二项式定理

合集下载

二项式定理

二项式定理

二项式定理二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容。

在高考中,二项式定理的命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。

因此,复时要正确理解二项式定理、二项展开式的概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键。

同时,注意把握二项式与定积分及其它知识的联系。

其中,非标准二项式定理求解特殊项的问题是难点问题。

二项式定理的公式为(a+b)^n=C(n,0)*a^n+C(n,1)*a^(n-1)*b+。

+C(n,k)*a^(n-k)*b^k+。

+C(n,n)*b^n,其中n∈N*。

展开式的第k+1项为C(n,k)*a^(n-k)*b^k。

在求二项展开式的特定项问题时,实质上是考查通项T(k+1)=C(n,k)*b的特点。

一般需要建立方程求k,再将k的值代回通项求解。

注意k的取值范围为k=0,1,2,…,n。

特定项的系数问题及相关参数值的求解等都可依据上述方法求解。

二项式系数是二项展开式中各项的系数,记为C(n,k)。

项的系数是该项中非字母因数部分,包括符号等。

二项式系数具有对称性,在二项展开式中与首末两端等距离的两个二项式系数相等,即C(n,k)=C(n,n-k)。

二项式系数的增减性与最大值是:当k(n+1)/2时,二项式系数逐渐减小。

当n是偶数时,中间一项的二项式系数最大;当n是奇数时,中间两项的二项式系数最大。

各二项式系数的和等于2,即C(n,0)+C(n,1)+…+C(n,n)=2.奇数项的二项式系数之和等于偶数项的二项式系数之和,即C(n,0)+C(n,2)+…=C(n,1)+C(n,3)+…=2^(n-1)。

在高考中,常涉及多项式和二项式问题,主要考查学生的化简能力。

常见的命题角度有:(1)几个多项式和的展开式中的特定项(系数)问题;(2)几个多项式积的展开式中的特定项(系数)问题;(3)三项展开式中的特定项(系数)问题。

赋值法是一种重要的方法,适用于恒等式,用于求形如(ax+b)、(ax+bx+c)(a,b∈R)的式子展开式的各项系数之和。

二项式定理

二项式定理
方法2 (x2+3x+2)5=[x(x+3)+2]5
在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;

二项式定理

二项式定理

二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。

二项式定理

二项式定理

第3讲二项式定理[必备知识]考点1二项式定理1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫做二项式定理.2.二项展开式的通项T k+1=C k n a n-k b k为展开式的第k+1项.3.二项式系数二项展开式中各项的系数C k n(k∈{0,1,…,n})叫做二项式系数.考点2二项式系数的性质[必会结论]二项展开式形式上的特点: (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,…一直到C n -1n ,C nn .二、小题快练1.[2014·湖南高考]⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20 2.[课本改编]若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6 3.[课本改编]若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.[2015·广东高考]在(x -1)4的展开式中,x 的系数为______. 5.[2015·天津高考]在⎝ ⎛⎭⎪⎫x -14x 6的展开式中,x 2的系数为______ 考向二项展开式中特定项或系数问题例1(1)[2015·陕西高考]二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( )A .7B .6C .5D .4(2)[2015·重庆高考]⎝ ⎛⎭⎪⎫x 3+12x 5的展开式中x 8的系数是______(用数字作答).52考向 二项式系数的和或各项系数的和例2 (1)[2015·湖北高考]已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=____.364二项式定理中赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.考向项的系数的最值问题例3 已知⎝ ⎛⎭⎪⎪⎫x +124x n的展开式中前三项x 的系数为等差数列.(1)求二项式系数最大项; (2)求展开式中系数最大的项.1.求二项式系数最大项(1)如果n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n 2+1项)的二项式系数最大; (2)如果n 是奇数,那么中间两项(第n +12项与第⎝ ⎛⎭⎪⎪⎫n +12+1项)的二项式系数相等并最大.2.求展开式系数最大项如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎨⎧A k ≥A k -1A k ≥A k +1从而解出k 来,即得.【变式训练3】 [2016·宜昌高三测试]已知(x 23+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.命题角度1 几个多项式积的展开式问题例4 [2015·课标全国卷Ⅱ](a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.3命题角度2 与整除有关的问题例5 [2016·潍坊模拟]设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =( )A .0B .1C .11D .12命题角度3 求近似值的问题例6 求1.028的近似值.(精确到小数点后三位) [解] 1.028=(1+0.02)8≈C 08+C 18·0.02+C28·0.022+C 38·0.023≈1.172. 命题角度4 二项式定理与函数的交汇问题 例7 [2013·陕西高考]设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15【变式训练4】[2016·昆明调研]⎝ ⎛⎭⎪⎫2x +x (1-x )4的展开式中x 的系数是________.3核心规律1.二项展开式的通项T k +1=C k n a n -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数时,要根据通项公式讨论对k 的限制.2.因为二项式定理中的字母可取任意数或式,所以,在解题时,根据题意,给字母赋值,是求解二项展开式各项系数和的重要方法.题型技法系列24——拆分法破解三项展开式中特定项(系数)问题 [2015·课标全国卷Ⅰ](x 2+x +y )5的展开式中,x 5y 2的系数为( )A .10B .20C .30D .60(1)[2016·皖南八校联考](x 2-4x +4)5的展开式中x 的系数是_____.-5120(2)[2016·河北名校联考](x 2-x +2)5的展开式中x 3的系数为_______.-2001.[2016·沈阳模拟]⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5.则x 等于( )A.17 B .-17C .7D .-72.[2015·大连模拟](2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .23.[2016·唐山模拟]⎝⎛⎭⎪⎫3x -2x 8二项展开式中的常数项为( )A .56B .-56C .112D .-1124.[2014·四川高考]在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .105.若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( )A .3B .6C .9D .12[A 级 基础达标](时间:40分钟)1.[2014·湖北高考]若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.34 C .1 D.242.[2016·唐山模拟]⎝ ⎛⎭⎪⎫x 2+1x 2-23展开式中的常数项为( )A .-8B .-12C .-20D .203.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,若a 1+a 2+a 3+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3 4.[2016·洛阳二测](x +1)(x -2)6的展开式中x 4的系数为( )A .-100B .-15C .35D .220 5.在⎝ ⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .286.设二项式⎝⎛⎭⎪⎫3x +3x n的展开式各项系数的和为a ,所有二项式系数的和为b .若a +2b =80,则n 的值为( )A .8B .4C .3D .27.[2015·四川高考]在(2x -1)5的展开式中,含x 2的项的系数是________(用数字填写答案).40-8.[2016·安徽江南十校联考]二项式⎝ ⎛⎭⎪⎫x -1ax 6(a >0)展开式中x 2项的系数为15,则实数a =________.19.[2014·山东高考]若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.211.已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 23的项.12.已知在⎝⎛⎭⎪⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.[B 级 知能提升](时间:20分钟)1.[2016·洛阳统考]设n 为正整数,⎝ ⎛⎭⎪⎫x -1x x 2n 展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2 2.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 3.[2016·江西八校联考]若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a8x8,则a1+a2+…+a7的值是________.125。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结二项式定理是数学中的一个基本定理,它描述了一个二次方的展开式中的每一项的系数。

二项式定理的公式如下:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n其中,C(n,k)表示从n个元素中选取k个的组合数,也可以记作为“n选择k”。

二项式定理的核心思想是展开一个二次方的多项式,并找到每一项的系数。

该定理在概率论、组合数学、统计学等领域具有广泛的应用。

二项式定理的重要性二项式定理在数学中具有重要的地位,而且在很多高级数学的分支中都起到了关键的作用。

以下是二项式定理的重要性:1. 展开多项式:二项式定理可以用来展开一个多项式,从而求得每一项的系数。

这对于解决复杂的数学问题非常有帮助。

2. 概率计算:二项式定理在概率论中应用广泛。

例如,在进行多次独立试验时,计算某些事件发生的概率可以通过二项式定理来实现。

3. 组合数学:组合数学是二项式定理的一个重要分支。

二项式系数被称为“组合数”,用于计算对象之间的排列组合情况。

4. 统计学应用:二项式分布是概率论中一种重要的离散概率分布,它在统计学中有广泛的应用。

二项式定理可以用来计算二项式分布的概率。

二项式定理的发展历程二项式定理最早是由17世纪的法国数学家Pascal在他的著作《论算术三角形》(Traité du triangle arithmétique)中首次提出的。

后来,德国数学家Newton将其进一步发展,并给出了二项式的系数计算公式。

随着数学研究的深入,二项式定理逐渐被推广到更一般的形式。

例如,当指数n为实数,而非整数时,也可以使用二项式定理展开。

这被称为泰勒展开,是微积分中的一种重要工具。

应用举例1. 计算多项式的展开式:利用二项式定理,我们可以展开一个二次方、三次方或更高次方的多项式,从而求得每一项的系数。

例如,利用二项式定理展开(x + y)^3:(x + y)^3 = C(3,0)x^3 + C(3,1)x^2y + C(3,2)xy^2 + C(3,3)y^3= x^3 + 3x^2y + 3xy^2 + y^32. 计算概率:二项式定理在概率论中有广泛的应用。

