人教版高二上学期期末数学试卷(理)(有答案)
完整word版,人教版高二数学上学期期末测试卷(理)

高二数学第一学期期末测试卷(理)(满分:120分,考试时间:100分钟)校区: _____________________ 学生姓名:___________________________、选择题(本大题共10小题, 每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线x2 8y的准线方程为(A. y 2B. xC.D. x 42.若命题"p q"和" p"都为假命题,则q为假命题 B. q为假命题 C. q为真命题 D.不能判断q的真假3.已知a、b、c是直线,是平面,给出下列命题:①若a b,b c,则a//c ;②若a // b, b c,则 a c ;③若a// ,b ,则a//b ;④若a与b异面,且a//,则b与相交;其中真命题的个数是()A. 1 B. 2 C. 3 D. 44.在正方体ABCD 中, 异面直线B"与CB i所成的角为(A. 30°B. 450C. 60°D.90°5.已知1,0,2 ),b (6,2 1,2),若a//b,则与的值分别为(A. B. 5,2 D. 5,6.过点(2,2x-2)且与双曲线一21有相同渐近线的双曲线的方程是2A.1 42y- 122X- 122c.022 27.若过点(3,1)总可以作两条直线和圆(x 2k)(y k)范围是(k(k A(0, 2) B. (1, 2)8.已知双曲线2x_2aD.20)相切,则k的取值D. (0, 1) U (2 , +8石1(a °,b 0)的右焦点为F,若过F且倾斜角为-的直线始终保持MN //面DCC 1D 1,设BN x,MN y ,则函数y f x 的图象大致是()一个交点,则cos RPF2 _______A. (1,2)B. [2,)C. (1,'迈)D. )9.直线1与椭圆2x2y 2 1交于不同的两点 P 1、 F 2,线段P 1P 2的中点为P ,设直线1的斜率为k 1(k 1 0), 直线OP 的斜率为k 2(O 点为坐标原点) ,则k 1 k 2的值为()A.-2B. 1C. 2D.不能确定与双曲线的右支有两个交点,则此双曲线离心率的取值范围( )10.正四棱柱 ABCD AiB i C i D i 中,AA 、 2, AB 1, M , N 分别在AD 1,BC 上移动,且 A.C.o'XB. LX上a r仁、填空题(本大题共 7小题,每小题4分,共28分) 11.经过原点且与直线 3x 4y 20平行的直线方程为 _________UJU r UULT 12. 在棱长为1的正方体ABCD A 1B 1C 1D 1中,若AB=a, AD r r r 贝 U a b c ____ .13. 已知某个几何体的三视图如下图所示,则这个几何体的体积是 ________ .214. 已知动点P 在曲线2x y 0上移动,则点A (0, 1)与点P 连线的中点M 的轨迹方程是 ___________ . r uur rb,AA c ,15.若直线2ax by 20 (a 0,b 0)始终平分圆x 21 1则的最小值为 ___________a b2 216.椭圆—二25 91和双曲线2y 2x 4y 1 0的圆周,1有相同的焦点F 1 ,F 2 , P 是两条曲线的17.如图,在矩形ABCD中,AB=4, BC=3,E为DC边的中点,沿AE将ADE折起,使二面角D-AE-B为60°,则直线AD与面ABCE所成角的正弦值为_______________三、(本大题共5小题,共52分,解答应写出文字说明、证明过程或演算步骤)218.(本题8分)已知命题p: 4x 3 1,命题q:(x a)(x a 1) 0,若p是q的充分不必要条件。
全新人教高二数学(理)上学期期末试卷含答案

全新人教高二数学(理)上学期期末试卷含答案
一、单选题
1.已知双曲线与双曲线,给出下列说法,其中错误的是()A.它们的焦距相等B.它们的焦点在同一个圆上
C.它们的渐近线方程相同D.它们的离心率相等
2.两圆与在交点处的切线互相垂直,则R=()A.5B.4C.3D.
3.在平面直角坐标系中,直线的倾斜角大小为( ) A.B.C.D.
4.某单位在1至4月份用电量(单位:千度)的数据如下表:
已知用电量与月份之间有线性相关关系,其回归方程,由此可预测5月份用电量(单位:千度)约为()
A.1.9B.1.8C.1.75D.
5.已知椭圆则
A.与顶点相同.B.与长轴长相同.
C.与短轴长相同.D.与焦距相等.
6.已知抛物线的焦点为,准线为,抛物线上有一点,过点作,垂足为,且,若的面积为,则等于()
A.B.C.D.
7.已知点,直线与直线垂直,则的值为()
A.2B.1C.0D.
8.下列说法错误
..的是( )
A.在统计里,把所需考察对象的全体叫做总体
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D.一组数据的方差越大,说明这组数据的波动越大
9.已知圆,圆,,分别是圆,上的动点.若动点在直线上,则的最小值为()
A.3B.C.D.
10.已知点,,若直线过原点,且、两点到直线的距离相等,则直线的方程为( )
A.或B.或
C.或D.或
11.已知向量,,,则为()A.B.C.D.
12.执行如图所示的程序框图,若输入的,则输出的( )
A.115B.116C.357D.358
第II卷(非选择题)。
新课标人教版高二年级上期末试题(理)含答案解析

