n元真值函数
命题逻辑2
q∧r (┐p∨p)∧q∧r (┐p∧q∧r)∨(p∧q∧r) m3∨m7 而简单合取式p∧┐q∧┐r已是极小项m4 于是 (p→q) r m1∨m3∨m4∨m7 极小项与公式的成真赋值、成假赋值的关系:
若公式A中含n个命题变项,A的主析取范式含s(0≤s≤2n) 个极小项,则A有s个成真赋值,它们是所含极小项角 标的二进制表示,其余2n-s个赋值都是成假赋值。
三、主析取范式和主合取范式
定义
设有命题变元P1,P2,…,Pn
n
形如 Pi * , i 1
n
的命题公式称为是由命题变元P 1,P2,…,Pn所产生
的极小项。而形如 Pi * 的命题公式称为是由命题变元 i 1
P1,P2,…,Pn所产生的极大项 。其中Pi*为Pi或为
Pi(i=1,2,…n).
极小项,故F不是重言式和矛盾式,只是可满足式。
例 某科研所要从3名科研骨干A,B,C中挑 选1~2名出国进修。由于工作原因,选派时 要满足以下条件: (1)若A去,则C同去。 (2)若B去,则C不能去。 (3)若C不去,则A或B可以去。 问应如何选派他们去?
解 设 p:派A去 q:派B去 r:派C去 由已知条件可得公式 (p→r)∧(q→┐r)∧(┐r→(p∨q) 经过演算可得 (p→r)∧(q→┐r)∧(┐r→(p∨q)) m1∨m2∨m5 由于 m1 = ┐p∧┐q∧r m2 =┐p∧q∧┐r m5 = p∧┐q∧r 可知,选派方案有3种: (a)C去,而A,B都不去。 (b)B去,而A,C都不去。 (c)A,C去,而B不去。
因此利用真值表也可以求公式的主析取范式
练 求公式 F1 = p(p(qp))的主析取范式
解
F1p∨(p∧(q∨p)) p∨(p∧q)∨(p∧p)
离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算
名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0
第二章析取范式与合取范式
11. 主析取范式的用途
➢ 求公式的成真与成假赋值 ➢ 判断公式的类型 ➢ 判断两个命题公式是否等值 ➢ 应用主析取范式分析和解决实际问题
A m1∨m2∨…∨ms 例1: 求 (p→q)→ (q∨p) 的成真赋值
(p→q)→ (q p) (p q) (q p) (p q) (q p) (p q) (p q) (pq) m0 m2 m3 即成真赋值为:0 0,1 0,1 1
p ∧ q ∧ r; p ∧ ┐q ∧ r; ┐ p ∧ ┐q ∧ ┐ r
思考: (1) n个命题变项共可产生多少个不同的极小项? 2n (2)每个极小项有多少个成真赋值? 一个
规定:成真赋值所对应的二进制数转换为十进制数i,就将所对应 极小项记作mi
7. 极小项与极大项的定义
➢极大项:在含有n个命题变项的简单析取式中,若每个命题变项 和它的否定式不同时出现,而二者之一必出现且仅出现一次,且 第i个命题变项或它的否定式出现在从左算起的第i位上(若命题 变项无角标,就按字典顺序排列),称这样的简单析取式为极大 项。 例:p ∨ r ∨ q; p ∨ ┐ p ∨ r; p ∨ ┐ q ∨ p;
方法1:真值表法
p q p →q 00 1 01 1 10 0 11 1
p→q m0 m1 m4 ( p q) ( p q) ( p q) M2 p q
方法2:公式法
p→q p q [ p (q q)] [q (p p)] ( p q) ( p q) ( p q) m0 m1 m4
历史遗留问题: (1)我只给村里所有那些不给自己理发的人理发 (2)只要别人有困难,他就帮忙,除非困难解决. (3) a:别人有困难, b: 他帮忙
(4) a b
作业 P38 5题(1 、3) 注意总结规律
数理逻辑2.3
2.3 联结词的完备集一. n 元真值函数的个数*n 个命题变项p 1, p 2, …, p n , 每个p i 可取p i 或┐p i 形式, 共有2n 个极小项(极大项), 在主析取范式中, 每个极小项可以存在或不存在, 共有n22种组合方式, 每一种组合方式代表一种不同的主析取范式, 故共有n22种不同的主析取范式(主合取范式也类似).定义2.5: 称F: {0, 1}n →{0, 1}为n 元真值函数.*F 的自变量为n 个命题变项, 定义域{0, 1}n ={(0,0,…,0), (0,0,…,1), …, (1,1,…,1)}. n 个命题变项共可构成n 22个不同的真值函数. 例如: 1元真值函数有122= 4个, 如下表, 2元真值函数共有222= 16个(见下表), 3元真值函数共有322= 256个. 表1: 1元真值函数 p )1(0F )1(1F )1(2F )1(3F0 0 0 1 11 0 1 0 1表2: 2元真值函数p q )2(0F )2(1F )2(2F )2(3F )2(4F )2(5F )2(6F )2(7F 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1p q )2(8F )2(9F )2(10F )2(11F )2(12F )2(13F )2(14F )2(15F 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1*每个真值函数与唯一的一个主析取范式等值.