二项式定理百科

二项式定理百科

二项式定理百科二项式定理(Binomial theorem)是数学中的一个重要定理,它描述了如何展开一个二项式的幂。

这个定理在代数、组合数学、概率论等领域都有广泛应用。

本文将详细介绍二项式定理及其应用。

一、二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,都有以下等式成立:$$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$$其中,$\binom{n}{k}$表示组合数,计算公式为$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$式中的$\binom{n}{k}$可以读作n选择k,它表示从n个元素中选择k个元素的组合数。

二项式系数$\binom{n}{k}$决定了二项式展开后各项的系数。

二、二项式定理的展开式通过二项式定理,可以将一个二项式的幂展开成多个项的和。

例如,对于$(a+b)^3$,应用二项式定理,展开式为:$$(a+b)^3=\binom{3}{0}a^3b^0+\binom{3}{1}a^2b^1+\binom{3}{2}a ^1b^2+\binom{3}{3}a^0b^3$$化简得:$$a^3+3a^2b+3ab^2+b^3$$可以看出,展开后的每一项的指数和为3,且系数由组合数$\binom{3}{k}$确定。

三、二项式定理的应用1. 代数应用二项式定理常用于代数运算中,特别是求解多项式的展开式和系数。

通过二项式定理,可以快速计算高次幂的二项式展开式,简化复杂计算过程。

同时,二项式定理也可用于证明其他代数恒等式。

2. 组合数学组合数学研究的是离散结构和计数问题。

二项式定理的组合数$\binom{n}{k}$用于计算从n个元素中选择k个元素的方法数。

这对于排列组合、概率计算等问题都具有重要意义。

3. 概率论在概率论中,二项分布是一种重要的离散概率分布,它描述了一系列独立重复实验中成功次数的概率分布。

二项式定理可以用于计算二项分布的概率,判断在一定概率下,事件发生k次的概率。

二项式定理(binomialtheorem)

二项式定理(binomialtheorem)

例子
例如,(a+b)^2 = a^2 + 2ab + b^2 是一个二 项式的展开式。
小常识
二项式來源于对“二”的组合数。
二项式定理的公式表述
1
公式1
(a+b)^2 = a^2 + 2ab a^3 + 3a^2b + 3ab^2 + b^3
3
公式3
(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
二项式定理的性质
对称性
(a+b)^ n = (b+a)^ n
二项式系数的对称性
在二项式定理中,第k(k为整数) 个系数等于第(n-k)个系数。
常数的系数
二项式定理中,每一项系数的 和为2的n次方。
二项式定理的证明方法
数学归纳法
适用于证明二项式定理的基本形式。
杨辉三角形
通过观察杨辉三角形的性质,可以推导出二项式定理。
二项式系数与对称性质
二项式系数具有对称性,即第k个系数等于第n-k个系数。通过对称性质的使用,可以简化二项式定理中 的系数。
二项式定理的推广与应用:多项式定理
在二项式定理的基础上,我们可以进一步推广并建立多项式定理。多项式定理适用于(x+y+z)^n的展开, 同样具有广泛的应用于组合数学等领域。
利用二项式定理求逆元
在计算机科学中,在模m下,a的逆元定义为b等于a乘以b模m余1。利用二项 式定理,可以推导出求逆元的通用公式。
投掷硬币问题与二项式定理
二项式定理可应用于投掷硬币的问题。例如,考虑抛掷硬币n次,期望得到k个正面的概率,可以使用二 项式系数计算。