高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6 2.(5分)设有一个回归方程=2﹣1.5x,则变量x增加一个单位时()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位3.(5分)从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是()A.B.C.D.4.(5分)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.85.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.106.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()A.B.C.D.7.(5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或48.(5分)将长为9cm的木棍随机分成两段,则两段长都大于2cm的概率为()A.B.C.D.9.(5分)甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A.0.9 B.0.2 C.0.7 D.0.510.(5分)设X是一个离散型随机变量,其分布列如图,则q等于()A.1 B.1±C.1﹣D.1+11.(5分)在(+)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A.462 B.330 C.682 D.79212.(5分)某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中二个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E(ξ)=()A.1 B.C.D.2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为.14.(5分)关于二项式(x﹣1)2011有下列命题:①该二项展开式中非常数项的系数和是1;②该二项展开式中第六项为;③该二项展开式中系数最大的项是第1006项;④当x=2012时,(x﹣1)2011除以2012的余数是2011.其中正确命题的序号是.15.(5分)甲,乙,丙三人到三个景点旅游,每个人只去一个景点,设事件A为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率P(A|B)=.16.(5分)假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:若有数据知y对x呈线性相关关系.其线形回归方程为,请估计使用10年时的维修费用是万元.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设有关于x的一元二次方程x2+ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.18.(12分)已知的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中不含x的项.19.(12分)(1)计算:;(2)解不等式:.20.(12分)袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.21.(12分)某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有A、B、C 三家社区医院,并且他们的选择是等可能的、相互独立的.(1)求甲、乙两人都选择A 社区医院的概率; (2)求甲、乙两人不选择同一家社区医院的概率;(3)设在4名参加保险人员中选择A 社区医院的人数为ξ,求ξ的分布列和数学期望及方差.22.(12分)为了比较注射A ,B 两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A ,另一组注射药物B .(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A 和B 后的试验结果.(疱疹面积单位:mm 2) 表1:注射药物A 后皮肤疱疹面积的频数分布表表2:注射药物B 后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”. 表3:附:K2=.2017-2018学年吉林省吉林市吉化高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6【解答】解:因为=,故各层中依次抽取的人数分别是=8,=16,=10,=6,故选D.2.(5分)设有一个回归方程=2﹣1.5x,则变量x增加一个单位时()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位【解答】解:回归方程y=2﹣1.5x,则变量x增加一个单位,则y平均减少1.5个单位.故选:C.3.(5分)从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是()A.B.C.D.【解答】解:根据题意,分2步分析:首先从7名男队员中选出2名男队员,5名女队员中2名女队员,有C72•C52种;再对选出的4人进行分组,进行混双比赛,有2种方法;则不同的组队种数有2C72•C52种;故选:C.4.(5分)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.8【解答】解:由题意知,所剩数据为90,90,93,94,93,所以其平均值为90+(3+4+3)=92;方差为(22×2+12×2+22)=2.8,故选B.5.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20 C.15 D.10=C6r x r,【解答】解:(1+x)6展开式中通项T r+1令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.6.(5分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于()A.B.C.D.【解答】解:随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,可得:np=300,np(1﹣p)=200,解得p=.故选:B.7.(5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或4【解答】解:由题意,①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人综上所述,收到4份纪念品的同学人数为2或4人故选D.8.(5分)将长为9cm的木棍随机分成两段,则两段长都大于2cm的概率为()A.B.C.D.【解答】解:设“长为9cm的木棍”对应区间[0,9],“两段长都大于2cm”为事件A,则满足A的区间为[2,7],根据几何概率的计算公式可得,P(A)==.故选:B.9.(5分)甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A.0.9 B.0.2 C.0.7 D.0.5【解答】解:设A为“甲命中“,B为“乙命中“,则P(A)=0.4,P(B)=0.5,∴两人中恰有一人击中敌机的概率:P=P(A+B)=P(A)P()+P()P(B)=0.4×0.5+0.6×0.5=0.5.故选:D.10.(5分)设X是一个离散型随机变量,其分布列如图,则q等于()A.1 B.1±C.1﹣D.1+【解答】解:由分布列的性质得;⇒∴q=1﹣;.故选C11.(5分)在(+)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A.462 B.330 C.682 D.792【解答】解:(+)n的展开式中,二项式系数等于展开式的项的系数,∴所有奇数项的系数之和为2n﹣1,∴2n﹣1=1024,解得n=11;∴展开式共有12项,中间项为第六、第七项∴中间项系数是C115=C116=462.故选:A.12.(5分)某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中二个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E(ξ)=()A.1 B.C.D.2【解答】解:由题意知随机变量ξ的可能取值为0,1,2,3,P(ξ=0)=()2×=,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴E(ξ)==.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为10.【解答】解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由451≤30n﹣21≤750 解得15.7≤n≤25.7.再由n为正整数可得16≤n≤25,且n∈z,故做问卷B的人数为10,故答案为:10.14.(5分)关于二项式(x﹣1)2011有下列命题:①该二项展开式中非常数项的系数和是1;②该二项展开式中第六项为;③该二项展开式中系数最大的项是第1006项;④当x=2012时,(x﹣1)2011除以2012的余数是2011.其中正确命题的序号是①④.【解答】解:二项式(x﹣1)2011有下列命题:①令x=1,可得该二项展开式中所有项的系数和为0,其常数项为﹣1,因此该二项展开式中非常数项的系数和是1;②该二项展开式中第六项为,因此不正确;③该二项展开式中系数最大的项是第1007 项,因此不正确;④当x=2012时,(x﹣1)2011除以2012的余数是2011,正确.其中正确命题的序号是①④.故答案为:①④.15.(5分)甲,乙,丙三人到三个景点旅游,每个人只去一个景点,设事件A 为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率P(A|B)=.【解答】解:甲独自去一个景点,则有3个景点可选,乙丙只能在甲剩下的哪两个景点中选择,可能性为2×2=4所以甲独自去一个景点的可能性为3×2×2=12因为三个人去的景点不同的可能性为3×2×1=6,所以P(A|B)==.故答案为:.16.(5分)假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:若有数据知y对x呈线性相关关系.其线形回归方程为,请估计使用10年时的维修费用是10.38万元.【解答】解:由题意可得=(2+3+4+5+6)=4,=(1.4+2.3+3.1+3.7+4.5)=3,由回归方程过点(,)可得3=1.23×4+a,解得a=﹣1.92,故方程为=1.23x﹣1.92,把x=10代入可得=1.23×10﹣1.92=10.38,故答案为:10.38.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设有关于x的一元二次方程x2+ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解答】解:(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).设事件A为“方程x2+ax+b2=0有实根”.则判别式△=a2﹣4b2≥0,即a≥2b,若a=0,则b=0,若a=1,则b=0,若a=2,则b=0或b=1,若a=3,则b=0或b=1共有6个,则对应的概率P=.(2)记事件B=“方程x2+ax+b2=0有实根”.由△=a2﹣4b2≥0,得:a≥2b全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其面积为S=3×2=6.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥2b},则D(3,)其面积为S′=×3×=,对应的概率P==.18.(12分)已知的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中不含x的项.【解答】解:由题意知=,∴,化简,得n2﹣5n﹣50=0.解得n=﹣5(舍),或n=10.设该展开式中第r+1项中不含x,则,依题意,有=0,r=2.所以,展开式中第三项为不含x的项,且T3=•3﹣2=5.19.(12分)(1)计算:;(2)解不等式:.【解答】解:(1)由题意,解得≤n≤;。
新人教版高二数学(理)上学期期末试题含答案

