Rt△ABC中,点D,E,F,G都在线段AB上,以DE,EF,FG为边分别向上作正方形,H,K,M,N分别落在Rt△ABC的边上.以DE,EF,FG为三边长恰好能组成好玩三角形,直接写出的值.10.如图,△ABC是等边三角形,过AB边上点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使ED=CG,连接AE,CD.(1)求证:AE=DC;(2)过E作EF∥DC,交BC于点F,求证:∠AEF=∠ACB.11.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.12.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.13.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.14.如图,在△ABC中,∠BAC=90°,AB=AC=6,AD⊥BC于点D.点G是射线AD上一点.(1)若GE⊥GF,点E,F分别在AB,AC上,当点G与点D重合时,如图①所示,容易证明AE+AF=AD.当点G在线段AD外时,如图②所示,点E与点B重合,猜想并证明AE,AF与AG存在的数量关系.(2)当点G在线段AD上时,AG+BG+CG的值是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.15.已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE∥AB.(2)若CD=3,求四边形BEDF的周长.16.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.17.如图1,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)如图2,连接EF,设BE=x,求△DEF的面积S与x之间的函数关系式.18.如图,在等边△ABC中,延长AB至点D,延长AC交BD的中垂线于点E,连接BE,DE.(1)如图1,若DE=3,BC=2,求CE的长;(2)如图2,连接CD交BE于点M,在CE上取一点F,连接DF交BE于点N,且DF=CD,求证:AB=EF;(3)在(2)的条件下,若∠AED=45°,直接写出线段BD,EF,ED的等量关系.参考答案1.解:(1)∵AE⊥BC,∠FBE=45°,∴∠FEB=∠BFE=45°,∴BE=EF,∵BE2+EF2=BF2=4,∴BE=EF=,∴AE===3,∴AF=AE﹣EF=2,∴△ABF的面积=×AF×BE=2;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,∵FC⊥CD,∴∠FCD=90°,∴∠ABC+∠FCE=90°,∵AE⊥BC,∴∠ABC+∠BAE=90°,∴∠BAE=∠ECF,又∵BE=EF,∠AEB=∠CEF=90°,∴△ABE≌△CFE(AAS),∴AE=CE,∴AC=AE,∵AF+BC=AF+BE+EC=AF+EF+AE=2AE,∴AF+BC=AC.2.解:(1)∵点A的坐标为(﹣6,6),AB⊥x轴,AC⊥y轴,∴AB=AC=OC=OB=6,如图1,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠BAD+∠CAE=45°,∴∠BAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,∴△DOE的周长=DE+OD+OE=BD+CE+OD+OE=OB+OC=12;=18+,(2)猜想:S1理由如下:如图2,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠CAD+∠CAE=45°,∴∠CAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,设BF=CE=x,OD=y,则OE=6+x,DF=6﹣x+y=DE,∵DE2=OE2+OD2,∴(6﹣x+y)2=(6+x)2+y2,∴xy=6y﹣12x,=×OD×OE=×(6+x)y=6y﹣6x,∴S2=DF×AB=×(6﹣x+y)×6=18+,∵S1=18+.∴S13.(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7,∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13,∴△ACD的周长为:5+12+13=30,故答案为:30.4.解:(1)①如图1,过点D作DF⊥AC于F,则∠DFC=90°,∵△ADC是AC为斜边作等腰Rt△ADC,∴AC=2DF,在Rt△DFB中,∠DBA=30°,∴BD=2DF,∴AC=BD;②∵△ADC是等腰直角三角形,∴∠ACD=45°,∵∠DBA=30°,∴∠CDB=∠ACD﹣∠DBA=15°,∵△BDE是等腰直角三角形,∴∠BDE=45°,∴∠CDE=∠CDB+∠BDE=60°,在Rt△ADC中,AC=DC,在Rt△BDE中,BD=BE=DE,由①知,AC=BD,∴BE=CD=ED,∴△CDE是等边三角形,∴DE=CE,∴EC=EB;(2)如图2,过点D作DG⊥BD交BE的延长线于G,连接CG,∴∠BDG=90°=∠ADC,∴∠ADB=∠CDG,∵△BED是以BD为斜边作等腰Rt△BED,∴∠BED=90°,∠DBE=45°,∴∠DGE=90°﹣∠DBE=45°=∠DBE,∴BD=GD,∵AD=CD,∴△ADB≌△CDG(ASA),∴∠DCG=∠DAB,∵∠ACD=45°,∴∠BCG=∠ACG=90°,在Rt△BDG中,DB=DG,∠BED=90°,∴EG=EB,∴BE=BE(直角三角形斜边的中线等于斜边的一半).5.解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.6.证明:(1)①∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵∠ABD+∠BDC+∠ACD+∠BAC=360°,∠BDC=120°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ACE=∠ABD,又∵AB=AC,BD=CE,∴△ABD≌△ACE(SAS);②∵△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAC+∠CAE=∠DAC+∠BAD=∠BAC=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴AD=ED,∵AF⊥DE,AD=AE,∴DF=DE=AD,∠DAF=30°,∴AF=DF=AD,∵DE=CD+CE=CD+BD,∴AF=AD=(CD+BD);(2)如图②,若点D在BC下方时,∵△ABD≌△ACE,∴点A到直线BD的距离=点A到直线CE的距离,设DF=x,则AF=x,∵AC2=AF2+CF2,∴52=3x2+(6﹣x)2,∴x1=4,x2=﹣1(舍去),∴AF=4,如图3,若点D在BC上方时,过点C作CH⊥BD交BD延长线于H,过点D作DF⊥BC于F,过点A作AN⊥BD,交BD的延长线于N,∵∠BDC=120°,∴∠CDH=60°,∵CH⊥BD,∴∠DCH=30°,CD=6,∴DH=3,CH=DH=3,∵BH===5,∴BD=BH﹣DH=2,∵S△BDC=BD×CH=×BC×DF,∴2×3=2×DF,∴DF=,∵∠BDC=120°,∴∠DBC+∠DCB=60°,又∵∠ABD+∠DBC=60°,∴∠ABD=∠DCB,∴sin∠ABD=sin∠DCB=,∴,∴AN=,综上所述:点A到直线BD的距离为4或.7.解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠FAD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.8.(1)解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点O是△ABC的内心,∴∠OAB+∠OBA=∠CAB+∠CBA=45°,∴∠AOB=180°﹣(∠OAB+∠OBA)=135°.(2)证明:如图1中,∵点O是△ABC的内心,∴OA平分∠BAD,∵AD=AB,∴AO⊥BD(等腰三角形三线合一).(3)解:结论:DE=2OM.理由:如图2中,连接OE,OD,延长OM到K,使得MK=OM,连接AK,BK.∵BE=BA,∠OBE=∠OBA,BO=BO,∴△OBE≌△OBA(SAS),∴OA=OE,∠BOE=∠BOA=135°,∴∠AOE=90°,同法可证∠DOB=90°,OD=OB,∵AM=MB,OM=MK,∴四边形AOBK是平行四边形,∴AK=OB=OD,AK∥OB,∴∠KAO+∠AOB=180°,∵∠AOB+∠EOD=180°,∴∠KAO=∠EOD,∵OA=OE,AK=OD,∴△OAK≌△EOD(SAS),∴OK=ED,∴OK=2OM,∴DE=2OM.9.(1)证明:∵AB=1,BC=,AC=3,∴BC2=()2=6,AB•AC=1×3=3,∴BC2=2AB•AC,∴△ABC是好玩三角形;(2)解:∵等腰三角形为好玩三角形,∴m2=2mn或n2=2m•n=2m2,∴=2或=;(3)证明:∵△CDE是以DE为斜边的等腰直角三角形,∴∠DCE=90°,∠CED=∠CDE=45°,∴∠A+∠ACD=45°,∵∠A+∠B=45°,∴∠ACD=∠B,∵∠CDE=∠DEC=45°,∴CD=CE,∠ADC=∠CEB=135°,∴△ADC∽△CEB,∴,在Rt△CDE中,CD=CE,∴DE2=2CD2,∴CD•CE=AD•BE,∴CD2=AD•BE,∴DE2=2AD•BE,∴线段AD,DE,BE三条线段组成的三角形是好玩三角形;(4)设DE=a,EF=b,FG=c,∵四边形DEPH是正方形,∴∠ADH=∠AEK=90°,DH=DE=a,在Rt△ADH中,AD==①,同理:AE=②,BG=c•tan A③,BF=b•tan A④,②﹣①得,AE﹣AD==a⑤,④﹣③得,BF﹣BG=(b﹣c)tan A=c⑥,⑤×⑥得,(b﹣a)(b﹣c)=ac,∴b2﹣bc﹣ab+ac=ac⑦,∵以DE,EF,FG为三边长恰好能组成好玩三角形,∴(b)2=2ac,∴b2=8ac⑧,将⑧代入⑦得,8ac﹣bc﹣ab+ac=ac,∴8ac=b(a+c)⑨,由⑧得,b=2,将b=2代入⑨中,得8ac=2(a+c),∴a2﹣6ac+c2=0,∴a==(3±2)c,∴=3±2,即=3±2.10.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG,∠ADE=∠DGC=120°,在△ADE和△DGC中,∴△ADE≌△DGC(SAS),∴AE=CD;(2)∵△ADE≌△DGC,∵∠AED=∠DCG,∵EF∥CD,∴∠FEG=∠CDG,∵DG∥BC,∴∠CDG=∠DCB,∴∠FEG=∠DCB,∴∠AEF=∠ACB.11.解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠FAC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.12.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF≌△BDE(SAS),∴BE=AF,∠DFE=∠BED=45°,∴∠AEB=90°,∵AE:AF=3:4,∴设AE=3a,AF=BE=4a,∴AB===5a,∵AD=BD,∠ADB=90°,DN⊥AB,∴DN=BN=AN=a,=AE×BE=AB×EH,∵S△ABE∴EH==a,∴AH==a,∵∠BED=∠AED=45°,∴,∴BG=,AG=,∴GH=a,GN=a,∴EG==a,DG==a,∴==.13.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC =S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC=AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.14.解:(1)AE+AF=AG,理由如下:如图,过点G作HG⊥AG交AB延长线于点H,∵∠BAC=90°,AB=AC=6,AD⊥BC,∴∠DAB=∠DAC=45°,∴∠AHG=∠BAD=45°,∴AG=HG,∴AH=AG,∵∠EGF=∠AGH=90°,∴∠AGF=∠EGH,又∵∠AHG=∠FAG=45°,∴△AGF≌△HGE(ASA),∴AF=BH,∴AH=AE+BH=AE+AF=AG;(2)如图,将△ABG绕点A顺时针旋转60°得到△AB'G',连接GG',B'C,过点B'作B'N ⊥AC,交CA的延长线于点N,∴AB=AB'=6,AG=A'G,∠BAB'=60°,∠GAG'=60°,BG=B'G,∴△AGG'是等边三角形,∴AG=GG',∴AG+BG+CG=GG'+B'G+CG,∴当点B',点G',点G,点C共线时,AG+BG+CG的值最小,最小值为B'C的长,∵∠B'AC=∠B'AB+∠BAC=60°+90°=150°,∴∠B'AN=30°,∴B'N=3,AN=B'N=3,∴CN=6+3,∴B'C===3+3,∴AG+BG+CG的最小值为3+3.15.解:(1)∵∠ABD=∠BDE,∴DE∥AB,∴∠EBD=∠BDE,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠ABD=∠BDE,∴DE∥AB.(2)∵∠ABD=∠BDE,∴BF∥FD,∴∠ABD=∠FDB,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠FDB=∠CBD,∴DF∥BC,∵DE∥AB,∴四边形BEDF是菱形,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC=∠DEC,∴CD=DE=3,∴四边形BEDF的周长为4×3=12.16.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.17.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC=AB•AC=,∴四边形AEDF的面积=;(3)解:∵BE=x,∴AE=AB﹣BE=3﹣x,∵△ADE≌△CDF,∴FC=AE=3﹣x,∴AF=AC﹣FC=x,∴△DEF的面积S=四边形AEDF的面积﹣△AEF的面积=﹣×x×(3﹣x)=x2﹣x+(0<x≤3).18.解:(1)过点E作EH⊥BD于H,∵点E在BD的中垂线上,∴EB=ED=3,∵EH⊥BD,∴BH=HD,∵等边△ABC中,BC=2,∴∠A=60°,AB=BC=AC=2,∴∠AEH=30°,∴EH=AH=(2+BH)=6+BH,AE=2AH=2(2+BH),∵BE2=EH2+BH2,∴90=36+3BH2+12BH+BH2,∴BH=(负值舍去),∴CE=AE﹣AC=2+2BH=9﹣;(2)延长CA到H,使∠AHD=∠DEF,∴DH=DE=BE,∴∠DFC=∠DCF,∴∠DFE=∠DCH,∴△DFE≌△DCH(AAS),∴EF=CH,∵∠CAB=∠ABC=60°=∠ACB,∴∠CBD=∠AED+∠ADE=120°=∠EBD+∠CBE,∵EB=ED,∴∠EBD=∠EDB,∴∠CBE=∠AED=∠AHD,又∵∠BCE=∠HAD=120°,DH=BE,∴△HAD≌△BCE(AAS),∴BC=AH,∵EF=CH=AH+AC,∴AB=EF;(3)如图3,过点D作DP⊥AE于P,∵CD=DF,DP⊥AE,∴CP=PF,∵∠A=60°,DP⊥AE,∴∠ADP=30°,∴AD=2AP,DP=AP,∵∠AED=45°,DP⊥AE,∴∠AED=∠EDP=45°,∴DE=DP,∵AD=2AP,DP=PE=AP,∴AP=(AB+BD)=EF+BD,DP=AP=EF+BD,∴DE=DP=EF+BD.。
2020中考数学专题练习 动点构成直角三角形问题(无答案)
2020中考动点构成直角三角形专题例1.如图1,在平面直角坐标系中,已知点A的坐标是(4, 0),并且OA=OC=4OB,动点P 在过A、B、C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F.连结EF,当线段EF最短时,求点P的坐标.图1例2.如图1,二次函数y=a(x2-2mx-3m2)(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于A、B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD//AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的式子表示a;(2)求证:ADAE为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.图1例3.如图1,已知抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连结BC.(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),P M∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求△BPN的周长;(3)在(2)的条件下,当BCM的面积最大时,在抛物线的对称轴上存在点Q,使得△CNQ 为直角三角形,求点Q的坐标.图1例4.如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),连结AE交边BC于F,∠BAE的平分线交BC于点G.(1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,连结EG,若△AEG为直角三角形,求BG的长.图1例5.如图1,在平面直角坐标系中,二次函数的图象经过点A(-1,0)、B(4, 0)、C(0, 2).点D是点C关于原点的对称点,连结BD,点E是x轴上的一个动点,设点E的坐标为(m, 0),过点E作x轴的垂线l交抛物线于点P.(1)求这个二次函数的解析式;(2)当点E在线段OB上运动时,直线l交BD于点Q,当四边形CDQP是平行四边形时,求m的值;(3)是否存在点P,使△BDP是不以BD为斜边的直角三角形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由.图1 备用图。
2020年中考数学第一轮复习 第十七讲 三角形与全等三角形 知识点+真题 学生版(后含答案)
2020年中考数学第一轮复习教案第三章图形的认识与三角形第十七讲三角形与全等三角形【中考真题考点例析】考点一:三角形三边关系例1 (温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11对应练习1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8考点二:三角形内角、外角的应用例2 (2019青岛中考)如图,BD 是△ABC 的角平分线,AE⊥ BD ,垂足为F .若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A. 35°B. 40°C. 45°D. 50°对应练习2-1(2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若∠1=23°,则∠2=°对应练习2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B. 60°C. 75°D. 85°考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC ,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.1对应练习3-1 (天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.对应练习3-2 (宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD . 考点四:全等三角形开放性问题例4 (云南)如图,点B 在AE 上,点D 在AC 上,AB=AD .请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.对应练习4-1 (昭通)如图,AF=DC ,BC ∥EF ,只需补充一个条件 ,就得△ABC ≌△DEF .第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1答案:C 对应练习1-1答案:B 考点二:三角形内角、外角的应用例2答案:C 对应练习2-1答案:68 对应练习2-2 答案:C 考点三:三角形全等的判定和性质MOCD B例3 答案:B 对应练习3-1 答案:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,证明:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,∠E =∠CAE =AC∠EAM =∠CAN∴△AEM ≌△ACN (ASA ).对应练习3-2 答案:证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ∴△ABE ≌△ACD (ASA ),∴BE=CD (全等三角形的对应边相等).考点四:全等三角形开放性问题例4 答案:解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS ”,可以添加∠C=∠E ,若利用“ASA ”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS ”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC );故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:∵在△ABC 和△ADE 中,⎪⎩⎪⎨⎧AD =AB E=∠C ∠A =∠A ∠ ∴△ABC ≌△ADE (AAS ).对应练习4-1 答案:BC=EF ,解析:∵AF=DC ,∴AF+FC=CD+FC ,即AC=DF ,∵BC ∥EF ,∴∠EFC=∠BCF ,∵在△ABC 和△DEF 中,⎪⎩⎪⎨⎧DF =AC BCF=∠EFC ∠BC =EF ∴△ABC ≌△DEF (SAS ).故答案为:BC=EF .【聚焦中考真题】 一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°3.(泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,45.(衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°6.(河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远7.(铁岭)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= .13.(黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.14.(柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.(临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF 的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.25.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.29.(舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?30.(荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:∵A1B 平分∠ABC ,A1C 平分∠ACD ,∴∠A1=21∠A ,∠A2=21∠A1=221∠A ,… ∴∠A2 015=201521∠A=20152m 。
