数学中考模拟试题[下学期] 北师大版
北师大版九年级数学中考模拟试题
ABCDE FMC'D'B'俯视图主(正)视图左视图初中毕业生中考数学模拟考试一.选择题:1、2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A3.84×410千米 B3.84×510千米 C 、3.84×610千米 D 、38.4×410千米3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个 D.8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅= C.236(2)8x x -=- D 、2()x x x -÷=- 5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360°6 、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知车速45A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示。
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
北师大版初中九年级下学期数学期末试题及答案
250 元,水果进价是5 元/kg,按规定售价不得高于12 元/kg,
也不得低于 7 元/kg,调查发现水果的日均销量 y(
kg)与每
千克售价 x(元)之间满足一次函数关系,其图象如图所示 .
(
1)求日均销量 y(
kg)关 于 每 千 克 售 价 x(元)的 函 数 表 达
式,并写出自变量的取值范围;
A.
y=x-2
3
C.
y=
x
2
B.
y=x +2x-1
2
D.
y= 2
x
3
,则α 的度数为
2
已知α 为锐角,且 s
2.
i
n(
α-20
°)=
A.
20
°
(B )
B.
40
°
C.
60
°
(D )
D.
80
°
如图,线段CD 是 ☉O 的直径,
若 AB 的
3.
CD ⊥ 弦 AB 于点E .
长为 16,
OE 的长为 6,则 ☉O 的半径是
14.
°,
C 为 OB 的 中 点,以 点 C
为圆心,以 OC 的长为半径画半圆交 OA 于点 D .
若 OB =2,则
阴影部分的面积为 .
第 14 题图
第 15 题图
如图,已知抛物线 y=x2-2x 与直线y=-x+2 交于 A ,
15.
B两
点,
M 是直线 AB 上的一个动点,将点 M 向左平移 4 个单位长
三、解答题(本大题共 8 个小题,共 75 分)
0
(
16.
8 分)计算:
2-1+2c
中考数学试题北师大版经典中考
数学中考模拟试卷全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间l20分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)1. 8的立方根是()(A) 2 (B) ±2 (C) 4 (D) ±42.已知a)(A)1± (B) 1 (C)1- (D) 03.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()(A) 4⨯2.110-0.2110-⨯(B) 4(C) 5⨯2110-2.110-⨯ (D) 64.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()(A) 3 (B) 4 (C) 5 (D) 6主视图左视图俯视图5.下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚骰子,数字“6”朝上;④小明长大后成为一名宇航员(A) ①②③ (B) ①③④ (C) ②③④ (D) ①②④6. 某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是()(A)15岁,16岁; (B)15岁,15岁; (C)15岁,15.5岁; (D)16岁,15岁7. 关于x的方程()06862=+--xxa有实数根,则整数a的最大值是()(A) 6 (B) 7 (C) 8 (D) 98. 把一个长方形纸片沿EF折叠后,点D、C分别落在D’、C’的位置,若︒=∠65EFB,则AE∠D’等于()(A) ︒70 (B)︒65 (C)︒50 (D)︒259.已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=︒70,则∠DAO+∠DCO的大小是()(A)︒70 (B)︒110 (C) ︒140 (D)︒150 10. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,则θsin的值为()(A)125(B)135(C)1310(D)1312第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.11.分解因式:=+-aaa251023______ ___12.函数1-=xxy中,自变量x的取值范围是13.如图,路灯距离地面8米,身高1.6米的小明站在(第10题图)OAMB(第13题图)距离灯的底部(点O )20米的A 处,则小明的影长为___________米. 14.若,m n n m -=-且,3,4==n m 则()2n m += 15.如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .三、(第16题每小题5分,第17题6分,共16分) 16.解答下列各题:(1)计算: 2202(3)( 3.14)8sin 45π----+--︒.(2)先化简:)2(2222a b ab a aba b a ++÷--,当1-=b 时,请你为a 任意选一个适当的数代入求值。
2020--2021学年北师大版数学七年级下册 第四章 三角形 中考真题演练
第四章三角形中考中考真题训练一、选择题1.[2020·绍兴]长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.72.[2020·大连]如图 ,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°3.[2020·永州]如图,已知AB=DC,∠ABC=∠DCB,能直接判定△ABC≌△DCB的方法是()A.SASB.AASC.SSSD.ASA4.[2019·青岛]如图4-Y-3,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°二、填空题5.[2020·齐齐哈尔]如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)6.[2020·怀化]如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D= °.7.[2020·青海]已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解,则△ABC的形状为三角形.8.[2020·江西]如图,CA平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.三、解答题9.[2020·铜仁]如图,点B,F,C,E在同一直线上,∠B=∠E,BF=EC,AC∥DF.试说明:△ABC≌△DEF.10.[2020·温州改编]如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE.试说明:△ABC≌△DCE.11.[2020·南充]如图4-Y-9,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,垂足分别为B,D,C,BC=DE.试说明:AB=CD.12.[2020·无锡]如图,已知点B,F,E,C在同一直线上,AB∥CD,AB=CD,BE=CF.试说明:(1)△ABF≌△DCE;(2)AF∥DE.13.[2020·黄石]如图,点C在AE上,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,试说明:AD=BC.14.[2020·宜宾]如图,在△ABC中,D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)试说明:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.1.B2.[解析] D因为∠C=180°-∠A-∠B,∠A=60°,∠B=40°, 所以∠C=80°.因为DE∥BC,所以∠AED=∠C=80°.故选D.3.[解析] A在△ABC和△DCB中,因为AB=DC,∠ABC=∠DCB,BC=CB,所以△ABC≌△DCB(SAS).故选A.4.[解析] C因为BD是△ABC的角平分线,AE⊥BD,所以∠ABD=∠EBD,∠AFB=∠EFB=90°.在△ABF和△EBF中,因为∠ABF=∠EBF,BF=BF,∠AFB=∠EFB, 所以△ABF≌△EBF(ASA),所以AB=EB.因为∠ABC=35°,∠C=50°,所以∠BAC=180°-∠ABC-∠C=95°.在△ABD与△EBD中,因为AB=EB,∠ABD=∠EBD,BD=BD,所以△ABD≌△EBD(SAS),所以∠BED=∠BAD=95°,所以∠DEC=180°-∠BED=85°,所以∠CDE=180°-∠DEC-∠C=180°-85°-50°=45°.5.答案不唯一,如AD=AC6.1307.[答案] 等腰[解析] 由非负数的性质可知b-2=0,c-3=0,所以b=2,c=3.由方程|x-4|=2,得x-4=±2,解得x=6或x=2.①当a=6时,2+3<6,此时不能构成三角形,舍去;②当a=2时,2,2,3能构成等腰三角形.故答案为等腰.8.[答案] 82°[解析] 因为CA平分∠DCB,所以∠BCA=∠DCA.在△ABC和△ADC中,因为CB=CD,∠BCA=∠DCA,AC=AC,所以△ABC≌△ADC(SAS),所以∠BAC=∠DAC.因为∠EAC=49°,所以∠BAC=∠DAC=180°-∠EAC=131°,所以∠BAE=∠BAC-∠EAC=82°.故答案为82°.9.解:因为AC∥DF,所以∠ACB=∠DFE.因为BF=EC,所以BC=EF.在△ABC和△DEF中,因为∠B=∠E,BC=EF,∠ACB=∠DFE,所以△ABC≌△DEF(ASA).10.解:因为AB∥DE,所以∠A=∠D.在△ABC和△DCE中,因为∠B=∠DCE,∠A=∠D,AC=DE,所以△ABC≌△DCE(AAS).11.解:因为AB⊥BD,DE⊥BD,AC⊥CE,所以∠ACE=∠ABC=∠CDE=90°,所以∠ACB+∠ECD=90°,∠ECD+∠CED=90°,所以∠ACB=∠CED.在△ABC和△CDE中,因为∠ACB=∠CED,BC=DE,∠ABC=∠CDE,所以△ABC≌△CDE(ASA),所以AB=CD.12.解:(1)因为AB∥CD,所以∠B=∠C.因为BE=CF,所以BE-EF=CF-EF,即BF=CE.在△ABF和△DCE中,因为AB=DC,∠B=∠C,BF=CE,所以△ABF≌△DCE(SAS).(2)因为△ABF≌△DCE,所以∠AFB=∠DEC,所以∠AFE=∠DEF, 所以AF∥DE.13.解:(1)因为AB∥DE,∠E=40°,所以∠EAB=∠E=40°.因为∠DAB=70°,所以∠DAE=∠DAB-∠EAB=30°.(2)因为∠B=30°,∠DAE=30°,所以∠DAE=∠B.在△ADE与△BCA中,因为∠DAE=∠B,AE=BA,∠E=∠BAC,所以△ADE≌△BCA(ASA),所以AD=BC.14.解:(1)因为D是BC的中点,所以BD=CD.在△ABD与△ECD中,因为BD=CD,∠ADB=∠EDC,AD=ED,所以△ABD≌△ECD(SAS).(2)因为在△ABC中,D是边BC的中点,所以S△ABD=S△ADC.因为△ABD≌△ECD,所以S△ABD=S△ECD,所以S△ADC=S△ABD=S△ECD.因为S△ABD=5,所以S△ADC=S△ECD=5,所以S△ACE=S△ADC+S△ECD=5+5=10.故△ACE的面积为10.。
