高二数学(理)《极坐标系》()

合集下载

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

2022年高考数学(理)一轮复习教师用书:第十二章 坐标系与参数方程 Word版含答案

第1课时 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧x =ρcos θy =ρsin θ,或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ<π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ (0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2 过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)考点一 极坐标与直角坐标的互化[例1] (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6化成直角坐标;(2)把点M 的直角坐标(-3,-1)化成极坐标. 解:(1)∵x =-5cos π6=-52 3,y =-5sin π6=-52,∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-52 3,-52.(2)ρ=(-3)2+(-1)2=3+1=2,tan θ=-1-3=33. ∵点M 在第三象限,ρ>0,∴最小正角θ=7π6. 因此,点M 的极坐标是⎝ ⎛⎭⎪⎫2,7π6[方法引航] (1)在由点的直角坐标化为极坐标时,肯定要留意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,肯定要留意变量的范围.要留意转化的等价性.1.点P 的直角坐标为(1,-3),则点P 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,43π C.⎝ ⎛⎭⎪⎫2,-π3 D.⎝ ⎛⎭⎪⎫2,-43π 解析:选C.由于点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3. 2.若点P 的极坐标为⎝ ⎛⎭⎪⎫2,π3,则P 到x 轴的距离为________.解析:y =ρsin θ=2×sin π3= 3. 3考点二 直角坐标方程与极坐标方程的互化及应用[例2] 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.解:(1)∵ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1.∴12x +32y =1.即曲线C 的直角坐标方程为x +3y -2=0.令y =0,则x =2;令x =0,则y =233. ∴M (2,0),N ⎝⎛⎭⎪⎫0,233. ∴M 的极坐标为(2,0),N 的极坐标为⎝ ⎛⎭⎪⎫233,π2.(2)∵M ,N 连线的中点P 的直角坐标为⎝ ⎛⎭⎪⎫1,33,∴P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ).[例3] 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1. (1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.解:(1)设O 为极点,OD 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,则∠AOD =π4-θ或∠AOD =θ-π4,OA =OD cos ⎝ ⎛⎭⎪⎫π4-θ或OA =OD cos ⎝ ⎛⎭⎪⎫θ-π4,所以圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4.(2)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,得22ρ(sin θ+cos θ)=1,∴直线l 的直角坐标方程为x +y -2=0,又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫22,22满足直线l 的方程,∴直线l 过圆C 的圆心,故直线被圆所截得的弦长为直径2.[方法引航] 直角坐标方程与极坐标方程的互化,关键要把握好互化公式,争辩极坐标系下图形的性质,可转化为我们生疏的直角坐标系的情境.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)由于x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.[高考真题体验]1.(2022·高考全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x =t cos αy =t sin α,(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153.2.(2021·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t ,消去参数t ,化为一般方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x-10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的一般方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1y =1,或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.3.(2021·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32= t 2+12,故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).课时规范训练1.已知圆O 1和圆O 2的极坐标方程为ρ=2,ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4,由于ρ2-22ρcos ⎝ ⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.2.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 故曲线C 的方程为x 2+y 24=1.(2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,求实数a 的值.解:由ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y -2)2=4, 由直线ρsin θ=a ,得直线的直角坐标方程为y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示.由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝ ⎛⎭⎪⎫33a ,a .又∵B 在x 2+y 2-4y =0上, ∴⎝ ⎛⎭⎪⎫33a 2+a 2-4a =0, 解得a =3(a =0舍).4.从极点O 作直线与另始终线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12. (1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,求|RP |的最小值.解:(1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12. ∵ρ0cos θ=4,∴ρ=3cos θ,即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程, 得x 2+y 2=3x ,即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭⎪⎫322,知P 的轨迹是以⎝ ⎛⎭⎪⎫32,0为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形(图略)易得|RP |的最小值为1.第2课时 参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到一般方程.(2)假如知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入一般方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t )y =g (t ),就是曲线的参数方程.2.常见曲线的参数方程和一般方程点的轨迹 一般方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧ x =x 0+t cos αy =y 0+t sin α,(t 为参数) 圆x 2+y 2=r 2 ⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数) 双曲线 x 2a -y 2b 2=1,(a >0,b >0)⎩⎨⎧x =a sec φy =b tan φ,(φ为参数) 抛物线 y 2=2px (p >0)⎩⎨⎧x =2pt 2,y =2pt(t 为参数)考点一 参数方程与一般方程的互化及应用命题点1.求参数方程2.