2019、2020年山东中考数学试题分类(5)——三角形与四边形(含答案)
2019、2020年山东中考数学试题分类(5)——三角形与四边形一.三角形的重心(共2小题)1.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c22.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7 B.1.8 C.2.2 D.2.4二.三角形内角和定理(共1小题)3.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°三.全等三角形的性质(共1小题)4.(2020•淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED四.全等三角形的判定与性质(共7小题)5.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5 B.1 C.1.5 D.26.(2019•滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.17.(2019•临沂)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.8.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.9.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.10.(2020•泰安)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.11.(2019•莱芜区)如图,已知等边△ABC ,CD ⊥AB 于D ,AF ⊥AC ,E 为线段CD 上一点,且CE =AF ,连接BE ,BF ,EG ⊥BF 于G ,连接DG . (1)求证:BE =BF ;(2)试说明DG 与AF 的位置关系和数量关系.五.等腰三角形的性质(共1小题) 12.(2020•临沂)如图,在△ABC 中,AB =AC ,∠A =40°,CD ∥AB ,则∠BCD =( )A .40°B .50°C .60°D .70° 六.勾股定理(共2小题) 13.(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)n D .(√22)n ﹣114.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD = .七.勾股定理的逆定理(共1小题) 15.(2019•滨州)满足下列条件时,△ABC 不是直角三角形的为( ) A .AB =√41,BC =4,AC =5 B .AB :BC :AC =3:4:5 C .∠A :∠B :∠C =3:4:5D .|cos A −12|+(tan B −√33)2=0八.等腰直角三角形(共1小题) 16.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB =40cm ,则图中阴影部分的面积为( )A .25cm 2B .1003cm 2C .50cm 2D .75cm 2九.三角形综合题(共1小题) 17.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB 与∠ECD 恰好为对顶角,∠ABC =∠CDE =90°,连接BD ,AB =BD ,点F 是线段CE 上一点. 探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD ⊥DF .你认为此结论是否成立? .(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:BD ⊥DF ,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若AB =6,CE =9,求AD 的长.一十.多边形内角与外角(共5小题) 18.(2020•烟台)量角器测角度时摆放的位置如图所示,在△AOB 中,射线OC 交边AB 于点D ,则∠ADC 的度数为( )A.60°B.70°C.80°D.85°19.(2020•德州)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米20.(2020•济宁)一个多边形的内角和是1080°,则这个多边形的边数是()A.9 B.8 C.7 D.621.(2019•莱芜区)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1322.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.一十一.平行四边形的性质(共5小题)23.(2020•临沂)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC的面积为S2,则()A.S1+S2>S 2B.S1+S2<S 2C.S1+S2=S 2D.S1+S2的大小与P点位置有关24.(2019•烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A .2425B .45C .34D .122525.(2020•济南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点E ,F .求证:AE =CF .26.(2020•淄博)已知:如图,E 是▱ABCD 的边BC 延长线上的一点,且CE =BC . 求证:△ABC ≌△DCE .27.(2020•青岛)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF . (1)求证:△ADE ≌△CBF ;(2)连接AF ,CE .当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.一十二.平行四边形的判定与性质(共1小题) 28.(2019•威海)如图,E 是▱ABCD 边AD 延长线上一点,连接BE 、CE 、BD ,BE 交CD 于点F .添加以下条件,不能判定四边形BCED 为平行四边形的是( )A .∠ABD =∠DCEB .DF =CFC .∠AEB =∠BCD D .∠AEC =∠CBD 一十三.菱形的性质(共3小题) 29.(2020•日照)已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( ) A .8√3 B .8 C .4√3 D .2√3 30.(2019•东营)如图,在平面直角坐标系中,△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,AC =2,点C 与点E 关于x 轴对称,则点D 的坐标是 .31.(2019•聊城)在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF . 求证:(1)△ABF ≌△DAE ; (2)DE =BF +EF .一十四.菱形的判定(共1小题) 32.(2020•滨州)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N . (1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.一十五.矩形的性质(共3小题) 33.(2020•威海)如图,矩形ABCD 的四个顶点分别在直线l 3,l 4,l 2,l 1上.若直线l 1∥l 2∥l 3∥l 4且间距相等,AB =4,BC =3,则tan α的值为( )A .38B .34C .√52D .√151534.(2020•泰安)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN =BM ; ②EM ∥FN ; ③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个 35.(2020•菏泽)如图,矩形ABCD 中,AB =5,AD =12,点P 在对角线BD 上,且BP =BA ,连接AP 并延长,交DC 的延长线于点Q ,连接BQ ,则BQ 的长为 .一十六.矩形的判定(共1小题) 36.(2019•临沂)如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =12ACB .MB =MOC .BD ⊥AC D .∠AMB =∠CND一十七.正方形的性质(共5小题) 37.(2019•莱芜区)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连接EN 、EF ,有以下结论: ①AN =EN②当AE =AF 时,SS SS=2−√2③BE +DF =EF④存在点E 、F ,使得NF >DF 其中正确的个数是( )A .1B .2C .3D .4 38.(2020•青岛)如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,点E 在CD 的延长线上,连接AE ,点F 是AE 的中点,连接OF 交AD 于点G .若DE =2,OF =3,则点A 到DF 的距离为 .39.(2020•枣庄)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.40.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.41.(2019•潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.一十八.正方形的判定(共1小题)42.(2020•威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB 上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A .四边形DEBF 为平行四边形B .若AE =3.6,则四边形DEBF 为矩形C .若AE =5,则四边形DEBF 为菱形D .若AE =4.8,则四边形DEBF 为正方形 一十九.梯形(共1小题) 43.(2020•泰安)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .1cmB .√63cm C .(2√3−3)cmD .(2−√3)cm二十.*平面向量(共1小题)44.(2019•日照)规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a ,b ),那么向量SS →可以表示为:SS →=(a ,b ),如果SS →与SS →互相垂直,SS →=(x 1,y 1),SS →=(x 2,y 2),那么x 1x 2+y 1y 2=0.若SS →与SS →互相垂直,SS →=(sin α,1),SS →=(2,−√3),则锐角∠α= .二十一.四边形综合题(共6小题) 45.(2020•德州)如图,在矩形ABCD 中,AB =√3+2,AD =√3.把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,再将△AED ′绕点E 顺时针旋转α,得到△A 'ED ″,使得EA ′恰好经过BD ′的中点F .A ′D ″交AB 于点G ,连接AA ′.有如下结论:①A ′F 的长度是√6−2;②弧D 'D ″的长度是5√312π;③△A ′AF ≌△A ′EG ;④△AA ′F ∽△EGF .上述结论中,所有正确的序号是 .46.(2020•青岛)已知:如图,在四边形ABCD 和Rt △EBF 中,AB ∥CD ,CD >AB ,点C 在EB 上,∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,延长DC 交EF 于点M .点P 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时,点Q 从点M 出发,沿MF 方向匀速运动,速度为1cm /s .过点P 作GH ⊥AB 于点H ,交CD 于点G .设运动时间为t (s )(0<t <5). 解答下列问题:(1)当t 为何值时,点M 在线段CQ 的垂直平分线上?(2)连接PQ ,作QN ⊥AF 于点N ,当四边形PQNH 为矩形时,求t 的值; (3)连接QC ,QH ,设四边形QCGH 的面积为S (cm 2),求S 与t 的函数关系式;(4)点P 在运动过程中,是否存在某一时刻t ,使点P 在∠AFE 的平分线上?若存在,求出t 的值;若不存在,请说明理由.47.(2020•临沂)如图,菱形ABCD 的边长为1,∠ABC =60°,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF =EF ;(2)求MN +NG 的最小值;(3)当点E 在AB 上运动时,∠CEF 的大小是否变化?为什么?48.(2020•济宁)如图,在菱形ABCD 中,AB =AC ,点E ,F ,G 分别在边BC ,CD 上,BE =CG ,AF 平分∠EAG ,点H 是线段AF 上一动点(与点A 不重合).(1)求证:△AEH ≌△AGH ;(2)当AB =12,BE =4时.①求△DGH 周长的最小值;②若点O 是AC 的中点,是否存在直线OH 将△ACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出SS SS 的值;若不存在,请说明理由.49.(2020•德州)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决. 请回答:(1)小红证明△BED ≌△CAD 的判定定理是: ;(2)AD 的取值范围是 ;方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连结BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC .(4)如图3,在矩形ABCD 中,SS SS =12,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且SS SS =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .50.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD 垂直平分AC.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC 方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.2019、2020年山东中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形的重心(共2小题)1.【解答】解:设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AE =12AC =12b ,BD =12a , ∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt △AEF 中,x 2+4y 2=14b 2,②在Rt △BFD 中,4x 2+y 2=14a 2,③②+③得5x 2+5y 2=14(a 2+b 2),∴4x 2+4y 2=15(a 2+b 2),④①﹣④得c 2−15(a 2+b 2)=0,即a 2+b 2=5c 2.故选:A .2.【解答】解:∵点G 为△ABC 的重心,∴AE =BE ,BF =CF ,∴EF =12SS =1.7, 故选:A .二.三角形内角和定理(共1小题)3.【解答】解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF =90°﹣17.5°,∴AB =BE ,∴AF =EF ,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°﹣∠ABC ﹣∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°﹣50°=45°,故选:C .三.全等三角形的性质(共1小题)4.【解答】解:∵△ABC ≌△ADE ,∴AC =AE ,AB =AD ,∠ABC =∠ADE ,∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE .故A ,C ,D 选项错误,B 选项正确,故选:B .四.全等三角形的判定与性质(共7小题)5.【解答】解:∵CF ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,在△ADE 和△CFE 中{∠S =∠SSSSSSS =SS SS =SS,∴△ADE ≌△CFE (AAS ),∴AD =CF =3,∵AB =4,∴DB =AB ﹣AD =4﹣3=1.故选:B .6.【解答】解:∵∠AOB =∠COD =40°,∴∠AOB +∠AOD =∠COD +∠AOD ,即∠AOC =∠BOD ,在△AOC 和△BOD 中,{SS =SS SSSS =SSSS SS =SS ,∴△AOC ≌△BOD (SAS ),∴∠OCA =∠ODB ,AC =BD ,①正确;∴∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OAC =∠AOB +∠OBD ,∴∠AMB =∠AOB =40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图2所示:则∠OGC =∠OHD =90°,在△OCG 和△ODH 中,{∠SSS =∠SSSSSSS =SSSS SS =SS ,∴△OCG ≌△ODH (AAS ),∴OG =OH ,∴MO 平分∠BMC ,④正确;∵∠AOB =∠COD ,∴当∠DOM =∠AOM 时,OM 才平分∠BOC ,假设∠DOM =∠AOM∵△AOC ≌△BOD ,∴∠COM =∠BOM ,∵MO 平分∠BMC ,∴∠CMO =∠BMO , 在△COM 和△BOM 中,{∠SSS =∠SSS SS =SS SSSS =SSSS,∴△COM ≌△BOM (ASA ),∴OB =OC ,∵OA =OB∴OA =OC与OA >OC 矛盾,∴③错误;正确的个数有3个;故选:B .7.【解答】解:∵DC ⊥BC ,∴∠BCD =90°,∵∠ACB =120°,∴∠ACD =30°,延长CD 到H 使DH =CD ,∵D 为AB 的中点,∴AD =BD ,在△ADH 与△BCD 中,{SS =SSSSSS =SSSS SS =SS ,∴△ADH ≌△BCD (SAS ),∴AH =BC =4,∠H =∠BCD =90°,∵∠ACH =30°,∴CH =√3AH =4√3,∴△ABC 的面积=S △ACH =12×4×4√3=8√3,故答案为:8√3.8.