2020年北师大版数学中考专题演练—几何证明(I卷)
2020春北师大版本数学中考专题演练—几何证明(I卷)全卷满分100分考试时间100分钟第一部分(共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在给出四个选项中,只有一项是符合题目要求的)1.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A .﹣1B .+1C .﹣1D .+12.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为()A .B.1 C .D.73.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B .C.2D .4.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A .B.2C .D.10﹣5第4题第5题第6题第7题5.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°6.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A .B .C .D .7.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A .B .C .D .8.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°第8题第9题第10题9.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD 于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个10.如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN =S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个第二部分(共70分)二、填空题(共4个选择题,每题3分,共12分)11.如图,直线a∥b,三角板的直角顶点A落在直线a上,两边分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.12.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.第12题第13题第14题13.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.三、解答题(一共9题,共58分)15.(6分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.16.(6分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.17.(6分)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.18.(6分)如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.19.(6分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.20. (6分)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.21.(8分)如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.22.(6分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.23.(8分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.2020春北师大版本数学中考专题演练—几何证明(I卷)参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 D A C B C D C C D D4.【解析】如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG ≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.7.【解析】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.10.【解析】∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,∴DN ∥AB ,且DN=;∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于点M,∴M是AB的中点,∴EM=,又∵DN=,∴EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,∵DN=,∴S△CDN =S△ABC,∴S△CDN=S四边形ABDN,∴结论②正确;如图1,连接MD、FN,,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,又∵DM=,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE是等腰直角三角形,EM平分∠AEB,∴M是AB的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又∵DM=,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+∠AMD; ∴∠EMD=∠EAF,在△EMD和△∠EAF 中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.故选:D.二、填空题(每题3分,共12分)11.48°12. 6 13.16或414.13.【解析】(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC 上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F 与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.14.【解析】连接BD交AC于O,∵四边形ABCD、AGFE 是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.三、解答题(共50分)15.(6分)【解析】(1)证明略;(2)解:DC=EF=.16.(6分)【解析】(1)证明:△AEB≌△CFB(SAS),AE=CF.(2)∠EGC=∠EBG+∠BEF=45°+35°=80°.17.(6分)【解析】证明:(1)△ACE≌△DCB(SAS),∴AE=BD;(2)证明略18.(6分)【解析】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.19. (6分)【解析】(1)证明:△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.20.(6分)【解析】(1)∵△CDQ≌△CPQ,∴DQ=PQ,PC=DC,∵AB=DC=5,AD=BC=3,∴PC=5,在Rt△PBC中,PB==4,∴PA=AB﹣PB=5﹣4=1,设AQ=x,则DQ=PQ=3﹣x,在Rt△PAQ中,(3﹣x)2=x2+12,解得x=,∴AQ=.(2)如图2,过M作EF⊥CD于F,则EF⊥AB,∵MD⊥MP,∴∠PMD=90°,∴∠PME+∠DMF=90°,∵∠FDM+∠DMF=90°,∴∠MDF=∠PME,∵M是QC的中点,∴DM=QC,PM=QC,∴DM=PM,在△MDF和△PME 中,,∴△MDF≌△PME(AAS),∴ME=DF,PE=MF,∵EF⊥CD,AD⊥CD,∴EF∥AD,∵QM=MC,∴DF=CF=DC=,∴ME=,∵ME是梯形ABCQ的中位线,∴2ME=AQ+BC,即5=AQ+3,∴AQ=2.21.(8分)【解析】(1)∵在Rt△ABC中,∠B=90°,AC=60,AB=30,∴∠C=30°,∵CD=x,DF=y.∴y=x;(2)∵四边形AEFD为菱形,∴AD=DF,∴y=60﹣x ∴方程组,解得x=40,∴当x=40时,四边形AEFD为菱形;(3)①当∠EDF=90°,∵∠FDE=90°,FE∥AC,∴∠EFB=∠C=30°,∵DF⊥BC,∴∠DEF+∠DFE=∠EFB+∠DFE,∴∠DEF=∠EFB=30°,∴EF=2DF,∴60﹣x=2y,与y=x ,组成方程组,得解得x=30.②当∠DEF=90°时,Rt△ADE中,AD=60﹣x,∠AED=90°﹣∠FEB=90°﹣∠A=30°,AE=2AD=120﹣2x,在Rt△EFB中,EF=AD=60﹣x,∠EFB=30°,∴EB=EF=30﹣x,∵AE+EB=30,∴120﹣2x+30﹣x=30,∴x=48.综上所述,当△DEF是直角三角形时,x的值为30或48.22.(6分)【解析】(1)证明:Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:略(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.23.(8分)【解析】解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,证明略;(3)S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG =×2×3+×3×4.5﹣=.。