消参数化为一般方程[例1] (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:(1)圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ, y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)求直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos αy =3sin α,(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α,消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[方法引航] 1.由一般方程求参数方程,要依据参数的意义建立关系.2.由参数方程得到一般方程的思路是消参,消去参数的方法要视状况而定,一般有三种状况:(1)利用解方程的技巧求出参数的表达式,然后代入消去参数,或直接利用加减消元法消参; (2)利用三角恒等式消去参数,一般是将参数方程中的两个方程分别变形,使得一个方程一边只含有sin θ,另一个方程一边只含有cos θ,两个方程分别平方后两式左右相加消去参数; (3)依据参数方程本身的结构特征,选用一些机敏的方法从整体上消去参数.,将参数方程化为一般方程时,要留意防止变量x 和y 取值范围的扩大或缩小,必需依据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.1.若将本例(1)改为:圆上的任一点P 与圆心的连线的旋转角为参数θ,求圆的参数方程.解:圆心为⎝ ⎛⎭⎪⎫12,0,r =12.设P (x ,y ),则x =12+12cos θ, y =12sin θ(0≤θ≤2π) ∴圆的参数方程为 ⎩⎪⎨⎪⎧x =12+12cos θ,y =12sin θ.2.若将本例(2)的曲线变为⎩⎨⎧x =3cos αy =4sin α,其余不变,求交点个数.解:⎩⎪⎨⎪⎧x =3cos αy =4sin α,即⎩⎪⎨⎪⎧x3=cos α,y 4=sin α.∴x 29+y 216=1.而直线x +y -1=0,过点(1,0),点在椭圆x 29+y 216=1内,故直线与曲线有两个交点. 考点二 极坐标方程与参数方程的综合应用命题点1.直线与圆的方程应用2.直线与椭圆的方程应用[例2] (1)(2022·高考全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. ①说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:①消去参数t 得到C 1的一般方程为x 2+(y -1)2=a 2.所以C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的一般方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. ②曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.(2)(2022·高考全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.①写出C 1的一般方程和C 2的直角坐标方程;②设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解:①C 1的一般方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.②由题意,可设点P 的直角坐标为(3cos α,sin α).由于C 2是直线,所以|PQ |的最小值即为P到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2sin ⎝ ⎛⎭⎪⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.[方法引航] 对于曲线方程为极坐标方程或参数方程时,一般都化为平面直角坐标系中的一般方程f (x ,y )=0再应用.假如直接应用,要明确极坐标(ρ,θ)及参数的意义.1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程.得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎪⎨⎪⎧t 1+t 2=32,t 1·t 2= 4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.2.(2021·甘肃三校联考)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数),在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(1,2),求|P A |+|PB |的最小值. 解:(1)由ρ=6sin θ得ρ2=6ρsin θ,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9. 所以圆C 的直角坐标方程为x 2+(y -3)2=9.(2)将l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α-sin α)t -7=0. 由已知得Δ=(2cos α-2sin α)2+4×7>0,所以可设t 1,t 2是上述方程的两根,则⎩⎪⎨⎪⎧t 1+t 2=-2(cos α-sin α),t 1·t 2=-7.由题意得直线l 过点(1,2),结合t 的几何意义得 |P A |+|PB |=|t 1|+|t 2|=|t 1-t 2| =(t 1+t 2)2-4t 1t 2=4(cos α-sin α)2+28 =32-4sin 2α≥32-4=27.所以|P A |+|PB |的最小值为27.[高考真题体验]1.(2021·高考课标全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.2.(2022·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,依据(1)中你得到的参数方程,确定D 点的坐标.解:(1)C 的直角坐标方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.由于C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.3.(2022·高考课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的一般方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的一般方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.4.(2021·高考课标全国卷Ⅱ)已知动点P ,Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). 故M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2αy =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.课时规范训练1.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α,(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3.当α=5π6时, |AB |取得最大值,最大值为4.2.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1. 所以⎩⎪⎨⎪⎧b 2=1,-ab2+1=2,解得⎩⎪⎨⎪⎧a =-1,b =2.3.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试推断直线l 与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcos θ+ρsinθ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 由于圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.4.在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B . (1)若α=π3,求线段AB 的中点M 的坐标;(2)若|P A |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率. 解:(1)将曲线C 的参数方程化为一般方程为x 24+y 2=1. 当α=π3时,设点M 对应的参数为t 0.直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的一般方程x 24+y 2=1,得13t 2+56t +48=0, 设直线l 上的点A ,B 对应参数分别为t 1,t 2. 则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313.(2)将⎩⎪⎨⎪⎧x =2+t cos α,y =3+t sin α代入曲线C 的一般方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 由于|P A |·|PB |=|t 1t 2|=12cos 2α+4sin 2α, |OP |2=7, 所以12cos 2α+4sin 2α=7,得tan 2α=516. 由于Δ=32cos α(23sin α-cos α)>0,故tan α=54.所以直线l 的斜率为54.。

