高考题型之-频率分布直方图备课讲稿
【授课教案】频率分布直方图---教学设计
讲稿导图
(自带设备)
3
课题 授课班级
教材
§10.4.1 频率分布直方图
课时
1 课时
17 会计
执教者
S
李广全,李尚志. 北京:高等教育出版社. 数学(基础模块)下册. 2013 年.142-145.
教材分析
本课内容选自高等教育出版社的国家规划新教材《数学(基础模块)》下册第 10 章第 4 节。中职数学教学 大纲(2009)指出:本单元教学中应注重结合实例分析来掌握概念,强调了使用信息技术处理数据的技能。
教学环境
本课的教学实施地点是 学校的多媒体教室,教室具备 A/V 系统,教师端具有控制管 理功能,学生端有 8 台 60 寸 的触屏式教学一体机,安装有 Window 7 系统以及 WPS 和 GeoGebra 等软件,所有计算机 都能连接互联网。校内提供了 多个无线网络热点可供电子 设备连接使用。
6
教学设计思路与教学方法
根据绿色教育的理念,着眼于学生的可持续发展,数学教学不仅要帮助学生获得有用的知识,还应该让他 们利用这些知识理解生活。依据以学定教,以教促学的教学原则,结合认知负荷理论,本课将采用任务驱动的 教学策略和混合式教学方式开展教学。
本课以“我市将举办一场国际马拉松比赛,请为举办时间提出你的建议”为核心任务。学生以小组合作与 个人独立思考相结合的方式,通过互联网收集资料、数据,利用电子表格软件和频率分布直方图对数据进行整 理和分析,经历数据的收集、整理和分析的过程,学习“用数据说话”的方法,培养理性思维和勇于探索的科 学精神,提升数据分析素养。为降低学生的内在认知负荷,我们基于学生的最近发展区实行小步子教学,把核 心任务进行分解,不断的缩小学生的经验与教学目标的差距。使用学生的成果生成问题,激发学生的学习兴趣。
高中数学 频率分布直方图教案 苏教版必修3
江苏省连云港市灌云县四队中学高中数学必修三教案:频率分布直方图中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
频率分布直方图PPT教学课件
欧文·斯通著
常涛译 北京出版社 1983年版 3、《梵高画传》 周时奋编著 山东画报出版社
4、《西洋画派十二讲》 丰子恺 湖南文艺出版社 5、《西洋名画巡礼·建筑讲话》 丰子恺
湖南文艺出版社
6、《美术大师聚焦》 中央戏剧出版社
7、 《十九世纪的艺术》 (法)尼古拉·第弗利
吉林美术出版社
8、 《孤独的大师(寂寞的恒星)》
3
0.050
60
1.000
5、画频率分布直方图:
频率 组距
身高 (厘米)
145.5 148.5 151.5 154.5 157.5 160.5 163.5 166.5 169.5
小正方形的面积是什么?
决定组数与组距的一般方法:
数据越多,分得的组数也越多。
假如数据总数为n 当n≤50时,则分为5 ~ 8组; 当50≤n≤100时,则分为8 ~ 12 组;
3,990万美 幅)以3990万 美元的天价被 日本人买走,这
5,330万美元
《自画像》
self-portroit
(1889年8月末)
1998年,在纽约的 一次拍卖会上,一 幅梵·高的自画像, 甚至被拍出了7100 万美元的天价
7,100万美
《加歇医生像》 (1890年6月) 1990年5月15日,这 幅"加歇医生像"在 3分钟内以8250万 美元的价格拍卖给 了日本第二大造纸 商-- Ryoei Saito先 生.创下了艺术品拍 卖价格的世界最高 纪录,直到今天依然
? 我想说:
这位传奇性的画家 大师生前默默无闻,仅仅 卖出过一幅画,贫困自杀 而死;可是死后,他的作 品却为人们赞誉有加,名 满天下。今年是他的诞辰 150周年,难道你不想对 他说说些什么吗?如果你 是梵高,难道今天也不想 对世人说些什么吗?