北师大版中考数学练习题第三章-整式及其加减含答案
2019备战中考数学基础必练(北师大版)-第三章-整式及其加减(含解析)一、单选题1.已知和-是同类项,则的值是( )A. -1B. -2C. -3D. -42.下列说法正确的是()。
A. 0是单项式B. 单项式的系数是C. 单项式的次数为D. 多项式是五次三项式3.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m=()A. B. C. - D. 04.﹣(a﹣b+c)变形后的结果是()A. ﹣a+b+cB. ﹣a+b﹣cC. ﹣a﹣b+cD. ﹣a﹣b﹣c5.对于代数式,下列说法不正确的是()A. 它按x降幂排列B. 它是单项式C. 它的常数项是D. 它是二次三项式6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A. 4m+7nB. 28mnC. 7m+4nD. 11mn7.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是().A. 1B. 2C. 3D. 48.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A. 179B. 140C. 109D. 210二、填空题9.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.10.若与是同类项,则m+n=________.11.- πx2y的系数是________;12.鸡兔同笼,鸡m只,兔n只,则共有________个头,________只脚.13.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是________14.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.15.观察下列等式12=1= ×1×2×(2+1)12+22= ×2×3×(4+1)12+22+32= ×3×4×(6+1)12+22+32+42= ×4×5×(8+1)…可以推测12+22+32+…+n2=________.16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺板地面:依上推测,第n个图形中白色瓷砖的块数为________.17.若x2-2x=3.则代数式2x2-4x+3的值为________.三、计算题18.如果a、b互为相反数,c、d互为倒数,x的绝对值是2,求:的值。
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
北师大初中数学推荐试卷
摘要:本文针对北师大初中数学教材,推荐几套具有代表性的试卷,旨在帮助学生提升数学能力,为中考做好准备。
一、试卷推荐1. 北师大版初中数学七年级上册单元测试卷这套试卷涵盖了七年级上册的全部知识点,包括有理数、代数式、方程、不等式等。
试卷难度适中,适合学生在学习过程中检验自己的掌握程度。
2. 北师大版初中数学八年级上册期中试卷八年级上册期中试卷以综合测试为主,涵盖了几何、函数、概率等多个模块。
试卷难度适中,旨在帮助学生全面掌握所学知识。
3. 北师大版初中数学九年级上册期中试卷九年级上册期中试卷以综合测试为主,涵盖了平面几何、解析几何、函数、概率等多个模块。
试卷难度较大,适合学生在复习阶段进行自我挑战。
4. 北师大版初中数学中考模拟试卷这套试卷以历年中考真题为基础,结合北师大版教材,设置了多套模拟试题。
试卷难度较高,适合学生在中考前进行冲刺训练。
二、试卷特点1. 知识点全面:试卷涵盖了北师大版初中数学教材的全部知识点,有助于学生全面掌握所学内容。
2. 难度适中:试卷难度与北师大版教材相符,既能够检验学生的掌握程度,又不会给学生带来过大压力。
3. 注重基础:试卷注重基础知识的考察,帮助学生巩固基础,提高解题能力。
4. 模拟中考:中考模拟试卷以历年中考真题为基础,有助于学生熟悉中考题型,提高应试能力。
三、使用建议1. 学生可以根据自己的学习进度,选择合适的试卷进行练习。
2. 在练习过程中,遇到难题不要气馁,要学会分析问题,总结解题方法。
3. 定期进行模拟考试,检验自己的学习成果,为中考做好准备。
4. 教师可以根据学生的实际情况,推荐合适的试卷,帮助学生查漏补缺。
总之,北师大初中数学推荐试卷可以帮助学生在学习过程中巩固知识、提升能力。
希望广大师生能够充分利用这些资源,共同为学生的中考保驾护航。
2020-2021学年北师大版三年级下册期中模拟测试数学试卷(word版 含答案)
2020-2021学年北师大版三年级下册期中模拟测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.345÷8的商是(________)位数;52×48的积是(________)位数。
2.口算60×80时,可以先算(______)×(______)=(______),再在末尾添(______)个0,得(______)。
3.15的20倍是(______);540是9的(______)倍。
4.用“平移”或“旋转”填空。
(______)(______)(______)(______)(______)5.800÷5的商的末尾有(________)个0;40×15的积的末尾有(________)个0。
6.在括号里填上“>”“<”或“=”。
480÷4(______)60÷5 30×40(______)29×38420÷3÷4(______)420÷7 25×40(______)50×207.要使72k÷5的商没有余数,k可以填(______)或(______)。
8.在☆÷9=10…□中,□最大是_____,☆最小是_____。
二、判断题9.对称轴是一条线段。
(______)10.0除以任何不是0的数都得0。
(________)11.算式5k×90的积的末尾至少有1个0。
(______)12.如果被除数的末尾有0,那么商的末尾一定有0。
(________)13.把76个苹果放入盘子中,每个盘子装5个,至少要15个盘子才能装完。
(________)三、选择题14.624÷6的商的个位上是()。
A.6 B.0 C.415.8个同学踢毽子,一共踢了162个,平均每人大约踢()个。
2024年北师大版数学中考仿真模拟试题(五)
2024年北师大版数学中考仿真模拟试题(五)一、单选题1.河湟剪纸被列入青海省第三批省级非物质文化遗产名录,是青海劳动人民结合河湟文化,创造出独具高原特色的剪纸.以下剪纸图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列事件中,是必然事件的是( )A .任意画一个三角形,其内角和是180︒B .任意买一张电影票,座位号是单号C .掷一次骰子,向上一面的点数是3D .射击运动员射击一次,命中靶心3.用配方法解一元二次方程2680x x -+=,配方后得到的方程是( ) A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=4.如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( ).A .1B .23C .13D .195.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A .B .C .D .6.如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB ,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC 长为m ,则大树AB 的高为( )A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m mαα- 7.如图,等圆1O e 和2O e 相交于A ,B 两点,1O e 经过2O e 的圆心2O ,若122O O =,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π8.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且14AD AB =,反比例函数()0ky k x=>的图象经过点D 及矩形OABC 的对称中心M ,连接,,OD OM DM .若ODM △的面积为3,则k 的值为( )A .2B .3C .4D .59.如图,在边长为4的正方形ABCD 中,点G 是BC 上的一点,且3BG GC =,DE AG ⊥于点E ,BF DE P ,且交AG 于点F ,则tan EDF ∠的值为( )A .14B .13C .25D .1210.如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),,对称轴为直线2x =.则下列结论正确的有( ) ①0abc <; ②0a b c -+>;③方程20cx bx a ++=的两个根为1211,26x x ==-;④抛物线上有两点()11,P x y 和()22,Q x y ,若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个二、填空题11.将一个三角尺()30A ∠=︒按如图所示的位置摆放,直线a b ∥,若20ABD ∠=︒,则α∠的度数是.12.如图,在ABCD Y 中,60D ∠=︒.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点,A E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OFOE的值为.13.2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.14.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是. 15.如图,在正方形ABCD 中,8AB =,点E 在边AD 上,且4AD AE =,点P 为边AB 上的动点,连接PE ,过点E 作EF PE ⊥,交射线BC 于点F ,则EFPE=.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为.16.如图,在直角坐标系中,A e 与x 轴相切于点,B CB 为A e 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD V 的面积为6,则k 的值为.