高二数学极坐标试题答案及解析

高二数学极坐标试题答案及解析

高二数学极坐标试题答案及解析1.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=(ρ∈R)和ρcos θ=2C.θ=(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1【答案】B【解析】圆的方程可化为,垂直与x轴的两直线方程为与,极坐标方程为与,答案为B.【考点】极坐标与直角坐标的转化2.极坐标系中,以(9,)为圆心,9为半径的圆的极坐标方程为( )A.B.C.D.【答案】A【解析】将原极坐标点(9,),化成直角坐标,∴圆的直角坐标方程为:,即x2+y2-9x-9y=0∴圆的极坐标方程是ρ=18cos(-θ).故选:A.【考点】点的极坐标和直角坐标的互化.3.曲线关于直线对称的曲线的极坐标方程是【答案】【解析】曲线关于直线对称的曲线的极坐标方程是:,即,故答案为:【考点】简单曲线的极坐标方程.4.在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲线与相交于、两点.(1)求的值;(2)求点到、两点的距离之积.【答案】(1);(2).【解析】(1)将参数方程转化为直角坐标系下的普通方程;(2)掌握常见的将参数方程转化为直角坐标系下的普通方程;(3)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:解(1) 曲线的普通方程为,,则的普通方程为,则的参数方程为: 2分代入得,. 6分(2) . 10分【考点】(1)参数方程的应用;(2)直线与椭圆相交的综合问题.5.已知直线(为参数),(为参数), 若,则实数.【答案】-1.【解析】直线(为参数)的普通方程为,即;直线(为参数)的普通方程为,即;因为,所以,得.【考点】直线的参数方程、直线的垂直关系.6.在极坐标系中,圆的垂直于极轴的两条切线方程分别为().A.和B.和C.和D.和【答案】B【解析】圆的普通方程为,即;圆的与轴垂直的直线方程为或;所以切线方程的极坐标方程为或.【考点】极坐标方程与普通方程的互化、圆的切线方程.7.在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.【答案】(1),;(2)当时.【解析】解题思路:(1)利用直线与椭圆的参数方程与普通方程的互化公式求解即可;(II)利用点到直线的距离公式转化从三角函数求最值即可求解.规律总结:参数方程与普通方程之间的互化,有公式可用,较简单;往往借助参数方程研究直线与椭圆的位置关系或求最值.试题解析:(1)由题意知,直线的直角坐标方程为,由题意知曲线的直角坐标方程为,∴曲线的参数方程为(为参数).(2)设,则点到直线的距离,当时,即点的坐标为时,点到直线的距离最大,此时.【考点】1.参数方程与普通方程的互化;2.点到直线的距离公式.8.已知两曲线参数方程分别为和,它们的交点坐标为____________.【答案】【解析】将两曲线方程化为一般方程为与,联立两曲线方程,解得,即交点坐标为.【考点】曲线的参数方程.9.在极坐标系中,直线的方程为,则点M到直线的距离为.【答案】2【解析】直线方程为,点M坐标为,即,所以点M到直线的距离为.【考点】1.极坐标;2.点到直线的距离.10.在极坐标中,圆的圆心C到直线的距离为____【答案】【解析】极坐标系与平面直角坐标系的变换公式为,所以极坐标系中的圆的方程可化为,直线方程可化为,所以圆心到直线的距离.【考点】1.极坐标方程与平面直角坐标方程的转化;2.点到直线的距离公式.11.在直角坐标系xOy中,直线l的方程为x-y+2=0,曲线C的参数方程为(α为参数).(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【答案】(1)点P在直线l上;(2).【解析】(1)点极坐标系下的点P化为直角坐标,即可判断点P与直线l的关系;(2)点Q是曲线C上的动点,∴可设Q(cosα,sinα),利用点到直线的距离公式,可以将Q到l的距离表示为,利用三角恒等变形,即可求得Q到直线l的最大距离.(1)把极坐标系下的点P化为直角坐标,得P(0,2). 3分因为点P的直角坐标(0,4)满足直线l的方程x-y+2=0,所以点P在直线l上. 4分(2)因为点Q在曲线C上,故可设点Q的坐标为(cosα,sinα),从而点Q到直经l的距离为9分由此得,当时,d取得最大值,且最大值为. 12分.【考点】 1、极坐标与直角坐标的互化;2、点到直线距离公式;3、三角恒等变形.12.在极坐标系(ρ,θ)(0 ≤θ<2π)中,曲线=与的交点的极坐标为______.【答案】【解析】=与联立方程得,极坐标为【考点】极坐标方程点评:有关于极坐标的问题常考极坐标与直角坐标的互化:极坐标与直角坐标的互化13.极坐标方程表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆【答案】C【解析】方程可化为或,所以表示的曲线为一条直线和一个圆.【考点】本小题主要考查极坐标的应用.点评:解决本小题时,不要忘记造成漏解.14.下列在曲线上的点是()A.B.C.D.【答案】B【解析】曲线化普通方程,代入点的坐标验证可知点成立【考点】参数方程化普通方程点评:参数方程化为普通方程主要是消去参数,常用代入法加减法消参,本题借助了三角函数公式15.圆的圆心坐标是()A.B.C.D.【答案】A【解析】根据题意,由于圆,两边同时乘以ρ,可知其直角坐标方程为,可知圆心,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得到圆心坐标为,选A。