二项式定理

二项式定理

二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。

在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。

本文将介绍二项式定理的概念、基本公式以及一些常见的应用。

一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。

简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。

基本公式:根据二项式定理,我们可以得到二项式的展开式。

对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。

C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。

二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。

通过展开式,我们可以计算出结果,以及每一项的系数。

例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。

对于排列组合问题,可以使用组合数来解决。

而组合数又可以使用二项式定理来计算。

例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。

由于组合数可以用二项式定理来计算,我们可以直接得到结果。

第二节 二项式定理

第二节 二项式定理

第二节二项式定理考试要求1.理解二项式定理,二项式系数的性质.2.会用二项式定理解决与二项展开式有关的简单问题.[知识排查·微点淘金]知识点1二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k·b k+…+C n n b n(n∈N*);上述公式叫做二项式定理.[微思考](a+b)n与(b+a)n的展开式有何区别与联系?提示:(a+b)n的展开式与(b+a)n的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.(2)通项公式:T k+1=C k n a n-k b k叫做二项展开式的通项,它表示展开式的第k+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n叫做二项式系数.知识点2二项式系数的性质[微提醒]易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n(k=0,1,…,n).[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.(×)(2)二项展开式中,系数最大的项为中间一项或中间两项.(×)(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√)(4)通项公式T k +1=C k n an -k b k中的a 和b 不能互换.(√) (5)(a +b )n 的展示式中某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.(√)2.(链接教材选修2-3 P 37A 组T 5)二项式⎝⎛⎭⎪⎫3x +12x 8的展开式的常数项是 .答案:73.(链接教材选修2-3 P 37A 组T 8)在二项式⎝⎛⎭⎫x -1x n 的展开式中只有第5项的二项式系数最大,则展开式中含x 2项的系数是 .答案:-564.(链接教材选修2-3 P 40A 组T 8)若⎝⎛⎭⎫x 3+1x n的展开式的所有二项式系数的和为128,则n = .答案:75.(混淆项的系数与二项式系数)在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为 .答案:-1一、基础探究点——求展开式中的特定项或特定项的系数(题组练透)1.(2020·北京卷)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10D .10解析:选C 由二项式定理得(x -2)5的展开式的通项T r +1=C r 5(x )5-r (-2)r =C r 5(-2)rx5-r2,令5-r2=2,得r =1,所以T 2=C 15(-2)x 2=-10x 2,所以x 2的系数为-10,故选C . 2.(2020·全国卷Ⅰ)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15D .20解析:选C 解法一:∵⎝⎛⎭⎫x +y 2x (x +y )5=⎝⎛⎭⎫x +y2x (x 5+5x 4y +10x 3y 2+10x 2y 3+5xy 4+y 5),∴x 3y 3的系数为10+5=15.解法二:当x +y 2x 中取x 时,x 3y 3的系数为C 35, 当x +y 2x 中取y 2x时,x 3y 3的系数为C 15, ∴x 3y 3的系数为C 35+C 15=10+5=15.故选C .3.(2021·北京卷)⎝⎛⎭⎫x 3-1x 4的展开式中常数项是 . 解析:由二项式的展开式可得C 34·(x 3)1·⎝⎛⎭⎫-1x 3=-4. 答案:-44.(2021·江西南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a = .解析:(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.答案:255. (x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 解法一:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5.所以x 5y 2的系数为C 25×C 13=30. 解法二:(x 2+x +y )5表示5个x 2+x +y 之积,所以x 5y 2可从其中5个因式中,2个取因式中的x 2,剩余的3个因式中1个取x, 2个因式取y ,因此x 5y 2的系数为C 25C 13C 22=30.1.求二项展开式中的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要先建立方 程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).2.求三项展开式中某些特定项的系数的方法:(1)通过变形先把三项式转化为二项式,再用二项式定理求解;(2)两次利用二项式定理的通项公式求解;(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.二、综合探究点——二项式系数与各项系数和问题(思维拓展)[典例剖析][例](1)在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A.-960B.960C.1120 D.1680解析:根据题意,奇数项的二项式系数之和也应为128,所以在(1-2x)n的展开式中,二项式系数之和为256,即2n=256,解得n=8,则(1-2x)8的展开式的中间项为第5项,且T5=C48(-2)4x4=1120x4,即展开式的中间项的系数为1120.故选C.答案:C(2)若(1-2x)8=a0+a1x+a2x2+…+a8x8,则|a0|+|a1|+|a2|+|a3|+…+|a8|=()A.28-1 B.28C.38-1 D.38解析:由题可知,x的奇数次幂的系数均为负数,所以|a0|+|a1|+|a2|+|a3|+…+|a8|=a0-a1+a2-a3+…+a8.因为(1-2x)8=a0+a1x+a2x2+…+a8x8,令x=-1得a0-a1+a2-a3+…+a8=38,则|a0|+|a1|+|a2|+|a3|+…+|a8|=38.故选D.答案:D(3)(2021·浙江卷)已知多项式(x-1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=,a2+a3+a4=.解析:(x-1)3的展开式的通项为T r+1=C r3x3-r·(-1)r,(x+1)4的展开式的通项为T r+1=C r4x4-r1r,则a1x3=C03x3·(-1)0+C14x311=5x3,所以a1=5.同理,a2x2=C13x2(-1)1+C24x212=-3x2+6x2=3x2,a3x=C23x1(-1)2+C34x113=3x+4x=7x,a4=C33x0(-1)3+C44x014=0,所以a2=3,a3=7,a4=0,所以a2+a3+a4=10.答案:5101.赋值法的应用二项式定理给出的是一个恒等式,对于x,y的一切值都成立.因此,可将x,y设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,求解出正整数k 即可.[学会用活]1.(2021·安徽宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( )A .1B .2C .129D .2188解析:选C 令x =0得a 0+a 1+a 2+…+a 7=27=128,又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1.故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 2.(2021·广西高三5月联考)若(a +x 2)(1+x )n 的展开式中各项系数之和为192,且常数项为2,则该展开式中x 4的系数为( )A .30B .45C .60D .81解析:选B 令x =0,得a =2,所以(a +x 2)(1+x )n =(2+x 2)(1+x )n .令x =1,得3×2n=192,所以n =6.故该展开式中x 4的系数为2C 46+C 26=45.故选B .3.已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( )A .5B .6C .7D .8解析:选B 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·2m !m !m !=7·2m +1!m !m +1!,即137=2m +1m +1,解得m =6.限时规范训练 基础夯实练1.(2021·河北唐山二模)在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( ) A .20 B .-20 C .160D .-160解析:选D ⎝⎛⎭⎫x -2x 6展开式的通项T k +1=C k 6x 6-k ⎝⎛⎭⎫-2x k =(-1)k 2k C k 6x 6-2k ,令6-2k =0,得k =3,所常数项T 3+1=(-1)323C 36=-160,故选D .2.(2021·北京东城区二模)已知(2x +a )5的展开式中x 2的系数为-40,那么a =( ) A .-2 B .-1 C .1D .2解析:选B (2x +a )5的展开式通项为T r +1=C r 5·(2x )5-r ·a r =C r 5·25-r a r x 5-r ,令5-r =2,可得r =3,所以,C 35·22a 3=40a 3=-40,解得a =-1.故选B . 3.(2021·四川乐至中学月考)(1+2x )5的展开式中,各项二项式系数的和是( ) A .1 B .-1 C .25D .35解析:选C 由题得各项二项式系数和为C 05+C 15+C 25+C 35+C 45+C 55=25.故选C .4.(2021·陕西西安模拟)若(2-x )10展开式中二项式系数和为A ,所有项系数和为B ,一次项系数为C ,则A +B +C =( )A .4095B .4097C .-4095D .-4097解析:选C 由(2-x )10展开式的通项公式为T r +1=C r 10·210-r ·(-x )r =(-1)r ·210-r C r 10·x r ,所以一次项系数C =(-1)1·29·C 110=-5120,二项式系数和A =210=1024,令x =1,则所有项的系数和B =(2-1)10=1,所以A +B +C =-4095.故选C .5.⎝⎛⎭⎫x -x2y (x +2y )5的展开式中x 2y 4的系数为( )A .24B .36C .48D .72解析:选C 因为⎝⎛⎭⎫x -x 2y (x +2y )5=x (x +2y )5-x2y(x +2y )5,可得(x +2y )5的展开式通项为T r +1=C r 5x 5-r (2y )r =2r C r 5x5-r y r, 令r =4可得x 2y 4的系数为24C 45=80,令r =5,可得x 2y 4的系数为-25C 55=-32,故展开式中x 2y 4的系数为80-32=48.故选C .6.(2021·福建福州二模)在(x +y +z )6的展开式中,xyz 4的系数是( ) A .15 B .30 C .36D .60解析:选B 因为(x +y +z )6=[(x +y )+z ]6,所以[(x +y )+z ]6的通项公式为C r 6·(x +y )6-r·z r ,令r =4,所以C 46·(x +y )2·z 4=15(x 2+2xy +y 2)z 4,因此xyz 4的系数是15×2=30,故选B . 7.(2021·广东韶关一模)已知(1+x )10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,则a 9=( )A .-10B .10C .-45D .45解析:选A (1+x )10=[1-(2+x )]10=a 0+a 1(2+x )+a 2(2+x )2+…+a 10(2+x )10,T r +1=C r 10[-(2+x )]r ,a 9=C 910(-1)9=-10.故选A .8.(2021·山东潍坊二模)已知正整数n ≥7,若⎝⎛⎭⎫x -1x (1-x )n 的展开式中不含x 5的项,则n 的值为( )A .7B .8C .9D .10解析:选D (1-x )n 的二项展开式中第k +1项为T k +1=C k n (-1)k x k,又因为⎝⎛⎭⎫x -1x (1-x )n =x (1-x )n -1x (1-x )n 的展开式不含x 5的项,所以x C 4n (-1)4x 4-1x C 6n(-1)6x 6=0,C 4n x 5-C 6n x 5=0,即C 4n =C 6n,所以n =10,故选D . 9.(2021·湖南岳阳二模)若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7+a 8的值为 .解析:令x =1,得a 0+a 1+a 2+…+a 7+a 8=-2,令x =0,得a 0=1,则a 1+a 2+…+a 7+a 8=-2-1=-3.答案:-3综合提升练10.“杨辉三角”是我国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是一个三角形数阵,记a n 为图中第n 行各数之和,则a 5+a 11的值为( )1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1……A .528B .1020C .1038D .1040解析:选D a 5=C 04+C 14+C 24+C 34+C 44=24=16,a 11=C 010+C 110+C 210+…+C 1010=210=1024,所以a 5+a 11=1040.故选D .11.(2021·河北饶阳中学模拟)(x +x +1)⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为( )A .72B .60C .48D .36解析:选C ⎝⎛⎭⎫x -2x 6的展开式的通项公式为T r +1=C r 6(x )6-r ·⎝⎛⎭⎫-2x r =(-2)r ·C r 6·x 3-r (r =0,1,2,3,4,5,6).令3-r =1,得r =2;令3-r =32,得r =32∉Z ,舍去;令3-r =2,得r =1.故(x +x +1)·⎝⎛⎭⎫x -2x 6的展开式中x 2的系数为(-2)2·C 26+(-2)1·C 16=60-12=48.故选C .12.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87解析:选B 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.13.(2021·广东梅州模拟)记(1-x )6=a 0+a 1(1+x )+a 2(1+x )2+a 3(1+x )3+a 4(1+x )4+a 5(1+x )5+a 6(1+x )6,则a 4= .解析:(1-x )6=(-1+x )6=[-2+(1+x )]6,展开式的通项公式为T r +1=C r 6(-2)6-r(1+x )r ,令r =4 即可,a 4=C 46(-2)2=4C 26=60.答案:6014.(2021·黑龙江哈尔滨三模)在⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数最大,且所有项的系数和为0,则含x 6项的系数为 .解析:∵⎝⎛⎭⎫x +ax n 的展开式中,只有第六项的二项式系数C 5n 最大,∴n =10,再令x =1,可得所有项的系数和为(1+a )10=0,∴a =-1.故二项展开式的通项公式为T r +1=C r 10·(-1)r ·x 10-2r ,令10-2r =6,求得r =2,可得含x 6项的系数为C 210=45.答案:4515.(2021·浙江绍兴模拟)二项展开式(2x +4)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1= ;a 0+a 2+a 4= (可采用指数的形式或数字的方式作答).解析:因为(2x +4)5的展开式的通项为C r 5(2x )5-r 4r =C r 5·25-r ·4r ·x 5-r , 令r =4,则a 1=C 45×21×44=2560,令r =5,则a 0=C 55×20×45=1024,令r =3,则a 2=C 35×22×43=2560,令r =1,则a 4=C 15×24×41=320,故a 0+a 2+a 4=1024+2560+320=3904.答案:2560 390416.已知⎝⎛⎭⎫mx 2-4+x 25的展开式中所有项的系数和为1,则x 4的系数为 . 解析:令x =1,则(m -3)5=1,解得m =4,∴⎝⎛⎭⎫m x 2-4+x 25=⎝⎛⎭⎫4x 2-4+x 25,⎝⎛⎭⎫4x 2-4+x 25展开式的通项公式为C r 5⎝⎛⎭⎫4x 2-45-r (x 2)r ;∵⎝⎛⎭⎫4x 2-45-r 展开式通项公式为C k 5-r ⎝⎛⎭⎫4x 25-r -k (-4)k ,∴当k =1,r =3时,展开式中的项为 -320x 4;当k =3,r =2时,展开式中的项为-640x 4;∴x 4的系数为-320-640=-960.答案:-960创新应用练17.(2021·湖北黄冈月考)若(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,则a 1-2a 2-4a 4+5a 5-6a 6+7a 7-8a 8= (用数字作答).解析:∵(x +2)8=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7+a 8x 8,∴等式两边求导得8(x+2)7=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6+8a8x7.令x=-1,有8×(-1+2)7=a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8,即a1-2a2+3a3-4a4+5a5-6a6+7a7-8a8=8.又a3=C5825=1792,故所求值为8-1792×3=-5368.答案:-5368。