三、解答题17.计算:()201π 3.1422cos302-⎛⎫+--︒ ⎪⎝⎭.18.先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.19.教室里的投影仪投影时,可以把投影光线CA ,CB 及在黑板上的投影图像高度AB 抽象成如图所示的ABC V ,90BAC ∠=︒.黑板上投影图像的高度120cm AB =,CB 与AB 的夹角33.7B ∠=︒,求AC 的长.(结果精确到1cm .参考数据:sin33.70.55︒≈,cos33.70.83︒≈,tan33.70.67︒≈)20.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ΔABC 关于原点O 成中心对称的ΔA 1B 1C 1.(2)作出点A 关于x 轴的对称点A'若把点A'向右平移a 个单位长度后落在ΔA 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.21.随着科技的进步,购物支付方式日益增多,为了解某社区居民支付的常用方式(A 微信,B 支付宝,C 现金,D 其他),某学习小组对红星社区部分居民进行问卷调查,根据查结果,绘制成如图统计图.根据统计图表中的信息,解答下列问题:(1)a =______,b =______,在扇形统计图中C 种支付方式所对应的圆心角为______度; (2)本次调查中用现金支付方式的居民里有2名男性,其余都是女性,现从该种支付方式中随机选2名居民参加线上支付方式培训,求恰好都是女性的概率.22.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=≠在一,三象限分别交于C ,D 两点,12AB BC =,连接CO ,DO .(1)求k 的值; (2)求CDO V 的面积.23.如图,四边形ABCD 内接于O e ,AB 为O e 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O e 的切线. (2)若10BE =,2sin 3BDC ∠=,求O e 的半径. 24.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m (kg ),销售单价为y 元/kg .根据以往经验可知:m与t 的函数关系为()2000005010015000(50100)t m t t ⎧≤≤=⎨+<≤⎩;y 与t 的函数关系如图所示.①分别求出当050t ≤≤和50100t <≤时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)25.在矩形ABCD 中,2AB =,AD =E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG .(1)如图1,连接BD ,求BDC ∠的度数和DGBE的值; (2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当E A E C =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求P A P C +的最小值.26.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?。
2023-2024学年广东省七年级下学期数学期中仿真模拟卷二【范围:北师大版第1-4章】(学生版)
2023-2024学年广东省七年级下学期数学期中仿真模拟卷二【范围:北师大版第1-4章】一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2023七下·南明月考)计算:a3⋅a3=()A.a9B.a6C.2a3D.2a62.(2023七下·白银期末)计算30×5−1的结果是()A.−5B.15C.5D.−153.卫星导航系统可提供高精度的时间校准服务,其精度可达10ns(1s=1000000000ns),用科学记数法表示10ns为()A.1×10-8s B.1×10-9s C.10×10-9s D.0.1×10-9s 4.(2023七下·茶陵期末)如图,直线a,b相交,∠1=130°,则∠2+∠3的度数为()A.50°B.100°C.25°D.130°5.如图,下列判断中,错误的是()A.∠1与∠2是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠5与∠7是同位角6.(2023七下·坪山月考)如图,在长为3a+2,宽为2b-1的长方形铁片上,挖去长为2a+4,宽为b的小长方形铁片,则剩余部分面积是()A.6ab-3a+4b B.4ab-3a-2C.6ab-3a+8b-2D.4ab-3a+8b-2 7.(2024八下·南宁开学考)若x2+(m−2)x+16是一个完全平方式,则m的值是()A.10B.-10C.-6或10D.10或-108.从棱长为4a的正方体中,挖去一个棱长为2a的小正方体,得到一个如图所示的几何体,则该几何体的体积是()A.4a3B.8a3C.56a3D.58a39.(2023七下·沙坪坝期末)六一儿童节,爸爸妈妈带着潇潇从家出发匀速步行前往江北嘴大剧院户外广场欣赏“亲子户外江畔音乐会”,三人在途中的礼品店买了礼物后,发现音乐会即将开始.于是三人以更快的速度匀速跑步前往,最后准时到达.下面能反映潇潇离家的距离s与时间t的关系的大致图象是()A.B.C.D.10.(2023七下·伊犁期中)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠2=∠3;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠5−∠2=90°,其中正确的个数是().A.1B.2C.3D.4二、填空题:本大题共5小题,每小题3分,共15分.11.(2024七下·惠州开学考)已知∠α与∠β互补,且∠α=39°,则∠β=.12.(2024七下·南宁月考)有经验的渔夫用鱼叉捕鱼时,不是将鱼叉对准他看到的鱼,这是由于光从空气射入水中时,发生折射现象.如图,水面EF与底面GH平行,光线AB从空气射入水中时发生了折射,变成光线BC射到水底C处,射线BD是光线AB的延长线,∠1=42°,∠2=60°,则∠CBD的度数为.13.(2023七下·扬州月考)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB 的周长多2cm,则AC=cm.14.(2023七下·顺义期中)有一个正方形的花园,如果它的边长增加2m,那么花园面积将增加16m2,则原花园的面积为.15.(2023七下·济南期中)已知动点P以每秒2cm的速度沿图1的边框按从B→C→D→E→F→A的路径移动,相应的∠ABP的面积S(cm2)与时间t(秒)之间的关系如图2中的图象所示.其中AB=6cm,a= ,当t=时,∠ABP的面积是18cm2.三、解答题(共8题,共75分)16.(2023七下·南山期中)计算:(1)−32+(−12)2+(2023−π)0−|−2|;(2)(−2a2)3⋅a2+a8;(3)20232−2024×2022(要求简便计算)17.(2019七下·峄城月考)先化简,再求值:[(x+2y)2−(x+y)(3x−y)−5y2]÷2x,其中x=−2,y=1218.(2023七下·市南区期中)用圆规、直尺作图,不写作法,保留作图痕迹.如图,长方形纸片上有一条线段AB和AB外一点C,求作线段CD,使CD∥AB且与木板边缘交于点D.19.(2023七下·东莞期中)完成下面的证明.(在括号中注明理由)已知:如图,BE//CD,∠A=∠1,求证:∠C=∠E.证明:∵BE//CD,(已知)∴∠2=∠C,()又∵∠A=∠1,(已知)∴AC//▲ ,()∴∠2=▲ ,()∴∠C=∠E(等量代换)20.(2023七下·贵阳期中)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)试说明:AC∥DE;(2)若BF=10,EC=2,求BC的长.21.(2023七下·禅城期中)星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)自变量是,因变量是;(2)小颖家与学校的距离是米;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?22.(2023七下·宝安期中)(1)【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);(2)【应用】请应用这个公式完成下列各题:①已知2m−n=3,2m+n=4,则4m2−n2的值为▲ ;②计算:(x−3)(x+3)(x2+9);(3)【拓展】计算(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(232+1)的结果为.23.(2023七下·宝安期中)已知直线AB//CD,点P为直线AB,CD所确定的平面内的一点,(1)问题提出:如图1,∠A =120°,∠C =130°.求∠APC 的度数;(2)问题迁移:如图2,写出∠APC ,∠A ,∠C 之间的数量关系,并说明理由;(3)问题应用:如图3,∠EAH :∠HAB =1:3,∠ECH =20°,∠DCH =60°,求∠H ∠E的值.答案解析部分1.【答案】B【知识点】同底数幂的乘法【解析】【解答】解:a 3⋅a 3=a 3+3=a 6.故答案为:B.【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.2.【答案】B【知识点】零指数幂;负整数指数幂【解析】【解答】解: 30×5−1=1×15=15, 故答案为:15. 【分析】根据零指数幂和负整数指数幂计算求解即可。
五年中考三年模拟七年级下册数学初中试卷北师大版答案
五年中考三年模拟七年级下册数学初中试卷北师大版答案一、选择题1. B2. C3. A4. D5. B6. C7. A8. B9. D 10. A二、填空题1. 142. 123. 104. 75. 96. 15三、解答题1. 解答过程:题意:已知 x = 4 为方程 2x + c = 14 的解,求常数 c 的值。
由题意可得:2x + c = 14将 x = 4 代入方程中,得到 2 * 4 + c = 14计算得:8 + c = 14移项可得:c = 14 - 8计算得:c = 6所以,常数 c 的值为 6。
2. 解答过程:题意:计算 (3a - 4b) * 2 - 3(2a + 3b) 的值。
将表达式按照运算顺序进行计算:(3a - 4b) * 2 - 3(2a + 3b)= 6a - 8b - 6a - 9b= -17b所以,表达式的值为 -17b。
3. 解答过程:题意:已知 a + b = 5,且 a - b = 1,求 a 和 b 的值。