青海省海东市第二中学高中数学选修4-4:12极坐标系课件(共12张PPT)

青海省海东市第二中学高中数学选修4-4:12极坐标系课件(共12张PPT)

23 6
7
5
3
2 12
2
3 3
12
3
4
4
5
6
11 12
13 12
E F
C
6
12
AB
O
X
23
12
7 6
D
5
4 4
3
17 3
12
2
G
5
19 12
3
11 6
7 4
平安区第一高级中学
例2:说出下图中各点的极坐标
A(4, 0 )
B(2, 4 )
5
C(3, )
2
6
D(1,5 )
6
E(3.5, )
2.给定一个(,θ),可以在坐标平面内确定惟一 的点M;给定平面上一点M,却有无数个极坐标与之对应, 即极坐标 (,θ)与(,θ+2k )表示同一个点.
平安区第一高级中学
思考:平面内的一个点既可以用直角坐标系表
示,也可以用极坐标表示,那么,这两 种坐标之间有什么关系呢?
谢谢
F(6, 4 )
3
G(5, 5 )
3
你能写出O点坐标吗?
2
4
C
E
D
B
A
O
X
F
4
G
5
3
3Байду номын сангаас
探究二:平面上一点是否唯一确定一个极坐标?
注意:
1.当M在极点时,它的极坐标=0,θ可以取任意 值。极点坐标为(0,θ)(θ R),即极点有无数 个极坐标。
2.给定一个(,θ),可以在坐标平面内确定惟 一的点M,给定平面上一点M,却有无数个极坐标与 之对应,即极坐标 (,θ)与,θ+2k )表示同一 个点.

高二数学之人教版高中数学选修4-4课件:第一讲三简单曲线的极坐标方程

高二数学之人教版高中数学选修4-4课件:第一讲三简单曲线的极坐标方程

当点 P 在极轴的反向延长线上时,P 点的极坐标为(1, π)或(3,π),经验证,也适合这个方程,故 ρ2+4ρcos θ+ 3=0 为所求圆的极坐标方程.
(3)设点 P(ρ,θ)为所求圆上任意一点,当点 P 不在直 线 θ=π4上时,根据余弦定理,得 12=ρ2+(2 2)2-4 2 ρcosπ4-θ,即 ρ2-4ρcos θ-4ρsin θ+7=0.
2.圆的极坐标方程(半径为 r)
圆心位置
极坐标方程
图形
圆心在极点(0,0)
ρ=r (0≤θ<2π)
圆心在点(r,0)
ρ=2rcos θ -π2≤θ<π2
圆心在点r,π2 圆心在点(r,π)
圆心在点r,32
π
ρ=2rsin_θ (0≤θ<π) ρ=-2rcos θ π2≤θ<32π ρ=-2rsin θ (-π<θ≤0)
1.思考判断(正确的打“√”,错误的打“×”). (1)若点 P 在曲线 C 上,则点 P 的极坐标满足曲线 C 的极坐标方程.( ) (2)tan θ=1 与 θ=π4表示同一条曲线.( ) (3)ρ=3 与 ρ=-3 表示同一条曲线.( ) (4)极坐标方程 θ=34π表示的图形是一条射线.( )
ρ2cos2θ ρ2sin2θ 得 4 + 3 =1,即
ρ2(3cos2θ+4sin2θ)=12.
④把 x=ρcos θ,y=ρsin θ 代入 x2-y2=2 中, 得 ρ2cos 2θ=2. (2)①把 ρcos θ=x,ρsin θ=y 代入方程 ρcos θ-ρsin θ -1=0 中,得 x-y-1=0. ②把 ρ= x2+y2代入方程 ρ=3 中,得 x2+y2=9.
答案:(1)× (2)× (3)√ (4)×