【解答】【问题解决】证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE =FE ,∠DEF =60°,∴∠DEH +∠HEF =∠FEC +∠HEF =60°,∴∠DEH =∠FEC ,在△DEH 和△FEC 中,{SS =SS SSSS =SSSS SS =SS ,∴△DEH ≌△FEC (SAS ),∴DH =CF ,∴CD =CH +DH =CE +CF ,∴CE +CF =CD ;【类比探究】解:线段CE ,CF 与CD 之间的等量关系是FC =CD +CE ;理由如下: ∵△ABC 是等边三角形,∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°,∴∠GDC =∠DGC =60°,∴△GCD 为等边三角形,∴DG =CD =CG ,∠GDC =60°,∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°,∴∠EDG =∠FDC ,在△EGD 和△FCD 中,{SS =SS SSSS =SSSS SS =SS ,∴△EGD ≌△FCD (SAS ),∴EG =FC ,∴FC =EG =CG +CE =CD +CE .9.【解答】证明:∵ED ⊥AB ,∴∠ADE =∠ACB =90°,∠A =∠A ,BC =DE ,∴△ABC ≌△AED (AAS ),∴AE =AB ,AC =AD ,∴CE =BD .10.【解答】解:(1)四边形BEAC 是平行四边形,理由如下:∵△AED 为等腰三角形,∠EAD =90°,B 是DE 的中点,∴∠E =∠BAE =45°,∠ABE =90°,∵△ABC 是等腰三角形,∠BAC =90°,∴∠ABC =∠BAE =45°,∠ABE =∠BAC =90°,∴BC ∥AE ,AC ∥BE ,∴四边形BEAC 是平行四边形;(2)①∵△ABC 和△AED 均为等腰三角形,∠BAC =∠EAD =90°,∴AE =AD ,AB =AC ,∠BAE =∠CAD ,∴△AEB ≌△ADC (SAS ),∴BE =CD ;②延长FG 至点H ,使GH =FG ,∵G是EC的中点,∴EG=DC,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.11.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG五.等腰三角形的性质(共1小题)12.【解答】解:∵在△ABC 中,AB =AC ,∠A =40°,∴∠ACB =70°,∵CD ∥AB ,∴∠ACD =180°﹣∠A =140°,∴∠BCD =∠ACD ﹣∠ACB =70°.故选:D .六.勾股定理(共2小题)13.【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA 2=√2;∵△OA 2A 3为等腰直角三角形,∴OA 3=2=(√2)2;∵△OA 3A 4为等腰直角三角形,∴OA 4=2√2=(√2)3.∵△OA 4A 5为等腰直角三角形,∴OA 5=4=(√2)4,……∴OA n 的长度为(√2)n ﹣1.故选:B .14.【解答】解:如图,过点A 作AF ⊥BC 于F ,在Rt △ABC 中,∠B =45°,∴BC =√2AB =2√2,BF =AF =√22AB =√2,∵两个同样大小的含45°角的三角尺,∴AD =BC =2√2,在Rt △ADF 中,根据勾股定理得,DF =√SS 2−SS 2=√6,∴CD =BF +DF ﹣BC =√2+√6−2√2=√6−√2,故答案为:√6−√2.七.勾股定理的逆定理(共1小题)15.【解答】解:A 、∵52+42=25+16=41=(√41)2,∴△ABC 是直角三角形,错误;B 、∵(3x )2+(4x )2=9x 2+16x 2=25x 2=(5x )2,∴△ABC 是直角三角形,错误;C 、∵∠A :∠B :∠C =3:4:5,∴∠C =53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形,正确; D 、∵|cos A −12|+(tan B −√33)2=0,∴SSSS =12,SSSS =√33,∴∠A =60°,∠B =30°,∴∠C =90°,∴△ABC 是直角三角形,错误;故选:C .八.等腰直角三角形(共1小题)16.【解答】解:如图:设OF =EF =FG =x (cm ),∴OE=OH=2x,在Rt△EOH中,EH=2√2x,由题意EH=20cm,∴20=2√2x,∴x=5√2,∴阴影部分的面积=(5√2)2=50(cm2)故选:C.九.三角形综合题(共1小题)17.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E =∠EDF ,∴EF =FD ,∵∠E +∠ECD =90°,∠EDF +∠FDC =90°,∴∠FCD =∠FDC ,∴FD =FC ,∴EF =FC ,∴点F 是EC 的中点.(3)如图3中,取EC 的中点G ,连接GD .则GD ⊥BD .∴DG =12EC =92, ∵BD =AB =6,在Rt △BDG 中,BG =√SS 2+SS 2=√(92)2+62=152, ∴CB =152−92=3,在Rt △ABC 中,AC =√SS 2+SS 2=√62+32=3√5,∵∠ACB =∠ECD ,∠ABC =∠EDC ,∴△ABC ∽△EDC ,∴SS SS =SS SS,∴3√59=3SS , ∴CD =9√55, ∴AD =AC +CD =3√5+9√55=24√55. 一十.多边形内角与外角(共5小题)18.【解答】解:∵OA =OB ,∠AOB =140°,∴∠A =∠B =12(180°﹣140°)=20°, ∵∠AOC =60°,∴∠ADC =∠A +∠AOC =20°+60°=80°,故选:C .19.【解答】解:根据题意可知,他需要转360÷45=8次才会回到原点, 所以一共走了8×8=64(米).故选:C .20.【解答】解:设所求正n 边形边数为n ,则1080°=(n ﹣2)•180°,解得n =8.故选:B .21.【解答】解:设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=5×360°,解得n =12.故选:C .22.【解答】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形, ∴∠BAC =∠BCA =36度.一十一.平行四边形的性质(共5小题)23.【解答】解:过点P 作EF ⊥AD 交AD 于点E ,交BC 的延长线于点F ,∵四边形ABCD 是平行四边形,∴AD =BC ,∴S =BC •EF ,S 1=SS ⋅SS 2,S 2=SS ⋅SS 2, ∵EF =PE +PF ,AD =BC ,∴S 1+S 2=S 2,故选:C .24.【解答】解:连接AC ,过点D 作DF ⊥BE 于点F ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∵▱ABCD 中,AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠ABD ,∴AB =AD ,∴四边形ABCD 是菱形,∴AC ⊥BD ,OB =OD ,∵DE ⊥BD ,∴OC ∥ED ,∵DE =6,∴OC =12DE =3,∵▱ABCD 的面积为24,∴12BD •AC =24,∴BD =8, ∴BC =CD =√SS 2+SS 2=√42+32=5,∵S 平行四边形ABCD =BC •DF =24,∴DF =245,∴DF =245,∴sin ∠DCE =SS SS =2455=2425. 故选:A .25.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .26.【解答】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠DCE ,在△ABC 和△DCE 中,{SS =SSSS =SSSS SS =SS∴△ABC ≌△DCE (SAS ).27.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥BC ,∴∠ADB =∠CBD ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ADE ≌△CBF (SAS );(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD ,∴∠ABD =∠ADB ,∴AB =AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE =BF ,∴OE =OF ,又∵OA =OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.一十二.平行四边形的判定与性质(共1小题)28.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴DE ∥BC ,∠ABD =∠CDB ,∵∠ABD =∠DCE ,∴∠DCE =∠CDB ,∴BD ∥CE ,∴BCED 为平行四边形,故A 正确;∵DE ∥BC ,∴∠DEF =∠CBF ,在△DEF 与△CBF 中,{∠SSS =∠SSSSSSS =SSSS SS =SS,∴△DEF ≌△CBF (AAS ),∴EF =BF ,∵DF =CF ,∴四边形BCED 为平行四边形,故B 正确;∵AE ∥BC ,∴∠AEB =∠CBF ,∵∠AEB =∠BCD ,∴∠CBF =∠BCD ,∴CF =BF ,同理,EF =DF ,∴不能判定四边形BCED 为平行四边形;故C 错误;∵AE ∥BC ,∴∠DEC +∠BCE =∠EDB +∠DBC =180°,∵∠AEC =∠CBD ,∴∠BDE =∠BCE ,∴四边形BCED 为平行四边形,故D 正确,故选:C .一十三.菱形的性质(共3小题)29.【解答】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC =60°,∠BAD =120°,∵菱形的周长为8,∴边长AB =2,∴菱形的对角线AC =2,BD =2×2sin60°=2√3,∴菱形的面积=12AC •BD =12×2×2√3=2√3.故选:D .30.【解答】解:如图,∵△ACE 是以菱形ABCD 的对角线AC 为边的等边三角形,AC =2,∴CH =1,∴AH =√3,∵∠ABO =∠DCH =30°,∴DH =AO =√33, ∴OD =√3−√33−√33=√33, ∴点D 的坐标是(√33,0).故答案为:(√33,0). 31.【解答】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BP A =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA );(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .一十四.菱形的判定(共1小题)32.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴EB =ED ,AB ∥CD ,∴∠EBP =∠EDQ ,在△PBE 和△QDE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP =EQ ,同理:△BME ≌△DNE (ASA ),∴EM =EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.一十五.矩形的性质(共3小题)33.【解答】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE ∥BF ,CE =EF ,∴△CEG ∽△CFB ,∴SS SS =SS SS , ∵SS SS =12, ∴SS SS =12,∵BC =3, ∴GB =32,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB =4,∴∠ABG =90°,∴tan ∠BAG =SS SS =324=38,∴tan α的值为38,故选:A .34.【解答】解:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC , ∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠SSS =∠SSS SS =SS SSSS =SSSS,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE ﹣DN =BF ﹣BM ,即NE =MF ,∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE ∥DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°﹣∠ADO =30°,∵DE ⊥AC ,∴∠ADN =ODN =30°,∴∠ODN =∠ABD ,∴DE =BE ,∴四边形DEBF 是菱形;故④正确;正确结论的个数是4个,故选:D .35.【解答】解:∵矩形ABCD 中,AB =5,AD =12,∠BAD =∠BCD =90°, ∴BD =√SS 2+SS 2=13,∵BP =BA =5,∴PD =BD ﹣BP =8,∵BA =BP ,∴∠BAP =∠BP A =∠DPQ ,∵AB ∥CD ,∴∠BAP =∠DQP ,∴∠DPQ =∠DQP ,∴DQ =DP =8,∴CQ =DQ ﹣CD =DQ ﹣AB =8﹣5=3,∴在Rt △BCQ 中,根据勾股定理,得BQ =√SS 2+SS 2=√153=3√17.故答案为:3√17.一十六.矩形的判定(共1小题)36.【解答】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD∵对角线BD 上的两点M 、N 满足BM =DN ,∴OB ﹣BM =OD ﹣DN ,即OM =ON ,∴四边形AMCN 是平行四边形,∵OM =12AC ,∴MN =AC ,∴四边形AMCN 是矩形.故选:A .一十七.正方形的性质(共5小题)37.【解答】解:①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN =∠EBM =45°,∠AMN =∠BME ,∴△AMN ∽△BME ,∴SS SS =SS SS ,∵∠AMB =∠EMN ,∴△AMB ∽△NME ,∴∠AEN =∠ABD =45°∴∠NAE =∠AEN =45°,∴△AEN 是等腰直角三角形,∴AN =EN ,故①正确;②在△ABE 和△ADF 中,∵{SS =SSSSSS =SSSS =90°SS =SS ,∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴CE =CF ,假设正方形边长为1,设CE =x ,则BE =1﹣x ,如图2,连接AC ,交EF 于O ,∵AE =AF ,CE =CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE =OF ,Rt △CEF 中,OC =12EF =√22x ,△EAF 中,∠EAO =∠F AO =22.5°=∠BAE =22.5°,∴OE =BE ,∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ),∴AO =AB =1,∴AC =√2=AO +OC ,∴1+√22x =√2,x =2−√2,∴SS SS =√2)2−√2=(√2−1)(2+√2)2=√22; 故②不正确;③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH ,∵∠EAF =45°=∠DAF +∠BAE =∠HAE ,∵∠ABE =∠ABH =90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,{SS =SS SSSS =SSSS SS =SS ,∴△AEF ≌△AEH (SAS ),∴EF =EH =BE +BH =BE +DF ,故③正确;④△ADN 中,∠FND =∠ADN +∠NAD >45°,∠FDN =45°,∴DF >FN ,故不存在点E 、F ,使得NF >DF ,故④不正确;故选:B .38.【解答】解:解法一:∵在正方形ABCD 中,对角线AC 与BD 交于点O ,∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG ,∴FG =12DE =1,∵OF =3,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,∴AE =√SS 2+SS 2=√42+22=2√5.过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∵AF =DF ,∴∠ADF =∠DAE ,∴△ADH ∽△EAD ,∴SS SS =SS SS , ∴SS 2=2√5, ∴AH =4√55,即点A 到DF 的距离为4√55,解法二:在正方形ABCD 中,对角线AC 与BD 交于点O , ∴AO =DO ,∠ADC =90°,∴∠ADE =90°,∵点F 是AE 的中点,∴DF =AF =EF =12AE ,∴OF 垂直平分AD ,∴AG =DG , ∴FG =12DE =1, ∵OF =3,∴OG =2,∵AO =CO ,∴CD =2OG =4,∴AD =CD =4,∴DG =2,∴DF =√SS 2+SS 2=√4+1=√5,过A 作AH ⊥DF 于H ,∴∠H =∠ADE =90°,∴S △ADF =12DF •AH =12AD •FG , ∴AH =4√55,故答案为:4√55.39.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−42=2,由勾股定理得:DE=√SS+SS=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.40.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC∴△EFM≌△CEB(AAS)∴BE =MF ,ME =BC∴ME =AB =BC∴BE =MA =MF∴AG =FG ,(2)DH ⊥HG理由如下:如图,延长GH 交CD 于点N ,∵FG ⊥AD ,CD ⊥AD∴FG ∥CD∴SS SS =SS SS =SS SS ,且CH =FH ,∴GH =HN ,NC =FG∴AG =FG =NC又∵AD =CD ,∴GD =DN ,且GH =HN∴DH ⊥GH41.【解答】证明:(1)∵四边形ABCD ,四边形ECGF 都是正方形∴DA ∥BC ,AD =CD ,FG =CG ,∠B =∠CGF =90°∵AD ∥BC ,AH ∥DG∴四边形AHGD 是平行四边形∴AH =DG ,AD =HG =CD∵CD =HG ,∠ECG =∠CGF =90°,FG =CG∴△DCG ≌△HGF (SAS )∴DG =HF ,∠HFG =∠HGD∴AH =HF ,∵∠HGD +∠DGF =90°∴∠HFG +∠DGF =90°∴DG ⊥HF ,且AH ∥DG∴AH ⊥HF ,且AH =HF∴△AHF 为等腰直角三角形.(2)∵AB =3,EC =5,∴AD =CD =3,DE =2,EF =5∵AD ∥EF∴SS SS =SS SS =53,且DE =2 ∴EM =54一十八.正方形的判定(共1小题)42.【解答】解:∵O 为BD 的中点,∴OB =OD ,∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴∠CDO =∠EBO ,∠DFO =∠OEB ,∴△FDO ≌△EBO (AAS ),∴OE =OF ,∴四边形DEBF 为平行四边形,故A 选项不符合题意,若AE =3.6,AD =6,∴SS SS =3.66=35, 又∵SS SS =610=35, ∴SS SS =SS SS ,∵∠DAE =∠BAD ,∴△DAE ∽△BAD ,∴∠AED =∠ADB =90°.∴四边形DEBF 为矩形.故B 选项不符合题意,∵AB =10,AE =5,∴BE =5,又∵∠ADB =90°,∴DE =12AB =5, ∴DE =BE ,∴四边形DEBF 为菱形.故C 选项不符合题意,∵AE =3.6时,四边形DEBF 为矩形,AE =5时,四边形DEBF 为菱形,∴AE =4.8时,四边形DEBF 不可能是正方形.故选项D 符合题意.故选:D .一十九.梯形(共1小题)43.【解答】解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°,∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°,∴EH =√3SS =2√3,∵沿虚线EF 将纸片剪成两个全等的梯形,∴AF =CE ,∵AG ⊥BC ,FH ⊥BC ,∴AG ∥FH ,∵AG =FH ,∴四边形AGHF 是矩形,∴AF =GH ,∴BC =BG +GH +HE +CE =2+2AF +2√3=6,∴AF =2−√3(cm ),故选:D .二十.*平面向量(共1小题)44.【解答】解:依题意,得2sin α+1×(−√3)=0,解得sin α=√32.∵α是锐角,∴α=60°.故答案是:60°.二十一.四边形综合题(共6小题)45.