频率分布与直方图课件
在统计分析中的应用
直方图是统计分析中常用的可视化工具,用于展示数据的分 布特征和规律。
通过直方图,可以直观地比较不同数据集的分布差异,进行 数据分类、聚类等分析,为决策提供支持。
在数据挖掘中的应用
直方图用于数据预处理阶段,帮助数据挖掘人员了解数据 的分布情况,发现异常值和离群点。
在数据挖掘过程中,直方图可以用于可视化聚类结果、关 联规则等,帮助挖掘人员更好地理解数据和挖掘结果。
纵轴
表示频数或频率,通常以 矩形的高度表示。
直条
代表各组频数的矩形条, 宽度表示组距,高度表示 频数。
直方图的绘制方法
01
02
03
04
数据整理
将数据按照数值大小进行排序 ,并确定数据分组的组距和组
数。
计算频数
根据数据分组和组距计算各组 的频数。
绘制矩形条
在横轴上标出各组的组中值, 以纵轴为频数绘制矩形条,矩
根据频数绘制直方图,展 示工资的分布情况。
对数据进行整理,统计每
分析直方图,了解工资的
•·
个工资段的频数。
集中趋势和离散程度。
实例三
降雨量数据的频率分布与 直方图分析
收集某地区一段时间内的 降雨量数据。
根据频数绘制直方图,展 示降雨量的分布情况。
01
02
03
04
05
06
对数据进行整理,统计每
分析直方图,了解降雨量
频率分布的作用
阐述频率分布的重要意义。
频率分布是数据分析中不可或缺的环节,它可以帮助我们了解数据的集中趋势、离散程度和分布形态,从而为进一步的数据 分析和挖掘提供基础。
频率分布的分类
对频率分布进行分类说明。
高中数学专题讲义-频率直方图
一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样. 抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同. 随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N 的总体中抽取容量为n 的样本,如果总体容量能被样本容量整除,设Nk n=,先对总体进行编号,号码从1到N ,再从数字1到k 中随机抽取一个数s 作为起始数,然后顺次抽取第2(1)s k s k s n k +++-L ,,,个数,这样就得到容量为n 的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N 是有限的. ⑵简单随机样本数n 小于等于样本总体的个数N . ⑶简单随机样本是从总体中逐个抽取的. ⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N 恰好是样本容量n 的整数倍时,取Nk n=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n 整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍知识内容板块二.频率直方图然相等,为N n.二.频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出.四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x L ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=L ,样本标准差s =简化公式:22222121[()]n s x x x nx n=+++-L .五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系. 2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图.散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的.独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥.22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据11122122n 4个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验.六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性. 回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中a b ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i ya bx =+. 设x Y ,的一组观察值为()i i x y ,,12i n =L ,,,,且回归直线方程为ˆya bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y y i n -=L ,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点. 记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式:1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数.3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆab ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynxybxx xn x ====---==--∑∑∑∑$,ˆˆa y bx =-,其中11n i i x x n ==∑,11nii y y n ==∑ 由此得到的直线ˆˆya bx =+$就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b $分别为a ,b 的估计值,ˆa称为回归截距,b $称为回归系数,ˆy 称为回归值. 5.