解方程组:(1) a + b = 5(2) a - b = 1(2) 式两边同时加上 (1) 式,得到:(1) + (2) :2a = 6解得:a = 3将 a = 3 代入 (1) 式,得到:3 + b = 5解得:b = 2所以,a 的值为 3,b 的值为 2。
四、应用题1. 解答过程:题意:小明和小华一起做数学作业,他们两个人一共用了 1 小时30 分钟,其中小明用了 3/5 小时,问小华用了多长时间?已知小明用了 3/5 小时,所以小华用的时间为 1小时30分钟 - 3/5小时。
转换成相同单位:1小时30分钟 = 1小时 + 30分钟 = 60分钟 + 30分钟 = 90分钟小华用的时间为 90分钟 - 3/5小时 * 60分钟/小时 = 90分钟 - 36分钟 = 54分钟所以,小华用了 54 分钟的时间完成作业。
2. 解答过程:题意:一件商品原价为 400 元,现在打折 25%,问打折后的价格是多少?已知原价为 400 元,打折 25%,所以打折金额为 400元 * 25% = 100 元。
期中模拟测试四(第1—4单元)(试题)北师大版四年级下册数学
北师大版数学四年级下册期中模拟测试四(第一~第四单元)学校:___________姓名:___________班级:___________评卷人得分一、选择题(共10分)1.(本题1分)下面可以用0.6表示的是()。
A.B.C.D.2.(本题1分)下面每个数中的“4”,表示4分米的是()。
A.0.64米B.4.68米C.0.47分米D.1.48米3.(本题1分)在一次跑步比赛中,前三名分别是梦梦(12.58秒)、同同(13.08秒)、蓝蓝(12.61秒),第一名是()。
A.梦梦B.同同C.蓝蓝D.无法确定4.(本题1分)下面有()个生活物品应用了“三角形具有稳定性”的知识。
A.1个B.2个C.3个D.4个5.(本题1分)下面4个三角形都是()。
A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形6.(本题1分)15.4×()>154,括号内可以填()。
A.8B.9C.10D.117.(本题1分)下面可以用小数0.43表示的是()。
A.4元3角=()元B.403克=()千克C.D.8.(本题1分)一头小牛重0.32吨,也就是()千克。
A.3200B.320C.32D.0.329.(本题1分)从右面观察所看到的图形是()。
A.B.C.D.以上都不对10.(本题1分)一个由正方体组成的立体图形,从不同方向观察如下图,这个图形最少是由()个正方体组成的立体模型。
正面左面上面A.3B.4C.5D.611.(本题4分)小明用( )个摆成,画出从上面看到的小明摆成的图形:( )。
12.(本题2分)用5个小正方体搭立体图形。
(填序号)(1)从正面看到的形状相同的是( ),都有( )个正方形。
(2)从上面看,能看到5个正方形的是( )。
(3)从右面看形状相同的是( )。
13.(本题4分)在括号里填上“>”“<”或“=”。
8.56( )8.65 6.4米( )0.32千米23.780( )23.708 2.64×5.5( )26.4×0.5514.(本题2分)甲、乙两数的积是4.04,如果甲数的小数点向左移动一位,乙数扩大到原来的100倍,新的积是( )。
北师大版2020七年级数学下册期中模拟能力达标测试A(附答案详解)
北师大版2020七年级数学下册期中模拟能力达标测试A (附答案详解)1.已知不等式组294a -的解集为()()44a a -+,则22()xy x y -得取值范围是( ) A .115x - B .6{ 3.x y ==-,C .13x ≤<D .21x a =-+2.平面图形的旋转一般情况下会改变图形的( )A .位置B .大小C .形状D .性质3.如图,已知菱形ABCD 的边长等于2,若∠DAB=60°,则对角线BD 的长为:A .1B .3C .2D .8x4.已知△ABC 为直角三角形,在下列四组数中,不可能...是它的三边长的一组是( ) A .3,4,5 B .6,8,10 C .5,12,13 D .3,3,55.下列三条线段不能构成直角三角形的是( )A .32,42 ,52B .5,12,13C .24,25,7D .1,2,3 6.下列说法:①角平分线上任意一点到角的两边的线段长度相等;②线段不是轴对称图形;③角是轴对称图形;④线段垂直平分线上的点到这条线段两个端点的距离相等.其中正确的是( )A .①②③④ B .①②③ C .①③④ D .③④7.下列四组条件中, 能使△ABC ≌△DEF 的条件有( )①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E ,A .1组B .2组C .3组D .4组8.某中学每年都会举行乒乓球比赛,比赛规定采取积分制:赢一局得3分,负一局扣1分. 在7局比赛中,积分超过10分的就可以晋级下一轮比赛,李胜进入了下一轮比赛,问李胜输掉的比赛最多是( )A .2局B .3局C .4局D .5局9.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( )A .(3,﹣1)B .(1,﹣3)C .(2,﹣2)D .(﹣2,2)10.下列说法中正确的是( )A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC11.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.12.如图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?图______是.13.如图,直角边长为3的等腰直角三角形ABC沿直角边BC所在直线向上平移1个单位,得到三角形A'B'C',则阴影部分的面积为____________。
【北师大版】初三数学下期中第一次模拟试题(及答案)
一、选择题1.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 2.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm 3.如图,在ABC ∆中,E 为BC 边上的一点,F 为AC 边上的一点,连接BF ,AE ,交于点D ,若D 为BF 的中点,CF 2AF =,则:BE CE 的值为( )A .1:2B .1:3C .1:4D .2:34.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =22,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .2﹣2C .3 2D .6﹣4 5.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .256.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)k y k x x=>>经过点D ,则k =( )A .2B .352C .36D .30 7.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数m y x =的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-88.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .59.对于反比例函数21k y x +=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值10.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<11.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 12.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .8二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)15.如图,已知Rt ABC 中,AC=b ,BC=a ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点D 4,D 5,…,D n ,分别记BD 1E 1,BD 2E 2,BD 3E 3,…,BD n E n 的面积为S 1,S 2,S 3,…S n .则(1)1E C =__________,(2)S n =__________.16.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.17.如图,在平面直角坐标系xOy中,直线y=ax,y=1ax与反比例函数y=6x(x>0)分别交于点A,B两点,由线段OA,OB和函数y=6x(x>0)在A,B之间的部分围成的区域(不含边界)为W.(1)当A点的坐标为(2,3)时,区域W内的整点为_____个;(2)若区域W内恰有8个整点,则a的取值范围为_____.18.如图,边长为1的正方形OABC中顶点B在一双曲线上,请在图中画出一条过点B的直线,使之与双曲线的另一支交于点D,且满足线段BD最短,则BD=________.19.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为_____.20.如图,点A在反比例函数kyx=的图象上,AB垂直x轴于B,若AOBS∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)k y k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 23.已知,反比例函数k y x=(k 是常数,且0k ≠)的图象经过点(,3)A b .(1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值.24.如图,直线y kx b =+y kx b =+与反比例函数12y x =相交于A(2,)-m 、B(n,3).(1)连接OA 、OB ,求AOB 的面积;(2)根据(1)中的图象信息,请直接写出不等式12kx b x>+的解集. 25.如图,一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x >0)的图象上,顶点B 在函数y 2=2k x (x >0)的图象上,∠ABO=30°,求12k k 的值.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用相似三角形的判定定理,在AD ∥BC ,得∠DAC =∠BCA 的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠BAC =∠ADC 时,则△ABC ∽△DCA ;B .