3 门电路
第3章 门电路
TP
+VDD Y
VDD 0 A 0 1 Y 1 0
A
TN
表达式: Y=A’
电压传输特性和电流传输特性
截 止 区 : TN 截 止 , TP 导 通 , 输入低电平, 输出高电平; 电流iD≈0。 使用时不应长 时 间 工 作 在 BC 段,以免因功 耗大而损坏。
山东大学(威海)机电与信息工程学院 邹晓玉 5
客观世界中,没有理想开关
乒乓开关、继电器、接触器等的静态特性十分
接近理想开关,但动态特性很差,无法满足数字
电路一秒钟开关几百万次乃至数千万次的需要。
半导体二极管、三极管和MOS管做为开关使用时,
其静态特性不如机械开关,但动态特性很好。
山东大学(威海)机电与信息工程学院
山东大学(威海)机电与信息工程学院 邹晓玉 8
动态特性:
二极管从截止变为导通和从导通变为截止都需 要一定的时间。通常后者所需的时间长得多。 反向恢复时间tre :二极管从导通到截止所需的 时间。 一般为纳秒数量级(通常tre ≤5ns )。
若输入信号频率过高,二极管会双向导通,失 去单向导电作用。因此高频应用时需考虑此参数。
(1) 截止区: uGS< UT,未形成导电沟道,id=0 (2) uGS>UT,导电沟道形成,有id产生,分两个区:
可变电阻区: UDS较小, id随UDS线性增加,且UGS越大,
斜率越大,等效电阻越小
可变电 阻区
恒流区:
恒流区
UDS较大, id不随UDS 的增加程学院
山东大学(威海)机电与信息工程学院 邹晓玉 2
获得高、低电平的基本原理
开关S断开,输出电压为VCC (高电平); 开关S闭合,输出电压为0 (低电平);
数字电子技术试题(1-5章)
第1章 数制和码制一、填空题1.数制转换:(011010)2 =( )10 =( )8 =( )16。
2.数制转换:(35)10 =( )2 =( )8 =( )16。
3.数制转换:(251)8 =( )2 =( )16 =( )10。
4.数制转换:(4B )16 =( )2 =( )8 =( )10。
5.数制转换:(69)10 =( )2 =( )16 =( )8。
6.将二进制数转换为等值的八进制和十六进制数(10011011001)2 =( )8 =( )16。
7.将二进制数转换为等值的八进制和十六进制数(1001010.011001)2 =( )8 =( )16。
一、填空题答案:1.26、32、1A ;2.100011、43、 23;3.10101001、A9、169;4.1001011、113、75;5.1000101、45、105;6.2331、4D9;7.112.31、4A.64。
第2章 逻辑代数基础一、填空题1.逻辑函数Y AB A B ''=+,将其变换为与非-与非形式为 。
2.逻辑函数Y A B AB C ''=+,将其变换为与非-与非形式为 。
3. 将逻辑函数AC BC AB Y ++=化为与非-与非的形式,为 。
4.逻辑函数Y A A BC '''=+,化简后的最简表达式为 。
5.逻辑函数Y A B A B ''=++,化简后的最简表达式为 。
6.逻辑函数()()Y A BC AB ''''=+,化简后的最简表达式为 。
7. 逻辑函数Y AB AB A B ''=++,化简后的最简表达式为 。
一、填空题答案1.()()()Y AB A B '''''= ; 2.()()()Y A B AB C '''''=;3. ()()()()Y AB BC AC ''''=; 4. Y A '=;5.1Y =; 6.1Y =; 7.Y A B =+。
数字逻辑第3章 门电路
逻辑式:Y=A + B
逻辑符号: A 1
B
Y
电压关系表
uA uB uY
0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
真值表
ABY
0
0
0
0
1
1
1
0
1
1
1
1
三、三极管非门
5V
利用二极管的压降为0.7V, 保证输入电压在1V以下时,
电路可靠地截止。
A(V) Y(V) <0.8 5 >2 0.2
II H &
II L &
… …
NOH
I OH (max) I IH
N MIN ( NOH , NOL )
NOL
IOL(max) I IL
六、CMOS漏极开路门(OD)门电路(Open Drain)
1 . 问题的提出
普通门电路
在工程实践中,往往需要将两个门的输出端 能否“线与”?
