人教版高中数学必修3 第2章 统计
高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3
解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2
2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.
高中数学必修三第二章 统计 本章整合(共35张PPT)课件
定义:散点图中的点分布在一条直线附近
相关关系→线性相关
回归方程
求法:最小二乘法求回归方程系数 应用:已知一个变量值预测另一个变量值
专题一 三种抽样方法的比较
简单随机抽样、系统抽样、分层抽样的比较如下表:
类别 共同点
各自特点
联系
适用范围
简单
总体中个
随
从总体中逐个
体无差异
机抽 样
系统 抽样
分层 抽样
答案:0.02 600
专题三 用样本的数字特征估计总体的数字特征
为了从整体上更好地把握总体的规律,我们还可以通过样本数 据的众数、中位数、平均数和标准差等数字特征对总体的数字特征
作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是 把样本数据按照由小到大(或由大到小)的顺序排列,若数据的个数 是奇数,就是处于中间位置的数;若数据的个数是偶数,就是中间两个 数据的平均数.平均数就是所有样本数据的平均值,用������表示;标准差 是反映样本数据分散程度大小的最常用统计量,其计算公式如下:
提示:分层抽样时,在各层所抽取的样本个数与该层个体数的比 值等于抽样比;系统抽样抽取的号码按从小到大排列后,每一个号码 与前一个号码的差都等于分段间隔.
解析:按分层抽样时,在一年级抽取 108×21700=4(人),在二年级、 三年级各抽取 81×21700=3(人),则在号码段 1,2,…,108 中抽取 4 个号码, 在号码段 109,110,…,189 中抽取 3 个号码,在号码段 190,191,…,270 中抽取 3 个号码,①②③符合,所以①②③可能是分层抽样,④不符合, 所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是 “等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④ 都不能为系统抽样.
高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)
总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②
人教版高中数学必修3课件第二章众数、中位数、平均数
∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2 =0.3,
∴前三个小矩形面积的和为 0.3,而第四个小矩形面积 为 0.03×10=0.3,0.3+0.3>0.5,
∴中位数应位于第四个小矩形内. 设其底边为 x,高为 0.03,令 0.03x=0.2 得 x≈6.7,故 中位数约为 70+6.7=76.7.
2.下列说法中,不正确的是( ) A.数据 2,4,6,8 的中位数是 4,6 B.数据 1,2,2,3,4,4 的众数是 2,4 C.一组数据的平均数、众数、中位数有可能是同一个 数据 D.8 个数据的平均数为 5,另 3 个数据的平均数为 7, 则这 11 个数据的平均数是8×5+117×3
解 在 17 个数据中,1.75 出现了 4 次,出现的次数最
多,即这组数据的众数是 1.75.上面表里的 17 个数据可看成
是按从小到大的顺序排列的,其中第 9 个数据 1.70 是最中
间的一个数据,即这组数据的中位数是 1.70;这组数据的平
均数是-x
=117×(1.50×2+
1.60×3
+…+
(1)这 50 名学生成绩的众数与中位数; (2)这 50 名学生的平均成绩.(答案精确到 0.1)
解 (1)由众数的概念可知,众数是出现次数最多的 数.在直方图中高度最高的小长方形框的中间值的横坐标即 为所求,所以由频率分布直方图得众数应为 75.
由于中位数是所有数据中的中间值, 故在频率分布直方图中体现的是中位数的左右两边频 数应相等,即频率也相等,从而就是小矩形的面积和相等. 因此在频率分布直方图中将频率分布直方图中所有小 矩形的面积一分为二的直线所对应的成绩即为所求.
(3) 一 个 样 本 按 从 小 到 大 的 顺 序 排 列 为 10,12,13 , x,17,19,21,24,其中中位数为 16,则 x=____1_5___.
高中数学必修3第二章:统计2.3变量间的相关关系
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y
(完整版)人教版高中数学必修3各章知识点总结,推荐文档
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2019年最新-人教版高中数学必修三第二章-统计-3.1《变量之间的相关关系》ppt课件
2.相关关系的概念
自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的 关系叫相关关系.