二项式定理

二项式定理

二项式定理二项式定理是高中数学中的重要内容。

它表示了一个二元多项式的n次幂的展开式。

其中,二项式系数是展开式中每一项的系数,可以用组合数来表示。

具体来说,二项式定理可以表示为:$(a+b)^n=\sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$。

其中,$\binom{n}{k}$表示从n个元素中选取k个元素的组合数。

二项式定理有很多应用,例如近似计算和估计,证明不等式等。

在使用二项式定理时,我们可以利用它的性质来简化计算。

其中,二项式系数具有对称性、增减性和最大值等性质。

此外,所有二项式系数的和等于$2^n$,奇数项的二项式系数和与偶数项的二项式系数和相等。

需要注意的是,展开式共有n+1项,而二项式系数$\binom{n}{r}$是展开式中第r+1项的系数。

此外,展开式中的通项$T_{r+1}=\binom{n}{r}a^{n-r}b^r$。

在使用二项式定理时,我们可以将一般情况转化为特殊情况,或者使用赋值法等思维方式来简化计算。

1.问题讨论1.1 例1求解C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)],以及当n为奇数时,7+C(n,7)+C(n,14)+。

+C(n,7+(n-1)/2)的余数。

解。

1.1.1 求解C(n)设S(n) = C(n)。

则有:S(n) + 3S(n) = 3*C(n,1) + 3*C(n,2) +。

+ 3^n-1*C(n,n)将上式两边相减,得:S(n) = (1/4) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)]所以,C(n)等于(1/n) * [C(n,1) + 3*C(n,2) + 9*C(n,3) +。

+ 3^(n-1)*C(n,n)]。

1.1.2 求解余数XXX(n,7)+C(n,14)+。

+C(n,7+(n-1)/2)的余数等于8^(n-1)的余数,因为:XXX(n,7)+C(n,14)+。

二项式定理

二项式定理
一.知识归纳: (一)二项式定理: 1.二项式定理:
(a +b) = C a +C a b +⋅⋅⋅ +C a b +⋅⋅⋅ +C b
n 0 n n 1 n−1 n r n−r r n n n n
二项展开式的特点:
(1)展开式共有n+1项 (2)展开式中各项的指数和都等于幂指数n; (3)展开式中字母 a 按降幂排列由n逐项减1直 到0,字母b按升幂排列由0逐项加1直到n。
二.知識应用: (一)再現性練習: 《新高考總複習》P182:
【基礎練習】
(二)鞏固性練習:
《新高考總復習》P182~183: 【例題精選】
(三)提高性練習: 《新高考總複習》B P54~55:二项式定理
r n
⋅⋅⋅,n)叫做二项式系数。
注意: 注意:
二项式系数与项的系数的区别!
2.二项式系数的性质: (1)杨辉三角: (2)对称性: (3)增减性与最大值: (4)各二项式系数的和:
① C +C +C +⋅⋅⋅ +C = 2
0 n 1 n 2 n n n
n
②在二
2.二项展开式的通项:
Tr+1 = C a b
n
r n−r r , 其中 r = 0,1 2,⋅⋅⋅, n n
T 是展开式的第 r +1 (1) r+1 项;
( (2) a +b) 的展开式的第 r +1项与 (b+a) 展开式的第 r +1项是不同。
n
(二)二项式系数及其性质: 1.二项式系数: 在二项展开式中,组合数 C (r = 0,1, ,
n为奇数时:

第六章二项式定理

第六章二项式定理

跟踪训练 2
在2
x-
1
6
x
的展开式中,求:
(1)第3项的二项式系数及系数;
解 第 3 项的二项式系数为 C26=15,
又 T3=C26(2
x)4-
1x2=240x,
所以第3项的系数为240.
(2)含x2的项.

Tk+1=Ck6(2
x)6-k-
1xk=(-1)k26-kCk6x3-k,
令3-k=2,解得k=1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.如果
3
x2+1xn
的展开式中,x2
项为第
3
项,则自然数
n=__8__,其
x2

的系数为_2_8__.
解析
Tk+1=Ckn( 3
x2)n-k1xk=Ckn
4 课时对点练
PART FOUR
基础巩固
1.1-2C1n+4C2n-8C3n+…+(-2)nCnn等于
A.1
B.-1
√C.(-1)n
D.3n
解析 原式=(1-2)n=(-1)n.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.
x-2x6 的展开式中的常数项为
√A.60
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 6.若(x+a)10的展开式中,x7的系数为15,则a=_2__.(用数字填写答案) 解析 二项展开式的通项为 Tk+1=Ck10x10-kak,当 10-k=7 时,k=3,T4 =C310a3x7, 则 C310a3=15,故 a=12.