并联以实现“与”逻辑功能,称为“ 线与 。
输入 0 10% tr tf
tPHL
输出
tPLH
tr:上升时间
tf:下降时间 tw:脉冲宽度 tPHL:导通传输时间
tPLH:截止传输时间
平均传输延迟时间 (Propagation delay)
tpd= tpHL+ tpLH 2
5、功耗: 静态功耗:电路的输出没有状态转换时的功耗。 动态功耗:电路在输出发生状态转换时的功耗。
PMOS
NMOS
3、增强型MOSFET的开关特性
iD管可变子类型恒
VGS1 击开/关的条(件1)N沟道增强开型/M关O的S等FE效T电:路
第3章门电路
&Y
4
第三章门电路
2.二极管或门
图3.2.6 二极管或门
A/V B/V Y/V
000 0 3 2.3 3 0 2.3 3 3 2.3
AB
Y
0
0
0
0
1
1
1
0
1
1
1
1
Y=A+B A
B
A
≥1
Y
Y
B
北方工业大学信息工程学院
叶青制作
5
3.3 TTL门电路
第三章门电路
集成电路(IC):在一块半导体基片上制作出一个完整的逻辑电路所 需要的全部元件和连线。使用时接:电源、输入和输出。
北方工业大学信息工程学院
叶青制作
3
第三章门电路
1.二极管与门
设:VCC=5V, VIH=3V, VIL=0V
A/V 0 0 3 3
B/V 0 3 0 3
Y/V 0.7 0.7 0.7 3.7
AB
Y
00
0
01
0
10
0
11
1
图3.2.5 二极管与门
Y=AB
A B
北方工业大学信息工程学院
YA B
叶青制作
1.电路
(5v)
EN:使能端,控制端 R1
R4 R2
VB1 0.9V 4.3V 0.9V
T4
A B
T1
T2
D3 Y 2.9V
T5 (Vo)
3.6V EN 0.2V
D
R3
3.6V
北方工业大学信息工程学院
叶青制作
31
(三)三态输出门电路(TS) 1.电路
第三章门电路
数电知识点汇总
数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
三态门电路
通常数字逻辑是二值的,即仅0,1值。而其所对应电路的输 出电平是高低两种状态。在实际电路中,还有一种输出既非高电 平又非低电平的状态,被称之为第三状态。于是数字电路的输出 就有:0,1和Z(高阻)的三种状态。这种电路称三态逻辑电路
或称三态门电路
下图是二态电路和三态电路与非门的比较
A
A
Hale Waihona Puke BF=ABB
C
ABF 001 011 101 110
-
电路符号以及真值表
F=AB C=1
CABF 0 XXZ 1001 1011 1101 1110
(1)三态缓冲器及三态驱动器
-
(2)双向总线驱动器/接收器
双向总线驱动器/接收器是常用的一种三态电路,它 既可以用于接收来自总线的数据,又可经驱动器向总 线传送数据(数据在总线上的传送是双向的)。
DO0
DO1
DO2
DO3
IN
DI0
DI1
DI2
OUT
DI3
E
c
-
最新三输入与门集成电路设计
三输入与门集成电路设计院课程设计三输入与门设计学生姓名:学院:专业班级:专业课程:集成电路设计基础指导教师:年月日目录一、概述 (1)二、设计要求 (3)三、设计原理 (3)四、设计思路 (4)4.1非门电路 (4)4.2三输入与非门电路 (5)五、三输入与门电路设计 (6)5.1原理图设计 (6)5.2仿真分析 (7)六、版图设计 (9)6.1 PMOS管版图设计 (9)6.2 NMOS管版图设计 (11)6.3与门版图设计 (12)七、LVS比对 (16)八、心得体会 (17)参考文献 (18)一、概述随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。
而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。
随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。
集成电路有两种。
一种是模拟集成电路。
另一种是数字集成电路。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
而在数字集成电路中应用最广泛的就是CMOS集成电路,CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文便是讨论的CMOS与门电路的设计仿真及版图等的设计。