例如: ⇔)2(0F 0 (矛盾式), )2(1F ⇔ (p ∧q) ⇔ m 3)2(3F ⇔(p ∧┐q)∨(p ∧q)⇔m 2∨m 3 ,)2(13F ⇔(┐p ∧┐q)∨(┐p ∧q)∨(p ∧q)⇔m 0∨m 1∨m 3*每个主析取范式对应无穷多个等值的命题公式, 每一个命题公式又都对应唯一的等值的主析取范式. 所以, 每一个真值函数对应无穷多个等值的命题公式, 每一个命题公式又都对应唯一的等值的真值函数.定义2.6: 设S 是一个联结词的集合, 如果任何n (n ≥ 1)元真值函数都可以由仅含S 中的联结词构成的公式表示, 则称S 是联结词完备集.定理2.4: S = {┐,∧,∨}是联结词完备集.证明: 因为任何n(n ≥ 1)元真值函数都与唯一的主析取范式等值, 而在主析取范式中, 仅含联结词┐,∧,∨, 所以S = {┐,∧,∨}是联结词完备集.推论: 以下联结词集都是联结词完备集:(1) S1 = {┐,∧,∨,→}(2) S2 = {┐,∧,∨,→,↔}(3) S3 = {┐,∧}(4) S4 = {┐,∨}(5) S5 = {┐,→}证明: (1)和(2)是显然的.(3) 由于S = {┐,∧,∨}是联结词完备集, 因而只需证∨可用┐和∧表示. 事实上, p∨q⇔┐┐(p∨q)⇔┐(┐p∧┐q), 所以S3是联结词完备集.(4) 留作练习.(5) 已知S4 = {┐,∨}是联结词完备集, 只需证∨可用┐和→表示即可. 因为有p∨q⇔┐┐p∨q⇔┐p→q, 故S5 = {┐,→}是联结词完备集.*举例说明.*可以证明: 恒取0值的真值函数不能用仅含∧,∨,→,↔的公式表示, 因而{∧,∨,→,↔}不是联结词完备集, 进而它的任何子集都不是联结词完备集.*在计算机硬件设计中, 用与非门或用或非门设计逻辑线路. 这是两种新的联结词, 并且它们各自能构成联结词完备集.定义2.7: 设p,q是两个命题, 复合命题“p与q的否定式”称作p,q的与非式, 记作p↑q. 即p↑q⇔┐(p∧q). 符号↑称作与非联结词.复合命题“p或q的否定式”称作p,q的或非式, 记作p↓q . 即p↓q⇔┐(p∨q). 符号↓称作或非联结词.*p↑q为真当且仅当p与q不同时为真, p↓q为真当且仅当p 与q同时为真.定理2.5: {↑}, {↓}都是联结词完备集.证明: 已知{┐,∧,∨}为联结词完备集, 因而只需证明其中的每个联结词都可以由↑表示即可. 事实上┐p⇔┐(p∧p)⇔p↑pp∧q⇔┐┐(p∧q)⇔┐(p↑q)⇔(p↑q)↑(p↑q)p∨q⇔┐┐(p∨q)⇔┐(┐p∧┐q)⇔(┐p)↑(┐q)⇔(p↑p)↑(q↑q)从而{↑}是联结词完备集. 类似可证{↓}是联结词完备集.2.4 可满足性问题与消解法*命题公式的可满足性问题是算法理论的核心问题之一. 我们已知这个问题可以用真值表﹑主析取范式或主合取范式解决. 但这两个方法的计算量都很大. 本节介绍一个新的方法—消解法.由于任一公式都能化成等值的合取范式, 因而一般的命题公式的可满足性问题可以归结为合取范式的可满足性问题. *举例说明合取范式的可满足性问题.*合取范式中, 简单析取式中不同时出现某个命题变项和它的否定, 否则它为永真式, 可以把它从合取范式中消去. *称不含任何文字的简单析取式为空简单析取式, 记作λ. 规定空简单析取式是不可满足的.(因为对任何赋值, 空简单析取式中都没有文字为真). 因而, 含有空简单析取式的合取范式是不可满足的.设l 是一个文字, 记⎩⎨⎧⌝==⌝=p l p p l p l C若若,, 称作文字l 的补.下面用S 表示合取范式, 用C 表示简单析取式, 用l 表示文字. 设α是关于S 中命题变项的赋值, 用α(l),α(C)和 α(S)分别表示在α下l, C 和S 的值. 又设S 和S ’是两个合取范式, 用S ≈S ’表示S 是可满足的当且仅当S ’是可满足的. 定义2.8: 设C 1, C 2是两个简单析取式, C 1含文字l, C 2含文字l C , 从C 1中删去l, 从C 2中删去l C , 然后再将所得的结果析取成一个简单析取式, 称这样得到的简单析取式为C 1, C 2的(以l 和l C 为消解文字的)消解式或消解结果, 记作Res(C 1, C 2). 即设C 1=C 1’∨l, C 2 = C 2’∨l C , Res(C 1, C 2) = C 1’∨C 2’. 根据上述定义, 由C 1, C 2得到Res(C 1, C 2)的规则称作消解规则.*可以证明, 如果C 1, C 2可对多对(不同)文字消解, 其消解结果都是等值的. 例如: C 1 = ┐p ∨q ∨r, C 2 = p ∨┐r ∨┐s ∨t, 可消解为q ∨r ∨┐r ∨┐s ∨t (以p 和┐p 为消解文字), 或消解为┐p ∨q ∨p ∨┐s ∨t (以r 和┐r 为消解文字), 都是永真式.