(1)相关关系与函数关系的异同点: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系; 而相关关系是一种非确定关系;
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地A 完整地聆听歌曲。
点散布在从左下角 到右上角的区域
称它们成 正相关。
脂肪含量
40
35
如图: 30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
下列关系属于负相关关系的是( )
C
A.父母的身高与子女的身高
B.农作物产量与施肥的关系
C.吸烟与健康的关系
D.数学成绩与物理成绩的关系
我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果 散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具 有线性相关关系;
2.3 变量间的相关关系
2.3.1 变量之间的相关关系
本课主要学习变量间的相关关系与散点图的相关内容,具体包括相关关系的 定义以及通过散点图如何判断变量间的关系。
人教A版高中数学必修3 统计 教材分析
mm.
④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的
纤维长度除一个特殊值 352 外,也大致对称,其分布较均匀.
2.直方图的识图要点
⑴通过直方图估计平均数——
平均数的估计值等于频率分布直方图中每个小矩形的面积
容大大的增加,这已经成为国际中小学数学课程发展的趋势。
2. “新课标”的新要求
第一部分 前言
……与时俱进地认识“双基”(摘录)
数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求
的新的"双基"。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把 最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;
乘以小矩形底面中点的横坐标之和. ⑵通过直方图估计中位数—— 在频率分布直方图中,中位数左边和右边的直方图的面积
应该相等.
(三)统计软件 Excel 与 SPSS.
推荐一本书——《用 Excel 与 Spss 学习统计学》毛炳寰编
1.添加“分析工具库”(平均数、中位数、众数,方差,相等)
本功能需要使用 Excel 扩展功能,如果您的 Excel 尚未安装数据分析, 请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功 后,可以在“工具”下拉菜单中看到“数据分析”选项。
分析:将直方图与加权平均数结合考查
(二)重视统计思想的理解,重视结果的解释和应用.
1.茎叶图的识图要点
例 1 (2009 安徽)某良种培育基地正在培育一种小麦新品种 A.将其与原有的一个优良品
种 B 进行对照试验.两种小麦各种植了 25 亩,所得亩产数据(单位:千克)如下: A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,
高中数学必修3第二章:2.1.3 分层抽样
归纳升华 一个总体中有 N 个个体,用分层抽样的方法从中
抽取一个容量为 n(n<N)的样本,某层的个体数为 Nk,该 层应抽取的个体数为 nk,则 nk=总样体本个容体量数nN×Nk.
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
(2)下列问题中,最适合用分层抽样抽取样本的是 ()
A.从 10 名同学中抽取 3 人参加座谈会 B.某批零件共 120 个,其中一级品 35 个,二级品 65 个,三级品 20 个,从中抽取一个容量为 40 的样本 C.从 1 000 名工人中,抽取 100 名调查上班途中所 用时间 D.从生产流水线上,抽取样本检查产品质量
类型 2 确定各层抽取的个体数 [典例 2] 某全日制大学共有学生 5 600 人,其中专 科生有 1 300 人,本科生有 3 000 人,研究生有 1 300 人, 现采用分层抽样的方法调查学生利用因特网查找学习资 料的情况,抽取的样本为 280 人,则应在专科生、本科 生与研究生这三类学生中分别抽取多少人?
[变式训练] 某校老年、中年和青年教师的人数见下
表.采用分层抽样的方法调查教师的身体状况,在抽取
的样本中,青年教师有 320 人,则该样本中的老年教师
人数为(
)
类别 老年教师 中年教师 青年教师
合计
人数/人 900 1 800 1 600 4 300
A.90
B.100
C.180
D.300
解析:设该样本中的老年教师人数为 x,由题意及分 层抽样的特点得90x0=1362000,故 x=180.