版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。
集成电路制造厂家根据版图来制造掩膜。
版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。
不同的工艺,有不同的设计规则。
设计者只有得到了厂家提供的规则以后,才能开始设计。
版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。
很多集成电路的设计软件都有设计版图的功能,L-Edit软件的的版图设计软件帮助设计者在图形方式下绘制版图。
门电路设计组合逻辑电路的方法
门电路设计组合逻辑电路的方法门电路是数字电路中最基础的电路之一,它由若干个逻辑门组成,用于实现各种逻辑功能。
组合逻辑电路是由多个门电路按照一定的规则连接而成的电路,它的输出仅取决于当前输入的状态,与之前的输入状态无关。
在本文中,将介绍一种常用的方法来设计组合逻辑电路。
在设计组合逻辑电路之前,首先需要明确电路的功能需求,即确定电路的输入和输出信号的关系。
然后,根据这个关系,可以使用逻辑门来实现所需的功能。
常用的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
其中,与门将两个输入信号都为1时输出为1,否则输出为0;或门则是两个输入信号中有一个为1时输出为1,否则输出为0;非门是对输入信号取反;异或门是两个输入信号相同时输出为0,不同时输出为1。
在设计组合逻辑电路时,可以将问题分解为几个较小的子问题,然后分别设计解决。
例如,要设计一个加法器电路,可以将它分解为一个半加器和多个全加器的组合。
半加器用于计算两个输入位的和与进位,而全加器则可以将多个半加器连接起来,实现多位数的加法运算。
在具体设计电路时,可以使用逻辑图来表示电路的结构和信号的传输。
逻辑图使用逻辑门和线连接来表示电路中的元件和信号传输路径。
在逻辑图中,每个逻辑门都有一个标识符,用于表示该门的类型,例如AND、OR等。
线则表示信号的传输路径,可以用直线或弯曲的线段表示。
在设计组合逻辑电路时,还需要考虑电路的延迟和时序问题。
电路的延迟是指输入信号改变后,输出信号发生变化所需要的时间。
时序问题则是指在电路中的不同部分之间有一定的时间差,可能导致错误的结果。
为了解决这些问题,可以使用触发器和时钟信号来同步电路的运行。
总结起来,设计组合逻辑电路的方法包括确定功能需求、选择适当的逻辑门、使用逻辑图表示电路、解决延迟和时序问题等。
通过合理的设计和组合,可以实现各种复杂的逻辑功能。
这种方法不仅适用于门电路,也可以应用于其他类型的数字电路设计。
集成电路课程设计报告三输入异或门电路
4.3a
Select Edge to ActC nt
1.000
4.4a
Select Mi nimum Width
2.000
4.4c
Select to Select Spac ing
2.000
异或门的应用范围广,在实际应用中可以用来实现奇偶发生器或模2加法器,
还可以用作加法器、异或密码、异或校检、异或门倍频器、可控反相器等等。虽
然异或不是开关代数的基本运算之一,但是在实际运用中我们依然会相当普遍地 使用到分立的异或门。因此,我们为了熟练了解、掌握异或门这一基本逻辑电路, 对异或门电路进行了这次课程设计。
2.1
Active Mi nimum Width
3.000
2.2
Active to Active Spac ing
3.000
2.3a
Source/Drain Active to Well Edge
5.000
2.3b
Source/Drain Active to Well Space
5.000
2.4a
WellCo ntact(Active) to Well Edge
异或门(英语:Exclusive-OR gate,简称XOF^ate,又称EOF^ate、ExOF^ate)是数字逻辑中实现逻辑异或的逻辑门。有多个输入端、1个输出端,多输入异或
门可由2输入异或门构成。
三输入异或门在数字集成逻辑电路中主要用来实现逻辑异或的功能。对于三 输入异或门来说,若输入为偶数(此处包括0)个高电平1,则输出为低电平0; 否则输出为高电平1。
异或门的逻辑表达式:
进一步可得到一位比较器的真值表:
A
B
三输入与非门电路设计
1绪论1.1设计背景集成电路的出现与飞速发展彻底改变了人类文明和人们日常生活的面目。
近几年,中国集成电路产业取得了飞速发展。