定理2.6: C 1∧C 2≈Res(C 1, C 2).证明: 记C = Res(C 1, C 2). 设消解文字为l, l C . 不妨设C 1 = C 1’∨l, C 2 = C 2’∨l C , 于是C = C 1’∨C 2’.假设C 1∧C 2是可满足的, α是满足它的赋值, 不妨设α(l) = 1, 由于α满足C 2, C 2必含有文字l ’ ≠ l 且α(l ’) = 1. 而C 中含l ’, 故α满足C.反之, 假设C 是可满足的, α是满足它的赋值. C 必含有文字l ’使得α(l ’) =1. 不妨设C 1’含有文字l ’. 把α扩张到l(l C )上, 取赋值α’如下:⎪⎩⎪⎨⎧===其它若若),(,1,0)('p l p l p p C αα 则C 1含有l ’且α’(l ’) =α(l ’) = 1, α’满足C 1, 又C 2含有l C 且α’(l C ) = 1, α’满足C 2, 从而C 1∧C 2是可满足的. *注意: C 1∧C 2与Res(C 1, C 2)具有相同的可满足性, 但它们不一定等值.例如: p ∨q ∨r 和p ∨┐r 可消解为p ∨q. α= (0,1,1)满足p ∨q, 但不满足(p ∨q ∨r)∧(p ∨┐r). α’ = (0,1,0)满足后者的赋值.*给定一个合取范式S, 从S 的简单析取式开始, 重复使用消解规则可以得到一个简单析取式序列. 根据定理2.6, 如果S是可满足的, 得到的所有简单析取式都是可满足的. 如果最后得到空简单析取式λ, 则S 不是可满足的.定义2.9: 设S 是合取范式, C 1, C 2, …, C n 是一个简单析取式序列. 如果对每个i (1≤i ≤n ), C i 是S 中的一个简单析取式,或者C i 是它之前的某两个简单析取式C j , C k (1≤j<k<i)的消解结果, 则称此序列是由S 导出C n 的消解序列. 当C n = λ时, 称此序列是S 的一个否证.推论: 如果合式范式S 有否证, 则S 不是可满足的.引理2.7: 设S 含有简单析取式l, 从S 中删去所有包含l 的简单析取式,再从剩下的简单析取式中删去l C , 把这样得到的合取范式记作S ’, 则S ≈S ’.证明: 假设S 是可满足的, α是满足S 的赋值. 由于S 含有简单析取式l, 必有α(l) = 1, 从而α(l C ) = 0. 对S ’中的任一简单析取式C ’, S 中有一个简单析取式C 使得C = C ’或C = C ’∨l C . 因为α使C 为真, 且α(l C ) = 0, C ’必含有l ’使得α(l ’) = 1, 从而α满足C ’, 得证S ’是可满足的.反之, 假设S ’是可满足的, α’是满足S ’的赋值. 由于S ’不含l 和l C , 可把α’扩张到l 上, 得到对S 的命题变项的赋值:⎪⎩⎪⎨⎧===C l p l p S p p p 若若中出现在若,0,1'),(')(αα 于是, 对S 中的任意简单析取式C, 若C 含l, 则α满足C; 若C 不含l, 则S ’中有C ’使得C = C ’或C = C ’∨l C . 而α’满足C ’,α和α’在S’上相同, 故α满足C.得证S是可满足的.定理2.8(消解完全性): 如果合取范式S是不可满足的, 则S 有否证.证明: 设S中含有k个命题变项, 用数学归纳法证明.当k=1时, S中只有一个命题变项, 设为p. 由于S是不可满足的, S中必同时含有简单析取式p和┐p,从而S有否证. 假设当k<n (n≥2)时, 定理成立, 要证k = n时定理也成立. 任意取定S中的一个命题变项p, 令S1表示S中所有含p 的简单析取式,S2表示S中所有含┐p的简单析取式,S3表示S 中所有既不含p又不含┐p的简单析取式. S’是如下得到的合取范式: 先删除S中所有含p的简单析取式, 然后再从剩下的简单析取式中删去文字┐p. S’是两个子合取范式S2’和S3的合取, 其中S2’是删去S2的所有简单析取式中的┐p后得到的合取范式. 令S”是如下得到的子句集: 先删除S中所有含┐p的简单析取式,然后再从剩下的简单析取式中删去文字p. S”也是两个子合取范式S1’和S3的合取, 其中S1’是删去S1的所有简单析取式中的p后得到的合取范式. 由引理2.7,S∧p≈S’, S∧┐p≈S”. 由于S是不可满足的, S∧p和S∧┐p 都是不可满足的, 故S’和S”也是不可满足的. 而S’和S”中命题变项的个数都小于n, 根据归纳假设, 存在从S’和S”导出λ的消解序列C1, C2, …, C i,和D1, D2, …, D j , 其中C i = D j = λ. 如果C t(1≤t≤i)是仅由S3中简单析取式消解得到的,则称C t 是与S 2’无关的; 否则称C t 是与S 2’有关的. 可类似地定义D t (1≤t ≤j )是与S 1’无关的和是与S 1’有关的. 