相关系数:()()nnii i ixx y y x ynx yr ---==∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案 ①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析.②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑ 22222()2i i ii i i na a b x y b x b x y y =+-+-+∑∑∑∑∑,把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i i ib x y y b x a n n --=-=∑∑∑∑时取最小值. 同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-, 其中1i y y n =∑,1i x x n=∑是样本平均数. 9. 对相关系数r 进行相关性检验的步骤: ①提出统计假设0H :变量x y ,不具有线性相关关系;②如果以95%的把握作出推断,那么可以根据10.950.05-=与2n -(n 是样本容量)在相关性检验的临界值表中查出一个r 的临界值0.05r (其中10.950.05-=称为检验水平); ③计算样本相关系数r ;④作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系. 说明:⑴对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.⑵这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.⑶这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有______名.典例分析【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )0.1频率组距A .[610),的频率为0.32B .若样本容量为100,则[1014),的频数为40C .若样本容量为100,则(10]-∞,的频数为40D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位.⑴求m ;10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】 (2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm 之间的概率; ⑶从样本中身高在165~180cm 之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm ).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】 为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内? ⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题: ⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎6050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.序号 (i ) 分组 (睡眠时间) 组中值 (i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.5 10 0.205[8,9]8.5 40.08在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。
频率分布直方图课件
由于频率分布直方图是基于数据的近似离 散化,因此无法准确地反映数据的分布情 况,特别是对于具有复杂分布的数据。
无法表示数据间的相关性
无法进行参数估计和假设检验
频率分布直方图只能展示单个变量的分布 情况,无法表示两个或多个变量之间的相 关性。
频率分布直方图主要用于数据的描述性分 析,无法进行参数估计和假设检验等推断 性分析。
于反映数据的中心趋势。频率பைடு நூலகம்布直方图可以直观地展示数据在不同区
间的分布情况,从而更好地理解数据的分布特征。
03
众数
众数是数据中出现次数最多的数值。频率分布直方图可以清晰地展示众
数所在区间的数据分布情况,帮助我们更好地理解众数的含义和作用。
与箱线图、折线图等其他图形的比较
要点一
箱线图
要点二
折线图
箱线图是一种用于展示一组数据分散情况的统计图,它包 括数据的最大值、最小值、中位数和异常值等统计量。频 率分布直方图和箱线图各有优缺点,箱线图可以展示数据 的分散情况和异常值,但无法展示数据的具体分布情况; 频率分布直方图可以清晰地展示数据的分布情况,但无法 很好地展示数据的分散情况和异常值。
数据中心位置与离散程度判断
确定数据的中位数和众数
频率分布直方图可以显示数据的频数分布,从而确定数据的 中位数和众数,了解数据的中心位置。
评估数据的离散程度
通过观察频率分布直方图中数据的分散程度,可以评估数据 的离散程度,进一步了解数据的稳定性。
数据异常值检测
识别异常值
频率分布直方图可以显示数据的频数分布,通过观察直方图的形状和异常的数据点,可 以识别出异常值。
纵轴
表示频数或频率,即落在每个数 据范围内的数据点的个数。
《频率分布直方图》示范公开课教学课件【高中数学北师大版】
宽度的最大值是158mm,最小值是121mm.
计算极差:mm.
这说明样本观测数据的变化范围是37mm.
146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141
频率分布直方图课件
绘制直方图的步骤
收集数据
如何收集数据,以及注意事项
确定组距
如何选择合适的组距
分组
如何将数据分为不同的组
统计频数或频率
如何计算每个组的频数或频率
绘制直方图
如何用数据绘制直方图
直方图的解读和应用
1
分布分析
2