集成电路掩模版图设计是实现集成电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。
集成电路掩模版图设计是一门技术,它需要设计者具有电路系统原理与工艺制造方面的基础知识。
但它更需要设计者的创造性、空间想象力和耐性,需要设计者长期工作的经验和知识的积累,需要设计者对日新月异的集成电路发展密切关注和探索。
互补金属-氧化物-半导体集成电路,简称CMOS电路,是集成电路中于六十年代后期才发展起来的后起之秀。
到了六十年代,随着平面型晶体管的发展,以及人们对于半导表面性质认识的深化,特别是具有优良性能的热生长二氧化硅薄膜的成功生长,才导致MOS绝缘栅场效应晶体管和MOS集成电路的问世。
为了把设计的线路生产为集成电路,还必须进行版图设计。
即根据线路中各器件的尺寸和互连进行合理的布局。
版图设计的优劣,很大程度上决定了产品的成品率和可靠性。
在版图设计中的考虑原则是尽可能缩小有源区(即仅包括器件和互连引线部分,不包括键合点)。
这不仅可以减小芯片面积,而且有利于成品率提高。
电源线和地线的走线要通畅,减小串联电阻,保证电路的参量指标。
在可能的条件下,引线孔尽量开大,保证接触良好。
现代化的计算机辅助制版技术,能大大减小人力,做出最佳图形,特别是为大规模集成电路所必需。
中国集成电路产业已经形成了IC设计、制造、封装测试三业及支撑配套业共同发展的较为完善的产业链格局,随着IC设计和芯片制造行业的迅猛发展,国内集成电路价值链格局继续改变,其总体趋势是设计业和芯片制造业所占比例迅速上升。
1.2设计目标1.用tanner软件中的原理图编辑器S-Edit编辑三输入与门电路原理图。
2.用tanner软件中的L-Edit绘制三输入与门电路版图,并进行DRC 验证。
(最新整理)3组合逻辑电路习题解答
(完整)3组合逻辑电路习题解答(完整)3组合逻辑电路习题解答编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)3组合逻辑电路习题解答)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)3组合逻辑电路习题解答的全部内容。
(完整)3组合逻辑电路习题解答自我检测题1.组合逻辑电路任何时刻的输出信号,与该时刻的输入信号 有关 ,与以前的输入信号 无关 。
2.在组合逻辑电路中,当输入信号改变状态时,输出端可能出现瞬间干扰窄脉冲的现象称为 竞争冒险 .3.8线—3线优先编码器74LS148的优先编码顺序是7I 、6I 、5I 、…、0I ,输出为2Y 1Y 0Y 。
输入输出均为低电平有效。
当输入7I 6I 5I …0I 为11010101时,输出2Y 1Y 0Y 为 010 。
4.3线—8线译码器74HC138处于译码状态时,当输入A 2A 1A 0=001时,输出07Y ~Y = 11111101 。
5.实现将公共数据上的数字信号按要求分配到不同电路中去的电路叫 数据分配器 。
6.根据需要选择一路信号送到公共数据线上的电路叫 数据选择器 。
7.一位数值比较器,输入信号为两个要比较的一位二进制数,用A 、B 表示,输出信号为比较结果:Y (A >B ) 、Y (A =B )和Y (A <B ),则Y (A >B )的逻辑表达式为B A 。
8.能完成两个一位二进制数相加,并考虑到低位进位的器件称为 全加器 。
9.多位加法器采用超前进位的目的是简化电路结构 × 。
(√,× ) 10.组合逻辑电路中的冒险是由于 引起的。
3逻辑门电路
vGS>0
域又称为可调电阻区域。
vDS N沟道增强型MOS管输出特性曲线图
(Ⅲ)截止区
O
饱和区:当vDS≥(vGS-VGS(th)N)以后,漏极附近的沟道被夹断。 iDS不随vDS线性上升,而是达到某一数值,几乎近似不变。
截止区:vGS<VGS(th)N,还没有形成导电沟道,因此iDS=0。 2.转移特性和跨导 MOS管的转移特性是指在漏源电压v DS 一定时,栅源电压 vGS和漏源电流iDS之间的关系。 当v GS <V GS(th)N 时,i DS =0,只有当
由三个CMOS反相器和 3.1.5 CMOS门电路 一个CMOS传输门组成
3、“异或”门电 路 输入端A和B相同 0 1 当A = B = 0时 TG断开,则C=B=1, F=C=0。 当A = B = 1时, TG接通,C = B = 1, 反相器2的两只MOS 管都截止,输出F=0。 0 1 得:输入端A和B相同, 输出 F=0