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠B =∠ACD 时,则△ABC ∽△DCA ;C .∵AD ∥BC ,∴∠DAC =∠BCA ,由AC 2=AD •BC 变形为AC AD BC AC =,则△ABC ∽△DCA ; D .∵AD ∥BC ,∴∠DAC =∠BCA ,当DC AB AC BC=时,不能判断△ABC ∽△DCA . 故选择:D .【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键. 2.B解析:B【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3OC , ∴3OA OB OD OC==, ∵AD 与BC 相交于点O ,∴∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴3AB OA DC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B.【点睛】 本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.3.B解析:B【分析】过点F 作FG//BC 交AE 于点G ,证明DFG DBE ∆∆可得FG BE =,再由//FG BC 可证得13BE GF AF CE CE AC ===,故可得结论. 【详解】解:过点F 作FG//BC 交AE 于点G∵D 是BF 的中点,∴DB DF =∵//FG BC∴DFG DBE ∆∆∴1FG DF BE DB== ∴FG BE =又∵//FG BC∴F CEC G AF A = ∵CF 2AF =∴3AC AF =∴13BE GF AF CE CE AC === 故选:B .【点睛】此题主要考查了相似三角形的判定与性质以及平行线分线段成比例定理,熟练掌握相关定理与性质是解答此题的关键.4.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B''', ∴434C J ', ∴C′J =3∴JB′=4﹣3∴BB′=2﹣(4﹣3=3﹣2.故选:C .【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理. 5.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 6.B解析:B【分析】作DF ⊥OC 于F ,根据矩形的性质和相似三角形的性质求得OD=3,OE=5,根据勾股定理求得30OC =,然后通过三角形相似求得DF 和OF ,从而求得D 的坐标,代入解析式即可求得k 的值.【详解】解:作DF ⊥OC 于F ,在矩形OABC 中,∠OCB=90°,OD=BD ,90,OCE BCE ∴∠+∠=︒∵CE ⊥OB ,90,CEO BEC ∴∠=∠=︒90,OCE COE ∴∠+∠=︒,COE BCE ∴∠=∠,COE BCE ∴∽,CE OE BE CE∴= ∴2,CE BE OE =∵2DE BE =,5,CE = 设,BE x =则DE=2x ,3,OD BD x ==∴OE=5x ,∴255,x x =解得,x=1(负根舍去),∴OD=3,OE=5,∴()22225530,OC OE CE =+=+= ∵∠OFD=∠OEC=90°,∠DOF=∠EOC ,∴△DOF ∽△COE ,∴,DF OF OD CE OE OC==即,5530OF == ∴306,,OF DF == ∴D 的坐标为306,⎛⎫ ⎪⎪⎝⎭, ∵反比例函数k y x =(k >0,x >0)经过点D , ∴30635,k =⨯= 故选:B .【点睛】本题考查了矩形的性质,勾股定理,三角形相似的判定和性质,反比例函数图象上点的坐标特征,求得D 的坐标是解题的关键.7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 8.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,9.B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 10.C解析:C【解析】试题根据图象可得当12y y <时,x 的取值范围是:x <−6或0<x <2.故选C.11.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥,90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =, 3AE x ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226(3)(3)x x =+,解得:3x =,3,33AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,33AP PQ A P PQ A Q DE ''∴+=+===.故答案是:3;33.【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.15.b 【分析】根据直角三角形的性质以及相似三角形的性质利用在△ACB 中D2为其重心可得D2E1=BE1然后从中找出规律即可解答【详解】解:∵D1E1⊥ACBC ⊥AC ∴D1E1∥BC ∴∵D1是斜边AB 的中 解析:12b 22(1)ab n + 【分析】根据直角三角形的性质以及相似三角形的性质,利用在△ACB 中,D 2为其重心可得D 2E 1=13BE 1,然后从中找出规律即可解答. 【详解】解:∵D 1E 1⊥AC ,BC ⊥AC ,∴D 1E 1∥BC , ∴1111AE AD CE BD =, ∵D 1是斜边AB 的中点,∴AD 1=BD 1, ∴11111AE AD CE BD ==, ∵AC =b ,∴AE 1=E 1C =12b , ∵D 1E 1∥BC , ∴BD 1E 1与CD 1E 1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D 1E 1=12BC ,CE 1=12AC ,S 1=212S △ABC ; ∴在ACB 中,D 2为其重心,∴D 2E 1=13BE 1, ∴D 2E 2=13BC ,CE 2=13AC ,S 2=213S △ABC , ∵D 2E 2:D 1E 1=2:3,D 1E 1:BC =1:2,∴BC :D 2E 2=2D 1E 1:23D 1E 1=3, ∴CD 3:CD 2=D 3E 3:D 2E 2=CE 3:CE 2=3:4,∴D3E3=14D2E2=14×13BC=14BC,CE3=34CE2=14×13AC=14AC,S3=214S△ABC…;∴S n=21(1)n+S△ABC=21(1)n+×12ab=22(1)abn+.故答案为:12b,22(1)abn+.【点睛】此题主要考查相似三角形的判定与性质和三角形的重心等知识,解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.也考查了重心的性质即三角形三边中线的交点到顶点的距离等于它到对边中点距离的两倍.16.【分析】连接ADBC后可知△AOD∽△BOC再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC则在△AOD和△BOC中∴△AOD∽△BOC(cm)故答案为15cm【点睛】本题解析:15cm【分析】连接AD、BC后可知△AOD ∽△BOC,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD、BC,则在△AOD 和△BOC中,AO DOBO CODOA BOC⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC,233,1015322AD AO BC AD BC BO ====⨯=(cm ), 故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键. 17.24<a≤5或≤a <【分析】(1)把A 点坐标代入y =ax 得出直线直线y =ax 和的解析式作出函数图象再根据定义求出区域W 的整点个数便可;(2)直线y =ax 关于y =x 对称当区域W 内恰有8个整点则在直线y解析:2 4<a ≤5或15≤a <14 【分析】(1)把A 点坐标代入y =ax ,得出直线直线y =ax 和1y x a=的解析式,作出函数图象,再根据定义求出区域W 的整点个数便可; (2)直线y =ax ,1y x a=关于y =x 对称,当区域W 内恰有8个整点,则在直线y =x 上方与下方各有3个整点,进而求解.【详解】解:(1)如图,∵A (2,3),∴3=2a ,∴a =32, ∴直线OA :y =32x , 直线OB :y =23x , ∴当23x =6x时, 解得:x =3,或x =﹣3(负值舍去),∴B (3,2),∴故区域W内的整点个数有(1,1),(2,2)共2个,故答案为:2;(2)∵直线y=ax,1y xa=关于y=x对称,∵y=6x与y=x66),∴在W区域内有点(1,1),(2,2),∴区域W内恰有8个整点,∴在直线y=x上方与下方各有3个整点即可,∵(2,3),(3,2)在y=6x上,∴整点为(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),当点(1,4)在y=ax上时,a=4,当点(1,5)在y=ax上时,a=5,∴4<a≤5;当点(1,4)在1y xa=上时,a=14,当点(1,5)在1y xa=上时,a=15,∴15≤a<14;故答案为:4<a≤5或15≤a<14.【点睛】本题主要考查了一次函数与反比例函数图象的交点,主要考查了待定系数法求函数解析式,函数图象与性质,新定义,最后一问关键是读懂新定义,找到关键点求出a的值.18.2【分析】作直线OB交双曲线另一支于点D根据双曲线对称性得到BD最短根据勾股定理和双曲线对称性即可求解【详解】解:如图作直线OB交双曲线另一支于点D∵双曲线关于直线y=x及直线y=−x对称∵四边形O解析:22 【分析】 作直线OB ,交双曲线另一支于点D ,根据双曲线对称性得到BD 最短,根据勾股定理和双曲线对称性即可求解.【详解】解:如图,作直线OB ,交双曲线另一支于点D ,∵双曲线关于直线y=x 及直线y=−x 对称,∵四边形OABC 是正方形,∴线段BD 在直线y=x 上,∴易得∠BDD'>90∘∴BD 最短.在Rt △OBC 中,OB=222OC BC +=,∴BD=22 .