分两种情况讨论如下:(1) C i 是与S 2’无关的, 或者D j 是与S 1’无关的, 此时可由S 3中的简单析取式消解得到λ, 这个消解序列也是S 的一个否证.(2) C i 是与S 2’有关的且D j 是与S 1’有关的, 对每个1≤t ≤i , 令 ⎩⎨⎧⌝∨=无关与若有关与若'22',',S C C S C p C C t t t tt 对每一个1≤t ≤j, 令⎩⎨⎧∨=无关与若有关与若'1'1',,S D D S D p D D t tt t t 不难看出C 1’, C 2’, …, C i ’和D 1’, D 2’, …, D j ’都是S 的消解序列, 分别得到C i ’ = ┐p 和D j ’ = p, 而Res(C i ’, D j ’) = λ. 因此, C 1’, C 2’, …, C i ’, D 1’, D 2’, …, D j ’,λ是S 的一个否证. k=n 时定理成立得证.推论: 合取范式S 是不可满足的当且仅当它有否证. 消解算法:输入: 合式公式A输出: 当A 是可满足时, 回答“yes ”; 否则回答“no ”.1. 求A 的合取范式S2. 令S 0和S 2为不含任何元素的集合, S 1为S 的所有简单析取式组成的集合3. 对S0中的每个简单析取式C1与S1中的每一个简单析取式C2:4. 如果C1, C2可以消解, 则5. 计算C = Res(C1, C2);6. 如果C = λ, 则7. 输出“no”, 计算结束.8. 如果S0和S1都不包含C, 则9. 把C加入S2;10. 对S1中的每一对子句C1, C211. 如果C1,C2可以消解, 则12.计算C = Res(C1, C2)13. 如果C = λ, 则14. 输出“no”, 计算结束.15. 如果S0与S1都不包含C, 则16. 把C加入S217. 如果S2中没有任何元素, 则18. 输出“yes”, 计算结束.19. 否则,把S1加入S0, 令S1等于S2, 清空S2, 返回步骤3. 例2.13: 用消解法判断下述公式是否可满足:(1) (┐p∨q)∧(p∨q)∧(┐q)(2) p∧(p∨q)∧(p∨┐q)∧(q∨┐r)∧(q∨r)解: (1) 这已经是合取范式, S=(┐p∨q)∧(p∨q)∧(┐q)第一次循环, S0 =φ,S1 = {┐p∨q, p∨q, ┐q}, S2 =φ┐p∨q, p∨q 消解得到q┐p∨q, ┐q 消解得到┐pp∨q, ┐q 消解得到pS2 = {p,┐p, q}第二次循环, S0 = {┐p∨q, p∨q, ┐q}, S1={p,┐p, q}, S2=φ┐p∨q, p 消解得到qp∨q, ┐p 消解得到q┐q, q 消解得到λ输出“no”, 计算结束.(2) S= p∧(p∨q)∧(p∨┐q)∧(q∨┐r)∧(q∨r)第一次循环, S0 =φ,S1={ p, p∨q, p∨┐q, q∨┐r, q∨r}, S2=φ.p∨q, p∨┐q 消解得到pp∨┐q, q∨┐r消解得到p∨┐rp∨┐q, q∨r 消解得到p∨rq∨┐r, q∨r 消解得到qS2= { p∨r, p∨┐r, q}第二次循环, S0 = { p, p∨q, p∨┐q, q∨┐r, q∨r},S1 = { p∨r, p∨┐r, q}, S2 =φp∨┐q, q 消解得到pq∨┐r, p∨r 消解得到p∨qq∨r, p∨┐r 消解得到p∨qp∨r, p∨┐r 消解得到pS2 = φ,输出“yes”, 计算结束.作业:1.用主析取范式判断下列公式是否等值:(p→q)→r与q→(p→r)2.用主合取范式判断下列公式是否等值:p→(q→r)与┐(p∧q)∨r3. 将下列公式化成与之等值且仅含{┐,∧}中联结词的公式:(1) (p→(q∧r))∨p(2) p∨┐q∨┐r4. 将下列公式化成与之等值且仅含{┐,∨}中联结词的公式: (p→(q∧┐p))∧q∧r5. 将下列公式化成与之等值且仅含{┐,→}中联结词的公式: (p∧q)∨r6. 用消解法判断下述公式是否可满足的(1) p∧(┐p∨┐q)∧q(2) (p∨q)∧(p∨┐q)∧(┐p∨r)。
《离散数学》总复习上课讲义
第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))
离散数学(高教)概念整理
数理逻辑命题逻辑命题p,q,r,s……非真即假的陈述句命题的真值0 1命题的陈述句所表达的判断结果原子命题(简单命题)不能被分解成更简单的命题简单命题通过联结词联结而成的命题,称为复合命题命题的符号化p:4是素数用小写英文字母(如p:4是素数)表示命题。
用小写英文字母(如p:4是素数)表示原子命题,用联结词联结原子命题表示复合命题。
联结词否定连接词¬否p为真当且仅当p为假合取联结词∧p合取q为真当且仅当p,q同时为真(复合命题“p并且q”称为p与q的合取式)析取联结词∨p析取q为假当且仅当p,q同时为假(复合命题“p或q”称为p与q的析取式)蕴含连接词→p蕴含q为假当且仅当p为真,q为假。
(复合命题“如果p,则q”(因为p所以q,除非q 才p)称为p与q的蕴含式,p是蕴含式的前件,q是蕴含式的后件)q是p的必要条件。