高中数学破题致胜微方法(极坐标系、极坐标方程的应用):一、用极坐标方程求距离、夹角及面积问题

高中数学破题致胜微方法(极坐标系、极坐标方程的应用):一、用极坐标方程求距离、夹角及面积问题
本内容研究用极坐标方程求距离、夹角及面积问题.距离包括点点距和点线距,可以利用距离公式求解,求两直线夹角时将直线的极坐标方程转化为直角坐标方程,然后利用平面直角坐标系中夹角公式求解,求三角形面积时利用极坐标下的面积公式,可能结合正弦定理、余弦定理.
通过例题来看.
例1:在极坐标系中,直线的方程是 ,则点 到直线的距离为.
3.已知曲线C的极坐标方程为ρ(3cosθ-4sinθ)=1,则C与极轴的交点到极点的距离是.
4.在极坐标系中,由三条直线θ=0, ,ρcosθ+ρsinθ=1围成图形的面积是________.
解:如图所示,在△OAB中,
或者直接利用三角形面积公式:
总结:
1.理解极坐标下面积的计算公式,不论极径正负,公式都适用.
2.特殊位置的点、直线可以根据图形求出距离、夹角和面积.
练习题:
1.已知直线l的极坐标方程为 ,点A的极坐标为 ,则点A
到直线l的距离为________.
2.在极坐标系中,点 到直线 的距离为________.
总结:
1.点点距:
2.点线距:
画图求或者在极坐标下把点和直线方程转化为直角坐标形式利用点线距的公式直线的极坐标方程转化为直角坐标方程,然后利用平面直角坐标系中夹角公式求解.
再看两个例题,加深印象
例2:求直线 与直线 的夹角大小.
例3:在极坐标系中,O是极点,设点A(4, ),B(5, ),则△OAB的面积是()

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)

一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。

数学:4.1.2《极坐标系(1))课件(新人教选修4-4)

数学:4.1.2《极坐标系(1))课件(新人教选修4-4)

引一条射线OX,叫做极轴。
再选定一个长度单位和角度单位及它 的正方向(通常取逆时针方向). O 这样就建立了一个极坐标系.
X
2、极坐标系内一点的极坐标的规定 对于平面上任意一点M,用表示线段OM的长度, 用表示以射线OX为始边,射线OM为终边所成的 角,叫做点M的极径, 叫做点M的极角,有序数对 (,)就叫做M的极坐标。
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3
B(6, 2 ) 5 E (3, ) 6
C (3,

2
)
F (4, )
[小结] 由极坐标描点的步骤: (1) 先按极角找到点所在射线; (2) 在此射线上按极径描点.
思考: ①平面上一点的极坐标是否唯一?若不唯一, 那有多少种表示方法? ② 不同的极坐标是否可以写 出统一表达式? 3、点的极坐标的表达式的研究 如图:OM的长度为4,
M
P (ρ,θ) X
[1]给定(,),就可以在极坐标平 面内确定唯一的一点M
O
[2]给定平面上一点M,但却有无数个极坐标与之对应。 原因在于:极角有无数个。 如果限定ρ >0,0≤θ <2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
例2. 在极坐标系中, (1) 已知两点 P(5, ), (2, 4 ),求线段PQ的长度; Q 3 3 (2) 已知点M的极坐标为(, ), R, 说明满足上述 4 条件的点M的位置.
思考: 对比直角坐标系,比较异同 极点、极轴、长度单位、 (1) 要素:____________________ 角度单位和正方向 ____________________;
M
O X
(, ) (2) 平面内点的极坐标用_____表示.