人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4
阅读与思考:生产过程中的质量控制图》教学设计阅读与思考:生产过程中的质量控制图——正态分布[ 教材分析]本节课选自人教A 版必修3第二章“统计”第2.2节“用样本估计总体”课后的“阅读与思考”部分。
在第2.1节通过抽样收集数据之后,第2.2节给出了两种用样本估计总体的方式,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征(如平均数、标准差等)估计总体的数字特征。
本节课是在这基础上,结合前面所学的总体密度曲线、平均数和标准差的概念,通过生产过程中的产品质量控制图引出正态分布,利用具体的生活应用介绍正态分布密度曲线的特点以及期望、标准差对整个正态分布的影响。
正态分布无论是在理论上还是应用上都是极其重要的一个分布,将正态分布的这些特点应用到质量控制中,可使学生进一步加强对标准差的认识。
由于正态分布的随机变量是连续型随机变量,这也让学生对随机变量由离散型到连续型有一个初步的认识。
从教材编排上来看,“阅读与思考”内容是对频率分布直方图、标准差认识的深化,是统计知识体系的一种承接和完善,也是后续选修2-3 中第2.4“正态分布”一课的铺垫。
[学情分析]学生在之前章节的学习中,已经掌握如何通过抽样来收集数据,能够画出所收集数据的频率分布直方图、折线图,会根据图表初步分析数据的分布规律,会计算平均数与标准差,这为本节课的探究学习打下了坚实的基础。
但学生仍存在一些知识短板和理解缺口。
其一,本节课学习的正态分布的随机变量是连续型随机变量的分布问题,学生一直以来接触的都是离散型随机变量,这在概念接受与理解上会有一定困难,可以通过信息技术辅助理解;其二,由于学生在此之前还未学习过定积分、随机事件的概率以及二项分布,只在初中接触过简单的概率定义,因而对本节课正态分布的本质理解会显得生涩;其三,正态分布的密度曲线函数较为复杂,学生对抽象且陌生的公式会存在惧怕心理,需要通过一些函数模型及实际应用帮助学生体会其参数的作用。
高中数学人教A版必修三 第二章《统计》 2.1.1 随机抽样 简单随机抽样
第二章 2.1 随机抽样2.1.1简单随机抽样1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.知识梳理自主学习题型探究重点突破当堂检测自查自纠知识梳理自主学习知识点一统计的相关概念名称定义总体所要考察对象的全体叫做总体样本从总体中抽取出的若干个个体组成的集合叫做总体的一个样本个体总体中的每一个考察对象叫做个体样本容量样本中个体的数目叫做样本容量思考样本与样本容量有什么区别?答样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.答案知识点二简单随机抽样1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的特点特点说明个体数有限要求总体的个体数有限,这样便于通过随机抽取的样本对总体进行分析逐个抽取从总体中逐个进行抽取,这样便于在抽取过程中进行操作不放回抽样由于抽样试验中多采用不放回抽样,使其具有广泛的应用性,而且所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算等可能抽样在整个抽样过程中,各个个体被抽取的机会都相等,从而保证了这种抽样方法的公平性知识点三最常用的简单随机抽样的方法1.抽签法(1)抽签法(抓阄法):抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)抽签法的步骤:①编号:对总体中的N个个体进行编号(号码可以是1~N,也可以使用已知的号码);②制签:将1~N这N个编号写在大小、形状都相同的号签上(号签可以是纸条、卡片或小球等);③均匀搅拌:将写好的号签放入一个不透明的容器中,搅拌均匀;④抽签:从容器中每次不放回地抽取一个号签,连续抽取n次,并记录其编号;⑤确定样本:从总体中找出与号签上的号码所对应的个体,组成样本.2.随机数法(1)随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样.(2)随机数表法的一般步骤:①编号:将总体中的每个个体进行编号;②选定初始值(数);为保证所选数字的随机性,在面对随机数表之前就指出开始数字的位置;③选号:从选定的数字开始按照一定的方向读下去,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止;④确定样本:从总体中找出按步骤③选出的号码所对应的个体,组成样本.3.抽签法与随机数法的异同点抽签法随机数表法不同点①抽签法比随机数法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数法要求编号的位数相同;②随机数法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取思考(1)简单随机抽样是不放回抽样,对于放回的抽样可以是简单随机抽样吗?答不可以.简单随机抽样是从总体逐个抽取的,是一种不放回抽样,也就是每次从总体中取出元素后不放回总体,若放回,则一定不是简单随机抽样.(2)采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?答为了使每个号签被抽取的可能性相等,保证抽样的公平性.题型探究重点突破题型一简单随机抽样的判断例1下列5个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3跟踪训练1在简单随机抽样中,某一个体被抽到的可能性()BA.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二抽签法的应用例2为迎接2016年里约热内卢奥运会,奥委会现从报名的某高校20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.解(1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.跟踪训练2从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要抽取的对象.题型三随机数法例3为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.解第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P)中任选一数作为初始数,如选第9行第7103列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.