故答案为:22【点睛】本题主要考查了反比例函数图象的中心对称性,勾股定理等知识,熟知反比例函数图形的对称性是解题关键.19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x =≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 20.【分析】因为过双曲线上任意一点引x 轴y 轴垂线所得矩形面积S 是个定值|k|△AOB 的面积为矩形面积的一半即|k|【详解】由于点A 在反比例函数的图象上则S △AOB=|k|=2∴k=±4;又由于函数的图象 解析:4y x=- 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值|k|,△AOB 的面积为矩形面积的一半,即12|k|. 【详解】由于点A 在反比例函数k y x =的图象上, 则S △AOB =12|k|=2, ∴k=±4;又由于函数的图象在第二象限,k <0,∴k=-4,∴反比例函数的解析式为4y x =-; 故答案为:4y x =-. 【点睛】 此题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.三、解答题21.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32, ∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB , ∴AB BO EB BA=,∵=∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE ,∴AB AO AE BA = ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.22.(1)210y x =-+,8y x =;(2)4OE =;(3)(3-或(53,. 【分析】(1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可; (2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,22OF OE m EF ====13,,4CD m PD ==进而求得P 的坐标,求得OC 的长,然后根据OPC 33m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x =(x >0)上, ∴2=4k ,解得:k=8, ∴反比例函数的解析式为:8y x =; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP===, 设OE=m , ∵∠AOB=60°,∴1133,,2222OF OE m EF OE m ==== ∴13,,4CD m PD m == ∴13,2E m m ⎛⎫ ⎪ ⎪⎝⎭,P 的纵坐标为34m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 133224m m mx =, x m ∴=,∴OD=m ,∴1344OC OD CD m m m =-=-=, ∵OPC 的面积为332, ∴13322OC PD =,即 13333,2442m m ⨯⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵()223E ,, ()43,P , //,PQ OB 如图3,当∠EOM=90°时,设(),3,M x由222,OM OE ME += (()222222323233,x x ∴+++=-+ 412,x ∴-=3,x ∴=-()33,M ∴-,如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:(3-或(53,. 【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键. 23.(1)12y x =;(2)13b = 【分析】(1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解;【详解】解:(1)∵4b =,∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k b k bb ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键. 24.(1)AOB 的面积是9;(2)2x <-或04x <<.【分析】(1)把()2,A m -、(,3)B n 代入解析式,求出m ,n 的值,可求得直线解析式,分别过点A .B 向y 轴引垂线,垂足分别是E 、D ,即可得到BD ,AE ,即可得到结果;(2)观察函数图象即可得到结果;【详解】(1)()2,A m -、(,3)B n 分别代入反比例函数12y x=中得6m =-,4n =, ∴将(2,6)A --、(4,3)B 分别代入直线y kx b =+中得,∴2643k b k b -+=-⎧⎨+=⎩,解得323k b ⎧=⎪⎨⎪=-⎩, ∴直线解析式为332y x =-,令0x =得3y =-, ∴(0,3)C -∴3OC =,分别过点A .B 向y 轴引垂线,垂足分别是E 、D ,∴4BD =,2AE =,∴11S S S922AOB OBC OAC OC BD OC AE =+=⋅+⋅=. 答:AOB 的面积是9.(2)由题可知,反比例函数在一次函数上方时满足,∵(2,6)A --、(4,3)B , ∴2x <-或04x <<.【点睛】本题主要考查了反比例函数与一次函数的交点问题,准确计算是解题的关键.25.1 3【分析】设AC=a,则OA=2a,OC=3a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,即可求12kk的值.【详解】设AB与x轴交点为点CRt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,22OA AC-3,∴3,a),∵A在函数y1=1kx(x>0)的图象上,∴k1332,Rt△BOC中,3,∴22OB OC-,∴B3a,-3a),∵B在函数y2=2kx(x>0)的图象上,∴k2332,∴12kk223a33a-=-13,故答案为:-13.【点睛】本题考查了反比例函数图象上点的坐标特征.直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A .B 两点的坐标是本题的关键. 26.(1)证明见解析.(2)9.【分析】(1)根据两组角对应相等的两个三角形相似即可得到结论;(2)根据C ABD BA ∽△△求得BC=12,根据DC=BC-BD 即可求出答案.【详解】(1)如图所示:,BAD C B B ∠=∠∠=∠,∴C ABD BA ∽△△.(2)ABD CBA ∽,AB BD BC AB ∴=,即636BC =, 解得:12BC =,1239DC BC BD ∴=-=-=.【点睛】 此题考查相似三角形的判定及性质,熟记三角形的判定定理是解题的关键.。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
北师大七年级数学下册期中考试模拟试题
七年级数学期中考试模拟试题一、选择(3分/题×8题=24分)1,下列运算正确的是( ) A 、a a a=-23B 、632a a a =⋅ C 、326()a a =D 、()3393a a =2,轮船航行到B 处观测小岛A 的方向是北偏西42°,那么小岛A 观测到轮船B 的方向是( )A 、南偏西32°B 、南偏东32°C 、南偏西58°D 、南偏东58°3,如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小( )A . 65°B . 55°C .45°D . 35° 4,下列各式由完全平方公式得来的是( )A 、x 2+x+1B 、x 2+2x ﹣1C 、x 2﹣1D 、x 2﹣6x+9 5,如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500 米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米; ②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水, 注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为 x 分,桶内的水量为y 升;③矩形ABCD 中,AB=4,BC=3,AC=5动点P 从点A 出发,依次沿对角线 AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点 A 不重合时,y=S △ABP ;当点P 与点A 重合时,y=0. 其中,符合图中所示函数关系的问题情境的个数为( )A 、0B 、1C 、2D 、36,甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所 示,则下列说法正确的是( )A 、甲、乙两人的速度相同B 、甲先到达终点C 、乙用的时间短D 、乙比甲跑的路程多7,在下列多项式的乘法中,可用平方差公式计算的是( ) A .(2+a)(a +2) B .(21a +b)(b -21a) C .(-x +y)(y -x) D .(x 2+y)(x -y 2) 8,有3张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的矩形纸片,5张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出 的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正 方形的边长最长可以为( )A 、a+bB 、2a+bC 、3a+bD 、a+2b二、填空题(3分/题×8题=24分)9,下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为.10,已知3,2==y x a a ,则___________23=-yx a11,刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b ﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m , 再将实数对(m ,1)放入其中后,得到实数是 . 12,如图,AB ∥CD ,BC ∥DE ,若∠B=50°,则∠D 的度数是 .13,如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若 ∠1=25°,则∠2= .14,“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)15,如图所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕小时.16,观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;...,则1+3+5+ (2013)值是.三、作图题(本题4分)已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点求作:点E,使直线DE∥AB(在题目的原图中完成作图)四、解答题(本题满分68分)18,计算(4分/题×4题=16分)(1)3202)2()14.3(÷-⨯--π(2)2(2)(21)(21)4(1)x x x x x+++--+(3))3)(1()1(2+--+xxx(4)[(3x+2y)(3x-2y)-(x+2y)(3x-2y)]÷3x19,利用乘法公式进行计算(4分/题×2题=8分)(1)2015201320142⨯-(2)))((cbacba--++20,化简求值(本题5分)先化简,再求值:)1)(1()2(2aaa+-++,其中43-=a21,(本题5分)已知一个角的余角是它补角的,求这个角以及它的余角、补角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市罗湖区2005年初中毕业学业考试数学模拟试卷命题: 文锦中学 张建平说明:全卷共七大题,共8页,考试时间90分钟,满分100分。