【解答】解:∵把AD 沿AE 折叠,使点D 恰好落在AB 边上的D ′处,∴∠D =∠AD 'E =90°=∠DAD ',AD =AD ',∴四边形ADED '是矩形,又∵AD =AD '=√3,∴四边形ADED '是正方形,∴AD =AD '=D 'E =DE =√3,AE =√2AD =√6,∠EAD '=∠AED '=45°,∴D 'B =AB ﹣AD '=2,∵点F 是BD '中点,∴D 'F =1,∴EF =√2+S′S 2=√3+1=2,∵将△AED ′绕点E 顺时针旋转α,∴AE =A 'E =√6,∠D 'ED ''=α,∠EA 'D ''=∠EAD '=45°,∴A 'F =√6−2,故①正确;∵tan ∠FED '=S′S S′S =3=√33, ∴∠FED '=30°∴α=30°+45°=75°,∴弧D 'D ″的长度=75°×S ×√3180°=5√312π,故②正确; ∵AE =A 'E ,∠AEA '=75°,∴∠EAA '=∠EA 'A =52.5°,∴∠A 'AF =7.5°,∵∠AA 'F ≠∠EA 'G ,∠A 'AF ≠∠EA 'G ,∠AF A '=120°≠∠EA 'G ,∴△A 'AF 与△A 'GE 不全等,故③错误;∵D 'E =D ''E ,EG =EG ,∴Rt △ED 'G ≌Rt △ED ''G (HL ),∴∠D 'GE =∠D ''GE ,∵∠AGD ''=∠A 'AG +∠AA 'G =105°,∴∠D 'GE =52.5°=∠AA 'F ,又∵∠AF A '=∠EFG ,∴△AF A '∽△EFG ,故④正确,故答案为:①②④.46.【解答】解:(1)∵AB ∥CD ,∴SS SS =SS SS , ∴8−68=SS6,∴CM =32,∵点M 在线段CQ 的垂直平分线上, ∴CM =MQ , ∴1×t =32,∴t =32;(2)如图1,过点Q 作QN ⊥AF 于点N ,∵∠ABC =∠EBF =90°,AB =BE =8cm ,BC =BF =6cm ,∴AC =√SS 2+SS 2=√64+36=10cm ,EF =√SS 2+SS 2=√64+36=10cm , ∵CE =2cm ,CM =32cm ,∴EM =√SS2+SS 2=√4+94=52, ∵sin ∠P AH =sin ∠CAB , ∴SS SS =SS SS ,∴610=SS 2S ,∴PH =65t , 同理可求QN =6−45t ,∵四边形PQNH 是矩形,∴PH =NQ ,∴6−45t =65t , ∴t =3;∴当t =3时,四边形PQNH 为矩形;(3)如图2,过点Q 作QN ⊥AF 于点N ,由(2)可知QN =6−45t , ∵cos ∠P AH =cos ∠CAB ,∴SS SS =SS SS , ∴SS 2S =810,∴AH =85t ,∵四边形QCGH 的面积为S =S 梯形GMFH ﹣S △CMQ ﹣S △HFQ ,∴S =12×6×(8−85t +6+8−85t +32)−12×32×[6﹣(6−45t )]−12×(6−45t )(8−85t +6)=−1625t 2+15t +512;(4)存在,理由如下:如图3,连接PF ,延长AC 交EF 于K ,∵AB =BE =8cm ,BC =BF =6cm ,AC =EF =10cm ,∴△ABC ≌△EBF (SSS ),∴∠E =∠CAB ,又∵∠ACB =∠ECK ,∴∠ABC =∠EKC =90°,∵S △CEM =12×EC ×CM =12×EM ×CK ,∴CK =2×3252=65, ∵PF 平分∠AFE ,PH ⊥AF ,PK ⊥EF ,∴PH =PK ,∴65t =10﹣2t +65, ∴t =72,∴当t =72时,使点P 在∠AFE 的平分线上.47.【解答】解:(1)连接CF ,∵FG 垂直平分CE ,∴CF =EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF =AF ,∴AF =EF ;(2)连接AC ,交BD 于点O ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠F AE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=12∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠F AE+∠ABF=∠FEA+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.48.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=12∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE =DG =12﹣4=8,由(1)知,△AEH ≌△AGH ,∴EH =HG ,∴l △DGH =DH +GH +DG =DH +HE +8,要使△DGH 的周长最小,则EH +DH 最小,最小为DE ,在Rt △DCM 中,∠DCM =180°﹣120°=60°,CD =AB =12,∴CM =6,∴DM =√3CM =6√3,在Rt △DME 中,EM =CE +CM =14,根据勾股定理得,DE =√SS 2+SS 2=√142+(6√3)2=4√19,∴△DGH 周长的最小值为4√19+8;②Ⅰ、当OH 与线段AE 相交时,交点记作点N ,如图2,连接CN ,∴点O 是AC 的中点,∴S △AON =S △CON =12S △ACN , ∵三角形的面积与四边形的面积比为1:3,∴S △SSSS △SSS =14, ∴S △CEN =S △ACN ,∴AN =EN ,∵点O 是AC 的中点,∴ON ∥CE ,∴SS SS =12;Ⅱ、当OH 与线段CE 相交时,交点记作Q ,如图3,连接AQ ,FG ,∵点O 是AC 的中点,∴S △AOQ =S △COQ =12S △ACQ ,∵三角形的面积与四边形的面积比为1:3,∴S △SSSS △SSS =14, ∴S △AEQ =S △ACQ ,∴CQ =EQ =12CE =12(12﹣4)=4,∵点O 是AC 的中点,∴OQ ∥AE ,设FQ =x ,∴EF =EQ +FQ =4+x ,CF =CQ ﹣FQ =4﹣x ,由(1)知,AE =AG ,∵AF 是∠EAG 的角平分线,∴∠EAF =∠GAF ,∵AF =AF ,∴△AEF ≌△AGF (SAS ),∴FG =EF =4+x ,过点G 作GP ⊥BC 交BC 的延长线于P ,在Rt △CPG 中,∠PCG =60°,CG =4,∴CP =12CG =2,PG =√3CP =2√3,∴PF =CF +CP =4﹣x +2=6﹣x ,在Rt △FPG 中,根据勾股定理得,PF 2+PG 2=FG 2,∴(6﹣x )2+(2√3)2=(4+x )2,∴x =85,∴FQ =85,EF =4+85=285, ∵OQ ∥AE ,∴SS SS =SS SS =4285=57, 即SS SS 的值为12或57.49.【解答】解:(1)∵AD 是中线,∴BD =CD ,又∵∠ADC =∠BDE ,AD =DE ,∴△BED ≌△CAD (SAS ),故答案为:SAS ;(2)∵△BED ≌△CAD ,∴AC =BE =4,在△ABE 中,AB ﹣BE <AE <AB +BE ,∴2<2AD <10,。
2020届中考数学复习专题:三角形(含答案)
2020届中考数学复习专题:三角形1.定义:如果一个三角形一边上的中线与这条边上的高线之比为,那么称这个三角形为“神奇三角形”.(1)已知:Rt△ABC中,∠ACB=90°.①当AC=BC时,求证:△ABC是“神奇三角形”;②当AC≠BC时,且△ABC是“神奇三角形”,求tan A的值;(2)如图,在△ABC中,AB=AC,CD是AB边上的中线,若∠DCB=45°,求证:△ABC 是“神奇三角形”.2.如图,在等边三角形ABC中,BC=8,过BC边上一点P,作∠DPE=60°,分别与边AB,AC相交于点D与点E.(1)在图中找出与∠EPC始终相等的角,并说明理由;(2)若△PDE为正三角形时,求BD+CE的值;(3)当DE∥BC时,请用BP表示BD,并求出BD的最大值.3.在等腰直角△ABC中,AB=AC,∠BAC=90°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,作AH⊥BC,垂足为H,作AG⊥EC,垂足为G,连接HG,判断△GHC的形状,并说明理由.4.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.5.如图1,在平面直角坐标系中,已知点A (a ,0),B (b ,0),C (2,7),连接AC ,交y 轴于D ,且a =,()2=5.(1)求点D 的坐标.(2)如图2,y 轴上是否存在一点P ,使得△ACP 的面积与△ABC 的面积相等?若存在,求点P 的坐标,若不存在,说明理由.(3)如图3,若Q (m ,n )是x 轴上方一点,且△QBC 的面积为20,试说明:7m +3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.6.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足.D 为线段AC 的中点.在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为,.(1)则A点的坐标为;点C的坐标为.D点的坐标为.(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP =S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.7.已知:如图,在平面直角坐标系中,点A(a,0)、B(0,b)、且|a+2|+(b+2a)2=0,点P为x轴上一动点,连接BP;(1)求点A、B的坐标;(2)如图,在第一象限内作BC⊥AB且BC=AB,连接CP,当CP⊥BC时,作CD⊥BP于点D,求线段CD的长度;(3)在第一象限内作BQ⊥BP且BQ=BP,连接PQ,设P(p,0),直接写出S△PCQ=(用含p的式子表示).8.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.9.如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索主要过程:(1)经过多少时间后,P、Q两点的距离为5cm?的面积为15cm2?(2)经过多少时间后,S△PCQ(3)用含t的代数式表示△PCQ的面积,并用配方法说明t为何值时△PCQ的面积最大,最大面积是多少?10.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“广益值”就等于AO2﹣BO2的值,可记为AB∇AC=OA2﹣BO2.(1)在△ABC中,若∠ACB=90°,AB∇AC=81,求AC的值.(2)如图2,在△ABC中,AB=AC=12,∠BAC=120°,求AB∇AC,BA∇BC的值.=24,AC=8,AB∇AC=﹣64,求(3)如图3,在△ABC中,AO是BC边上的中线,S△ABCBC和AB的长.11.已知:等边△ABC中.(1)如图1,点M是BC的中点,点N在AB边上,满足∠AMN=60°,求的值;(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且∠MNB=∠MCB,求证:AM=BN.(3)如图3,点P为AC边的中点,点E在AB的延长线上,点F在BC的延长线上,满足∠AEP=∠PFC,求的值.12.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.13.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比例相互唯一确定,因此,边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA==.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是.(3)如图②,已知∠C=90°,sin A=,其中∠A为锐角,试求sadA的值.14.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S=y,求y关于x的函数关系式(不需△DAF要写函数的定义域);(3)如果AG=8,求DE的长.15.如图,点O为平面直角坐标系的原点,三角形ABC中,∠BAC=90°,AB=m.顶点A,C的坐标分别为(1,0),(n,0),且|m﹣3|+(n﹣5)2=0.(1)求三角形ABC的面积;(2)动点P从点C出发沿射线CA方向以每秒1个单位长度的速度运动,设点P的运动时间为t秒,连接PB,请用含t的式子表示三角形ABP的面积;(3)在(2)的条件下,当三角形ABP的面积为时,直线BP与y轴相交于点D,求点D的坐标.16.已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°.(1)若D为AB上一动点时(如图1),①求证:△ACD≌△BCE.②试求线段AD,BD,DE间满足的数量关系.(2)当点D在△ABC内部时(如图2),延长AD交BE于点F.①求证:AF⊥BE.②连结BD,当△BDE为等边三角形时,直接写出△DCE与△ABC的边长之比.17.如图,直角坐标系中,点A,B分别在x,y轴上,点B的坐标为(0,2),∠BAO=30°.以AB为边在第一象限作等边△ABC,MN垂直平分OA,MA⊥AB.(1)求AB的长.(2)求证:MB=OC.(3)如图2,连接MC交AB于点P.点P是否为MC的中点?请说明理由.18.在△ABC中,AB=BC,∠A=40°,BD⊥AC垂足为D.(1)填空:∠ABC=°;(2)E是线段BD上的动点,连结EC,将线段EC绕点E按顺时针方向旋转80°,点C 的对应点是点F,连接CF,得到△CEF.①如图1,若点F在直线BD上,AB=a,AC=b,求EB+EC的值.②连结AF,直线AF与直线BC是否平行,为什么?19.如图,在平面直角坐标系中,点A(0,a),B(b,0),且a,b满足2a2+2ab+b2﹣8a+16=0,点P为AB上一个动点(不与A,B)重合),连接OP.(1)直接写出a=,b=;(2)如图1,过点P作OP的垂线交过点A平行于x轴的直线于点C,若点,求点C的坐标;(3)如图2,以OP为斜边在OP右侧作等腰Rt△OPD,PD=OD.连接BD,当点P从B向A运动过程中,△BOD的面积是否发生变化,请判断并说明理由.20.(1)如图①,小明同学作出△ABC两条角平分线AD,BE得到交点I,就指出若连接CI,则CI平分∠ACB,你觉得有道理吗?为什么?(2)如图②,Rt△ABC中,AC=5,AC=12,AB=13,△ABC的角平分线CD上有一点I,设点I到边AB的距离为d.(d为正实数)小季、小何同学经过探究,有以下发现:小季发现:d的最大值为.小何发现:当d=2时,连接AI,则AI平分∠BAC.请分别判断小季、小何的发现是否正确?并说明理由.参考答案1.解:(1)①证明:如图,作AC边上的中线BM,设CM=AM=a,则BC=AC=2a,∵∠ACB=90°,∴BM===a,∴,∴△ABC是“神奇三角形”;②当AC边上的中线与AC边上的高的比为时,设BM=a,BC=2a,∵∠ACB=90°,∴CM==a,∴AC=2a,∴AC=BC,不合题意,舍去;同理,当BC边上的中线与BC边上的高的比为时,也不符合题意,舍去;当AB边上的中线与AB边上的高的比为时,当BC>AC时,如图,作AB边上的中线CM,作AB边上的高线CD,设CM=a,CD=2a,则DM=a,∵∠ACB=90°,∴CM=AB=AM,∴AD=(﹣1)a,∴tan A==,当BC<AC时,如图,作AB边上的中线CM,作AB边上的高线CD,同理可得,tan A=.综合可得tan A的值为或.(2)证明:如图,作CH⊥AB于点H,AE⊥BC于点E,AE交CD于K,连接BK,∵AB=AC,∴E是BC的中点,∵CD是AB边上的中线,∴点K是△ABC的重心,∴KC=2DK,∵AE是BC的垂直平分线,∴KC=KB,∴∠KBC=∠KCB=45°,∴∠CKB=90°,即BK⊥CD,∴=tan∠CDH==2,∴,∴△ABC是“神奇三角形”.2.解:(1)∠BDP=∠EPC,理由如下:∵△ABC为等边三角形,∴∠B=60°,∵∠DPE=60°,∴∠DPE=∠B,∵∠DPC是△BDP的外角,∴∠DPE+∠EPC=∠B+∠BDP,∴∠EPC=∠BDP;(2)∵△PDE为正三角形,∴PD=PE,在△BDP和△CPE中,,∴△BDP≌△CPE(AAS),∴BD=CP,BP=CE,∴BD+CE=CP+BP=BC=8;(3)∵DE∥BC,△ABC为等边三角形,∴△ADE为等边三角形,∴AD=AE,∴BD=CE,∵∠B=∠C,∠EPC=∠BDP,∴△BDP∽△CPE,∴=,即=,整理得,BD=,﹣BP2+8BP=﹣(BP﹣4)2+16,∴BD的最大值为4.3.(1)解:∠ADE=45°.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=90°,∴∠ADE=45°;(2)(1)中的结论成立证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°.∵∠ACM=∠ACB,∴∠B=∠ACM=45°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=90°.即∠DAE=90°.∵AD=AE,∴∠ADE=∠AED=45°.(3)△CGH为等腰直角三角形.理由如下:∵∠BCA=∠ACE=45°,∴∠GCH=90°,又∵AH⊥BC,AG⊥CE,∴AG=AH,∵∠ACG=∠AGC=45°,∴AG=CG,∵AB=AC,AH⊥BC,∴∠HCA=∠HAC=45°,∴AH=HC,∴CH=CG,∴△CGH为等腰直角三角形.4.(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.5.解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC =S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP =S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC =S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.6.解:(1)∵.∴a﹣2b=0,b﹣2=0,解得a=4,b=2,∴A(0,4),C(2,0);∴x==1,y==2,∴D(1,2).故答案为(0,4),(2,0),(1,2).(2)如图1中,由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即CP=t,OP=2﹣t,OQ=2t,AQ=4﹣2t,∴S△DOP =OP•y D=(2﹣t)×2=2﹣t,S△DOQ=OQ•x D=×2t×1=t,∵S△ODP =S△ODQ,∴2﹣t=t,∴t=1;(3)的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=,=,=2.7.解:(1)∵|a+2|+(b+2a)2=0,∴a+2=0,b+2a=0,解得a=﹣2,b=4,∴A(﹣2,0),B(0,4);(2)如图1所示,过C作CE⊥OB于E,与PB交于F,∵BC⊥AB,∴∠ABO+∠EBC=90°,在Rt△BCE中,∠EBC+∠BCE=90°,∴∠ABO=∠BCE,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=2,又∵OB=4,∴E为OB的中点,∵EC∥OP,∴EF为△BOP的中位线,则F为BP的中点,在Rt△BCP中,CF为斜边上的中线,∴CF=PB=BF,∴∠BCE=∠CBD=∠ABO,在△AOB和△CDB中,∴△AOB≌△CDB(AAS),∴CD=AO=2;(3)如图2所示,过B作BG⊥CQ于点G,延长QC与x轴交于H,∵∠ABP+∠PBC=90°,∠PBC+CBQ=90°,∴∠ABP=∠CBQ,在△ABP与△CBQ中,,∴△ABP≌△CBQ(SAS),∴∠BPO=∠BQG,CQ=AP=2+p,在△BOP和△BGQ中,,∴△BOP≌△BGQ(AAS),∴∠OBP=∠GBQ,BG=BO=4,又∵∠GBQ+∠PBG=90°,∴∠OBP+∠PBG=90°,即∠OBG=90°,在四边形OBGH中,∠OBG=∠BOG=∠BGH=90°,∴∠OHG=90°,∴PH是△PCQ中CQ边上的高,PH=OH﹣OP=4﹣p,=•(2+p)(4﹣p)=﹣+p+4.∴S△PCQ故答案为:.8.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△DNF,∴.9.解:(1)连接PQ ,设经过ts 后,P 、Q 两点的距离为5cm ,ts 后,PC =7﹣2tcm ,CQ =5tcm ,根据勾股定理可知PC 2+CQ 2=PQ 2, 代入数据(7﹣2t )2+(5t )2=(5)2;解得t =1或t =﹣(不合题意舍去);(2)设经过ts 后,S △PCQ 的面积为15cm 2ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =15解得t 1=2,t 2=1.5,经过2或1.5s 后,S △PCQ 的面积为15cm 2.(3)设经过ts 后,△PCQ 的面积最大,ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =×(﹣2t 2+7t ).=﹣5.∴当t =s 时,△PCQ 的面积最大,最大值为cm 2.10.解:(1)如图1,AO 是BC 边上的中线,∵∠ACB=90°,∴AO2﹣OC2=AC2,∵AB∇AC=81,∴AO2﹣OC2=81,∴AC2=81,∴AC=9;(2)①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,∵∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,∴==6,∴AB∇AC=AO2﹣BO2=36﹣108=﹣72;②如图3,取AC的中点D,连接BD,∴AC=6,过点B作BE⊥AC交CA的延长线于点E,∴∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=12,∴AE=6,∴BE===6.