PD:门电路功耗
DP值愈小,表明门电路的特性愈接近于理想情况。
6. 扇入数与扇出数
(1)门电路的扇入数决定于它的输入引脚的个 数,如:三输入逻辑门的扇入数Ni=3。 A B C A B C L Ni=3
&
≥
L
Ni=3
(2)扇出数:门电路正常工作下能带同类逻辑 门电路负载的最大个数。
a)拉电流工作情况
3.1 MOS逻辑门电路
CMOS反相器 CMOS门电路 CMOS传输门、三态门
3.1.1 数字集成电路简介
上世纪60年代初美国德克萨斯公司率先将分立元件和连 线制作在同一硅片上,形成集成电路(Integrated Circuit,简 称IC)。并且,由于微电子技术的迅速发展,使集成电路在 大多数领域内迅速取代了分立元件电路。 从总体上说,集成 电路可分为模拟集成电路、数字集成电路以及数模混合集成 电路三大类。 在数字集成电路里,根据制造工艺的不同,可分为双极型 (电子、空穴两种载流参与导电)和单极型(只有电子或空穴 一种载流子参与导电)两大类。 TTL电路是双极型数字集成电路中应用最广泛的一种,它由 于输入端是晶体管(Transistor)输出端也是晶体管而得名,即 Transistor-Transistor Logic简称TTL。双极型数字电路除TTL类 型之外,还有ECL和I2L电路。ECL是一种通过射极电阻耦合的 非饱和型高速逻辑电路,称为发射极耦合电路。I2L电路是一种 单元结构简单、功耗低、适合于制造大规模集成电路的集成注入 逻辑门电路,在大规模器件中应用。
《简单电路》教学设计4篇(设计简单电路教案)
《简单电路》教学设计4篇(设计简单电路教案)下面是收集的《简单电路》教学设计4篇(设计简单电路教案),供大家品鉴。
《简单电路》教学设计1教学目标:1、能够连接基本电路,并画出电路图。
2、能够根据电路图连接简单电路。
3、能够制作简单的红绿灯模型。
科学知识:1、知道一个基本电路的组成要素。
2、认识一些常见的电路符号并能画出简单的电路图。
情感、态度和价值观:1、愿意与同学一起去探讨有关电路的问题。
2、体会制作的快乐,感受成功的喜悦。
教学重难点:让学生认识电路的基本特征,能够根据自己的组装图画出较规范的电路图,在画图中逐渐认识电路的组成条件。
教学准备:导线、电池、开关、小灯泡、透明胶带、各种电工工具。
教学方法目标教学法教学时间:2课时教学过程:第一课时一、导入:出示电池,谈话:看老师今天带来了什么?它有什么用途?师:电池能够提供什么?指出:它是一种电源。
二、新授:1、认识简单电路元件:(1)除了同学们自备的电池,老师还为同学们提供了一个盒子,里面有:电池盒——上面有+、-符号,表示“正极、负极”导线——用来传输电能小灯泡——也称为小电珠,出示简图灯座——用于插放小灯泡2、连接电路:(1)利用盒子里的工具及电池,使灯泡亮起来,你会怎样做?(2)在白纸上,画出你的连接实物图。
(3)指名展示学生的想法。
3、分析连接后的情况:(1)根据学生的摆放,说明连接后的结果。
(2)说一说,电池是怎样使灯泡会亮起来的?(3)电流是按照怎样的方向传输的?(4)说明电流从正极出发最后回到负极。
(5)用手指沿着电流的方向“走几趟”体会一下,这是一条怎样的路?(板书:回路)(6)改变电池的位置、样子(盒式、条形等),请学生标出电流方向。
4、开关的认识:(1)灯泡亮了,能让它一直亮着吗?我们怎样控制家里的灯。
(2)给这个灯加一个开关,使它能够控制你的灯泡。
(3)领取开关,进行试验。
(4)为什么开关能够控制灯泡的?(5)电流被断开了,是一条断路。
《数字电子技术基础》第3章 门电路
导通
TP vI vO
TN
vo=―1” 截止
vI=1
VDD
截止
T1 vI
vO T2
vo=―0” 导通
静态下,无论vI是高电平还是低电平,T1、T2总有 一个截止,因此CMOS反相器的静态功耗极小。
二、电压传输特性和电流传输特性
T1导通T2截止
电 压 传 输 特 性
T1T2同时导通
T2导通T1截止
噪声电压作用时间越短、电源电压越高,交流噪声容 限越大。
三、动态功耗
反相器从一种稳定状态突然变到另一种稳定状态的过
程中,将产生附加的功耗,即为动态功耗。
动态功耗包括:负载电容充放电所消耗的功率PC和 PMOS、NMOS同时导通所消耗的瞬时导通功耗PT。 在工作频率较高的情况下,CMOS反相器的动态功耗 要比静态功耗大得多,静态功耗可忽略不计。
VNL VIL (max) VOL (max)