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。

具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。

+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。

右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。

二项式定理的理解:1)二项展开式有n+1项。

2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。

3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。

通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。

+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。

二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。

具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。

通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。

它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。

三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。

3 第3讲 二项式定理

3 第3讲 二项式定理

第3讲 二项式定理1.二项式定理 (1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为T k +1=C k n an -k b k . (3)二项式系数:二项展开式中各项的二项式系数为:C k n (k =0,1,2,…,n ). 2.二项式系数的性质判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r .( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×(教材习题改编)二项式⎝⎛⎭⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180解析:选A.二项式⎝⎛⎭⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80解析:选C.当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.⎝⎛⎭⎫1x +x n的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为________.解析:由题意得C 2n =C 6n ,所以n =8.所以⎝⎛⎭⎫1x +x 8展开式的第4项为T 4=C 38⎝⎛⎭⎫1x 3x 5=56x 2. 答案:56x 2在二项式⎝⎛⎭⎫x 2-ax 5的展开式中,x 的系数是-10,则实数a 的值为________. 解析:T r +1=C r 5(x 2)5-r⎝⎛⎭⎫-a x r=(-a )r C r5x 10-3r . 当10-3r =1时,r =3,于是x 的系数为(-a )3C 35=-10a 3=-10,a =1.答案:1二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.高考对二项式定理的考查主要有以下三个命题角度:(1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.[典例引领]角度一 求展开式中的某一项⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36D .38【解析】 ⎝⎛⎭⎫x 3-2x 4的展开式的通项为T k +1=C k 4(x 3)4-k·⎝⎛⎭⎫-2x k=C k4(-2)k x 12-4k , 令12-4k =0,解得k =3,⎝⎛⎭⎫x +1x 8的展开式的通项为 T r +1=C r 8·x8-r·⎝⎛⎭⎫1x r=C r8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.【答案】 D角度二 求展开式中的项的系数或二项式系数(2017·高考全国卷Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35【解析】 (1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.【答案】 C角度三 由已知条件求n 的值或参数的值(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.【解析】 (ax 2+1x)5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2. 【答案】 -2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[通关练习]1.若⎝⎛⎭⎫x 6+1x x n的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6解析:选C.T r +1=C r n (x 6)n -r⎝⎛⎭⎫1x x r=C r n x 6n -152r ,当T r +1是常数项时,6n -152r =0,即n=54r ,又n ∈N *,故n 的最小值为5,故选C. 2.(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B .210 C .30D .-30解析:选A.(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.3.(2018·贵州省适应性考试)(x +1)(x +a )4的展开式中含x 4项的系数为9,则实数a 的值为________.解析:(x +1)(x +a )4=x (x +a )4+(x +a )4,对于x (x +a )4,T 2=x ×C 14x 3a ,对于(x +a )4,T 0=C 04x 4a 0,所以4a +1=9,解得a =2.答案:2二项式系数的性质或各项系数和[典例引领](1)在二项式⎝⎛⎭⎫x 2-1x 11的展开式中,系数最大的项为第________项. (2)(2018·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[通关练习]1.在⎝⎛⎭⎫x 2+1x n的展开式中,只有第4项的二项式系数最大,则展开式中常数项是( ) A .15 B .20 C .30D .120解析:选A.因为二项展开式中中间项的二项式系数最大,又二项式系数最大的项只有第4项,所以展开式中共有7项, 所以n =6, 展开式的通项为T r +1=C r 6(x 2)6-r⎝⎛⎭⎫1x r=C r6x 12-3r , 令12-3r =0,则r =4,故展开式中的常数项为T 5=C 46=15.2.(2017·高考浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 4二项式定理的应用[典例引领]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A .0 B .1 C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.求证:3n >(n +2)·2n -1(n ∈N *,n >2).证明:因为n ∈N *,且n >2, 所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n+n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1(n ∈N *,n >2).二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.易错防范(1)通项T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项. (2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).1.(2018·广东测试)⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B.54 C .-1516D.1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r6x 12-3r ,令12-3r =0,解得r =4.所以常数项为⎝⎛⎭⎫-124C 46=1516.故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B.3.设复数x =2i 1-i (i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( ) A .i B .-i C .-1+iD .-1-i解析:选C.x =2i 1-i =-1+i ,C 12 107x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=(1+x )2 017-1=i 2 017-1=-1+i.4.(2018·昆明市教学质量检测)(1+2x )3(2-x )4的展开式中x 的系数是( ) A .96 B .64 C .32D .16解析:选B.(1+2x )3的展开式的通项公式为T r +1=C r 3(2x )r =2r C r 3x r ,(2-x )4的展开式的通项公式为T k +1=C k 424-k (-x )k =(-1)k 24-k C k 4x k ,所以(1+2x )3(2-x )4的展开式中x 的系数为20C 03·(-1)·23C 14+2C 13·(-1)0·24C 04=64,故选B.5.设n 为正整数,⎝⎛⎭⎫x -1x x 2n展开式中存在常数项,则n 的一个可能取值为( )A .16B .10C .4D .2解析:选B.⎝⎛⎭⎫x -1x x 2n展开式的通项公式为T k +1=C k 2n x 2n -k ⎝⎛⎭⎫-1x x k=C k 2n (-1)kx 4n -5k 2.令4n -5k 2=0,得k =4n5,又k 为正整数,所以n 可取10. 6.⎝⎛⎭⎫x +2x n的展开式的二项式系数之和为8,则展开式的常数项等于( ) A .4 B .6 C .8D .10解析:选B.因为⎝⎛⎭⎫x +2x n的展开式的各个二项式系数之和为8,所以2n =8,解得n =3, 所以展开式的通项为T r +1=C r 3(x )3-r⎝⎛⎭⎫2x r=2r C r3x 3-3r2,令3-3r 2=0,则r =1,所以常数项为6.7.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8解析:选B.(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m2m . 同理,b =C m +12m +1.因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !.所以m =6.8.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB.3n -12C .2n +1D.3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.9.C 22n +C 42n +…+C 2k 2n +…+C 2n 2n (n ∈N *)的值为( )A .2nB .22n -1C .2n -1D .22n -1-1解析:选D.(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1,得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1,得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,可得C 22n +C 42n +…+C 2n 2n =22n2-1=22n -1-1.10.(2018·湖北枣阳第一中学模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.11.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3+a 5的值为( )A .-122121B .-6160C .-244241D .-1解析:选A.令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,① 再令x =-1,可得a 0-a 1+a 2-a 3+a 4-a 5=35.②①+②2,得a 0+a 2+a 4=122,①-②2,可得a 1+a 3+a 5=-121, 故a 0+a 2+a 4a 1+a 3+a 5=-122121.12.(2018·石家庄教学质量检测(二))若a =2⎠⎛-33(x +|x |)d x ,则在⎝⎛⎭⎪⎫x -13x a的展开式中,x 的幂指数不是整数的项共有( )A .13项B .14项C .15项D .16项解析:选C.因为a =2⎠⎛-33(x +|x |)d x =2[⎠⎛03(x +x )d x +⎠⎛-30(x -x )d x ]=2x 2|30=18,所以该二项展开式的通项T r +1=C r 18(x )18-r⎝⎛⎭⎪⎫-13x r=(-1)r C r 18x 9-5r 6(0≤r ≤18,且r ∈N ),当r =0,6,12,18时,展开式中x 的幂指数为整数,所以该二项展开式中x 的幂指数不是整数的项有19-4=15项,故选C.13.(2018·广东省五校协作体联考)⎝⎛⎭⎫xy -1x 6展开式中不含x 的项的系数为________. 解析:⎝⎛⎭⎫xy -1x 6展开式中不含x 的项为C 36(xy )3·⎝⎛⎭⎫-1x 3=-20y 3,故不含x 的项的系数为-20.答案:-2014.已知⎝⎛⎭⎫1-1x (1+x )5的展开式中x r (r ∈Z 且-1≤r ≤5)的系数为0,则r =________. 解析:依题意,(1+x )5的展开式的通项公式为T r +1=C r 5x r ,故展开式为⎝⎛⎭⎫1-1x (x 5+5x 4+10x 3+10x 2+5x +1),故可知展开式中x 2的系数为0,故r =2.答案:215.(2018·江西赣州十四县联考)若⎝⎛⎭⎫x +13x n的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式为x 2的系数为________.解析:易得A =1,B =n 3,C =C 2n 9=n (n -1)18,所以有4=9⎝⎛⎭⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝⎛⎭⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ⎝⎛⎭⎫13x r=C r83r ·x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627.答案:562716.(2018·安徽“江南十校”联考)若(x +y -1)3(2x -y +a )5的展开式中各项系数的和为32,则该展开式中只含字母x 且x 的次数为1的项的系数为________.解析:令x =y =1⇒(a +1)5=32⇒a =1,故原式=(x +y -1)3(2x -y +1)5=[x +(y -1)]3[2x+(1-y )]5,可知展开式中x 的系数为C 13+C 33(-1)3C 15·2=-7.答案:-71.487被7除的余数为a (0≤a <7),则⎝⎛⎭⎫x -ax 26展开式中x -3的系数为( ) A .4 320 B .-4 320 C .20D .-20解析:选B.487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,因为487被7除的余数为a (0≤a <7), 所以a =6,所以⎝⎛⎭⎫x -6x 26展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r, 令6-3r =-3,可得r =3,所以⎝⎛⎭⎫x -6x 26展开式中x -3的系数为C 36·(-6)3=-4 320. 2.(x +2y )7的展开式中,系数最大的项是( ) A .68y 7 B .112x 3y 4 C .672x 2y 5 D .1 344x 2y 5解析:选C.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧2r ≥18-r ,17-r ≥2r +1解得⎩⎨⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.3.(2018·张掖市第一次诊断考试)设f (x )是⎝⎛⎭⎫x 2+12x 6展开式中的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是________.解析:⎝⎛⎭⎫x 2+12x 6的展开式中的中间项为第四项,即f (x )=C 36(x 2)3⎝⎛⎭⎫12x 3=52x 3,因为f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,所以m ≥52x 2在⎣⎡⎦⎤22,2上恒成立,所以m ≥⎝⎛⎭⎫52x 2max =5,所以实数m 的取值范围是[5,+∞).答案:[5,+∞)4.(2018·山西太原模拟)⎝⎛⎭⎫2x +1x -15的展开式中常数项是________. 解析:⎝⎛⎭⎫2x +1x -15表示五个⎝⎛⎭⎫2x +1x -1相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,2x ,1x ,1x,-1,则此时的常数项为C 25·C 23·22·(-1)=-120;第二种情况是从五个⎝⎛⎭⎫2x +1x -1中都抽取-1,则此时的常数项为(-1)5=-1;第三种情况是从五个⎝⎛⎭⎫2x +1x -1中分别抽取2x ,1x,-1,-1,-1,则此时的常数项为C 15·C 14·21·(-1)3=-40,则展开式中常数项为-120-1-40=-161. 答案:-1615.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.解:(1)通项公式为T k +1=C k n x n -k3⎝⎛⎭⎫-12k x -k 3=C k n ⎝⎛⎭⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0, 即n =10.(2)令10-2k 3=2,得k =2, 故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ), 则10-2k =3r ,k =5-32r , 因为k ∈N ,所以r 应为偶数,所以r 可取2,0,-2,即k 可取2,5,8, 所以第3项,第6项与第9项为有理项, 它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 6.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)因为(1-2x )7展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.。

二项式定理

二项式定理

2
4
10-2r ∈Z, 3 (3)根据通项公式,由题意 0≤r≤10, r∈N. 10-2r 3 令 =k(k∈Z),则 10-2r=3k,即 r=5- k, 3 2 ∵r∈N,∴k 应为偶数. ∴k 可取 2,0,-2,即 r 可能取 2,5,8. 所以第 3 项,第 6 项与第 9 项为有理项,它们分别为 15 1 12 2 2 5 8 ,C10- 8x-2. C10(- ) x ,C10 - 2
nr
[自主解答] (1)通项为
1 n 2 r r =Cn-2r x 3 ,
Tr+1=Cr x n
3
1 - r x 2
r 3
n-2r 因为第 6 项为常数项,所以 r=5 时,有 =0, 3 即 n=10. n-2r 1 1 (2)令 =2,得 r= (n-6)= ×(10-6)=2, 3 2 2 ∴所求的系数为 1 2 45 2 C10 - = .
⇒5≤r≤6.∴r=5 或 r=6.
∵r∈{0,1,2,…,8}. ∴系数最大的项为 T6=1792x5,T7=1792x6.
6. C n 2 C n 4 C n 2 C n 等于(
0 1 2 n n
A)
3 1
n
(A) 3
n
(B) 2 3
2 2
n
(C)
3 3
2
n
1
n n
0 4 Cn+C2 +Cn+… n =
2n-1 .
[思考探究2] 二项式系数与项的系数有什么区别? 提示:二项式系数与项的系数是完全不同的两个概念.二项 式系数是指 ,它只与各项的项数有关,而与a,
b的值无关;而项的系数是指该项中除变量外的部分,它不 仅与各项的二项式系数有关,而且也与a,b的值有关.