∴DE=AD+AE=12,∴==6,∴BA∇BC=BD2﹣CD2==216;(3)作BD⊥CD,如图4,=24,AC=8,∵S△ABC∴=6,∵AB∇AC=﹣64,AO是BC边上的中线,∴AO2﹣OC2=﹣64,∴OC2﹣AO2=64,又∵AC2=82=64,∴OC2﹣AO2=AC2,∴∠AOC=90°,∴OA=2×=3,∴==.∴,在Rt△BCD中,==16,∴AD=CD﹣AC=16﹣8,∴==10.11.解:(1)∵△ABC为等边三角形,∴∠B=∠BAC=60°,AB=AC,∵点M是BC的中点,∴∠MAN=30°,∠AMB=90°,∵∠AMN=60°,∴∠BMN=30°,∴BM=2BN,AB=2BM,设BN=x,则BM=2x,AB=4x,∴AN=3x,∴;(2)证明:如图2,过点M作MG∥NC交AC于点G,∴∠A=∠AMG=∠AGM=60°,∴△AMG为等边三角形,∴AM=AG,∴BM=CG,∵∠AGM=∠ABC=60°,∴∠MGC=∠NBM=120°,∵MG∥BC,∴∠GMC=∠MCB,∵∠MNB=∠MCB,∴∠GMC=∠MNB,∴△MGC≌△NBM(AAS),∴MG=BN,∵△AMG为等边三角形,∴AM=MG,∴AM=BN;(3)如图3,过点P作PM∥BC交AB于点M,∴△AMP为等边三角形,∴AP=MP,∠AMP=60°,∵P为AC的中点,∴AP=PC,∴MP=PC,∵∠ACB=60°,∴∠EMP=∠PCF=120°,∵∠AEP=∠PFC,∴△PCF≌△PME(AAS),∴CF=ME,∴BF﹣BE=BC+CF﹣ME+MB,又∵P为AC的中点,MP∥BC,∴MB=,∴BF﹣BE=BC+BC=,∴.12.解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N运动的时间为20秒.13.解:(1)根据正对定义,当顶角为60°时,等腰三角形底角为60°,则三角形为等边三角形,则sad60°==1.故答案为:1.(2)当∠A接近0°时,sadA接近0,当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2.于是sadA的取值范围是0<sadA<2.故答案为:0<sadA<2.(3)在AB上取点D,使AD=AC,过点D作DE⊥AC于E,连接CD,如图.∵在Rt△ADE中,=sin A=,设AD=AC=5x,则DE=3x,AE=4x.∴CE=x.∴在Rt△CDE中,CD==x.∴sad A===.14.解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S==;△DAF(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.15.解:(1)∵|m﹣3|+(n﹣5)2=0.∴|m﹣3|=0,(n﹣5)2=0.∴m=3,n=5,∴B(1,3),C(5,0),∴AB=3,AC=4,∴三角形ABC的面积=;(2)①如图1,当点P在线段AC上时,PC=t,AP=4﹣t,三角形ABP的面积为==6﹣.②如图2,当点P在线段AC的延长线上时,PC=t,AP=t﹣4,三角形ABP的面积为3=.(3)①当点P在线段AC上时,6﹣.解得t=﹣1(舍去).②如图3,当点P在线段AC的延长线上时,.解得t=9.∴OP=4,PA=5,∵∠BAC=90°=∠DOA,∴OD∥AB,∴.解得OD=.∵点D在y轴上且在原点O的上方,∴点D的坐标为(0,).16.(1)①证明:如图1,∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°.∴AC=BC,CD=CE,∠A=∠ABC=45°,∠ACB﹣∠DCB=∠ECD﹣∠DCB,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS).②解:∵△ACD≌△BCE.∴AD=BE,∠CBE=∠A=45°,∴∠DBE=90°,∴BD2+BE2=DE2,即BD2+AD2=DE2,(2)①证明:如图2,∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°.∴由(1)易知△ACD≌△BCE.∴∠DAC=∠CBE,∴∠ABF+∠BAF=∠ABC+∠CBE+∠BAF=∠ABC+∠BAF+∠DAC=∠ABC+∠BAC=90°.∴∠AFB=90°,即AF⊥BE.②如图3,∵△BDE为等边三角形,DF⊥BE,∴∠DEF=60°,设EF=BF=a,则DE=2a,∴a,∵BD=BE,DC=CE,∴BC是DE的垂直平分线,∴NE=a,BN=a,∴BC=.∴.即△DCE与△ABC的边长之比为.17.(1)解:∵B(0,2),∴OB=2,在Rt△AOB中,∠BAO=30°,∴AB=2OB=4;(2)证明:,∵AM⊥AB,∴∠BAM=90°,∴∠MAN=90°﹣∠BAO=60°,∵MN垂直平分OA,∴∠ANM=90°,∴∠AMN=30°,∴MA=2AN=OA,∵△ABC是等边三角形,∴AC=AB,∠BAC=60°,∴∠OAC=90°=∠MAB,∴△MAB≌△OAC(SAS),∴MB=OC;(3)解:P是MC的中点.理由如下:如图2,过点C作CH⊥AB于H,∴∠AHC=90°=∠HAM,∵△ABC是等边三角形,∴BC=AB,∠BCH=∠ACH=30°=∠BAO,∴△BCH≌△BAO(AAS),∴OA=CH,由(2)知,AM=OA,∴AM=CH,∵∠CPH=∠MPA,∴△CHP≌△MAP(AAS),∴CP=MP,即点P为MC的中点.18.解:(1)∵AB=BC,∴∠A=∠BCA=40°,∴∠ABC=180°﹣∠A﹣∠BCA=180°﹣40°﹣40°=100°故答案为:100.(2)①在△ABC中,AB=BC,BD⊥AC,∴AD=DC,∠ABF=50°,∵EC=EF,∠CEF=80°,点F在BD上,∴∠DFC=50°,又∠ADB=∠CDF=90°,∴△ABD≌△CFD(AAS),∴BD=DF,∴BE+EC=BE+EF=2BD=2=2=2.②连结AE并延长交BC于M.若点F在直线BD上,BF是AC的垂直平分线,∵∠AFD=∠DFC=50°,又∠ABF=50°,∴AF∥BC,若点F在直线BD的左侧,如图2,∵EC=EF=AE,∴∠MEF=2∠EAF,∵∠MEC=2∠EAD,∴2∠DAF=∠CEF,∴∠DAF=40°,∠BCA=40°.∴AF∥BC.若点F在直线BD的右侧,如图3.∵EC=EF=AE,∴∠MEF=2∠EAF,∵∠MEC=2∠EAD,∴2∠DAF=∠CEF,∴∠DAF=40°,∠BCA=40°.∴AF∥BC.19.解:(1)∵2a2+2ab+b2﹣8a+16=0,∴(a+b)2+(a﹣4)2=0,∴a+b=0,a﹣4=0,即a=4,b=﹣4,故答案为:4,﹣4;(2)过点P作PM⊥AP交y轴于点M,过P作PN⊥y轴于点N,∵∠OPC=∠MPA=∠OAC=90°,∴∠OPM=∠APC,∠POM=∠C,∵∠PAM=45°,∴PA=PM,∴△ACP≌△MOP(AAS),∴AC=MO,又∵,∴,∴AC=MO=1,∴C(1,4);(3)△BOD的面积不发生变化,理由,∵点A(0,4),B(﹣4,0),∴直线AB的解析式为y=x+4,①当点P的横坐标大于等于﹣2而小于0时,设D(m,n)如图2,过点D作DF⊥x轴于F,过点P作PE⊥DF,交FD的延长线于E,∴∠PED=∠DFO=90°,OF=m,DF=n,∴∠DPE+∠PDE=90°,∵∠ODP=90°,∴∠PDE+∠ODF=90°,∴∠DPE=∠ODE,∵DP=OD,∴△PDE≌△DOF(AAS),∴DE=OF=m,PE=DF=n,∴EF=DE+DF=m+n,PE﹣OF=n﹣m,∴P(m﹣n,m+n),而点P在线段AB上,∴m+n=m﹣n+4,∴n=2,∴点D的纵坐标为2,②当点P的横坐标小于﹣2而大于﹣4时,如图3,同①的方法得出点D的纵坐标为2,即:点P从点B向点A运动的过程中,点D的纵坐标始终为2,∴S=OB•|y D|=×4×2=4,△BOD即:点P从点B向点A运动的过程中,△BOD的面积始终不变,是4.20.解:如图1,过I点分别作IM,IN,IK垂直于AB,BC,AC于点M,N,K,连接IC,∵AI平分∠BAC,IM⊥AB,IK⊥AC,∴IM=IK,同理IM=IN,∴IK=IN,又∵IK⊥AC,IN⊥BC,∴CI平分∠BCA;(2)如图2,过C点作CE⊥AB于点E,则d的最大值为CE长,∵AC=5,BC=12,∴=,又∵=30,∴CE=,∴d的最大值为.∴小季正确;假设此时AI平分∠BAC,如图3,连接BI,过I点作IG,IH,IF分别垂直于AC,BC,AB 于点G,H,F,∵AI平分∠BAC,CD平分∠ACB,∴BI平分∠CBA,∵IG⊥AC,IH⊥BC,ID⊥AB,∴IG=IH=IF=d,∵S△ACB =S△AIC+S△BIC+S△ABI,∴,∴=,∴d=2,∴假设成立,当d=2时,连接AI,则AI平分∠BAC,∴小何正确.。
2020年中考数学复习解答题专题练 三角形的相关问题
2020年中考数学复习解答题专题练三角形的相关问题1. 如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE 平分△ABC的周长,求DE的长.2. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,求BD的长.3. 如图所示,已知a∥b,AB⊥a,∠1=52°,∠2=64°,求∠3+∠4的度数.4. 如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.5.在△ABC中,AD平分∠BAC.BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.(1)求证:AE=DE.(2)若AB=8,求线段DE的长.6.如图,点C在线段AB上,△DAC和△DBE都是等边三角形.(1)求证:△DAB≌△DCE.(2)求证:DA∥EC.7.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.8.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由.(2)若∠BAC=90°,求证:BF2+CD2=FD2.9. 如图,在△ABC中,AD平分∠BAC,EF交BA的延长线于点G,∠CFE=∠G.(1)求证:AD∥EG.(2)设∠B=x,∠G=y,若x-y=30°,∠ADC=110°,求∠B的度数.10. 如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,点M是OP 的中点,DM=4 cm,如果点C是OB上一个动点,求PC的最小值.11. 如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为________时,以点C,O,D为顶点的三角形与△AOB全等.12. 如图,在△ABC中,∠BAC=90°,AB=4,tan∠ACB=,点D,E分别是BC,AD的中点,AF∥BC交CE的延长线于点F,求四边形AFBD的面积.13.【问题背景】如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形. 【类比研究】如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)连接AE,若AF=DF,AB=7,求△DEF的边长.14. 已知,在△ABC中,DE∥BC,点F是AB上一点,FE的延长线交BC的延长线于点G,则∠EGH与∠ADE的大小有什么关系?请说明理由.【解析】∠EGH>∠ADE.理由如下:∵DE∥BC,∴∠ADE=∠B,由三角形的外角性质得,∠EGH>∠B,所以,∠EGH>∠ADE.10.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数.(2)如图②,作△ABC外角∠MBC,∠NCB的平分线交于点Q,试探索∠Q,∠A之间的数量关系.(3)如图③,延长线段BP,QC交于点E,在△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.15.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.2020年中考数学复习解答题专题练三角形的相关问题1. 如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE 平分△ABC的周长,求DE的长.【解析】延长BC到点F使CF=AC,过C作CH⊥AF,∵DE平分△ABC的周长,∴AC+CE+AD=BD+BE,∵D是边AB的中点,∴AD=BD,∴AC+CE=BE,∴EF=BE,∴DE是△ABF的中位线,∴DE=AF,∵∠ACB=60°,AC=1,∴∠ACH=60°,在Rt△ACH中,AH=AF=AC·sin 60°=,∴DE=.2. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,求BD的长.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,∴△ADE≌△CFE,∴AD=CF,∵AB=10,CF=6,∴BD=AB-AD=10-6=4.3. 如图所示,已知a∥b,AB⊥a,∠1=52°,∠2=64°,求∠3+∠4的度数.【解析】因为a∥b,所以∠1+∠3+∠2=180°,∠1=∠5.又因为∠1=52°,∠2=64°,所以∠3=180°-∠1-∠2=64°.因为AB⊥a,a∥b,所以AB⊥b,所以∠5+∠4=90°,所以∠4=90°-∠5=90°-∠1=38°.所以∠3+∠4=102°.4. 如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【证明】∵DE∥AC,∴∠1=∠3.∵AD平分∠BAC,∴∠1=∠2.∴∠2=∠3.∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°.∴∠B=∠BDE.∴△BDE是等腰三角形.5.在△ABC中,AD平分∠BAC.BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.(1)求证:AE=DE.(2)若AB=8,求线段DE的长.【解析】(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∴AE=DE.(2)由(1)知,∠EAD=∠EDA.∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA,∴∠EBD=∠BDE,∴DE=BE.又由(1)知,DE=AE,∴DE=AB=×8=4.6.如图,点C在线段AB上,△DAC和△DBE都是等边三角形.(1)求证:△DAB≌△DCE.(2)求证:DA∥EC.【证明】(1)∵△DAC和△DBE都是等边三角形,∴DA=DC,DB=DE,∠ADC=∠BDE=60°,∴∠ADC+∠CDB=∠BDE+∠CDB,即∠ADB=∠CDE,在△DAB和△DCE中,∴△DAB≌△DCE(SAS).(2)∵△DAB≌△DCE,∴∠A=∠DCE=60°,∵∠ADC=60°,∴∠DCE=∠ADC,∴DA∥EC.7.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【解析】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,∴△ABO≌△CDO(ASA),∴CD=AB=20 m.8.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由.(2)若∠BAC=90°,求证:BF2+CD2=FD2.【解析】(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD-∠BAD=∠BAC-∠BAD,即∠EAB=∠CAD,在△EAB与△DAC中∴△EAB≌△DAC,∴BE=CD.(2)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△DAC,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF2+BE2=EF2,∵AF平分DE,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF2+CD2=FD2.9. 如图,在△ABC中,AD平分∠BAC,EF交BA的延长线于点G,∠CFE=∠G.(1)求证:AD∥EG.(2)设∠B=x,∠G=y,若x-y=30°,∠ADC=110°,求∠B的度数.【解析】(1)如图,∵AD平分∠BAC,∴∠1=∠2,∵∠3=∠G,∠3=∠4,∴∠4=∠G,∵∠BAC=∠G+∠4=2∠3,∠BAC=∠1+∠2=2∠2,∴∠2=∠3,∴AD∥EG.(2)∵AD∥EG,∴∠1=∠G=y,又∠ADC=∠B+∠1=110°,∴解得∴∠B=70°10. 如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,点M是OP 的中点,DM=4 cm,如果点C是OB上一个动点,求PC的最小值.【解析】∵点P是∠AOB的平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,点M是OP的中点,DM=4 cm,∴OP=2DM=8cm,∴PD=OP=4 cm, ∵点C是OB上一个动点,∴PC的最小值为点P到OB的距离,∴PC的最小值=PD= 4 cm.11. 如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为________时,以点C,O,D为顶点的三角形与△AOB全等.【解析】如图所示,当点C在x轴负半轴上,点D在y轴负半轴上时,△AOB≌△COD,∴CO=AO=2,∴C(-2,0);如图所示,当点C在x轴负半轴上,点D在y轴上时,△AOB≌△DOC,∴CO=BO=4,∴C(-4,0);如图所示,当点C在x轴的正半轴上,点D在y轴上时,△AOB≌△DOC,∴CO=BO=4,∴C(4,0).答案:(-4,0),(-2,0),(4,0)12. 如图,在△ABC中,∠BAC=90°,AB=4,tan∠ACB=,点D,E分别是BC,AD的中点,AF∥BC交CE的延长线于点F,求四边形AFBD的面积.【解析】∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD =2S△ABD,又∵BD=DC,∴S△ABC =2S△ABD,∴S四边形AFBD =S△ABC,∵∠BAC=90°,tan∠ACB=,AB=4,∴AC==6,∴S△ABC=AB·AC=×4×6=12,∴S四边形AFBD=12.答案:1213.【问题背景】如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形. 【类比研究】如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)连接AE,若AF=DF,AB=7,求△DEF的边长.【解析】(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC-∠CBE,∠BCE=∠ACB-∠ACF,∠CBE=∠ACF, ∴∠ABD=∠BCE,在△ABD和△BCE中,∴△ABD≌△BCE(ASA);同理:△ABD≌CAF,即:△ABD≌△BCE≌△CAF.(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形.(3)∵△DEF是正三角形,∴∠DFE=∠FDE=60°,又AF=FD,∴AF=FD=EF,∴∠FAE=∠FEA=30°,∴∠DEA=90°,设DE=x,则AD=BE=2x,在Rt△ADE中,AE2=AD2-DE2=3x2,在Rt△ABE中,AB=7,AB2=BE2+AE2,即,49=4x2+3x2,∴x=-(舍)或x=,∴△DEF的边长为.14. 已知,在△ABC中,DE∥BC,点F是AB上一点,FE的延长线交BC的延长线于点G,则∠EGH与∠ADE的大小有什么关系?请说明理由.【解析】∠EGH>∠ADE.理由如下:∵DE∥BC,∴∠ADE=∠B,由三角形的外角性质得,∠EGH>∠B,所以,∠EGH>∠ADE.10.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数.(2)如图②,作△ABC外角∠MBC,∠NCB的平分线交于点Q,试探索∠Q,∠A之间的数量关系.(3)如图③,延长线段BP,QC交于点E,在△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.【解析】(1)∵∠A=80°,∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°-(∠ABC+∠ACB)=180°-×100°=130°.(2)∵外角∠MBC,∠NCB的平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°-∠ABC-∠ACB)=(180°+∠A)=90°+∠A,∴∠Q=90°-∠A.(3)∵CQ为△ABC的外角∠NCB的平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠MBC)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°-∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2,解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.15.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE 之间的数量关系,并说明理由.【解析】(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°-∠CDE=120°,∴∠AEB=∠CEB-∠CED=60°.答案:①60°②AD=BE(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC. ∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.。