极坐标系

极坐标系

极坐标
二 、常见曲线的极坐标方程 求曲线的极坐标方程的方法和步骤: 和求直角坐标方程类似,就是把曲线 看作适合某种条件的点的集合或轨迹, 将已知条件用曲线上点的极坐标 、 的 关系式 表示出来,就得到曲线 的极坐标方程。
1、直线的极坐标方程 例:求极坐标系下,经过定点 且 关于极轴的倾斜角为 的直线 方程 (其中 为定值)
极坐标
三、极坐标与直角坐标的互化 极坐标系和直角坐标系是两种不同的坐标 系,同一点可以有极坐标,也可以有直角坐标; 同一条曲线可以有极坐标方程,也可以有直角 坐标方程。为了研究问题方便,有时需要把在 一种坐标系中的方程化为在另一种坐标系中的 方程。
1、极坐标和直角坐标的互化公式: 把直角坐标系的原点作为极点,x轴的正半 轴作为极轴,并在两种坐标系中取相同的长度 单位。 设M是平面内任一点,它的直角坐标为 极坐标是 ,从点M作 ,由三角函数 定义,可得出 之间的关系。
2、圆的极坐标方程 例:求极坐标系下,以定点 为半径的圆的方程。 解:如图,设所求圆上任一点 在 中,由余弦定理: 即为所求圆方程。
为圆心, ,
当圆心 表示极点时, 代入 则圆方程化为:
O
x
当圆心在极轴上,且圆经过极点时, 则圆方程化为 即:
O
x
3、三种圆锥曲线的统一的极坐标方程 如图建立坐标系, 设圆锥曲线上任一点 , 由定义知
O
x
3、极坐标系下点与极坐标的对应关系 A、B、C、D、E、F、 π G各点的极坐标。 2 π
5π 6 4
C E
4π F 3
π
D
B
o
A G
5π 3
x
角 也可以取负值,如:
5π 6
π
2

高二数学选修4-4平面直角坐标系中的伸缩变换与极坐标系上课用-公开课课件ppt.ppt

高二数学选修4-4平面直角坐标系中的伸缩变换与极坐标系上课用-公开课课件ppt.ppt
19
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
探索
•已知一点, 与它关于极轴所在直线对称的点如何表示?
Ø若M的坐标为 ( , ) ,则M’的坐标可以是 (,).
M(,)
O
x
M (,)
20
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
x’=x 2
y’=3y
通常把 2 叫做平面直角坐标系中的一个坐标伸长变 换。
3
(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写 出其坐标变换。
设点P(x,y)经变换得到点为P’(x’,y’)
x’=
1 2
x
y’=3y
通常把这样的变换叫做平面直角坐标系中的一个坐标 伸缩变换。
4
定义:设P(x,y)是平面直角坐标系中任意 一点,在变换
x=ρcosθ, y=ρsinθ
26
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
与直角坐标系的联系与区别
•极坐标系与直角坐标系的异同是什么? Ø都是用有序实数对来表示平面上的点. Ø其中的有序实数对意义不同. Ø直角系的坐标与平面上点是一一对应的;
极坐标系的坐标与平面上点多对一的; •有没有办法使极坐标与点之间一一对应?

2014-2015学年高中数学(人教版选修4-4)配套课件第一讲 1.2 极 坐 标 系

2014-2015学年高中数学(人教版选修4-4)配套课件第一讲 1.2 极 坐 标 系
ρsin θ

x2+y2 ,
y x
栏 目 链 接
x≠0.
预习 思考
1.写出下图中各点的极坐标:
栏 目 链 接
π π 3, 2, 4 A________,B________ ,C________. 2
(4,0)
预习 思考
2.回答下列问题: (1)平面上一点的极坐标是否唯一? (2)若不唯一,那有多少种表示方法? (3)坐标不唯一是由谁引起的?
第一讲
坐 标 系
1.2 极 坐 标 系
栏 目 链 接
1.理解极坐标的概念. 2.能在极坐标系中用极坐标刻画点的位置,体会在极坐
栏 目 链 接
标系和平面直角坐标系中刻画点的位置的区别.
3.能进行极坐标与平面直角坐标的互化.
栏 目 链 接
1.极坐标系的建立. 在平面上取一个定点 O,自点 O 引一条射线 Ox,同时确
栏 目 链 接
栏 目 链 接
题型1
极坐标的概念
例1 写出下图中各点的极坐标(ρ>0,0≤θ<2π).
栏 目 链 接
分析:根据极坐标定义,若 M 是平面上任一点, ρ 表示 OM 的长度,θ 表示以射线 Ox 为始边,射线 OM 为终边所成的角,则 M 的极坐标为(ρ,θ).
π π 3π 解析: A(5,0), B2,6, C4,2, D5, 4 , E(2, 4π 5π π),F5, 3 ,G3.5, 3 .
栏 目 链 接
为直角坐标为( 3,-1). ∴A、B 两点间的距离 d=
(
3- 3)2+[1--1]2=2.
变式 训练
π π 2.已知两点的极坐标 A3,2,B3,6 ,求:

高三数学专题复习--极坐标与参数方程

高三数学专题复习--极坐标与参数方程

五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求

A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1

它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为

曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.