等价联结词↔p等价q当且仅当,同时为真或假。
(复合命题“p当且仅当q”称作p与q的等价式)真值表命题公式及其赋值命题常项原子命题(简单命题)的另一称呼,由于其真值确定命题变项真值可以变化的陈述句合式公式(命题公式)A,B……命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式赋值(解释)给公式A中的每个命题变项各指定一个真值。
这组值使A为1,则称为成真赋值。
含n个命题变项的公式有2的n次方个不同赋值。
含n个命题变项的公式有2的2的n次方个不同真值表情况。
重言式(永真式)命题公式A在各种赋值下取值均为真矛盾式(永假式)命题公式A在各种赋值下取值均为假可满足式命题公式A至少存在一个成真赋值哑元对公式A和B进行比较讨论,可知A和B共含有n个命题变项,其中A不含有的命题变项称为A的哑元,其取值不影响A的值命题逻辑等值演算等值式⇔如果命题A和B有相同的真值表,则有命题A↔B为重言式,这种情况下称A与B是等值的,记作A⇔B(重要)等值式模式常用的16条命题间的等值模式,书p18析取范式与合取范式文字命题变项及其否定的统称简单析取式,简单合取式由有限个文字构成的析取式,合取式析取范式,合取范式由有限个简单合取式的析取构成的命题公式,称为析取范式。
离散数学之命题符号化
--
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“”
定义 设 p,q为二命题,复合命题 “如果p,则q” 称作p与q的蕴涵式,记作pq,并称p是蕴涵式 的前件,q为蕴涵式的后件. 称作蕴涵联结词, 并规定,pq为假当且仅当 p 为真 q 为假.
--
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
00000000
00001111
00110011
01010101
FFFFFFFF ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) 8 9 1 01 11 21 31 41 5
11111111
00001111
00110011
01010101
--
33
(4) 小元元只能拿一个苹果或一个梨.
(5) 王晓红生于1975年或1976年.
--
14
解 令 p:2是素数, q:3是素数, r:4是素数, s:6是素数, 则 (1), (2), (3) 均为相容或. 分别符号化为: p∨r , p∨q, r∨s, 它们的真值分别为 1, 1, 0.
(4), (5) 为排斥或. 令 t :小元元拿一个苹果,u:小元元拿一个梨, 则 (4) 符号化为 (t∧u) ∨(t∧u). 令v :王晓红生于1975年,w:王晓红生于1976年, 则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可 符号化为 v∨w .
例如:pq, pq, (pq)((pq)q) 等都对应
表中的
F (2) 13
--
32
2元真值函数对应的真值表
数理逻辑1
1.3 命题逻辑等值演算
等值式 基本等值式 等值演算 置换规则
1
等值式
若等价式A↔ 是重言式 则称A与 等值 是重言式, 等值, 定义 若等价式 ↔B是重言式,则称 与B等值, 记作A⇔ ,并称A⇔ 是 记作 ⇔B,并称 ⇔B是等值式 说明:定义中, 说明:定义中,A,B,⇔均为元语言符号 A或B中 ⇔均为元语言符号, 或 中 可能有哑元出现. 可能有哑元出现 例如, 例如,在 (p→q) ⇔ ((¬p∨q)∨ (¬r∧r))中,r为左边 → ¬ ∨ ∨ ¬ ∧ 中 为左边 公式的哑元. 公式的哑元 用真值表可验证两个公式是否等值 请验证: → → 请验证:p→(q→r) ⇔ (p∧q) →r ∧ p→(q→r) (p→q) →r → → →
F9( 2 )
0 0 1 0
( F102 )
0 0 1 1
( F112 )
0 1 0 0
( F122 )
0 1 0 1
( F132 )
0 1 1 0
( F142 )
0 1 1 1
( F152 )
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
13
15
2元真值函数对应的真值表 元真值函数对应的真值表 p q 0 0 0 1 p 0 0 0 1 0 1 1 1 q 0 1 1 1
F0( 2 ) F1( 2 ) F2( 2 ) F3( 2 ) F4( 2 ) F5( 2 ) F6( 2 ) F7( 2 )
0 0 0 0
F8( 2 )
0 0 0 1
3
基本等值式( 基本等值式(续)
离散常用定义
命题逻辑▪(论域)定义:论域是一个数学系统,记为D。
它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。
▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。
•若n =0,则称为0元函数。