【人教版】2020届中考数学总复习单元测试卷四,五《三角形》(无答案)
三角形相似和全等(考试时间:100分钟;满分:100分)一、选择题(每小题3分,共30分)1.如图1,在△ABC 中,AB=AC ,∠A=36º,BD 平分∠ABC,DE∥BC,那么在 下列三角形中,与△EBD 相似的三角形是( )。
A .△ABCB .△DABC .△ADED .△BDC2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为( ) A ,1 B ,2 C , 3 D ,4 3.如图2,已知在△ABC ,P 为AB 上一点,连结CP ,以下各条件中不能判定△ACP ∽△ABC 的是( )。
A .∠ACP =∠B B .∠APC =∠ACB C . AC AP =AB AC D . AC AB =CP BC图1 图24.已知ABC ∆中,AC =4,BC =3,AB =5,则sin A =( )A. 35B. 45C. 53D. 344. 直角三角形两锐角的角平分线所交成的角的( )A .45°B .135°C .45°或135°D .都不对5.如图3,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=, 则AOD ∠等于( )A.55 B.45 C.40 D.356.如图4所示,将圆桶中的水倒入一个直径为40cm ,高为55cm 的圆柱形容器中,圆桶放置的角度与水平线的夹角为45°,若使容器中的水面与圆桶相接触,则容器中水的深度至少应为: A 、10cm B 、20cm C 、30cm D 、35cm7.在Rt ΔABC 中,∠ACB=90,CD ⊥AB 于D ,则AC ∶BC=2∶3,则AD ∶BD=( )。
A .2∶3 B .4∶9 C .2∶3 D .不能确定8.如图5,梯形ABCD 的对角线AC 、BD 交于点O ,若S ΔAOD :S ΔACD =1:4,则S ΔAOD :S ΔBOC 的值为( )。
2020年全国中考数学试题精选分类(8)——三角形(含解析)
2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
2020年中考数学一轮复习知识点一遍过三角形 (无答案)
第1讲 角、相交线与平行线考点1 :角的相关概念与性质知识梳理 :1.线段:(1)定义:线段的直观形象是拉直的一段线.(2)基本事实:两点之间的所有连线中,线段最短.(3)线段的和与差:已知两条线段a 和b ,且a>b ,在直线l 上画线段AB =a ,BC =b ,则线段AC 就是线段a 与b 的和,即AC =a +b .在直线l 上画线段AB =a ,在AB 上画线段AD =b ,则线段DB 就是线段a 与b 的差,即DB =a -b.(4)线段的中点:线段AB 上的一点M ,把线段AB 分成两条线段AM 与MB.如果AM =MB ,那么点M 就叫做线段AB 的中点,此时有AM =MB =12AB ,AB =2AM =2MB. 2.直线:(1)定义:沿线段向两方无限延伸所形成的图形.(2)基本事实:经过两点有一条直线,并且只有一条直线.3.射线:把线段向一方无限延伸所形成的图形.4.角的分类:周角、平角、直角之间的关系和度数1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°,1°=60′,1′=60″,1′=⎝ ⎛⎭⎪⎫160°,1″=⎝ ⎛⎭⎪⎫160′. 5.角平分线的概念及性质:(1)定义:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的角平分线.(2)性质:角平分线上的点到角两边的距离相等.(3)判定:到角两边距离相等的点在角平分线上.6.余角、补角与邻补角:(1)余角:①如果两个角的和为90°,那么这两个角互为余角;②同角(等角)的余角相等.(2)补角:①如果两个角的和为180°,那么这两个角互为补角;②同角(等角)的补角相等.(3)邻补角:①两个角有一个公共顶点和一条公共边,另一边互为反向延长线的两个角互为邻补角;②互为邻补角的两个角的和为180°.例题感受:1、(2019 吉林中考)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短B.平行于同一条直线的两条直线平行C.垂线段最短D.两点确定一条直线2、(2019•广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l 的距离是cm.3、(2019•日照)如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.4、(2019 河南开封中考模拟)如图,点C在线段AB上,AC:BC=3:2,点M是AB的中点,点N是BC的中点,若MN=3cm,求线段AB的长.考点2 :相交线知识梳理:1.相交线三线八角(如图)同位角:∠1与∠5,∠2与∠6,∠4与∠8,∠3与∠7.内错角:∠2与∠8,∠3与∠5.同旁内角:∠3与∠8,∠2与∠5.对顶角:∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8.2.垂线及其性质(1)定义:两条直线相交所成的四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.(2)基本事实:经过直线上或直线外一点,有且只有一条直线与已知直线垂直.(3)性质:直线外一点与直线上各点连接的所有线段中,垂线段最短.(4)点到直线的距离:从直线外一点到这条直线的垂线段的长度.(5)线段垂直平分线:定理:线段垂直平分线上的点到线段两端的距离相等;逆定理:到一条线段的两端点的距离相等的点在线段的垂直平分线上.例题感受:1、(2019 河北唐山中考模拟)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数().A.45°B.60°C.50°D.30°2、(2019 山东淄博中考模拟)(填空题)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数.3、(2019 河北沧州中考模拟)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.4、(2019河南郑州中考模拟)如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b 于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.考点3 平行线的判定及性质知识梳理:1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.两条平行线之间的距离处处相等.2.平行线的性质:(1)两直线平行,同位角相等,即∠1=∠2;(2)两直线平行,内错角相等,即∠2=∠3;(3)两直线平行,同旁内角互补,即∠3+∠4=180°.3.平行线的判定:(1)基本事实:经过已知直线外一点,有且只有一条直线和已知直线平行;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)同旁内角互补,两直线平行;(5)平行于同一条直线的两条直线平行.例题感受:1、(2019浙江宁波中考模拟)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC =30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20°B.30°C.45°D.50°2、(2019 河北石家庄中考模拟)(改成选择题)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.3、(2019 河北沧州中考模拟)一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?4、(2019 山东青岛中考模拟)如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,试说明:EF是∠AED 的平分线.5、(2019 海南中考)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°6、(2019 河南中考)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°7、(2019 广东中考)如图,已知a∥b,∠1=75°,则∠2=.8、(2019 湖北孝感中考)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°9、(2019 河北中考)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB考点4 命题与定理知识梳理:命题:判断一件事情的句子叫做命题,命题由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常写成“如果……那么……”的形式.真命题:如果题设成立,那么结论一定成立的命题叫做真命题.假命题:题设成立,不能保证结论一定成立的命题叫做假命题.定理:有些命题的正确性是用推理证实的,这样的真命题叫做定理,推理过程叫做证明.【解题技巧】掌握命题的概念.知道命题由“条件”和“结论”两部分组成,能够初步区分命题的条件和结论,能把命题改写成“如果……那么……”的形式.我们发现由观察、实验、归纳和类比等方法得出的命题,可能是真命题,也可能是假命题. 凡是我们学过的定理、定义、性质等都是真命题。
2020年中考数学第一轮复习专题 第11课 三角形与多边形(含答案)
第11课 三角形与多边形三角形是平面几何的基础知识,考纲要求考查三角形的有关概念,三边之间的关系,三角形的内角和,多边形的内角和、外角和等。
广东省近5年试题规律:三角的内角与外角的性质,三角形的三边关系,三角形的中位线,多以选择、填空题出现,着重考查基础;也常常渗透到折叠、旋转等图形变换综合题中。
知识清单知识点一三角形的概念及其分类三角形⎩⎪⎨⎪⎧概念:由不在同一直线上的三条线段首尾顺次连接所得到的图形叫做三角形.分类⎩⎪⎨⎪⎧按角分类⎩⎪⎨⎪⎧锐角三角形直角三角形钝角三角形按边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底与腰不相等的等腰三角形等边三角形知识点二三角形有关的线段课前小测1.(三角形的稳定性)下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形2.(三角形的三边关系)下列长度的三条线段不能组成三角形的是()A.5,6,11 B.3,4,5 C.2,2,2 D.5,6,10 3.(三角形的内角)在△ABC中,∠A=80°,∠B=50°,则∠C=()A.60°B.50°C.40°D.30°4.(三角形的外角)如图,在△ABC中,∠B=40°,∠C=30°,延长BA到D,则∠CAD的度数为()A.110°B.70°C.80°D.60°5.(多边形的内角和)一个五边形的内角和为()A.540°B.450°C.360°D.180°经典回顾考点一内角(和)与外角(和)【例1】(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是.【点拔】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3).考点二三角形的三边关系【例2】(2014•广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【点拔】本题要注意进行分类讨论和三角形三边之间关系.考点三三角形的中线【例3】(2015•广东)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.【点拔】根据三角形的中线把三角形的面积分成相等的两部分,则:△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.对应训练1.(2014•广东)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.7 2.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8 3.(2019•营口)如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°4.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC =70°,则∠C的度数是()A.50°B.60°C.70°D.80°5.(2014•广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.6.(2017•广东)一个n边形的内角和是720°,则n=.7.(2019•株洲)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=.中考冲刺夯实基础1.(2018•河北)下列图形具有稳定性的是()A.B.C.D.2.(2019•百色)三角形的内角和等于()A.90°B.180°C.270°D.360°3.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°4.(2019•湘西州)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10 6.(2019•福建)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12 B.10 C.8 D.6 7.(2018•南宁)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°8.(2019•襄阳)如图,直线BC∥AE,CD⊥AB于点D,若∠BCD=40°,则∠1的度数是()A.60°B.50°C.40°D.30°9.(2019•河南)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°10.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°11.(2019•广东模拟)如图,CE⊥AF,垂足为E,CE与BF交于点D,∠F=50°,∠C=30°,求∠EDF和∠DBA的度数.12.(2019•湛江期末)如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC 的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.能力提升13.(2019•莱芜区)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.13 14.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10 15.(2019•鞍山)如图,某人从点A出发,前进8m后向右转60°,再前进8m 后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m 16.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°17.(2019•益阳)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.18.(2019•鸡西)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3;再以对角线OA3为边作第四个正方形,连接A2A4,得到△A2A3A4,…,记△AA1A2、△A1A2A3、△A2A3A4的面积分别为S1、S2、S3,如此下去,则S2019=.第11课三角形与多边形课前小测1.A.2.A.3.B.4.B.5.A.经典回顾考点一内角(和)与外角(和)【例1】8.考点二三角形的三边关系【例2】A.考点三三角形的中线【例3】4.对应训练1.D.2.C.3.B.4.C.5.3.6.6.7.4.中考冲刺夯实基础1.A.2.B.3.D.4.D.5.D.6.B.7.C.8.B.9.B.10.解:C.11.解:∵CE⊥AF,∴∠FED=90°,∵∠F=50°,∴∠EDF=90°﹣∠F=90°﹣50°=40°,∴∠CDB=∠EDF=40°,∵∠C=30°,∴∠DBA=∠C+∠CDB=30°+40°=70°,即∠EDF=40°,∠DBA=70°.12.解:(1)∵∠BAF=∠B+∠C,∵∠B=40°,∠C=70°,∴∠BAF=110°;(2)∵∠BAF=110°,∴∠BAC=70°,∵AD是△ABC的角平分线,∴∠DAC=1BAC=35°,2∵EF∥AD,∴∠F=∠DAC=35°.能力提升13.C.14.C.15.D.16.C.17.5.18.22017.。
2020年中考复习 初中数学相似三角形:一线三等角模型练习题(无答案)
“一线三角型”模型的应用1、如图,在△ABC 中,AB=AC ,P 、M 分别在BC 、AC 边上,且APM B ∠=∠,AP=MP ,求证:△APB ≌△PMC 。
分析:证明两个三角形全等,找边、角的等量关系,根据已有的知识经验,学生很快能够解决。
2、如果把第1题中的等腰三角形改为等边三角形,如图,△ABC 为等边三角形,60APM ︒∠=,BP=1,23CM =,求△ABC 的边长。
3、如图,等腰梯形ABCD 中, AD//BC,3,7,60AD cm BC cm B ︒==∠=, P 为BC 上一点(不与B 、C 重合),连结AP ,过P 点作PM 交DC 于M ,使得 APM B ∠=∠。
(1)求证:△ABP ∽△PCM ;(2)求AB 的长;(3)在底边BC 上是否存在一点P ,使得DM:MC=5:3?若存在,求出BP 的长;若不存在,请说明理由。
4、如图,,AB BD CD BD ⊥⊥,且6,4,14AB cm CD cm BD cm ===,问:在BD 上是否存在P 点,使以P 、B 、A 为顶点的三角形与以P 、D 、C 为顶点的三角形相似?如果存在,求BP 的长;如果不存在,请说明理由。
5、已知在梯形ABCD 中,AD//BC,AD BC <,且AD=5,AB=DC=2。
(1)如图a ,P 是AD 上的一点,满足BPC A ∠=∠。
①求证:△ABP ∽△DPC ;②求AP 的长。
(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足BPE A ∠=∠,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么:①当点Q 在线段DC 的延长线上时,设,AP x CQ y ==,求y 关于x 的函数解析式,并写出函数自变量的取值范围;②当CE=1时,求出AP 的长。
6、正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,如图。
2020年中考数学第二轮复习 第17讲 三角形与全等三角形 强基训练+真题 (后含答案)