测试表明:CMOS电路噪声容限 VNH=VNL=30%VDD,且随VDD的增加而加大。
噪声容限--衡量门电路的抗干扰能力。 噪声容限越大,表明电路抗干扰能力越强。
§3.3.3 CMOS反相器的静态输入输出特性
一、输入特性 因为MOS管的栅极和衬底之间存在着以SiO2 为介质的输入电容,而绝缘介质非常薄,极易被
S1
输 入v I 信 号 输 vo 出 信 号
S2
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的, 流过的电流为零,故电路的功耗非常低,因此在数字 电路中得到广泛的应用
3.1 概述
4. 数字电路的概述 (1)优点: 在数字电路中由于采 用高低电平,并且高低电 平都有一个允许的范围, 如图3.1.1所示,故对元器 件的精度和电源的稳定性 的要求都比模拟电路要低, 抗干扰能力也强。
3逻辑门电路
使用
A
≥1
L
A
B
B
L
二、与运算—— 用开关串联电路实现
开关A、B控制灯泡L,只有当A和B同时(闭2)合真时,值灯表泡:才能点亮
(1)定义A:某事B 件有若干个条件,只有当所有条件 全部满足时,这件事才发A 生。B L=A·B
E
L
0
0
0
0
1
0
1
0
0
(3)逻辑表达(a) 式
1
1
1
L= A*B
A
&
A
(4)逻辑符号 B
两输入变量 或非逻辑真值表
A
BL
0
0
1
0
1
0
1
0
0
1
1
0
或非逻辑符号
A
≥1
L
B
A L
B
或非逻辑表达式: P = A+B
或非门芯片 74LS27
3) 同或运算 若两个输入变量的值相同,输出为1,否则为0。
同或逻辑真值表
同或逻辑逻辑符号
AB
P
0
0
1
0
1
0
1
0
0
1
1
1
A
=
L B
A
B
L
同或逻辑表达式:
L A · B A B AB
A
A
≥1
(4)逻辑符号:
B
L=A+B
L
B
或门芯片 74LS32
四、非运算
(1)定义:某事件的产生取决于条件的否定, 这种关系称为非逻辑。
下图表示一个简单的非逻辑电路,当继电器通 电,灯泡熄灭;继电器断电,灯泡点亮。
人教版物理选修3-1《简单的逻辑电路》优秀教案
简单的逻辑电路教案一、课题:简单的逻辑电路二、教学目标:知识和技能:1、知道数字电路和模拟电路的概念,了解数字电路的优点。
2、知道“与”门、“或”门以及“非”门电路的特征、逻辑关系及表示法。
3、初步了解“与”门、“或”门以及“非”门电路在实际问题中的应用。
过程与方法:以实验教学为主体的媒体教学为辅的课堂教学模式;以对比教学为主线、联系生活实际为辅线开展课堂教学活动。
情感、态度和价值观:感受数字技术对现代生活的巨大改变;体验物理知识与实践的紧密联系。
三、教学重、难点:三种门电路的逻辑关系以及门电路的实际应用。
四、教学过程:演示实验引入课题火警报警装置用火柴点燃放在图示位置,结果听到喇叭鸣叫。
问:1、为什么会有这样的实验现象?2、中间的“黑盒子”是什么元件?实验装置图:我们今天的这节课就是要来探究实验现象产生的原因以及“黑盒子”里的元件。
为此让我们从稳恒电路的模拟世界进入实用的数字世界。
一、数字电路和模拟电路电子电路中的信号:1、模拟信号:幅度随时间连续变化的信号例:正弦波信号、锯齿波信号等。
2、数字信号:幅度不随时间连续变化,而是跳跃变化阅读材料(见附页)点燃的火柴引:数字电路的基本单元是逻辑电路,逻辑电路中最基本的电路叫做“门”电路, (门电路是一种有一个或多个输入端,只有一个输出端的开关电路,是数字电路的基本单元。
门电路就像一扇门,当具备开门条件时,输出端就有一个信号输出;反之,门关闭)。
它们在工作时输入端和输出端的电势只有两种情况:一种为高电势(如12V),另一种为低电势(如0V), 电路工作好像处在一种“是”和“非”的判断之中,因此叫做逻辑电路。
首先来认识一下逻辑电路的种类:二、逻辑电路的种类“与”门、“或”门、“非”门以及“与非”门、“或非”门和“异或”门(符号略)今天我们主要的任务是了解“与”门、“或”门和“非”门的特点及其应用。
三、逻辑电路的特点1、“与”逻辑电路(and)演示实验(利用积件模拟教材演示实验)这是一个搭积木的过程,教师在电脑屏幕上将积木(元件)准备好,学生上讲台操作鼠标,按下其中任意一个T o gg le Sw itch(键),LED(灯)不亮;当按下两个T o gg le Switch(键),LED(灯)亮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总的扇出系数是高、低电平状态下扇出系数中较小 的一个。