如何利用直方图对数据分布进行分析和
解读
3
形状和特征
各种形状的直方图代表了不同的数据分 布形态和特征
频率分布直方图ppt课件
# 频率分布直方图PPT课件
目的和背景
1 数据分析的基础
介绍直方图在数据分析中的重要作用
2 可视化数据
将数据可视化有助于更好的理解和解释数据
直方图的构成
横轴和纵轴
介绍直方图的两个轴,以及它们的作用
组数和组距
解释如何选择合适的组数和组距
频率和频率密度
解释什么频率和频率密度,以及它们的区别
比较和评价
如何利用直方图进行数据比较和评价
结语
数据可视化的重要性
强调用直方图等数据可视化工具帮助人们更好地理 解和解释数据
更多学习资料和实例
提供其他学习资源和实例,以便更多人学习利用直 方图进行数据分析
参考文献
统计学基础知识
一本专门介绍统计学基础知识的书籍
直方图绘制方法和解读教程
一份详细的直方图绘制方法和解读教程
频率分布直方图教案
用样本的频率分布估计总体的频率分布频率分布直方图教学目标:知识目标:1.会通过实际问题作出频率分布直方图2.会利用频率分布直方图解决实际问题能力目标:提高学生解决实际问题的能力,体会数形结合思想在统计中的应用情感目标:体会数学知识解决实际问题的作用,增强学生学习数学的信心。
教学重点:作图、用图解决问题。
教学难点:解决与频率分布直方图有关的实际问题.教学方法:启发引导法,练习指导法,多媒体辅助教学法授课类型:复习课教学过程:一.问题情境引入:问题1.用样本估计总体的方法有哪些?问题 2.频率分布直方图中横轴表示什么?纵轴表示什么?频率怎么计算?小长方形的面积之和为多少?二.自主探究:问题1.样本估计总体的方法:形:频率分布直方图数:众数频率分布折线图中位数总体密度曲线平均数茎叶图方差标准差问题2:横轴:组距纵轴:频率/组距频率=频数/容量=小长方形的面积小长方形的面积之和=1三.知识应用:1. 某校共有5000名学生,该校学生每月课外读物方面的支出总体上在20—60元之间其频率分布直方图如右图所示,为具体了解同学们购买课外读物的具体情况,按支出的情况进行分层抽样,抽出一个容量为100的样本进行分析,其中支出在【50,60】元的同学有______人。
变式训练:(2013·湖北高考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.2.(2014全国新课标1)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:在答题卡上作出这些数据的频率分布直方图:变式训练:为了增强学生的环保意识,某中学随机抽取了50名学生举行了一次环保知识竞赛,并将本次竞赛的成绩(得分均为整数,满分100分)整理,制成下表:反思小结:1.作图方法2.用频率分布直方图解决问题用到的知识点有哪些?作业:1.(2013·辽宁高考)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A.45 B.50 C.55 D.602.(2013·惠州调研)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;。
高中数学频率分布问题教案
高中数学频率分布问题教案教学内容:频率分布教学目标:1. 了解频率分布的概念及计算方法。
2. 掌握如何通过数据集绘制频率分布表和频率分布直方图。
教学重点和难点:重点:频率分布的概念、计算方法以及绘制频率分布表和直方图。
难点:如何解决频率分布问题中的实际应用问题。
教学准备:1. 准备一些数据集。
2. PPT或白板笔记。
3. 范例题目及解析。
教学步骤:一、导入(5分钟)教师引导学生回顾统计学中频率的概念,引出频率分布的概念,并解释其重要性和实际应用。
二、讲解频率分布的计算方法(10分钟)1. 定义频率分布。
2. 计算频数、频率、累计频数、累计频率。
3. 举例解释。
三、绘制频率分布表和频率分布直方图(15分钟)1. 按照给定的数据集,计算频率。
2. 绘制频率分布表。
3. 绘制频率分布直方图。
4. 解释直方图的意义和特点。
四、练习与巩固(15分钟)1. 学生根据提供的数据集,自行计算频率和绘制频率分布表和直方图。
2. 教师提供一些实际应用问题,让学生运用频率分布概念解决问题。
五、课堂小结(5分钟)教师对本节课所学内容进行总结,强调频率分布的重要性和实际应用。
六、作业布置(5分钟)布置相关作业,让学生进一步巩固所学知识。
教学反思:本节课主要围绕频率分布的概念、计算方法以及应用展开,通过大量的练习和实际问题解决,让学生能够熟练掌握频率分布的相关知识,并能够运用到实际生活中。
通过本节课的学习,希望学生们能够增强对统计学知识的理解和应用能力。
频率分布直方图讲课文档
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
分析:月用水量在3 t以上的居民所占的比例为6% +4%+2%=12%,即大约有12%的居民月用水量在3t以 上,88%的居民月用水量在3t以下. 因此,居民月 用水量标准定为3t是一个可以考虑的标准.
现在十三页,总共五十二页。
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
想一想:你认为3t这个标准一定能够保证85%以 上的居民用水不超标吗?如果不一定,那么哪些 环节可能会导致结论的差别?
现在十四页,总共五十二页。
现在二页,总共五十二页。
二、教学重点与难点
• 重点:会列频率分布表,画频率分布直方 图、频率折线图和茎叶图。
• 难点:能通过样本的频率分布估计总体的 分布。
现在三页,总共五十二页。
现在四页,总共五十二页。
我国是世界上严重缺水的国家之一, 城市缺水问题较为突出。
2000年全国主要城市中缺水情况排在前10位的城市
现在五页,总共五十二页。
某市政府为了节约生活用水,计划在本市试行居 民生活用水定额管理,即确定一个居民月用水量 标准a , 用水量不超过a的部分按平价收费,超过a 的部分按议价收费。
①如果希望大部分居民的日常生活不受影响,那 么标准a定为多少比较合理呢?
②为了较合理地确定这个标准,你认为需要做 哪些工作?