2020年中考数学第二轮复习教案第十七讲三角形与全等三角形【强基知识】【中考真题考点例析】考点一:三角形三边关系例1(温州)下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,11强基训练1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.8强基训练1-2(2019浙江台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11考点二:三角形内角、外角的应用例2(2019青岛中考)如图,BD 是①ABC 的角平分线,AE① BD ,垂足为F .若①ABC=35°,① C=50°,则①CDE 的度数为()A. 35°B. 40°C. 45°D. 50°强基训练2-1 (2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若①1=23°,则①2=°强基训练2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则①α的度数是( ①. A. 45°B. 60°C. 75°D. 85°强基训练2-3 (2019浙江衢州)“三等分角“大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪“能三等分任一角.这个三等分角仪由两根有槽的棒OA 、OB 组成,两根棒在O 点相连并可绕O 转动.C 点固定,OC =CD =DE ,点D 、E 可在槽中滑动,若①BDE =75°,则①CDE 的度数是( ) A .60° B .65° C .75° D .80°强基训练2-4 (2019浙江杭州)在ABC △中,若一个内角等于另外两个角的差,则( )A. 必有一个角等于30°B. 必有一个角等于45︒C. 必有一个角等于60︒D. 必有一个角等于90︒强基训练2-5(2019浙江绍兴)如图,墙上钉着三根木条,,a b c ,量得170∠=︒,2100∠=︒,那么木条,a b 所在直线所夹的锐角是( )ECOAA. 5︒B. 10︒C. 30°D. 70︒考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在①OAB和①OCD中,OA=OB,OC=OD,OA>OC ,①AOB=①COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;①①AMB=40°;①OM平分①BOC;①MO平分①BMC.其中正确的个数为()A.4 B.3 C.2 D.1强基训练3-1(天门)如图,已知①ABC①①ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(①ABC①①ADE除外),并选择其中的一对加以证明.强基训练3-2(宜宾)如图:已知D、E分别在AB、AC上,AB=AC,①B=①C,求证:BE=CD.强基训练3-3(2019浙江温州)如图,在①ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF①AB交ED的延长线于点F.(1)求证:①BDE①①CDF;(2)当AD①BC,AE=1,CF=2时,求AC的长.考点四:全等三角形开放性问题例4(云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个MCDB适当的条件,使①ABC①①ADE (只能添加一个). (1)你添加的条件是 .(2)添加条件后,请说明①ABC①①ADE 的理由.强基训练4-1 (昭通)如图,AF=DC ,BC①EF ,只需补充一个条件 ,就得①ABC①①DEF . 强基训练4-2(2019浙江台州)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为( ) A .2①1B .3①2C .3①1D .2①2强基训练4-3 (2019浙江台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形,对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形. (1)已知凸五边形ABCDE 的各条边都相等.①如图1,若AC =AD =BE =BD =CE ,求证:五边形ABCDE 是正五边形; ①如图2,若AC =BE =CE ,请判断五边形ABCDE 是不是正五边形,并说明理由; (2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF 的各条边都相等①若AC =CE =EA ,则六边形ABCDEF 是正六边形;( ) ①若AD =BE =CF ,则六边形ABCDEF 是正六边形.( )HGx FEDCBAy NM P DEADEADEFAB C第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1 答案:C 强基训练1-1 答案:B 强基训练1-2答案:B考点二:三角形内角、外角的应用例2 答案:C 强基训练2-1 答案:68 强基训练2-2 答案:C 强基训练2-3 答案:D 强基训练2-4 答案:D 强基训练2-5答案:B考点三:三角形全等的判定和性质例3 答案:B 强基训练3-1 答案:①AEM①①ACN ,①BMF①①DNF ,①ABN①①ADM . 选择①AEM①①ACN , 证明:①①ADE①①ABC ,①AE=AC ,①E=①C ,①EAD=①CAB , ①①EAM=①CAN ,①在①AEM 和①ACN 中, ①E =①C AE =AC①EAM =①CAN①①AEM①①ACN (ASA ). 强基训练3-2 答案:证明:在①ABE 和①ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ①①ABE①①ACD (ASA ),①BE=CD (全等三角形的对应边相等). 强基训练3-3答案:解:(1)①CF AB ∥,①B FCD BED F ∠=∠∠=∠,. ①AD 是BC 边上的中线,①BD CD =, ①①BDE①①CDF. (2)①①BDE①①CDF , ①2BE CF ==,①123AB AE BE =+=+=. ①AD BC BD CD ⊥=,, ①3AC AB ==.考点四:全等三角形开放性问题例4 答案: 解:(1)①AB=AD ,①A=①A ,①若利用“AAS”,可以添加①C=①E ,若利用“ASA”,可以添加①ABC=①ADE ,或①EBC=①CDE , 若利用“SAS”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为①C=①E (或①ABC=①ADE 或①EBC=①CDE 或AC=AE 或BE=DC );故答案为:①C=①E ; (2)选①C=①E 为条件. 理由如下:①在①ABC 和①ADE 中,⎪⎩⎪⎨⎧AD =AB E =∠C ∠A =∠A ∠ ①①ABC①①ADE (AAS ).强基训练4-1 答案:BC=EF , 解析:①AF=DC , ①AF+FC=CD+FC , 即AC=DF , ①BC①EF ,①①EFC=①BCF ,①在①ABC 和①DEF 中,⎪⎩⎪⎨⎧DF =AC BCF =∠EFC ∠BC =EF ①①ABC①①DEF (SAS ). 故答案为:BC=EF .强基训练4-2 答案:A 强基训练4-3答案:证明:(1)① ①AB =BC =CD =DE =EA ,AC =AD =BE =BD =CE ①①ABC ①①BCD ①①CDE ①①DEA ①①EAB ①①ABC =①BCD =①CDE =①DEA =①EAD①五边形ABCDE 是正五边形 ①五边形ABCDE 是正五边形 理由如下:如图,设①1=α,记AC 与EB 的交点为O ①AB =BC =CD =DE =DA ,AC =EC =EB ①①ABC ①①CDE ①①EAB①①ABC =①D =①EAB ,①1=①2=①3=①4=①5=①6=α ①OA =OB ,OC =OE ①EB =EC ,①①EBC =①3+①3=2α①①ABC =①BCD =①CDE =①DEA =①EAB =3α ①五边形ABCDE 是正五边形(2)①假;①假【聚焦中考真题】一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中①C=90°,①B=45°,①E=30°,则①BFD 的度数是( ) A .15° B .25° C .30° D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则①α的度数是( ) A .165° B .120° C .150° D .135° 3.(泉州)在①ABC 中,①A=20°,①B=60°,则①ABC 的形状是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( ) A .1,2,6 B .2,2,4 C .1,2,3 D .2,3,4 5.(衡阳)如图,①1=100°,①C=70°,则①A 的大小是( ) A .10° B .20° C .30° D .80°87654321OCDE A6.(河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成①ABC,且①B=30°,①C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远7.(铁岭)如图,在①ABC和①DEC中,已知AB=DE,还需添加两个条件才能使①ABC①①DEC,不能添加的一组条件是()A.BC=EC,①B=①E B.BC=EC,AC=DCC.BC=DC,①A=①D D.①B=①E,①A=①D8.(台州)已知①A1B1C1①A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则①A1B1C1①①A2B2C2;①若①A1=①A2,①B1=①B2,则①A1B1C1①①A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,①错误B.①错误,①正确C.①,①都错误D.①,①都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.①AOB①①BOC B.①BOC①①EOD C.①AOD①①EOD D.①AOD①①BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若①3=50°,则①1+①2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知①A=①EDF=90°,AB=AC.①E=30°,①BCE=40°,则①CDF= .13.(黔东南州)在①ABC中,三个内角①A、①B、①C满足①B-①A=①C-①B,则①B= 度.14.(柳州)如图,①ABC①①DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,①1=①2,BC=EF,要使①ABC①①DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使①ABE①①ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在①ABC中,①A=m°,①ABC和①ACD的平分线交于点A1,得①A1;①A1BC 和①A1CD的平分线交于点A2,得①A2;…①A2012BC和①A2012CD的平分线交于点A2013,则①A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,①A=①BCD=90°,BC=CD,CE①AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在①ABC中,AB=CB,①ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:①ABE①①CBD;(2)若①CAE=30°,求①BDC的度数.20.(临沂)如图,在①ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB①AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在①ABC中,①BAC=90°,AB=AC,直线m经过点A,BD①直线m,CE①直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在①ABC中,AB=AC,D、A、E三点都在直线m 上,并且有①BDA=①AEC=①BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为①BAC平分线上的一点,且①ABF和①ACF均为等边三角形,连接BD、CE,若①BDA=①AEC=①BAC,试判断①DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,①1=①2,①C=①D.求证:①ABC①①AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB①ED,AC①FD,求证:AC=DF.25.(荆州)如图,①ABC与①CDE均是等腰直角三角形,①ACB=①DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在①ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,①ABC和①ECD都是等腰直角三角形,①ACD=①DCE=90°,D 为AB边上一点.求证:BD=AE.29.(舟山)如图,①ABC与①DCB中,AC与BD交于点E,且①A=①D,AB=DC.(1)求证:①ABE①DCE ;(2)当①AEB=50°,求①EBC 的度数?30.(荆门)如图1,在①ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF①AC ,垂足为F ,①BAC=45°,原题设其它条件不变.求证:①AEF①①BCF .31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,①ABC=①DEF .能否由上面的已知条件证明①ABC①①DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使①ABC①①DEF ,并给出证明.提供的三个条件是:①AB=DE ;①AC=DF ;①AC①DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:①A1B 平分①ABC ,A1C 平分①ACD ,①①A1=21①A ,①A2=21①A1=221①A ,…①①A2 015=201521①A=20152m。
2020年九年级中考数学第二轮复习 旋转、相似三角形 无答案
★(旋转)1.如图1,Rt △ABC ≌Rt △EDF ,∠ACB=∠F=90°,∠A=∠E=30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察:①如图2、图3,当∠CDF=0° 或60°时,AM+CK_______MK(填“>”,“<”或“=”). ②如图4,当∠CDF=30° 时,AM+CK___MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM+CK_______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.2.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G 。
∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。
(1)求证:△EGB 是等腰三角形;(2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED为底的梯形(如图(2)),求此梯形的高。
图1图2图3EEE图4A图(1)AB CE FFB (D )GG A E D图(2)FEC BAB'C'3.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F . (1)证明:△ACE ∽△FBE ;(2)设∠ABC=α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.4.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A /CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】图(1)图(2)图(3)图2 AD OB C 2 1 MN 图1AD BM N1 2图3 A D OBC 2 1 M N O 5.在图1至图3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图1中的MN 绕点O 顺时针旋转得到 图2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图2中的OB 拉长为AO 的k 倍得到图3,求ACBD的值.★(相似三角形)6.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是2.7m ,则AB 与CD 间的距离是__________m .7.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为_____m.8.如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GO : BG =( )A .1 : 2B .1 : 3C .2 : 3D .11 : 209.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )A. 1条B.2条C. 3条D.4条7题图A 时B 时10.如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,(1)求证:△ADF∽△CAF;⑵当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积11.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.12.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,BD并延长与CE交于点E.(1)求证:△ABD∽△CED.(2)若AB=6,AD=2CD,求BE的长.13.如图在Rt △ABC 中,∠A =90°,AB =10,AC =5,若动点P 从点B 出发,沿线段BA 运动到A 点为止,运动速度为每秒2个单位长度.过点P 作PM ∥BC ,交AC 于点M ,设动点P 运动时间为x 秒,AM 的长为y . (1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)当x 为何值时,△BPM 的面积S 有最大值,最大值是多少?14.(2008安徽) 如图四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、Q 。
2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)
解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=52,∴ BD=225BC CD-=,∴ sin∠AEB=sin∠DCB=525552BDBC==.(3)在Rt△BDC中,BD=5,又∠1=∠2=∠3,∠ADE=∠BDA,∴△AED∽△BAD.∴AD DEDB AD=,∴2AD DE DB=g.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭g,∴354BE=.在Rt△ABE中,AB=BE.sin∠AEB=32355452⨯=.举一反三:如图,在△ABC中,AC=12cm,AB=16cm,sinA=13.(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为1:3i=(i=1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。
通用版2020年中考数学热身梯形含解析48
梯形一、选择题1.下列结论正确的是()A.四边形可以分成平行四边形和梯形两类B.梯形可分为直角梯形和等腰梯形两类C.平行四边形是梯形的特殊形式D.直角梯形和等腰梯形都是梯形的特殊形式2.四边形ABCD中,若∠A:∠B:∠C:∠D=2:2:1:3,则这个四边形是()A.梯形 B.等腰梯形 C.直角梯形 D.任意四边形3.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB二、填空题4.等腰梯形ABCD对角线交于O点,∠BOC=120°,∠BDC=80°,则∠DAB= .5.一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,若三角形的周长为12cm,则梯形的周长是.6.在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,BC=5,AD=3,则CD= .7.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为.8.梯形的中位线长为3,高为2,则该梯形的面积为.三、解答题9.如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,求证:BM=MC.10.如图,在△ABC中,∠B=∠C,点D、E分别在边AB、AC上,且AD=AE,那么四边形BCED是什么形状的图形呢?11.如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=,BC=4,求DC的长.12.已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形两腰AB、CD的长.13.梯形ABCD中,AB∥CD,AB>CD,CE∥DA,交AB于E,且△BCE的周长为7cm,CD为3cm,求梯形ABCD的周长.14.如图所示,在梯形ABCD中,上底AD=1cm,下底BC=4cm,对角线BD⊥AC,交点为E,且BD=3cm,AC=4cm.(1)求ABCD面积;(2)求△BEC面积.15.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.16.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.梯形参考答案与试题解析一、选择题1.下列结论正确的是()A.四边形可以分成平行四边形和梯形两类B.梯形可分为直角梯形和等腰梯形两类C.平行四边形是梯形的特殊形式D.直角梯形和等腰梯形都是梯形的特殊形式【考点】多边形.【分析】平行四边形和梯形是特殊的四边形,直角梯形和等腰梯形是特殊的梯形,平行四边形是两边互相平行的四边形,梯形是一组对边互相平行,另一组对边不平行的四边形.【解答】解:A、四边形可以分成平行四边形和梯形两类,说法错误;B、梯形可分为直角梯形和等腰梯形两类,说法错误;C、平行四边形是梯形的特殊形式,说法错误;D、直角梯形和等腰梯形都是梯形的特殊形式,说法正确;故选:D.【点评】此题主要考查了多边形,关键是掌握梯形、平行四边形、直角梯形、等腰梯形与四边形的关系.2.四边形ABCD中,若∠A:∠B:∠C:∠D=2:2:1:3,则这个四边形是()A.梯形 B.等腰梯形 C.直角梯形 D.任意四边形【考点】直角梯形.【分析】设四角的度数分别为:2X,2X,X,3X,根据四边形的内角和公式即可求得各角的度数,从而便可求得该四边形的形状.【解答】解:由题意,设四角的度数分别为:2X,2X,X,3X,由四边形的内角和为360°,得X+2X+2X+3X=360°,解得X=45°,四角分别为:90度,90度,45度,135度,有两个邻角为90度,所以是直角梯形.故选C.【点评】本题通过设适当的参数,根据四边形的内角和建立方程,求得各角的度数进行判定.3.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是()A.梯形ABCD是轴对称图形B.BC=2ADC.