二项式定理的基本公式

二项式定理的基本公式

二项式定理的基本公式二项式定理是高中数学中的重要概念,它能够方便地计算任意两个数的幂次和。

二项式定理的基本公式如下:$$(a+b)^n = C_n^0a^n+b^0 + C_n^1a^{n-1}b^1 + C_n^2a^{n-2}b^2 + \ldots + C_n^ra^{n-r}b^r + \ldots + C_n^na^0b^n$$其中,$C_n^r$表示从$n$个元素中选取$r$个元素的组合数,也叫做二项式系数。

二项式定理可以通过数学归纳法来证明。

下面我们来详细解释一下二项式定理的应用和意义。

二项式定理可以用来展开任意整数次幂的二项式。

例如,如果我们要计算$(a+b)^3$的展开式,根据二项式定理,展开式为:$$(a+b)^3 = C_3^0a^3+b^0 + C_3^1a^2b^1 + C_3^2a^1b^2 + C_3^3a^0b^3$$化简后得到:$$(a+b)^3 = a^3+3a^2b+3ab^2+b^3$$这就是$(a+b)^3$的展开式。

二项式定理可以用来快速计算幂次较大的数。

例如,如果我们要计算$(2+3)^5$,根据二项式定理,展开式为:$$(2+3)^5 = C_5^02^5+3^0 + C_5^12^4\cdot3^1 + C_5^22^3\cdot3^2 + C_5^32^2\cdot3^3 + C_5^42^1\cdot3^4 + C_5^52^0\cdot3^5$$化简后得到:$$(2+3)^5 = 2^5+5\cdot2^4\cdot3+10\cdot2^3\cdot3^2+10\cdot2^2\c dot3^3+5\cdot2\cdot3^4+3^5$$计算后得到$(2+3)^5= 243$。

二项式定理还可以用来推导和证明其他数学定理。

例如,二项式定理可以用来证明组合恒等式:$$C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n = 2^n$$这个恒等式在概率论和组合数学中有重要的应用。

二项式定理

二项式定理

二项式定理主讲教师:刘杨【知识概述】1.二项式定理二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n(n ∈N *). 这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C k n (k =0,1,2,…n )叫做二项式系数.式中的kk n k n b a C -叫做二项展开式的通项,用T k+1表示,即展开式的第 k+1项;T k+1=k k n k n b a C -.2.二项式的项数与项(1)二项式的展开式共有n +1项,C k n a n-k b k 是第k +1项.即k +1是项数,C k n a n -k b k是项. (2)通项是T k +1=C k n a n-k b k (k =0,1,2,……,n).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素.3.二项式系数与展开式项的系数的异同在T k +1=C k n a n -k b k 中,C k n 就是该项的二项式系数,它与a ,b 的值无关;T k+1项的系数指化简后除字母以外的数,如a =2x ,b =3y ,T k+1=C k n 2n-k ·3k x n-k y k ,其中C k n 2n-k 3k就是T k +1项的系数.4.赋值法:普遍适用于恒等式,是一种重要的方法,根据题目中所给的特点,对题目中的某一个值或者某两个值进行赋值,使题目得到简化,随之将题目的答案能够计算出来.对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可. 【学前诊断】1. [难度]易在1041⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是______(用数字作答).2. [难度]易若(x -1)4=a 0+a 1 x +a 2 x 2+a 3 x 3+a 4 x 4,则a 0+a 2+a 4的值为________.3. [难度]中(2-x )8展开式中不含x 4项的系数的和为( )A .-1B .0C .1D .2【经典例题】例1.在二项式n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.例2. 已知n 为正偶数,且212nx x ⎛⎫+ ⎪⎝⎭的展开式中第4项的二项式系数最大,则第4项的系数是___________.(用数字作答)例3. 在(2x -3y )10的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和;(5)x 的奇次项系数和与x 的偶次项系数和.例4. 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.例5. (1)已知n∈N*,求1+2+22+23+…+24n-1除以17的余数;(2)求(1.999)5精确到0.001的近似值.例6. (x y-y x)4的展开式中x3y3的系数是________,此项为第________项.【本课总结】1.通过本课的学习我们要掌握两个公式一个方法:(1)二项展开式:(a+b)n=C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n n b n(n∈N*).(2)二项式定理的通项公式是T k+1=C k n a n-k b k (k=0,1,2,……,n).(3)赋值法.2.本课中需要掌握的解题方法与技巧(1)通项公式最常用,是解题的基础.(2)对三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性.(3)求常数项、有理项和系数最大的项时,要根据通项公式讨论对k的限制;求有理项时要注意到指数及项数的整数性.(4)性质1是组合数公式C k n=C n-k的再现,性质2是从函数的角度研究二项式系数的单调n性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和.(5)因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.(6)二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个分析,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用.3. 本课中需要防范的失误(1)要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来.(2)根据通项公式时常用到根式与幂指数的互化,学生易出错.(3)通项公式是第k+1项而不是第k项.【活学活用】1. [难度]易若二项式(x -2x )n 的展开式中第5项是常数项,则自然数n 的值可能为 ( )A .6B .10C .12D .152. [难度]中在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74 B .121 C .-74 D .-1213. [难度]难已知⎝⎛⎭⎫x -ax 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28。