新人教版高二数学(理)上学期期末试题含答案一、单选题1.已知点,,则线段的垂直平分线的方程是()A.B.C.D.2.已知,,直线.若点到直线的距离等于点到直线的距离,则()A.或6B.C.0D.0或3.甲、乙、丙、丁4名田径选手参加集训,将挑选一人参加400米比赛,他们最近10次测试成绩的平均数和方差如下表;根据表中数据,应选哪位选手参加比赛更有机会取得好成绩?()A.甲B.乙C.丙D.丁4.设抛物线的焦点为,过点的直线与抛物线相交于,两点,与抛物线的准线相交于点,,则与的面积之比等于()A.B.C.D.5.已知向量若,则( )A.B.C.2D.6.已知变量与之间的一组数据:根据数据表可得回归直线方程,其中,,据此模型预测当时,的估计值是()A.19B.20C.21D.227.倾斜角为的直线的斜率是()A.1B.C.2D.48.已知圆,圆,两圆的内公切线交于点,外公切线交于点,若,则等于()A.B.C.D.9.已知椭圆:的离心率是,则椭圆的焦距是()A.B.C.D.10.双曲线,(为参数)的两焦点坐标是()A.B.C.D.11.已知x,y满足x2﹣4x﹣4+y2=0,则x2+y2的最大值为()A.12+8B.12﹣8C.12D.812.执行如图所示的程序框图,则输出的k的值是()A.10B.11C.12D.13二、填空题13.如图,已知圆与轴相切于点,与轴正半轴交于两点A,B(B在A的上方),且.(Ⅰ)圆的标准方程为_________;(Ⅰ)圆在点处的切线在轴上的截距为_________.14.有一批产品,其中有件次品和件正品,从中任取件,至少有件次品的概率为______.15.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.16.某企业为了了解1000名职工的身体状况,用系统抽样法(按等距离的规则)抽取50人参加体检,将职工从进行编号,若823号职工被抽到,则第3组中被抽到的编号为______.三、解答题17.已知,,在圆上任取一点,对点作坐标变换:,得到,当点在圆上运动时,点的轨迹为.过点的直线与曲线交于,两点(异于),直线与直线交于点,连接,作过点且垂直于的直线与直线交于点.(1)求曲线的标准方程;(2)证明:,,三点共线.。
高二第一学期数学(理)期末试卷及答案5套