人教版高二数学选修4《极坐标系的概念》课件(共27张PPT)

人教版高二数学选修4《极坐标系的概念》课件(共27张PPT)
新课标人教版课件系列选修4-4
极坐标系的概念
余集高中数学组
唐汝照
Page 1
教学目标
1、理解极坐标的概念,弄清极坐标系的 结构( 建立极坐标系的四要素); 2、理解广义极坐标系下点的极坐标(ρ, θ)与点之间的多对一的对应关系; 3、已知一点的极坐标会在极坐标系中描 点,以及已知点能写出它的极坐标。
极点;极轴;长度单位;计算角度的正方向.
[2]极坐标系内一点的极坐标有多少种表达式?
无数,极角有无数个. [3]一点的极坐标有否统一的表达式? 有。(ρ ,2kπ +θ )
Page 24
课后作业 思考: 极坐标系中, 点M的坐标为 (-10, 3 ), 则下列各 坐标中, 不是M点 的坐标的是( ) 4 ) (A) (10, 3 ) (B) (-10, - 5 3 2 2 (C) (10, - 3 ) (D)(10, 3 )
点M:在角终边的反向延长线上, 且|OM|=|| 5 ° M(-2, ) O 5
6 ° O 6 • •M(-x 2, 5) M (, ) 6
5、关于负极径
x
Page 20
小结: 从比较来看, 负极径比正极径 多了一个操作, 将射线OP“反向延
练习:写出下列各点的负极径的极坐标
Page 25
Page 2
β=α+2kπ,k∈Z 与角α终边相同的角:
平面直角坐标系中的点P与坐标 y 一一 对应的. (a ,b)是 _____ P(a,b)
平面直角坐标系是最 a O x 简单最常用的一种坐标 系,但不是唯一的一种 坐标系. 有时用别的坐 标系比较方便. 还有什么坐标系呢?
Page 3
(, 2k+)

高二数学极坐标系试题答案及解析

高二数学极坐标系试题答案及解析

高二数学极坐标系试题答案及解析1.已知直线的极坐标方程为,圆M的参数方程为。

求:(1)将直线的极坐标方程化为直角坐标方程;(2)求圆M上的点到直线的距离的最小值.【答案】(1);(2)【解析】(1)将用两角和的正弦公式展开,再利用直角坐标与极坐标互化公式即可将极坐标方程化为直角坐标方程;(2)设圆上任意一点M的坐标为(,),利用点到直线的距离公式将点M到已知直线的距离表示为的函数,再利用三角函数求最值的方法,求出点M到直线距离的最小值,本题也可先求出圆心到直线的距离,此距离减去半径就是圆上一点到直线的距离的最小值.试题解析:(1)方程可化为=1,令,,即得到该直线的直角坐标方程;(2)设圆上任意一点M的坐标为(,),则点M到该直线的距离===,当时,=,故圆M上的点到直线的距离的最小值.【考点】极坐标方程与直角坐标方程的互化;参数方程与普通方程的互化;点线距离公式2.已知在平面直角坐标系中,圆C的参数方程为为参数),以为极轴建立极坐标系,直线的极坐标方程为则直线被圆C所截得的弦长为.【答案】【解析】圆C的普通方程为,直线的普通方程为,圆心C到直线的距离,则直线被圆C所截得的弦长为。

【考点】(1)圆的参数方程与普通方程的互化,直线的极坐标方程与普通方程的互化;(2)点线距离公式的应用。

3.把极坐标系中的方程化为直角坐标形式下的方程为【答案】【解析】根据题意,由于极坐标系中的方程,结合ρcosθ=x,ρsinθ=y,ρ2=x2+y2,可知结论为,故答案为。

【考点】极坐标和直角坐标的互化点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.4.若点的极坐标为,则点的直角坐标是()A.B.C.D.【答案】A【解析】,,则点的直角坐标是。