第三节二项式定理

第三节二项式定理

第三节二项式定理[知识梳理] 1.二项式定理(1)二项式定理:(a+b)nC0n a n C1n a n-1C k n n-k k C n n b n*(2)通项公式:T k+1=C k n a n(3)(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.2.二项式系数的性质[常用结论]若二项展开式的通项为T r+1=g(r)·x h(r)(r=0,1,2,…,n),g(r)≠0,则有以下常见结论:(1)h(r)=0⇔T r+1是常数项.(2)h(r)是非负整数⇔T r+1是整式项.(3)h(r)是负整数⇔T r+1是分式项.(4)h (r )是整数⇔T r +1是有理项.[基础自测]一、走进教材1.(选修2-3P 37A 组T 5(2)改编)⎝⎛⎭⎫x +12x 8的展开式中常数项为________,是第________项.解析:二项展开式的通项为T k +1=C k 8(x )8-k⎝⎛⎭⎫12x k =⎝⎛⎭⎫12k C k 8x 4-k ,令4-k =0,解得k =4,所以T 5=⎝⎛⎭⎫124C 48=358.答案:35852.(选修2-3P 35练习T 1(2)改编)化简:C 12n +C 32n +…+C 2n -12n=________. 解析:因为C 02n +C 12n +C 22n +…+C 2n 2n =22n ,所以C 12n +C 32n +…+C 2n -12n =12(C 02n +C 12n +…+C 2n 2n )=22n -1. 答案:22n -13.(选修2-3P 41B 组T 5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8 二、走出误区常见误区:①混淆“二项式系数”与“系数”致误;②配凑不当致误.4.在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-15.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r,令r =8,得a 8=4C 810=180.答案:1806.(x +1)5(x -2)的展开式中x 2的系数为________.解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5,展开式中含有x 2的项为-20x 2+5x 2=-15x 2,故x 2的系数为-15.答案:-15[题组练透]1.二项式⎝⎛⎭⎫x 2-2x 10的展开式中,x 项的系数是( )A.152 B .-152C .15D .-15解析:选B ⎝⎛⎭⎫x 2-2x 10的二项展开式的通项为T r +1=C r 10⎝⎛⎭⎫x 210-r ⎝⎛⎭⎫-2x r =(-1)r 22r -10C r10x 23- 5r,令5-3r 2=12,得r =3,所以x 项的系数是(-1)3·2-4·C 310=-152.故选B. 2.(2019·天津高考)⎝⎛⎭⎫2x -18x 38的展开式中的常数项为________. 解析:⎝⎛⎭⎫2x -18x 38的通项为T r +1=C r 8()2x 8-r ·⎝⎛⎭⎫-18x 3r =C r 828-r ⎝⎛⎭⎫-18r ·x 8-4r . 令8-4r =0,得r =2,∴ 常数项为T 3=C 2826⎝⎛⎭⎫-182=28. 答案:283.(2019·浙江高考)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.解析:由二项展开式的通项公式可知T r +1=C r 9·(2)9-r ·x r ,r ∈N,0≤r ≤9, 当项为常数项时,r =0,T 1=C 09·(2)9·x 0=(2)9=16 2. 当项的系数为有理数时,9-r 为偶数,可得r =1,3,5,7,9,即系数为有理数的项的个数是5. 答案:162 54.(一题多解)⎝⎛⎭⎫ax +1x 6的展开式的常数项为160,则实数a =________. 解析:法一:⎝⎛⎭⎫ax +1x 6的展开式的通项T r +1=C r 6(ax )6-r ·⎝⎛⎭⎫1x r =C r 6a 6-r x 6-2r ,令6-2r =0,得r =3,所以C 36a 6-3=160,解得a =2.法二:⎝⎛⎭⎫ax +1x 6=⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ,要得到常数项,则需ax 与1x 的个数相同,各为3个,所以从6个因式中选择3个ax 的系数,即C 36a 3=160,解得a =2.答案:2[解题技法]求二项展开式中的项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).[例1] (1)(2020·合肥模拟)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )A .-1B .1C .32D .64(2)若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=( ) A .0 B .1 C .32D .-1(3)在(1+x )n (x ∈N *)的二项展开式中,若只有x 5的系数最大,则n =________.[解析] (1)由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得a +b =±2,故(ax +b )6的展开式中所有项的系数之和为(a +b )6=64.(2)由(1-x )5的展开式的通项T r +1=C r 5(-x )r =C r 5(-1)r x r,可知a 1,a 3,a 5都小于0.则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=a 0+a 1+a 2+a 3+a 4+a 5.在原二项展开式中令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=0.(3)二项式中仅x 5的系数最大,其最大值必为C n 2n ,即得n2=5,解得n =10.[答案] (1)D (2)A (3)10[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第n +12+1项的二项式系数相等并最大.[跟踪训练]1.若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A .63x B.4xC .4x 6xD.4x或4x 6x 解析:选A 令x =1,可得⎝ ⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x .2.(2020·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A .1B .243C .121D .122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.3.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或14.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考向(一) 几个多项式和展开式中特定项(系数)问题[例2] 在1+(1+x )+(1+x )2+(1+x )3+(1+x )4+(1+x )5的展开式中,含x 2项的系数是( )A .10B .15C .20D .25[解析] 含x 2项的系数为C 22+C 23+C 24+C 25=20.[答案] C[解题技法]对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.考向(二) 几个多项式积展开式中特定项(系数)问题[例3] (1)(2019·全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20D .24(2)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)(1+x )4的二项展开式的通项为T k +1=C k 4x k(k =0,1,2,3,4),故(1+2x 2)(1+x )4的展开式中x 3的系数为C 34+2C 14=12.故选A.(2)(ax +1)6的展开式中x 2的系数为C 46a 2,x 的系数为C 56a ,因为(x -1)(ax +1)6的展开式中含x 2项的系数为0,所以-C 46a 2+C 56a =0,解得a =0或a =25.因为a 为正实数,所以a =25. [答案] (1)A (2)25[解题技法]对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.考向(三) 三项式展开式中特定项(系数)问题[例4] ⎝⎛⎭⎫x +1x +25的展开式中x 2的系数是________. [解析] 在⎣⎡⎦⎤⎝⎛⎭⎫x +1x +25的展开式中,含x 2的项为2C 15⎝⎛⎭⎫x +1x 4,23C 35⎝⎛⎭⎫x +1x 2,所以在这几项的展开式中x 2的系数和为2C 15C 14+23C 35C 02=40+80=120.[答案] 120[解题技法](a +b +c )n 展开式中特定项的求解方法[跟踪训练]1.在⎝⎛⎭⎫x +1x -16的展开式中,含x 5项的系数为( ) A .6 B .-6 C .24D .-24解析:选B 由⎝⎛⎭⎫x +1x -16=C 06⎝⎛⎭⎫x +1x 6-C 16⎝⎛⎭⎫x +1x 5+C 26⎝⎛⎭⎫x +1x 4-…-C 56⎝⎛⎭⎫x +1x +C 66,可知只有-C 16⎝⎛⎭⎫x +1x 5的展开式中含有x 5,所以⎝⎛⎭⎫x +1x -16的展开式中含x 5项的系数为-C 05C 16=-6,故选B.2.⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5的展开式中常数项为( ) A .-30 B .30 C .-25D .25解析:选C ⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5=x 2⎝⎛⎭⎫1-1x 5-3x ⎝⎛⎭⎫1-1x 5+4x ⎝⎛⎭⎫1-1x 5,⎝⎛⎭⎫1-1x 5的展开式的通项T r +1=C r 5(-1)r ⎝⎛⎭⎫1x r,易知当r =4或r =2时原式有常数项,令r =4,T 5=C 45(-1)4⎝⎛⎭⎫1x 4,令r =2,T 3=C 25(-1)2·⎝⎛⎭⎫1x 2,故所求常数项为C 45-3×C 25=5-30=-25,故选C.[课时过关检测]A 级——夯基保分练1.⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10 B .20 C .40D .80解析:选C T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40. 2.⎝⎛⎭⎫1x 2+4x 2+43展开式的常数项为( ) A .120 B .160 C .200D .240解析:选B 因为⎝⎛⎭⎫1x 2+4x 2+43=⎝⎛⎭⎫1x +2x 6,其展开式的通项为T r +1=C r 6·⎝⎛⎭⎫1x 6-r ·(2x )r =C r 62r x 2r -6,令2r -6=0,可得r =3,故展开式的常数项为C 36·23=160.3.已知(x +2)(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 0+a 2+a 4=( ) A .123 B .91 C .-120D .-152解析:选D 法一:因为(2x -1)5的展开式的通项T r +1=C r 5(2x )5-r ·(-1)r (r =0,1,2,3,4,5),所以a 0+a 2+a 4=2×C 55×20×(-1)5+[1×C 45×21×(-1)4+2×C 35×22×(-1)3]+[1×C 25×23×(-1)2+2×C 15×24×(-1)1]=-2-70-80=-152,故选D.法二:令x =1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6=3 ①,令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=-243 ②,①+②,得a 0+a 2+a 4+a 6=-120.又a 6=1×25=32,所以a 0+a 2+a 4=-152,故选D.4.在⎝⎛⎭⎫x -ax 5的展开式中,x 3的系数等于-5,则该展开式的各项的系数中最大值为( ) A .5 B .10 C .15D .20解析:选B ⎝⎛⎭⎫x -a x 5的展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫-a x r =(-a )r C r 5x 5-2r ,令5-2r =3,则r =1,所以-a ×5=-5,即a =1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为C 25=10,选B.5.若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C .1D .2解析:选D 由题意得⎝⎛⎭⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝⎛⎭⎫1x k =C k 10x 10-2k ,⎝⎛⎭⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.6.(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.7.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( ) A .7 B .8 C .9D .10解析:选AB ∵已知(a +b )n 的展开式中第5项的二项式系数C 4n 最大,则n =7或8.故选A 、B.8.(多选)已知(3x -1)n =a 0+a 1x +a 2x 2+…+a n x n ,设(3x -1)n 的展开式的二项式系数之和为S n ,T n =a 1+a 2+…+a n ,则( )A .a 0=1B .T n =2n -(-1)nC .n 为奇数时,S n <T n ;n 为偶数时,S n >T nD .S n =T n解析:选BC 由题意知S n =2n ,令x =0,得a 0=(-1)n ,令x =1,得a 0+a 1+a 2+…+a n =2n ,所以T n =2n -(-1)n ,故选B 、C.9.(一题两空)若⎝⎛⎭⎪⎫3x -13x 2m的展开式中二项式系数之和为128,则m =________,展开式中1x3的系数是________.解析:由题意可知2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r·⎝⎛⎭⎪⎫-13x 2r =C r 737-r(-1)r x 7-5r 3,令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21. 答案:7 2110.(2020·合肥模拟)(x -2)3(2x +1)2的展开式中x 的奇次项的系数之和为________. 解析:依题意得,(x -2)3(2x +1)2=(x 3-6x 2+12x -8)·(4x 2+4x +1)=4x 5-20x 4+25x 3+10x 2-20x -8,所以展开式中x 的奇次项的系数之和为4+25-20=9.答案:911.若⎝⎛⎭⎫x +12x n (n ≥4,n ∈N *)的二项展开式中前三项的系数依次成等差数列,则n =________.解析:⎝⎛⎭⎫x +12x n 的展开式的通项T r +1=C r n x n -r ⎝⎛⎭⎫12x r =C r n 2-r x n -2r ,则前三项的系数分别为1,n 2,n (n -1)8,由其依次成等差数列,得n =1+n (n -1)8,解得n =8或n =1(舍去),故n =8.答案:812.已知(a 2+1)n 展开式中的二项式系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的二项式系数最大的项等于54,则正数a 的值为________.解析:⎝⎛⎭⎫165x 2+1x 5展开式的通项为T r +1=C r 5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =C r 5⎝⎛⎭⎫1655-r x 20-5r 2. 令20-5r =0,得r =4, 故常数项T 5=C 45×165=16, 又(a 2+1)n 展开式中的二项式系数之和为2n ,由题意得2n =16,∴n =4.∴(a 2+1)4展开式中二项式系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3. 答案:3B 级——提能综合练13.设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12解析:选D 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.14.若⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中的常数项为( ) A .10B .20C .30D .40解析:选D 令x =1,得(1+a )(2-1)5=1+a =2,所以a =1.因此⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为⎝⎛⎭⎫2x -1x 5的展开式中x 的系数与1x的系数的和.⎝⎛⎭⎫2x -1x 5的展开式的通项T r +1=C r 5(2x )5-r ⎝⎛⎭⎫-1x r =C r 525-r x 5-2r ·(-1)r . 令5-2r =1,得r =2,因此⎝⎛⎭⎫2x -1x 5的展开式中x 的系数为C 2525-2×(-1)2=80; 令5-2r =-1,得r =3,因此⎝⎛⎭⎫2x -1x 5的展开式中1x的系数为C 3525-3×(-1)3=-40,所以⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为80-40=40. 15.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.16.(一题两空)在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则n =________,展开式中常数项的值为________.解析:在二项式⎝⎛⎭⎫x +3x n 的展开式中,令x =1得各项系数之和为4n ,即A =4n ,二项展开式中的二项式系数之和为2n ,即B =2n .∵A +B =72,∴4n +2n =72,解得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3的展开式的通项为T r +1=C r 3(x )3-r ⎝⎛⎭⎫3x r =3r C r 3x 3-3r 2,令3-3r 2=0,得r =1,故展开式中的常数项为T 2=3×C 13=9.答案:3 9。