▪(命题合式公式)定义:•(1).常元0和1是合式公式;•(2).命题变元是合式公式;•(3).若Q,R是合式公式,则(⌝Q)、(Q∧R) 、(Q∨R) 、(Q→R) 、(Q↔R) 、(Q⊕R)是合式公式;•(4).只有有限次应用(1)—(3)构成的公式是合式公式。
▪(生成公式)定义1.5 设S是联结词的集合。
由S生成的公式定义如下:•⑴若c是S中的0元联结词,则c是由S生成的公式。
•⑵原子公式是由S生成的公式。
•⑶若n≥1,F是S中的n元联结词,A1,…,A n是由S生成的公式,则FA1…A n 是由S生成的公式。
▪(复杂度)公式A的复杂度表示为FC(A)•常元复杂度为0。
•命题变元复杂度为0,如果P是命题变元,则FC (P)=0。
•如果公式A=⌝B,则FC (A)=FC(B)+1。
•如果公式A=B1∧ B2,或A=B1∨ B2,或A=B1→B2,或A=B1↔ B2,或A=B1⊕ B2,或则FC (A)=max{FC(B1), FC(B2)}+1。
▪命题合式公式语义•论域:研究对象的集合。
•解释:用论域的对象对应变元。
•结构:论域和解释称为结构。
•语义:符号指称的对象。
公式所指称对象。
合式公式的语义是其对应的逻辑真值。
▪(合式公式语义)设S是联结词的集合是{⌝,∧,∨,⊕,→,↔}。
由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。
•⑵若Q是命题变元p,则v(A)= pv。
•⑶若Q1,Q2是合式公式▪若Q= ⌝Q1,则v(Q)= ⌝v(Q1)▪若Q=Q1 ∧Q2,则v(Q)=v(Q1)∧v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1→Q2,则v(Q)=v(Q1)→v(Q2)▪若Q=Q1 ↔Q2,则v(Q)=v(Q1)↔v(Q2)▪若Q=Q1⊕Q2,则v(Q)=v(Q1)⊕v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。
1-2 命题逻辑
基本等值式(等价式)
A,B代表任意 的命题公式
德· 摩根律 : (AB) AB (AB) AB
吸收律:
零律:
A (A B ) A ,
A1 1,
A (A B ) A
A 0 0
同一律:
排中律:
A0 A,
AA 1
A 1 A
等值的公式对应的真值函数相同。
1.3 等值演算
命题之间的等价关系
设A和B是两个命题公式,
A B AB
若等价式AB是重言式,
则称A与B等值。 如:p q q p
0 0 1 1
0 1 0 1
1 0 0 1
记为AB,并称AB是等值式。 注意:是关系符, 是联结词。 用真值表可验证两个公式是否等值。
p q 1 0 0 0
基本等值式(等价式)
双重否定律 : A A 等幂律: 交换律: 结合律: 分配律:
A,B,C代表任意的 命题公式
A A A, A A A A B B A, A B B A (A B ) C A (B C ) (A B ) C A (B C ) A (B C ) (A B ) ( A C ) A (B C ) (A B ) ( A C )
if B
X else
Y
执行X的条件为: (AB) (AB) B 执行Y的条件为: (AB) (AB) B
[P11例1.11]等值式应用举例
A、B、C、D 四人做 百米竞赛,观众甲、 乙、丙预测比赛结果 如下: 甲:C第一,B第二; 乙:C第二,D第三; 丙:A第二,D第四; 比赛结束后发现他们每人 都说对一半,试问实 际名次如何(假设无并 列者)? 解:首先,将命题符号化: 设用Ai —“A第i名”、 Bi —“B第i名”、 Ci —“C第i名”、 Di —“D第i名” (i=1,2,3,4) Ai、Bi、Ci、Di中均各有一个真命 题,按题意要寻找使下列3式 成立的真命题
n元真值函数
真值函数
定义:称F:{0,1}n→为n元真值函数。
在这个定义中,F的自变量为n个命题变项,定义域为{0,1}n ={00…0,00…1,…,11…1}, 即{0,1}n中元素为由0,1组成的全体长为n的符号串,值域为{0,1}。
n个命题变项共可构成22^n个不同的真值函数。
含命题变项p的1元真值函数共4个,见表1。
含命题变项p,q的真值函数共有16个,见表2。
表1
理解表1:
n元真值函数的结果差不多是长度为n的二进制串。
对于1元命题变项p,其取值由0,1组成,所以其取值有21种,又其真值也由0,1组成,所以每种取值下的真值组合有22^1=4种(表1右列竖着看,每列是一种组合),即真值函数共有22^1=4种。
表2
同样竖着看。
基本等值式 数理逻辑
④ A (pqrsu)(pqrsu)
结论:由④可知,A的成真赋值为00110与11001,
因而派孙、李去(赵、钱、周不去)或派赵、钱、
真值函数 联结词全功能集
4
复合联结词
排斥或: pq(pq)(pq) 与非式: pq(pq) 或非式: pq(pq)
5
真值函数
问题:含n个命题变项的所有公式共产生多少个 互不相同的真值表?