故选A。

【考点】极坐标与直角坐标的转换点评:极坐标转换为直角坐标的公式是,而直角坐标转换为极坐标的公式是。

人教课标版高中数学选修4-4:《极坐标系》教案-新版

人教课标版高中数学选修4-4:《极坐标系》教案-新版

1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。

高二数学(文)《极坐标和直角坐标的互化》(课件)

高二数学(文)《极坐标和直角坐标的互化》(课件)
y x y , tan ( x 0). x
2 2 2

由①又可得到下面的关系式:
这就是极坐标与直角坐标的互化公式。
湖南长郡卫星远程学校 制作 05 2011年下学期
例题1
2 将点M的极坐标(5, )化成直角坐标。 3
湖南长郡卫星远程学校
制作 05
2011年下学期
例题2
将点M的直角坐标( 3 ,1) 化成极坐标。
湖南长郡卫星远程学校
制作 05
2011年下学期
温故知新
极坐标系的概念
如图,在平面内取一个定点O,叫
做极点;自极点O引一条射线Ox,叫做 极轴;再选定一个长度单位、一个角度 单位(通常取弧度)及其正方向(通常取逆 时针方向),这样就建立了一个极坐标 M (ρ, θ) 系。
ρ
O
湖南长郡卫星远程学校
θ
x制作 05
考一本 第3课时
湖南长郡卫星远程学校
制Hale Waihona Puke 052011年下学期2011年下学期
极坐标的表示
设M是平面内一点,极点O与点M
的距离|OM|叫做点M的极径,记为ρ;
以极轴Ox为始边,射线OM为终边的角
xOM叫做点M的极角,记为θ。有序数
对(ρ, θ )叫做点M的极坐标,记为M (ρ,
θ ).

一般地,不作特殊说明时, 我们认为ρ≥0,θ可取任意实数。
制作 05 2011年下学期
湖南长郡卫星远程学校 制作 05 2011年下学期
小结
由例题3(1)(2)可概括出极坐标方程
与直角坐标方程互化的方法是
凑出ρcos θ,ρsin θ
( , ) 0
f (x , y)=0.

高二数学直线的极坐标方程

高二数学直线的极坐标方程
设直线L与极轴交于点A。则在MOP
OMP , OPM ( 1 )
由正弦定理 得
1 sin[ ( 1 )] sin( )
显然点 P 的坐标 sin( ) 1 sin( 1 ) 也是它的解。
小结:直线的几种极坐标方程 1、过极点 2、过某个定点,且垂直பைடு நூலகம்极轴
练习:设点P的极坐标为A( a , 0) ,直 l 线 过点P且与极轴所成的角为 ,求直l 线 的极坐标方程。 M 解:如图,设点 M ( , ) ﹚ 为直线 l 上异于的点 o A x 连接OM, 在MOA 中有
a sin( ) sin( ) 即
sin( ) a sin
显然A点也满 足上方程。
例题3设点P的极坐标为( 1 ,1 ) ,直线 l 过点P且与极轴所成的角为 ,求直线l 的极坐标方程。
1 P
M
o
﹚ ﹚
1
x
解:如图,设点 M ( , ) 为直线上除 点P外的任意一点,连接OM 则 OM , xOM 由点P的极坐标知 OP 1 xOP 1
3、过某个定点,且与极轴成一定
的角度
;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永

高二数学极坐标系

高二数学极坐标系


题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )


2
5 6

4

E F O
C A B X
4 3
D
G
5 3
四、极坐标系下点与它的极坐标的 P 对应情况
[1]给定(,),就可以在 极坐标平面内确定唯一的 一点M。
M 如图:OM的长度为4, 4 请说出点M的极坐标的其 他表达式。 O X 思:这些极坐标之间有何异同? 极径相同,不同的是极角 思考:这些极角有何关系? 这些极角的始边相同,终边也相同。也 就是说它们是终边相同的角。
π 2kπ+ 4, 本题点M的极坐标统一表达式: 4
1 ( 3 )2
2 2
3 tan 3 1
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ)
y x y , tan ( x 0) x
2 2 2
x=ρcosθ, y=ρsinθ
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
题组一:说出下图中各点的极坐标

2
5 6
C E D O B A X

4

4 3
F
G
5 3
特别规定: 当M在极点时,它的 极坐标=0,可以取任意值。
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?
④不同的极坐标是否可以写出统一表达式?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档