N O min( N OL , N OH )
IOLmax: 保证输出不高于VOLmax的低电平最大灌电流。 IOHmax:保证输出不低于VOHmin的高电平最大拉电流。
Digital Electronics Technology 2013-8-4
2013-8-4
电工理论与应用电子系
Digital Electronics Technology
3.3. 2 CMOS反相器的电路结构和工作原理 二、电压、电流传输特性
AB段:VI VGS (TH ) N
BC段:转折区 T1导通,T2截止 VO VOH VDD 阈值电压UTH≈VDD/2 CD段:VI VDD VGS ( TH ) P 转折区中点:电流最大 T2导通,T1截止 VO VOL 0
BC段:VGS (TH ) N VI VDD VGS (TH ) P T1 , T2同时导通 1 1 若T1 , T2参数完全对称, I VDD时,VO VDD V 2 2 CMOS反相器在使用 时应尽量避免长期工 作在BC段。
3.3. 2 CMOS反相器的电路结构和工作原理 三、输入噪声容限
1. 与非门
A B
T1 T2 T3 T4
Y
0 0 通 不 通 不 1 0 1 通 不 不 通 1 1 0 不 通 通 不 1 1 1 不 通 不 通 0
3.3.5 其他类型的CMOS门电路 2.或非门
A B
T1 T2 T3 T4
Y
0 0 通 不 通 不 1
0 1 通 不 不 通 0 1 0 不 通 通 不 0 1 1 不 通 不 通 0
3.3.4 CMOS反相器的动态特性
功耗 静态功耗: 逻辑电路输出状态不发生变化时的功耗。
大多数CMOS电路具有很低的静态功耗,所以在很 多低功耗的场合采用CMOS集成电路。
动态功耗: 逻辑电路输出状态发生变化时的功耗, 其值比静态功耗大得多。
2 PC CL VDD f
2 PT CPD VDD f
设VCC = 5V 加到A,B的 VIH=3V VIL=0V 二极管导通时 VDF=0.7V
A
B
Y
A
规定2.3V以上为1 0V以下为0
B
Y
0V 0V 3V 3V
0V 3V 0V 3V
0V 2.3V 2.3V 2.3V
0 0 1 1
0 1 0 1
0 1 1 1
3.2 半导体二极管门电路 二极管构成的门电路的缺点 电平有偏移 带负载能力差
只用于IC内部电路
3.3 CMOS门电路
MOS门电路:以MOS管作为开关元件构成的门电路。 MOS门电路,尤其是CMOS门电路具有制造工艺简单、
集成度高、抗干扰能力强、功耗低、价格便宜等优点,得
到了十分迅速的发展。 MOS 管 有 NMOS 管 和 PMOS 管 两 种 。 当 NMOS 管 和 PMOS管成对出现在电路中,且二者在工作中互补,称为 CMOS管(意为互补)。MOS管有增强型和耗尽型两种。在 数字电路中,多采用增强型。
电工理论与应用电子系
Digital Electronics Technology
2013-8-4
3.3 . 1 MOS管的开关特性
(1)NMOS管的开关特性 • Vgs=0 → Rds 106 () → I 10-6 (A) 0 •Vgs Vgs(th) → Rds 10 () << RL →VRds 0
设VCC = 5V 加到A,B的 VIH=3V VIL=0V 二极管导通时 VDF=0.7V
A
B
Y
A
规定3V以上为1 0.7V以下为0
B
Y
0V 0V 3V 3V
0V 3V 0V 3V
0.7V 0.7V 0.7V 3.7V
0 0 1 1
0 1 0 1
0 0 0 1
3.2 半导体二极管门电路
二极管或门
3.3. 2 CMOS反相器的电路结构和工作原理
A 0 1 Z 1 0
PMOS管
ZA
NMOS管
工作特 点: VTP 和VTN 总 是一管导通而另一管截止 , 流过VTP和VTN的静态电流极 小(纳安数量级),因而 CMOS 反 相 器 的 静 态 功 耗 极 小 。 这 是 CMOS 电 路 最 突 出 的优点之一。
VGS ( th ) N VGS ( th ) P
VI VIL 0, VGS 1 VDD VGS ( TH ) P VGS 2 VGS (TH ) N T1导通,T2截止 VO VOH VDD VI VOH VDD时,VGS 2 VDD VGS (TH ) N , VGS 1 0 VGS (TH ) P T2导通,T1截止 VO VOL
电工理论与应用电子系