跟踪训练3总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01编号不一致致错易错点例4某工厂的质检人员对生产的100件产品,采用随机数法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3, (100)②001,002,003,…,100;③00,01,02,03,…,99.其中最恰当的序号是________.当堂检测 1 2 3 4 5 1.某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()DA.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100,故只有D正确.B2.抽签法确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.3.对于简单随机抽样,下列说法正确的是()D①它要求总体中的个体数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的机会相等,而且在整个抽样过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④解析由简单随机抽样的概念,知①②③④都正确.4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )A.36%B.72%C.90%D.25% 解析 ×100%=90%. 3640C5.某总体共有60个个体,并且编号为00,01,…,59. 现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60课堂小结1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽样、等可能抽取.2.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.3.利用随机数法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.本课结束。
高中数学必修3_第二章_统计_总结学生版
第二章统计一、随机抽样三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法。
(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n次;成样:对应号签就得到一个容量为n的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n的样本。
结论:①用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为1/N;在整个抽样过程中各个个体被抽到的概率为n/N;②基于此,简单随机抽样体现了抽样的客观性与公平性;③简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤可概括为:(1)将总体中的个体编号。
采用随机的方式将总体中的个体编号;(2)将整个的编号进行分段。
为将整个的编号进行分段,要确定分段的间隔k .当N/n 是整数时,k=n/N ;当N/n 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时k=N ’/n ;(3)确定起始的个体编号。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)
6. 简单随机抽样的结果( ) A.完全由抽样方式所决定 B.完全由随机性来决定 C.完全由人为因素所决定 D.完全由计算方法所决定 解析:简单随机抽样的结果完全由随机性来决定. 答案:B
7. 为了了解某县中考学生数学成绩的情况,从中抽取20本密封
试卷,每本30份试卷,这个问题中的样本容量是( )
最常用的简单随机抽样方法有两种:
抽签法 随机数法
随机数表法
抽签法
(1)对总体的N个个体进行编号 (2)把N个号码写在同样的号签上 (3)将号签放在一个容器中,搅拌均匀 (4)每次从中抽取一个号签,连续抽取n次 (5)得到一个容量为n的样本 步骤:编号→制签→搅匀→抽签→定样.
例1 某班有50名学生,要从中随机地抽出6人参加一项活动, 请用抽签法进行抽选,并写出过程.
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2 ,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
系统抽样的特点:
(1) 总体容量较大 (2) 属于不放回抽样 (3) 每个个体被抽到的可能性相同(公平性)
系统抽样的步骤
(1)对总体的N个个体进行编号; (2)确定分段间隔k,对编号进行分段,当N/n是整数时, 取k=N/n;当N/n不是整数时,从总体中随机剔除一些个体, 使剩下的总体中个体的个数N′能被n整除,并将剩下的总体重 新编号、分段; (3)在第一段中用简单随机抽样确定起始的个体编号l; (4)将编号为l+k, l+2k, …, l+(n-1)k的个体抽出。
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系2.3.2两个变量的线性相关学习目标 1.了解变量间的相关关系,会画散点图;2.根据散点图,能判断两个变量是否具有相关关系;3.了解线性回归思想,会求回归直线的方程.知识点一变量间的相关关系思考1粮食产量与施肥量间的相关关系是正相关还是负相关?答案在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.思考2怎样判断一组数据是否具有线性相关关系?答案画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.梳理1.相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.2.散点图将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形叫做散点图.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.知识点二两个变量的线性相关思考任何一组数据都可以由最小二乘法得出线性回归方程吗?答案用最小二乘法求线性回归方程的前提是先判断所给数据是否具有线性相关关系(可利用散点图来判断),否则求出的线性回归方程是无意义的.