梯形ABCD是中心对称图形D.AC平分∠DCB【考点】梯形.【专题】压轴题.【分析】利用已知条件,对四个选逐个验证,即可得到答案.【解答】解:A、根据已知条件AB=CD,则该梯形是等腰梯形,等腰梯形是轴对称图形,正确;B、过点D作DE∥AB交BC于点E,得到平行四边形ABED和等边三角形CDE.所以BC=2AD,正确;C、根据中心对称图形的概念,等腰梯形一定不是中心对称图形,错误;D、根据等边对等角和平行线的性质,可得AC平分∠BCD,正确.故选C.【点评】要熟悉这个上底和腰相等且底角是60°的等腰梯形的性质;理解轴对称图形和中心对称图形的概念.二、填空题4.等腰梯形ABCD对角线交于O点,∠BOC=120°,∠BDC=80°,则∠DAB= 110°.【考点】等腰梯形的性质.【分析】首先根据题意画出图形,分别从AD∥BC与AB∥CD去分析求解,由图(1)可证得△ABC≌△DCB,即可求得∠ACB的度数,继而可求得答案;由图(2)可得不符合要求.【解答】解:如图(1),若AD∥BC,AB=CD,则AC=BD,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠ACB=∠DBC,∠BAC=∠BDC=80°,∵∠BOC=120°,∴∠ACB=30°,∴∠DAC=∠ACB=30°,∴∠DAB=∠DAC+∠BAC=110°.如图(2),若AB∥CD,AD=BC,则AC=BD,在△ACD和△BDC中,,∴△ACD≌△BDC(SSS),∴∠ACD=∠BDC=80°,∴∠BOC=∠BDC+∠ACD=160°≠120°(不符合要求,舍去).故答案为:110°.【点评】此题考查了等腰梯形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.5.一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,若三角形的周长为12cm,则梯形的周长是20cm .【考点】梯形.【专题】计算题;数形结合;转化思想.【分析】首先根据题意画出图形,由一梯形是上底为4cm,过上底的一顶点,作一直线平行于一腰,并与下底相交组成一个三角形,易得四边形AECD是平行四边形,又由△BCE的周长为12cm,CD为4cm,即可得形ABCD的周长=△BCE的周长+AE+CD.【解答】解:如图,∵梯形ABCD中,AB∥CD,CE∥DA,∴四边形AECD是平行四边形,∴AE=CD=4cm,CE=AD,∵△BCE的周长为12cm,即CE+BE+CD=12cm,∴AD+BE+BC=12cm,∴梯形ABCD的周长为:AB+BC+CD+AD=AD+AE+BE+BC+CD=AD+BE+BC+4+4=12+4+4=20(cm).故答案为:20cm.【点评】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.6.在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,BC=5,AD=3,则CD= 2 .【考点】梯形.【分析】已知∠B=50°,∠C=80°,过A点作AE∥CD,交BC于E点,利用平移将两个角“移”到同一个三角形中,证明△ABE为等腰三角形,得出线段的相等关系及和差关系.【解答】解:过A点作AE∥CD,交BC于E点,∵AD∥BC,∴四边形ADCE为平行四边形,CD=AE,AD=EC;又∵∠C=80°,∴∠AEB=80°,在△ABE中,∠BAE=180°﹣∠B﹣∠AEB=50°∴AE=BE,CD=BE=BC﹣EC=BC﹣AD=2.【点评】本题考查了梯形常用的作辅助线的方法:平移一腰,等腰三角形的判定及性质的运用.7.如图,在梯形ABCD中,AD∥BC,E为BC上一点,DE∥AB,AD的长为1,BC的长为2,则CE的长为 1 .【考点】梯形.【分析】根据已知证明四边形ABED为平行四边形,利用平行四边形的对边相等得BE=AD,从而可求CE.【解答】解:∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,BE=AD,∴CE=BC﹣BE=BC﹣AD=2﹣1=1.【点评】本题考查了梯形常用的作辅助线的方法,平行四边形的判定与性质.8.梯形的中位线长为3,高为2,则该梯形的面积为 6 .【考点】梯形中位线定理.【分析】结合梯形的中位线定理以及梯形的面积公式,得梯形的面积等于中位线长和高的乘积.【解答】解:根据题意,得该梯形的面积为3×2=6.【点评】熟记梯形的面积公式:梯形的面积=两底和的一半×高=梯形的中位线×高.三、解答题9.如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,求证:BM=MC.【考点】等腰梯形的性质;全等三角形的判定与性质.【专题】证明题.【分析】欲证MB=MC,可利用等腰梯形的性质“两腰相等;同一底边上的两个角相等”证△ABM≌△DCM,然后由全等三角形对应边相等得出.【解答】证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠A=∠D.∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).∴MB=MC.【点评】本题主要考查等腰梯形的性质的应用.10.(2011秋•安溪县校级期末)如图,在△ABC中,∠B=∠C,点D、E分别在边AB、AC上,且AD=AE,那么四边形BCED是什么形状的图形呢?【考点】等腰梯形的判定.【分析】根据已知条件中AD=AE及∠B=∠C可推得∠ADE=∠B,则DE∥BC.而由∠B=∠C,可得AB=AC,又因为BD与CE交于点A,故BD不平行与CE,所以四边形BCED是等腰梯形.【解答】可以猜测四边形BCED是等腰梯形.解:∵AD=AE,∴∠ADE=∠AED=(180°﹣∠A),又∵∠B=∠C=(180°﹣∠A),∴∠ADE=∠B,∴DE∥BC.由BD与CE交于点A,∴BD不平行与CE,∴四边形BCED是梯形.∵∠B=∠C,∴AB=AC,又∵AD=AE,∴BD=CE,∴四边形BCED是等腰梯形.【点评】此题主要考查了等腰梯形的判定.要说明四边形BCED是等腰梯形必须先说明BCED是梯形,根据梯形的定义,论证DE∥BC,同时要说明DB与EC不平行,这一点容易被遗漏.11.如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=,BC=4,求DC的长.【考点】梯形;勾股定理;等腰直角三角形;矩形的性质.【分析】要求DC的长,根据已知条件可将它转化为直角三角形的边,由勾股定理即可求得.【解答】解:解法一:如图1,分别过点A,D作AE⊥BC于点E,DF⊥BC于点F.∴AE∥DF.又AD∥BC,∴四边形AEFD是矩形.∴EF=AD=.∵AB⊥AC,∠B=45°,BC=4,∴AB=AC.∴AE=EC=BC=2.∴DF=AE=2,CF=EC﹣EF=在Rt△DFC中,∠DFC=90°,∴DC=.解法二:如图2,过点D作DF∥AB,分别交AC,BC于点E,F.∵AB⊥AC,∴∠AED=∠BAC=90度.∵AD∥BC,∴∠DAE=180°﹣∠B﹣∠BAC=45度.在Rt△ABC中,∠BAC=90°,∠B=45°,BC=4,∴AC=BC•sin45°=4=4在Rt△ADE中,∠AED=90°,∠DAE=45°,AD=,∴DE=AE=1.∴CE=AC﹣AE=3.在Rt△DEC中,∠CED=90°,∴DC=.【点评】统观北京及全国各地中考试卷,几何中的计算往往会与两个知识点有关:①圆;②梯形.本题考点:等腰直角三角形的性质、特殊四边形的性质、勾股定理.12.已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求:梯形两腰AB、CD的长.【考点】梯形.【分析】平移一腰,得到平行四边形和30°的直角三角形,根据它们的性质进行计算.【解答】解:作DE∥AB交BC于点E,则四边形ABED是平行四边形.∴AB=DE,AD=BE,∠DEC=∠B=60°,∵∠C=30°,∴∠EDC=180°﹣60°﹣30°=90°,∵CE=BC﹣BE=BC﹣AD=6,∴DE=3,CD=3,即AB=3,CD=,【点评】本题考查与梯形有关的问题,平移一腰是梯形中常见的辅助线,再根据平行四边形的性质和三角形的性质进行分析.13.梯形ABCD中,AB∥CD,AB>CD,CE∥DA,交AB于E,且△BCE的周长为7cm,CD为3cm,求梯形ABCD的周长.【考点】梯形.【专题】计算题.【分析】首先根据题意画出图形,由梯形ABCD中,AB∥CD,AB>CD,CE∥DA,易得四边形AECD是平行四边形,又由△BCE的周长为7cm,CD为3cm,即可得形ABCD的周长=△BCE的周长+AE+CD.【解答】解:如图,∵梯形ABCD中,AB∥CD,CE∥DA,∴四边形AECD是平行四边形,∴AE=CD=3cm,CE=AD,∵△BCE的周长为7cm,即CE+BE+CD=7cm,∴AD+BE+BC=7cm,∴梯形ABCD的周长为:AB+BC+CD+AD=AD+AE+BE+BC+CD=AD+BE+BC+3+3=7+3+3=13(cm).【点评】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.14.如图所示,在梯形ABCD中,上底AD=1cm,下底BC=4cm,对角线BD⊥AC,交点为E,且BD=3cm,AC=4cm.(1)求ABCD面积;(2)求△BEC面积.【考点】相似三角形的判定与性质;平行四边形的判定与性质;梯形.【分析】(1)首先过点D作DF∥AC交BC的延长线于F点.易证得四边形ACFD为平行四边形.由BD⊥AC,即可得BD⊥DF,又由在Rt△BDF中,BD=3cm,DF=4cm,BF=5cm,即可求得BC边上的高,继而求得四边形ABCD面积;(2)由AD∥BC,即可证得△ADE∽△CBE,然后由相似三角形的对应边成比例,求得BE与CE的长,继而求得△BEC面积.【解答】解:(1)过点D作DF∥AC,交BC的延长线于F点.∵AD∥BC,∴四边形ACFD为平行四边形.∴DF=AC=4cm,AC∥DF,CF=AD=1cm,∴BF=BC+CF=4+1=5(cm),∵AC⊥BD,∴BD⊥DF,在Rt△BDF中,BD=3cm,DF=4cm,BF=5cm,∴BC边上的高h为:(cm),∴S四边形ABCD=(AD+BC)h=×(1+4)×=6(cm2);(2)∵AD∥BC,∴△ADE∽△CBE,∴,∴,,∴DE=cm,AE=cm,∴BE=3﹣DE=3﹣(cm),EC=4﹣AE=(cm),S△BEC=BE•EC=(cm2).【点评】此题考查了相似三角形的判定与性质、梯形的性质、平行四边形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.15.在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.【考点】直角梯形.【专题】证明题.【分析】延长CE交BA的延长线于点G,那么可得△CED≌△GEA,那么CE=GE,AE=DE,进而可得BC=BG,那么CE⊥BE.【解答】证明:延长CE交BA的延长线于点G,即交点为G,∵E是AD中点,∴AE=ED,∵AB∥CD,∴∠CDE=∠GAE,∠DCE=∠AGE,∴△CED≌△GEA,∴CE=GE,AG=DC,∴GB=BC=3,∴EB⊥EC.【点评】考查梯形的常用辅助线方法的应用;碰到中点问题时构造全等三角形是常用的辅助线方法.16.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【考点】全等三角形的判定与性质;梯形.【专题】证明题.【分析】(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC.(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.【解答】证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC(SAS).(2)连接BD.∵△BFC≌△DFC,∴BF=DF,∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又∵BD是公共边,∴△BAD≌△BED(ASA).∴AD=DE.【点评】这道题是主要考查全等三角形的判定和性质,涉及的知识比较多,有点难度.。
四川省渠县崇德实验学校2020年中考第二轮九年级数学三角形、四边形压轴题专题复习(无答案)
四川省渠县崇德实验学校2020年中考第二轮九年级数学三角形、四边形压轴题专题复习一、选择题1、如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C D.2、如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACBC=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B.(52,52) C.(83,83) D.(3,3)3、如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=12BC,连接GM.有如下结论:①DE=AF;②AN=4AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④二、填空题4、在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______5、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.6、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有(填写所有正确结论的序号)7、如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC 边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=12AC时,tanα1=34;如图2,当CD=13AC时,tanα2=512;如图3,当CD=14AC时,tanα3=724;…依此类推,当CD=1n1+AC(n为正整数)时,tanαn=.8、在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.三、解答题9、如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求MBMG的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.10、【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.11、如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.12、在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=AM.13、如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.14、已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD 垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D 出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.15、如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.16、如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.17、如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB 的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.18、问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.19、如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.20、如图,在正方形ABCD中,边长为4,∠MDN=90°,将∠MDN绕点D旋转,其中DM边分别与射线BA、直线AC交于E、Q两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P.(1)如图1,点E在线段AB上时,①求证:AE=CF;②求证:DP垂直平分EF;(2)当AE=1时,求PQ的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
《三角形》
一、选择题(3分×8=24分)
1、以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( ) A .1个 B .2个 C .3个 D .4个
2、等腰三角形两边长分别为
3、7,则它的周长为( )
A 、13
B 、17
C 、13 或17
D 、不能确定 3、如图,△ABC 中,∠C=90°,D 、
E 为AC 上的两点,且AE=DE ,BD 平分∠EBC, 则下列说法中不正确的是( )
A .BC 是△ABE 边AE 上的高
B .BE 是△ABD 的中线
C .B
D 是△EBC 的角平分线 D .∠ABE=∠EBD=∠DBC
4、一副三角板,如右图所示叠放在一起。
则图中∠α的度数是( ) A ..75° B.60° C.. 65° D.55°
5、下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的是( ) A .∠A =30°,∠B =50°
B .∠A =30°,∠B =70°
C .∠A =30°,∠B =90°
D .∠A =30°,∠B =110°
6、如图,已知AE =CF ,∠AFD =∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( ) A .∠A =∠C B .AD =CB C .BE =DF D .AD ∥BC
7、如图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是( )
A .8+2a
B .8+a
C .6+a
D .6+2a
8.如图6310,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB ,
AC 于点M 和N ,再分别以M ,N 为圆心,大于1
2
MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交
BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;②∠ADC =60°; ③点D 在AB 的中垂线上; ④△ACD 的面积与△ABD 的面积相等。
其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
二、填空题(3分×10=30分)
9、如图,∠1+∠2+∠3+∠ 4的值为 。
10、如图,AB ∥CD ,∠ABE =60°,∠D =50°,则∠E 的度数为________。
11、AD 是△ABC 的中线,已知△ABD 比△ACD 的周长大2 cm ,则AB 与AC 的差为____________。
12、如图,在△ABC 中,∠BAC=60°,∠B=45°,AD 是△ABC 的一条角平分线,则∠DAC 的度
数为 ,∠ADB 的度数为 。
13、用反证法证明命题“一个三角形中至少有两个角是锐角”,第一步应假设 。
14、已知命题:“如果两个三角形全等,那么这两个三角形的面积相等。
” 写出它的逆命题:
_____________________________________________。
该逆命题是______命题(填“真”或“假”)
15、如图,若△ABE ≌△ACF ,且AB =5,AE =2,则EC 的长为 。
16、如图,用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是______。
17、如图,在△ABC 中,AB=AC ,∠A=30°,以B 为圆心,BC 的长为半径圆弧,交AC 于点D ,连接BD ,则
∠ABD 的度数为 。
18、如图,在△ABC 中,∠ABC =45°,AC =8 cm ,F 是高AD 和BE 的交点,则BF 的长是________。
三、解答题
19、如图,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F .
求证:△BED ≌△CFD .
第3题
第4题
第6题
第8题
第7
题
第
18
题
第15题
第17题
第16题
1
2
20、(7分)如图,已知∠BAD=∠CAD ,请你添加一个条件,求证AB=AC 。
(1)你添加的条件是: ; (2)请写出证明过程。
21、(10)如图,在△ABC 中,∠A =50°,∠C =65°,AB =12,BC =10,DE 垂直平分AB 交AC 、AB 于E 、D 两点.求:(1)∠EBC 的度数;(2)△BCE 的周长.
22、(10分)如图,已知等腰直角三角形ABC 中,∠A=90°,D 为BC 中点,E 、F 分别为AB 、AC 上的点,且满足EA =CF .求证:DE =DF .
23、(12分) (1)操作发现:如图1,在等边△ABC 中,点M 是BC 上的任意一点(不含端点B ,C ),连接AM ,以AM 为边作等边△AMN ,连接CN ,猜想∠ABC 与∠ACN 有何数量关系?并证明你的结论;
图1
(2)类比探究:如图2,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C ),其他条件不变,(1)中的结论是否仍然成立?请说明理由.
图
图
2
A
D
C
B。