一、选择题(本题有10小题,每题3分,共30分).每小题给出4个答案,其中只有一个是正确的.请把正确答案的字母代号填写在括号里.1、检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如下表:质量最大的篮球比质量最小的篮球重( )A 、12克B 、15克C 、17克D 、19克2、如图,A 、B 、C 、D 是⊙O 上的三点,∠BAC=30°,则∠BOC 的大小是 ( )A 、60°B 、45°C 、30°D 、15°3、下面的4幅图中,经过折叠不能..围成一个立体图的一幅是 ( )A B C D4、某中学新科技馆铺设地面,已有正三角形形状地砖.现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处平面镶嵌,则该学校不应该购买的地砖形状是( )A. 正方形B.正六边形C.正八边形D.正十二边形 5、已知正比例函数(21)y m x =-的图象上两点11(,)A x y 、22(,)B x y ,当12x x <时,有12y y >,那么m 的取值范围是( ).A. 12m < B. 12m > C.2m < D. 0m >A B C O6、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图5所示的风筝,点E ,F ,G ,H 分别是菱形ABCD 各边的中点。
其若生产这批风筝需要甲布料20匹,那么需要乙布料A .10匹B .15匹C .20匹D .40匹7是( )8.下面的扑克牌中,牌面是中心对称图形的是( )A 、①②B 、③④C 、②④D 、①③9、已知抛物线21(4)33y x =--的部分图象(如图7),图象再次与x 轴相交时的坐标是( )A.(5,0)B.(6,0)C.(7,0)D.(8,0)10、某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了10分,答错了或不答扣5分,至少要答对( )道题,其得分才会不少于95分? A.14 B.13 C.12 D.11二、填空题(本题有5小题,每题3分,共15分.请把答案填在..相应的题号下.)11、如图,如果所在位置的坐标为(1-,2-), 所在位置的坐标为(2,2-), 所在位置的坐标为;12、下图是2004年6月份的日历,如图中那样,用一个圈竖着圈住3个数.如果被圈的三个数的和为36,则这三个数中最大的一个为.13的夹角为120°,则贴纸部分的面积为cm2(结果保留π)14、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;第3次把第2次铺的完全围起来,如图3;…。
依此方法,第10次铺完后,第10次镶嵌使用的木块数是____________图1 图2 图315、“黑洞”是个非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来。
无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌。
譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,…,重复运算下去,就能得到一个固定的数T=,我们称它为数字“黑洞”三、解答题(本部分共27分,第16、17题各4分,第18、19、21题各6分,第20题7分)16.(4分)先化简代数式,再求值:xxxx----111322其中x=2解:(第11题图)⊥于F,请你在AE上确定一点G,17、如图,ABCD是正方形,点E在BC上,DF AE∆≅∆,并说明理由。
使ABG DAF18、先阅读下列一段文字,然后解答问题。
某运输部门规定:办理托运,当一件物品的重量不超过a千克(a<18)时,需付基础费30元和保险费b元;为限制过重物品的托运,当一件物品的重量超过a千克时,除了付以上基础费和保险费外,超过部分每千克还需付c元超重费。
设某件物品的重量为x千克,支付费用为y元。
(1)当0<x≤a时,y=_________(用含b的代数式表示);当x>a时,y=________(用含x和a,b,c的代数式表示)。
(2)甲、乙、丙三人各托运了一件物品,物品重量与支付费用如下表所示:)与每件物品重量x(千克)的函数关系式。
②试问在物品可拆分的情况下,用不超过120元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由。
19、如图10-1是某段河床横断面的示意图。
查阅该坐标,尝试在图10-2所示的坐标系中画出y 关于x 的函数图像;(2)②根据所填表中数据呈现的规律,猜想出用 x 表示y 的二次函数表达式: (3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?20、在本学期某次考试中,某校初三⑴、初三⑵两班学生数学成绩统计如下表:请根据表格提供的信息回答下列问题:⑴ 三⑴班平均成绩为_________分,三⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?⑵ 三⑴班众数为________分,三⑵班众数为________分。
从众数看两个班的成绩谁优谁次?____________________。
⑶已知三⑴班的方差大于三⑵班的方差,那么说明什么?)图10-2 图10-121、集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。
摸前交1元钱且在1——20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。
(1)你认为该游戏对“摸彩”者有利吗?说明你的理由。
(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?四、实践与操作题(4分)22、正方形通过剪切可以拼成三角形。
方法如下:图(1)仿上面图示的方法,解答下列问题:(画图、标示)(1)如图(2),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形。
(2)如图(3)对于任意三角形,设计一种方案,将它分成若干块,再拼成一个原三角形等面积的矩形。
图(2)图(3)五、应用题(本题6分)23、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?解:六、图表阅读分析题(本题8分)24、国家课改某实验区在2004年进行了中考评价改革:由过去的“分分计较”小虎同学的五科等级为1A3B1C,请分别计算三人的位次值之和,并将三人的成绩按规则由优到劣依次进行排序。
问题2:孙大力同学参加中考,五科位次值之和为25(已知他五科等级中均没有D、E、F这三个等级),试问他五科中有几个A,几个B,几个C?七、综合探究题(本题10分)25、 如图,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.(5分)②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE=2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.(5分)深圳市罗湖区2005年初中毕业学业考试数学模拟试卷参考答案命题: 文锦中学 张建平11.(-3,1) 12. 19 13. 310π 14. 74 15. 153 三、16. 原式=()11)1(1)1()1)(1()1(322+-=-+-=-+++-x x x x x x x x x x 把x=2代入: 原式=311212=+- 17.过B 作BG ⊥AE 于G证明:(略) 18.(1)30+b 30+b+c(x-a)(2 ) ①解:将上表中的数据代入得30+b=33 a= 16 30+b+c(18-a)=39 解得 b=3 30+b+c(25-a)=60 c=3支付费用y (元)与每件物品重量x (千克)的函数关系式为:y=3x-15② 能。
设计方案:将50千克的物品拆分成两个25千克托运这样所付费用为60+60=120元19. (1) 略 (2② 22001x y =③当x=18时,y=1.62<1.8,所以不能安全通过 20.(1)80,80,两班一样(2)70,90,三(2)班更优秀(3)三(1)班的成绩差异较大,三(2)班的成绩较均衡。
21.(1)对“摸彩”者不利,因为获奖概率较小。
(2)2141911102115-=⨯-⨯+⨯,所以平均每次将损失214元。
四、22.(1) (2)五、23.设:甲服装的成本为x 元,则:乙服装的成本为(500-x )元 根据题意,可列方程:(1+50%)x ·90%+(1+40%)(500-x)·90%=157+500解得: x=300 500-300=200(元)答:甲、乙两件服装的成本分别是300元、200元。
六、24.(1)刘小明:1×6+4×5=26;张小思:2×6+2×5+1×4=26; 马小虎:1×6+3×5+1×4=25排序:张小思 刘小明 马小虎(2)设:五科中有x个A,y个B,z个C根据题意,可列方程:组x+y+z=56x+5y+z=25由于x,y,z是非负整数,所以可得解:x1=2 2=1 x3=0y1=1 y2=3 y3=5z1=2 z2=1 z3=0答:五科中有2个A,1个B,2个C或1个A,3个B,1个C或5个B。
七、(1)能。
AP=2cm或8cm(2)能。
AP=4cm。