0.067
0.033
0.027
现在十八页,总共五十二页。
频数分布直方图的说课稿
频数分布直方图的说课稿频数分布直方图的说课稿1教学目标1、了解频数分布直方图的概念2、会读频数分布直方图。
3、会画频数分布直方图。
重点和难点本节教学的重点是频数分布直方图。
画频数分布直方图过程比较简单,是本节教学的一个难点。
教学过程一、引入新课引例:你能依据如图统计图说出有关被抽查的40张碟片播放时间的三条信息吗?请同学们小组争论然后给出结论在得到了数据的频率分布表的基础上,我们还经常需要用统计图把它直观地表示出来。
用来表示频数分布的基本统计图叫做频数分布直方图。
由此引出课题。
二、讲授新课由引例归纳出频数分布直方图概念:一般地,用来表示频数分布的基本统计图叫做频数分布直方图。
三、例题讲解例1抽查20名同学每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,9080,89,82,81,84,72,83,77,79,75。
请制作表示上述数据的频数分布直方图。
分析:老师可引导同学自己完成1、确定组距、组数、组界。
2、组中值的意义和作用。
解:(1)列出频数分布表,为便利起见,我们也给出组中值的数据20名同学每分脉搏跳动次数的频数分布直方图表组别(秒)组中值频数67.5~72.570272.5~77.575477.5~82.580982.5~87.585387.5~92.5902(2)分别以横轴上每组别两边界点为端点的线段为底边,作高为相应频数的矩形,就得到所求的频数分布直方图。
注:为了使图形清楚美观,频数分布直方图的横轴上可只标出组中值,不标出组界。
2、随堂练习:P57课内练习四、辨析频数分布直方图与一般条形统计图的区分。
频数分布直方图是经过把数据分组,列频数分布表得到的.,数据分组必需连续,因些各个长方形的竖边依次相邻。
这是一般条形统计图不要求的。
五、合作学习课本P56留意:在讲解时,要让同学分析各组中的组界值是多少?怎么样求?六、课堂小结通过本节课的学习,让同学谈谈与体会七、布置作业必做题:课本“作业题”第1、2题;选做题:课本“作业题”第3、4题。
频数分布直方图专题讲座
频数分布直方图专题讲座绍兴县平水镇中学:宋英频数分布直方图的图形特征:横轴表示数据组,纵轴表示频数(即数据出现的个数)。
频数分布直方图能清楚地表示出每个项目的具体数目,所有小矩形高的和等于样本容量;小矩形的面积等于频率,所有小矩形的面积之和(即频率之和)为1。
由于它所包含的知识点相对于其他统计图比较多,所以在考试中常出现。
下面就以几个比较典型的例子来总结如何解答这类题目。
例1: (2005年常州)将100个数据分成8个组,如下表:组号 1 2 3 4 5 6 7 8频数11 14 12 13 13 x 12 10则第六组的频数为【】A、12B、13C、14D、15解析:频数是指在一个样本中,每个数据出现的次数。
在频数分布中,落入每个小组内数据的个数,叫做这个小组的频数。
所以x=100-11-14-12-13-13-12-10=15 选D 评注:本题是一道基础型试题,主要考查了频数的概念及计算。
例2:已知50个数据的分组以及各组的频数如下:53.5~55.5 455.5~57.5 757.5~59.5 959.5~61.5 1161.5~63.5 1063.5~65.5 665.5~67.5 3列出这组数据的频率分布表,画出频数分布直方图.解析:这组数据的频率分布表为:分组频数累计频数频率53.5~55.5 4 0.0855.5~57.5 7 0.1457.5~59.5 9 0.1859.5~61.5 11 0.2261.5~63.5 正正10 0.2063.5~65.5 6 0.1265.5~67.5 3 0.06合计50 1.00频数分布直方图为:.评注:本题主要考查绘制频数分布直方图的一般步骤:1.计算最大值与最小值的差;2.分组。
决定组距和组数;3.确定分点;4.画频数分布表。
5.根据频数分布表绘制频数分布直方图。
横轴表示数据,纵轴表示频数。
例3:某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考题型之频率分布直方图
知识点:............................................................................................................................................................................... - 1 -典型例题:........................................................................................................................................................................... - 1 -答案....................................................................................................................................................................................... - 4 -
知识点:
典型例题:
1.某工厂对一批产品进行了抽样检测.有图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是
(A)90 (B)75 (C)60 (D)45
2.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于19秒。
右图是按上述分组方法得到的频率分布直方图。
设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为
(A)0.9,35(B)0.9,45(C)0.1,35(D)0.1,45
3.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为
A.10
B.50
C.60
D.140
4.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60km/h的汽车数量为_____________;
5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数
..为.
6.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出( )
A.100人
B.90人
C.65人
D.50人
7.济南交警部门随机测量了顺河高架桥南下口某一时间段经过的2000辆汽车的时速,时速频率分布直方图如图所示,则时速超过70km/h的汽车数量为_______
8.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:
根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 ( )
(A)20 (B)30 (C)40 (D)50
9.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.
10.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据
可知a=。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取
18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为。
11.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm 。
本类题的特征是:__________________________________________________________________________________
__________________________________________________________________________________________________ 本类题的做法是:__________________________________________________________________________________ __________________________________________________________________________________________________
答案
1.【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为n ,则300.036=n
,所以120=n ,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A.
2. A .【分析】:从频率分布直方图上可以看出0.9x =,35y =.
3.C 【解析】以50为样本容量可计算出超过3
15m 用水量的户数为()50.050.015015,⨯+⨯=所以可估算200户居民超过3
15m 用水量的户数60.
4. 38
5. 30
6.B
7.200
8.C
9.25 10.答案:0.030 3
11. [解析]考查频率分布直方图的知识。
100×(0.001+0.001+0.004)×5=30。