梳理 回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x ,其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.类型一 相关关系的判断与应用 命题角度1 判断两个变量的相关性例1 为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所得数据如下:判断它们是否有相关关系,若有,判断是正相关还是负相关. 解 散点图如图:由散点图可以看出两个变量对应的点大致分布在一条直线附近,因此可以得出结论:质量与弹簧长度这两个变量具有相关关系,且它们是正相关关系.反思与感悟在研究两个变量之间是否存在某种关系时,必须从散点图入手,对于散点图,可以作出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一直线附近,那么变量之间就有线性相关关系;(3)如果散点图中的点的分布几乎没有什么规律,那么这两个变量之间不具有相关关系,即两个变量之间是相互独立的.跟踪训练1下表是某地的年降雨量与年平均气温的统计表,判断两者是否具有相关关系,求线性回归方程有意义吗?解以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合,即使用公式法求出线性回归方程也是没有意义的.命题角度2函数关系与相关关系的区别与联系例2下列关系中,是相关关系的是________.①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.答案②④解析①中,正方形的边长与面积之间的关系是函数关系;②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人达到一定年龄后,身高就不发生明显变化了,所以它们不具有相关关系;④中,降雪量与交通事故的发生率之间具有相关关系. 反思与感悟 相关关系与函数关系的区别与联系如表所示:跟踪训练2 下列图形中两个变量具有相关关系的是( )答案 C解析A 是一种函数关系;B 也是一种函数关系;C 中从散点图中可看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关;D 中所有的点在散点图中没有显示任何关系,因此变量间是不相关的. 类型二 回归直线的求解与应用例3 一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器运转速度的变化而变化,下表为抽样试验的结果:(1)画出散点图;(2)如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系;(3)在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内? 解 (1)散点图如图所示:(2)近似直线如图所示:(3)由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.引申探究1.本例(3)中近似方程不变,若每增加一个单位的转速,生产有缺点的零件数近似增加多少? 解 因为y =5170x -67,所以当x 增加一个单位时,y 大约增加5170.2.本例(3)中近似方程不变,每小时生产有缺点的零件件数是7,估计机器的转速. 解 因为y =5170x -67,所以当y =7时,7=5170x -67,解得x ≈11.反思与感悟 求线性回归方程的一般步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .(6)写出线性回归方程y ^=b ^x +a ^.跟踪训练3 (1)变量y 与x 满足线性回归方程y ^=b ^x +a ^,现在将y 的单位由厘米变为米,x的单位由毫米变为米,则在新的线性回归方程y ^=b ^*x +a ^*中,b ^*是b ^的____________倍.(2)为了均衡教育资源,加大对偏远地区的教育投入,调查了某地区若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有相关关系,并由调查数据得到y 对x 的线性回归方程为y ^=0.15x +0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加________万元. 答案 (1)10 (2)0.15解析 (1)由回归系数公式知,当y 的值变为原来的10-2倍,x 的值变为原来的10-3倍时,b^*的值应为原来的10倍.(2)回归直线的斜率为0.15,所以家庭年收入每增加1万元,年教育支出平均增加0.15万元.1.设有一个线性回归方程为y ^=2-1.5x ,则变量x 增加1个单位时,y 平均( ) A .增加1.5个单位 B .增加2个单位 C .减少1.5个单位 D .减少2个单位答案 C2.由三点(3,10),(7,20),(11,24)确定的线性回归方程为( ) A.y ^=1.75x -5.75 B.y ^=1.75x +5.75 C.y ^=-1.75x +5.75 D.y ^=-1.75x -5.75答案 B解析 设线性回归方程为y ^=b ^x +a ^, 则b ^=x 1y 1+x 2y 2+x 3y 3-3x y x 21+x 22+x 23-3x2=3×10+7×20+11×24-3×7×189+49+121-3×49=1.75,a ^=y -b ^x =18-1.75×7=5.75. 故y ^=1.75x +5.75,故选B.3.某地区近10年居民的年收入x 与年支出y 之间的关系大致符合y ^=0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则今年支出估计是________亿元. 答案 12.1解析 将x =15代入y ^=0.8x +0.1,得y ^=12.1.4.某市居民2012~2016年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是__________万元,家庭年平均收入与年平均支出有________线性相关关系. 答案 13 正解析 考查中位数的定义,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.5.某5名学生的总成绩和数学成绩(单位:分)如表所示:(1)画出散点图;(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. 解 (1)散点图如图所示:(2)由题中数据计算可得x =391.6,y =67.8,∑i =15x 2i =770 654,∑i =15x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是不是线性相关,是正相关还是负相关. 