高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。
上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。
人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
人教版高二上学期数学期末考试理试题(解析版)

故选B
4.“ ”是“直线 与圆 相交”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【解析】
【分析】
根据直线 与圆 相交求出实数 的取值范围,再利用充分条件和必要条件的定义可得出结论.
【详解】若直线 与圆 相交,则 ,即 ,
所以“ ”是“直线 与圆 相交”的充分不必要条件.
① ;② ;③ ;④ .
其中正确的命题是().
A. ①②B. ①③C. ②④D. ③④
【答案】B
【解析】
分析:由题意和线面垂直,平行的定义,对答案逐一验证,即可找出答案.
详解:
①.由面面平行的性质可知, , ,则 ,故①正确;
②.若 , ,则 或 与 相交,故②错误;
③.若 ,则存在 ,且 ,又 ,得 ,
10.在 中, 为 边上一点,且 ,向量 与向量 共线,若 , , ,则 ( )
A.3B. C.2D.
【答案】B
【解析】
取BC的中点E,则 与向量 共线,所以A、D、E三点共线,即 中 边上的中线与高线重合,则 .因为 ,所以G为 的重心,则
所以
本题选择B选项.
11.已知三棱柱 的侧棱垂直于底面且各顶点都在同一球面上,若 , ,则此球的表面积等于( )
详解:(1)∵ , ∴ ,
完成年度任务的人数为 .
(2)第1组应抽取的人数为 ,
第2组应抽取的人数为 ,
第3组应抽取的人数为 ,
第4组应抽取的人数为 ,
第5组应抽取的人数为 ;
(3)在(2)中完成年度任务的销售员中,第4组有3人,记这3人分别为 , , ;第5组有3人,记这3人分别为 , , ;
最新人教版高二数学上册期末检测试卷(理科 附答案)

最新人教版高二数学上册期末检测试卷(理科附答案)试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.4560135x>”的否定是()命题“对任意x1x>)对任意x>)存在3β=,则(m(C )l 与m 异面 (D )以上三个答案均有可能7. 设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p => 上任意一点,M 是线段PF 的中点,则直线OM 的斜率的最大值为( ) (A )22(B )1(C )2(D )28. 设α为空间中的一个平面,记正方体1111ABCD A B C D -的八个顶点中到α的距离为(0)d d >的点的个数为m ,m 的所有可能取值构成的集合为M ,则有( )(A )4M ∈,6M ∉ (B )5M ∉,6M ∉ (C )4M ∉,6M ∈ (D )5M ∉,6M ∈二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“若220a b -=,则a b =”的逆否命题为_______.10. 经过点(2,1)M 且与直线380x y -+=垂直的直线方程为_______. 11. 在ABC ∆中,3AB =,4BC =,AB BC ⊥. 以BC 所在的直线为轴将ABC ∆旋转一周,则旋转所得圆锥的侧面积为____.12. 若双曲线C 的一个焦点在直线43+20=0l x y -:上,一条渐近线与l 平行,且双曲线C 的焦点在x 轴上,则C 的标准方程为_______;离心率为_______.13. 一个四棱锥的三视图如右图所示,那么在这个四棱锥的四个侧面三角形中,有_______个直角三角形.14. 在平面直角坐标系中,曲线C 是由到两个定点(1,0)A 和点(1,0)B -的距离之积等于2的所有点组成的. 对于曲线C ,有下列四个结论: ○1 曲线C 是轴对称图形; ○2 曲线C 是中心对称图形;○3 曲线C 上所有的点都在单位圆221x y +=内;侧(左)视图正(主)视图 俯视图22 1 11 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。