二项式定理(通项公式)

二项式定理(通项公式)

精心整理二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式)0111()(1)(n n n k k n k kn n n a b C a C a b C a b ---=-++-++01(1)n k kn nn n n n x C C x C x C x +=+++++①1110n n n k n n n k a x a x a x a x a ----=+++++① 式中分别令x=1和x=-1,则可以得到012nnn n C C C +++=1312n n n C C -+=++=② 式中令x=12. 二项式系数的性质(1)对称性:n n (2)二项式系数k n C当12n k +<2减的. 当n .当n 是奇数时,中间两项12n nC-和12n nC+相等,且同时取得最大值.3.0123,…,a n 的性质:f(x )=a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴a 0+a 1+a 2+a 3……+a n =f(1)⑵a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶a 0+a 2+a 4+a 6 (2)1()1(-+f f ⑷a 1+a 3+a 5+a 7……=2)1()1(--f f 经典例题1、“n b a )(+展开式:例1.求413(xx +的展开式; 【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项. 【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(23.二项展开式中的系数例3.已知22)n x 992,求21(2)n x x-的展开式中:(1[练习3]已知*22)()n n N x∈(1)求展开式中含32x 的项;(2)4、求两个二项式乘积的展开式指定幂的系数例4.2x (5例5的展开式中,常数项是; 6例6例78例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是; (2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是; 9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和 例11.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-,则=++++6210...a a a a ; 【练习3】92)21(xx -展开式中9x 的系数是;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 项 式 定 理
人教社·普通高级中学教科书(选修2--3)第一章第3节《二项式定理》 (第1课时)
《二项式定理》这一节内容,大致分成3个课时,我主要针对第1课时的教学,谈谈我的理解与设计,敬请各位专家斧正.
一、教材分析
二项式定理是选修2—3第一章第3节的内容。

它是解决高次多项式问题的有力工具。

在函数、数列、不等式证明等问题中时常会碰到高次多项式的问题,二项式就是解决该类问题的重要工具之一。

二、目标分析
本节课的教学目标是要实现对学生知识、能力、情感三维的培养目标
1、知识目标:(1)理解二项式定理的形成过程,尤其是如何用计数原理 分析 的展开式,并进一步得到二项式定理。

(2)掌握二项式定理、二项式系数、通项等概念。

并能够解决简单的各种项及各种系数的问题。

2、能力目标:通过对定理、例题、练习的探究及解答过程,培养学生观察、归纳、猜想、证明的能力;培养学生从特殊到一般再到特殊的知识整合与应用能力。

3、情感目标:让学生获得知识的同时掌握发现问题和解决问题的科学的方法。

当n=1,2,3……二项式定理更是达到了高度的统一与和谐,所以它向人们展示了高度的统一与和谐之美。

教学过程中要善于抓住这样的点滴,给学生以美的熏陶和哲理的启示。

三、重点、难点分析
重点:掌握二项式定理、二项式系数、通项等概念。

并能够解决简单的各种项及各种系数的问题。

难点:二项式定理的形成过程,以及二项式定理与计数原理的关系。

四、教法分析
皮亚杰的认知结构学认为:“所有的认知结构,结构再构建,构成复杂的结构,不断发展。

”所以教学活动不应该是知识单方面的迁移。

教法上采用“引导--启发—总结”三维立体的探究式教学方法。

4)(b a
在学习方法上,指导学生:积极的展开“互评—反思—总结”三维立体的自主+互补的学习方法。

五、过程分析
设计理念:遵循特殊到一般的认知规律,结合可接受性和可操作性原则,把教学目标和重点难点的落实融入到教学过程之中,通过演绎公式的形成,发展和应用过程,帮助学生主动建构概念.
1、 引导激趣
设计意图:创设情景,激发学生兴趣,让学生迫不及待想一试身手。

1664年冬,牛顿研读沃利斯博士的《无穷算术》…
试猜想(a+b)4=(a+b)(a+b)(a+b)(a+b)
= 。

学生猜想其展开式应包含以下几项:a 4 ,a 3b ,a 2b 2 ,ab 3 ,b 4。

这不会有什么障碍。

2、互动导标
设计意图:设置探究问题,分析不同结果的原因,并引导学生提出新的方法或猜想,鼓励学生进行数学交流,激发学生进一步探究的热情,从而找到推进解决问题的线索
各项的系数是什么,你有什么更好的方法确定其系数吗?放给学生自主探究、交流。

展示结论
3、概念导析
2()a b +=222b ab a ++3
223333)(b ab b a a b a +++=+
设计意图:概念的形成是本节课的难点,攻克了这个难点,下面的学习便会得心应手。

更重要的是知识的形成过程,是实现本节能力目标的最重要的环节,所以这里一定要不惜篇幅,做到透彻,细致。

(a+b)4=(a+b)(a+b)(a+b)(a+b)
在上面4个括号中:
每个都不取b 的情况有 种,即a 4的系数是 恰有1个取b 的情况有 种,即a 3b 的系数是 恰有2个取b 的情况有 种,即a 2b 2的系数是 恰有3个取b 的情况有 种,即ab 3的系数是 4个都取b 的情况有 种,即b 4的系数是 44433422243144044)(b C ab C b a C b a C a C b a ++++=+
归纳得
n n n n n n n n n n n n n n n b
C ab C b a C b a C b a C a C b a +++++=+-----11333222110)(K K 注: (1) 展开式的项数为 n+1 项;
(2) 字母a 按降幂排列,次数由n 递减到0
字母b 按升幂排列,次数由0递增到n
(3) 展开式中的第 r + 1 项,即通项 T r + 1 = ,(r=0,1,2,…n)
4、知识形成、巩固
题组一(1)写出(p+q)7的展开式.
(2)求(2a+3b)6的展开式的第三项.
(3)(x-1)10的展开式的第六项的系数是.
题组二 例1、求 的展开式 例2、(1) 求 ( 1 + 2x ) 7 的展开式中第 4 项的系数
(2) 求 ( x - x 1) 9 的展开式中
x 3 的系数
5、类比拓展:
设计意图:加大课堂思维含量,培养学生深入的挖掘问题的习惯,解决问题的自主能力。

(1)求 ( 1 + 2x )7
的展开式中所有项系数的和。

04
C 04C 14C 14
C 24C 2
4C 3
4C 34C 44C 44
C 6)12(x
x -r r n r n b a C -
(2)求 ( 1 + 2x )7 的展开式中所有奇数项与偶数项系数之差。

(3)求 ( 1 + 2x )7 的展开式中所有奇数项系数的和。

(4)求 ( 1 + 2x )7 的展开式中所有偶数项系数的和。

6、引导小结:
(一)对于n 次多项式f(x):
(1)各项系数的和为f(1)
(2)奇数项的和为
(3)偶数项的和为
(二)二项式定理: 对于任意n ∈ N *
n n n n n n n n n n n n n n n b
C ab C b a C b a C b a C a C b a +++++=+-----11333222110)(K K (三)通项 T r + 1 = , (r=0,1,2,…n)
7、分层练习、作业
练习:课本37页—A 组1、2、5
作业:课本37页—A 组4
2)1()1(-+f f 2
)1()1(--f f r
r n r n b a C -
六、评价分析
教学活动中积极的组织师生之间的自评互评,全方位的为学生打造交流的平台,体现素质教育的指导思想。

让学生在兴趣的推动下,美的享受中收获有形的知识,更重要的是收获无形的“解惑之法,求真之术”。

相关文档
最新文档