3.3.4 CMOS反相器的动态特性
一、传输延迟时间
1.原因:C I 和C L充放电,因为 ON 较大所以C L充放电影响也较大 ; R 2.t PHL , t PLH 受C L、VDD影响 ; 3.t PHL t PLH ,74HC系列为10ns,74AHC系列为5ns。
RL的计算方法
3.3.5 其他类型的CMOS门电路 三、 CMOS传输门及双向模拟开关
若 C =1 ( 接 VDD )、C’ =0(接 地),当uI =1时, VTN导通;uI =0 时, VTP导通;所以VTP 和 VTN 至 少 有 一 管 导通,使传输门TG 导通。
若 C =0(接VDD )、 C’ =1(接地),VTP 和 VTN 都 截 止 , 使 传 输门TG截止。
由于VTP和VTN在结构 上对称,所以图中的输入 和输出端可以互换,又称 双向开关。
在VI 偏离 VIH 和VIL的一定范围内, VO 基本不变; 在输出变化允许范围内 ,允许输入的变化范围 称为输入噪声容限
V NH VOH (min) V IH (min) V NL VIL(max) VOL (max)
3.3. 2 CMOS反相器的电路结构和工作原理
结论:可以通过提高VDD来提高噪声容限
电工理论与应用电子系 Digital Electronics Technology 2013-8-4
3.2 半导体二极管门电路
2. 二极管与门 3. 二极管或门
A B
电工理论与应用电子系 Digital Electronics Technology
Y
2013-8-4
3.2 半导体二极管门电路
二极管与门
电工理论与应用电子系 Digital Electronics Technology 2013-8-4
3.2 半导体二极管门电路
1. 半导体二极管的开关特性
用来接通或断开电路的开关器件应具有两种工作状态: 一种是接通(要求其阻抗很小,相当于短路),另一种是 断开(要求其阻抗很大,相当于开路)。 二极管具有单向导电性:正向导通,反向截止,相当 于一个受电压控制的电子开关。 二极管加正向电压时导通,伏安特性很陡、压降很小 (硅管为0.7V,锗管为0.3V),可以近似看作是一个闭合 的开关。二极管加反向电压时截止,反向电流很小(nA 级),可以近似看作是一个断开的开关。把uD<UT=0.5V看 成是硅二极管的截止条件。
数字电子技术 Digital Electronics Technology
第3章 门电路
电工理论与应用电子系
2013-8-4
3.1 概述
1. 门电路
是用以实现逻辑关系的电子电路,与基本逻辑关系相 对应。门电路主要有:与门、或门、与非门、或非门、 异或门等。
2. 高低电平
高电平:数字电路中较高电平代数值的范围。
D接正电源
截止
导通
电工理论与应用电子系
Digital Electronics Technology
2013-8-4
3.3. 1 MOS管的开关特性
(2)PMOS管的开关特性 D接负电源
导通
截止
电工理论与应用电子系
Digital Electronics Technology
2013-8-4
3.3. 2 CMOS反相器的电路结构和工作原理 一、电路结构
电工理论与应用电子系 Digital Electronics Technology 2013-8-4
3.2 半导体二极管门电路
电工理论与应用电子系
Digital Electronics Technology
2013-8-4
3.2 半导体二极管门电路
在低速脉冲电路中,二极管开关 由接通到断开,或由断开到接通所需 要的转换时间通常是可以忽略的。然 而在数字电路中,二极管开关经常工 作在高速通断状态。由于PN结中存储 电荷的存在,二极管开关状态的转换 不能瞬间完成,需经历一个过程。 tre 叫做反向恢复时间。该现象说明, 二极管在输入负跳变电压作用下,开 始仍然是导通的,只有经过一段反向 恢复时间tre 之后,才能进入截止状态。 由于tre 的存在,限制了二极管的开关 速度 。
3.3.5 其他类型的CMOS门电路
存在的缺点: (1) : 输出电阻RO受输入状态影响 A 1, B 1则RO RON 2 RON 4 2 RON A 0, B 0则RO RON 1 // RON 3 A 0, B 1则RO RON 1 RON A 1, B 0则RO RON 3 RON 输入端越多, OL 越高,VOH 也更高 V ( 3)使T2、T4的VGS 达到开启电压时, 对应的VI 值不同 1 RON 2