2.求线性回归方程时应注意的问题(1)知道x 与y 成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的. (2)用公式计算a ^、b ^的值时,要先计算b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x =x 0处的估计值为y ^0=b ^x 0+a ^.40分钟课时作业一、选择题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200答案 A解析 x 的系数为负数,表示负相关,排除B 、D ,由实际意义可知x >0,y >0,C 中,散点图在第四象限无意义,故选A.2.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 答案 D解析 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,所以D 不正确.3.对变量x ,y 有观测数据(x i ,y i )(i =1,2,3,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,3,…,10),得散点图2,由这两个散点图可以判断( )A .y 与x 正相关,v 与u 正相关B .y 与x 正相关,v 与u 负相关C .y 与x 负相关,v 与u 正相关D .y 与x 负相关,v 与u 负相关 答案 C解析 根据散点图直接进行判断.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本点的中心(3,3.5),代入验证得A 正确,B 错误.故选A. 5.已知x 与y 之间的一组数据:若y 与x 线性相关,则y 与x 的回归直线y ^=b ^x +a ^必过( ) A .点(2,2) B .点(1.5,0) C .点(1,2) D .点(1.5,4)答案 D 解析 ∵x =0+1+2+34=1.5,y =1+3+5+74=4, ∴回归直线必过点(1.5,4).故选D. 6.已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^等于( )A .-12B.12 C .-110D.110答案 A 解析 ∵x =2+3+43=3,y =6+4+53=5, ∴回归直线过点(3,5),∴5=3b ^+132,∴b ^=-12,故选A.二、填空题7.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的数据,计算得回归方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.答案 6解析 x =3+4+5+6+75=5,y =2.5+3+4+4.5+c 5=14+c 5,代入回归方程中得14+c5=0.85×5-0.25,解得c =6.8.如图所示的五组数据(x ,y )中,去掉________后,剩下的四组数据相关性增强.答案 (4,10)解析 去掉点(4,10)后,其余四点大致在一条直线附近,相关性增强. 9.在一次试验中测得(x ,y )的四组数据如下:根据上表可得线性回归方程y ^=-5x +a ^,据此模型预报当x =20时,y 的值为________. 答案 26.5解析 x =16+17+18+194=17.5,y =50+34+41+314=39,∴回归直线过点(17.5,39), ∴39=-5×17.5+a ^, ∴a ^=126.5,∴当x =20时,y =-5×20+126.5=26.5.10.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元. 答案 14.5解析 由表中数据得x =4,y =9,代入线性回归方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5. 三、解答题11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求两变量之间的回归方程y ^=b ^x +a ^;(2)利用(1)中所求出的回归方程预测该地第6年的粮食需求量. 解 (1)由所给数据得 x =3,y =5.8,b ^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=1.1,a ^=y -b ^x =2.5, ∴y ^=1.1x +2.5.故所求的回归方程为y ^=1.1x +2.5. (2)第6年的粮食需求量约为 y ^=1.1×6+2.5=9.1(万吨).12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =110x i =110×80=8,y =1n ∑i =110y i =110×20=2,又∑i =110x 2i -n x 2=720-10×82=80, ∑i =110x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元). 13.为了分析某高三学生的学习状态,对其下一阶段的学习提供指导性建议,现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩(单位:分).(1)他的数学成绩与物理成绩哪个更稳定?并说明理由;(2)已知该学生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少分,并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解 (1)x =100+-12-17+17-8+8+127=100,y =100+-6-9+8-4+4+1+67=100,s 2数学=142,s 2物理=2507,因为s 2数学>s 2物理, 所以他的物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,经计算得b ^=0.5,a ^=100-0.5×100=50. 所以线性回归方程为y ^=0.5x +50. 当y =115时,x =130. 估计他的数学成绩是130分.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。
高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体
第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。