答案为 22n个。
为什么?
6
定义1.14: 称定义域为{00…0, 00…1, …, 11…1}, 值域为{0,1}的函数是n元真值函数,定义域中的元 素是长为n的0,1串. 常用F:{0,1}n{0,1} 表示F是n元 真值函数.
排中律: AA1
矛盾律: AA0
2
蕴涵等值式: ABAB
等价等值式: AB(AB)(BA)
假言易位:
ABBA
等价否定等值式: ABAB
归谬论:
(AB)(AB) A
注意: A,B,C代表任意的命题公式,牢记这些等 值式是继续学习的基础。
3
1.4 联结词全功能集
复合联结词
排斥或 与非式 或非式
(pq)r (消去) pqr (结合律) 这既是A的析取范式(由3个简单合取式组成的析 取式),又是A的合取范式(由一个简单析取式 组成的合取式)
20
(2) B=(pq)r
解 (pq)r
(pq)r (消去第一个)
(pq)r (消去第二个)
(pq)r
(否定号内移——德摩根律)来自这一步已为析取范式(两个简单合取式构成)
22
说明:1、n个命题变项产生2n个极小项和2n个极大项; 2、2n个极小项(极大项)均互不等值; 3、用mi表示第i个极小项,其中i是该极小项成
第十九章 泛代数
按类型T=({F,→},ar)定义P(X)上的运算: 把0元运算FP(X)规定为P(X)中的特定元素F 二元运算→P(X)定义为: →P(X)(p,q)=(→,p,q), 构成了X上T-代数[P(X),FP(X),→P(X)],即命题代数 自由代数
பைடு நூலகம்
定义20.2:设X是可列集,X上的自由T ( =({F,→},ar) )-代数称为X上关于命题 演算的命题代数 ,记为P(X),并称X为 命题变量集 ,X中的元素称为 命题变元 , P(X)中的每个元素称为命题演算的 合式 公式,简记为wff,仅由一个命题变元符 组成的合式公式称为 原子公式 ,所有原 子公式全体称为原子公式集。
定理20.4:任何命题合式公式(即P(X)中的 元素)都有只含命题变元及,,这三种运 算的合式公式与该命题合式公式等值 证明:对任意p=p(x1,x2,…xn)P(Xn) 1.对P(Xn)中任一赋值v恒有v(p(x1,x2,…xn)) =0 2.存在P(Xn)中的赋值v使得v(p(x1,x2,…xn)) =1 构造与该指派所对应的合式公式y1y2… yn, 使得:
定义19.8:T-代数A的元素a1,a2,…an 上的 字(word),就是元素wA(a1,a2,…an) A, 这里w是变量x1,x2,…xn上的一个T-字。 定 义 1 9 . 9 : 一 个 T- 代 数 变 量 ( T-algebra variable)是一个自由T-代数的自由生成 集的元素。
由可列集X={x1,…,xn,…}生成的自由{F,→}代数P(X), 这也是命题代数。 P0={F,x1,…,xn,…} P1={(→,ai,aj)|ai,ajP0} ={(→,F,F)}∪{(→,F,xi)|xiX}∪ {(→,xi,F)|xiX}∪{(→,xi,xj)|xi,xjX} P2={(→,ai,aj)|aiP0,ajP1}∪{(→,ai,aj)|aiP1 , ajP0} P(X)为:P(X)= Pn
1.6析取范式与合取范式
再例如p→q m0∨m1∨m3 M2
主范式的用途(3)
2.判断公式的类型
设公式A中含n个命题变项,容易看出: (1)A为重言式当且仅当A的主析取范式含全部2n个极小 项。 (2)A为矛盾式当且仅当A的主析取范式不含任何极小项。 此时,记A的主析取范式为F。 (3)A为可满足式当且仅当A的主析取范式至少含一个极 小项。
例
例2.10 用公式的主析取范式判断公式的类型: (1)┐(p→q)∧q (2)p→(p∨q) (3)(p∨q)→r
解: 注意(1)(2)中含两个命题变项,演算中极小项含两个文字,而(3)
中公式含三个命题变项,因而极小项应含三个文字。
(1)┐(p→q)∧q ┐(┐p∨q)∧q (p∧┐q)∧q F 这说明(1)中公式是矛盾式。 (2)p→(p∨q) ┐p∨p∨q ┐p∧(┐q∨q)∨p∧(┐q∨q)∨(┐p∨p)∧q (┐p∧┐q)∨(┐p∧q)∨(p∧┐q)∨(p∧q)∨ (┐p∧q)∨(p∧q) (┐p∧┐q)∨(┐p∧q)∨(p∧┐q)∨(p∧q) m0∨m1∨m2∨m3 这说明该公式为重言式。
n个命题变项共可产生多少个个不同的极小项?多 少个不同的极大项?
表2.3
极小项 公式 p∧q 成真赋值 0 0
由p,q形成的极小项和极大项
极大项 名称 公式 p∨q 成假赋值 0 0 名称
p∧q
p∧q p∧q
0 1
1 0 1 1
m0 m1 m2 m3
p∨q
p∨q p∨q
0 1
1 1 0 1
p∧q∧r
1 1 1
p∨q∨r
1 1 1
根据上面的两个表可以验证如下的定理: 定理2.4 设mi与Mi是命题变项p1,p2,…,pn形成的 极小项和极大项,则┐mi Mi, ┐Mi mi
联结词的完备集
联结词的完备集
1.命题公式与真值函数的关系
含n个变元的命题公式可以视为一个n-元真值函数F:{0,1}n→{0,1}。
反之任何n-元真值函数都可以表示为一个含n个变元的命题公式。
问:用什么方法得到这样的命题公式?
答:根据真值表构造主析取范式。
例1.1 为下列真值函数F构造命题公式表示。
2.联接词的完备集
动机:一个有趣的问题是,用尽可能少的几种联结词所构造出的命题公式能否表示所有的真值函数?
定义2.1设S是一个联结词集合。
若由S中联结词所构造的命题公式可以表示所有真值函数,则称S是联结词的完备集。
定理2.2{,,}
⌝∧∨是联结词完备集。
证明
证毕
推论2.3 以下集合都是联结词完备集:
1){,}
⌝∧
2){,}
⌝∨
3){,}
⌝→
证明
证毕定义2.4(1)与非联结词↑(2)或非联结词↓
定理2.5 {↑}与{↓}都是联结词完备集。
证明
证毕。
离散数学知识点
说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(?,?,?,?,?),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则, CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,?-规则(US),?+规则(UG), ?-规则(ES),?+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ?, ? , ?, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补,对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
3.群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元5.环与域:环,交换环,含幺环,整环,域6.格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理图论:1.图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、补图,握手定理,图的同构2. 图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,二部图(二分图) 3. 图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵4. 欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5. 无向树与根树:无向树,生成树,最小生成树,Kruskal ,根树,m 叉树,最优二叉树,Huffman 算法6. 平面图:平面图,面,欧拉公式,Kuratoski 定理数理逻辑:命题:具有确定真值的陈述句。
2022年同等学力申硕计算机科学考试全套复习资料
2022年同等学力申硕计算机科学考试全套复习资料2022年同等学力申硕《计算机科学与技术学科综合水平考试》全套资料【考点手册+真题精选+题库】内容简介【全套产品】•2022年同等学力申硕《计算机科学与技术学科综合水平考试》考点手册•2022年同等学力申硕《计算机科学与技术学科综合水平考试》题库【真题精选+专题题库】•试看部分内容第1章离散数学与组合数学【考点1】命题逻辑的等值演算与推理演算1命题逻辑的基本概念、命题逻辑联结词与真值表,重言式(1)命题逻辑的基本概念命题是一个非真即假的陈述句,与事实相符的陈述句为真语句,记为T;与事实不符的陈述句为假语句,记为F。
命题逻辑为二值逻辑。
只由一个主语和一个谓语构成的最简单的陈述句,称为简单命题或原子命题或原始命题。
若干个简单命题通过联结词联结而成的更为复杂的新命题称为复合命题或分子命题。
(2)常用的逻辑联结词常用的逻辑联结词如表1-1所示。
表1-1 常用的逻辑联结词(3)真值表把命题公式A在一切可能的赋值下取得的值列成表,该表称为A的真值表。
(4)重言式(也叫永真式)若命题公式A在任何一个赋值下的值都是真,则A称为重言式或永真式。
(5)矛盾式(也叫永假式)若命题公式A在任何一个赋值下的值都是假,则A称为矛盾式或永假式。
(6)可满足式若命题公式A在至少一个赋值下的值是真,则A称为可满足式。
即当A不是矛盾式时,A为可满足式。
2简单命题的形式化命题逻辑的自然语言形式化的基本过程分为三步:(1)确定子命题,用命题形式p,q,……表示;(2)确定联结词;(3)按照自然语言语义构成复合命题。
3等值定理、基本等值公式以及等值演算(1)等值定义设A和B是命题公式,若A↔B是重言式,则称A和B等值或逻辑等价,记作AóB,Aó称为等值式或逻辑等价式。
(2)基本等值公式一些基本等值式如表1-2所示。
表1-2 基本等值式4命题公式与真值表的关系、联结词的完备集(1)命题公式与真值表的关系含n个变元的命题公式可以视为一个n元真值函数F:{0,1}n→{0,1}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真值函数
定义:称F:{0,1}n→为n元真值函数。
在这个定义中,F的自变量为n个命题变项,定义域为{0,1}n ={00…0,00…1,…,11…1}, 即{0,1}n中元素为由0,1组成的全体长为n的符号串,值域为{0,1}。
n个命题变项共可构成22^n个不同的真值函数。
含命题变项p的1元真值函数共4个,见表1。
含命题变项p,q的真值函数共有16个,见表2。
表1
理解表1:
n元真值函数的结果差不多是长度为n的二进制串。
对于1元命题变项p,其取值由0,1组成,所以其取值有21种,又其真值也由0,1组成,所以每种取值下的真值组合有22^1=4种(表1右列竖着看,每列是一种组合),即真值函数共有22^1=4种。
表2
同样竖着看。