正弦和余弦
高考数学正弦定理和余弦定理
课堂考点探究
[解析]在△ABC中,由2cos Csin B=sin A及正弦定理可得2bcos C=a,再利用余弦定理可得2b×=a,可得b=c,则该三角形的形状是等腰三角形,故选B.
A
课堂考点探究
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,且cos2=,则△ABC的形状为( )A.等边三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.直角三角形
[思路点拨] 先利用二倍角的余弦公式化简等式,再利用正弦定理边化角,然后利用两角和的正弦公式进行化简,可得C=,进而判断三角形的形状.[解析]由cos2==,得cos A==,即cos Asin C=sin B,所以cos Asin C = sin(A+C),整理得sin Acos C=0,因为0<A<π,所以sin A≠0,所以cos C=0,因为0<C<π,所以C=,故△ABC为直角三角形.故选D.
D
[总结反思]判定三角形的形状的常用途径:(1)角化边:利用正弦、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.(2)边化角:利用正弦、余弦定理化边为角,通过三角恒等变换,得出三角形内角之间的关系进行判断.
课堂考点探究
课堂考点探究
变式题 (1)(多选题)已知△ABC的内角A,B,C所对的边分别为a,b,c,则下列说法中正确的有( )A.若==,则△ABC一定是等边三角形B.若acos A=bcos B,则△ABC一定是等腰三角形C.若bcos C+ccos B=b,则△ABC一定是等腰三角形D.若a2+b2<c2,则△ABC一定是钝角三角形
正弦定理和余弦定理总结
cot A/2 sinA/ 1 cosA 1 cosA /sinA.
sin2 1 cos2 2 2
cos2 1 cos2 2 2
正弦定理
• • • • • 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R (2R是此三角形外接圆的半径的两倍) 方法一 证明:在锐角△ABC中,设BC=a,AC=b,AB=c 作CH⊥AB垂足为点H
余弦定理
• 两式相加
a2 b2 accos bccos abcos abcos
• 整理得:
a2 b2 c2 2abcos
a2 b2 2ab cos c2
tan(3π/2-α)= cotα
cos(3π/2-α)= -sinα
cot(3π/2-α)= tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
以上k∈Z
两角和公式
• sin(α+β)=sinαcosβ+cosαsinβ
• sin(α-β)=sinαcosβ –cosαsinβ • cos(α+β)=cosαcosβ-sinαsinβ • cos(α-β)=cosαcosβ+sinαsinβ
三角函数
锐角三角函数公式
正弦:sin 的对边 的斜边 余弦:cos 的邻边 的斜边
正切:tan 的对边 的邻边
余切:cot 的邻边 的对边
简单的三角函数
• 定义
cot 1 tan
csc 1 sin
1 sec cos
• • • • •
CH=a· sinB CH=b· sinA
初中正弦余弦正切公式
初中正弦余弦正切公式“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式,特殊锐角的正弦、余弦、正切值。
一、正弦、余弦、正切的定义假设在直角三角形ABC中,∠C为直角,∠A、∠B、∠C的对边长度分别记为a、b、c,则有(注:初中数学里,三角函数的定义只适用于直角三角形。
):1、锐角A的正弦值、余弦值、正切值的定义式分别如下:(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。
(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。
(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。
2、锐角B的正弦值、余弦值、正切值的定义式分别如下:(1)∠B的正弦值=∠B的对边:斜边,记作sinB=b/c。
(2)∠B的余弦值=∠B的邻边:斜边,记作cosB=a/c。
(3)∠B的正切值=∠B的对边:∠B的邻边,记作tanB=b/a。
【注】正弦=“对比斜”、余弦=“邻比斜”、正切=“对比邻”。
3、互余的两个角间的正弦、余弦、正切值关系假设在直角三角形ABC中,∠C为直角,则∠A与∠B互余。
通过∠A和∠B的正弦、余弦、正切值的定义式的对比,我们不难发现:∠A的正弦值与∠B的余弦值相等,∠A的余弦值与∠B的正弦值相等,∠A的正切值与∠B的正切值互为倒数。
所以,当∠A与∠B互余时我们有以下3个同时成立的等式关系:(1)sinA=cosB;(2)sinB=cosA;(3)tanA·tanB=1。
二、同角的正弦值、余弦值、正切值间的关系式1、商数关系:tanA=sinA/cosA;tanB=sinB/cosB.2、平方关系:同一个锐角的‘正弦的平方’与‘余弦的平方’的和为1,即(sinA)^2+(cosA)^2=1;(sinB)^2+(cosB)^2=1.3、倒数关系:tanA·cotA=1;tanB·cotB=1.【注】“cotA”称为为∠A的余切,它等于∠A的邻边比上∠A的对边。
正弦函数余弦函数
$number {01}
目 录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的变换 • 正弦函数与余弦函数的特殊值
01
正弦函数与余弦函数的定义
正弦函数的定义
正弦函数是三角函数的一种,定义为y=sinx,其中x是角度,y是对应的正弦值。 正弦函数在直角三角形中可以表示直角边与斜边的比值。 正弦函数具有周期性,周期为360度或2π弧度。
3
正弦函数图像
正弦函数的图像是一个周期为$2pi$的波浪线,最高点为1,最 低点为-1,呈周期性变化。
余弦函数图像
余弦函数的图像也是一个周期为$2pi$的波浪线,最高点为1, 最低点为-1,也呈周期性变化。
图像关系
正弦函数和余弦函数在图像上具有对称性,即当将正弦函数 的图像向右平移$frac{pi}{2}$个单位,即可得到余弦函数的 图像。
在物理中的应用
01
02
03
振动和波动
正弦函数和余弦函数是描 述简谐振动和波动的基本 函数,例如弹簧振动的位 移、声音的传播等。
交流电
正弦函数和余弦函数用于 描述交流电的电压和电流, 广泛应用于电力系统和电 子工程中。
磁场和电场
在电磁学中,正弦函数和 余弦函数用于描述磁场和 电场的变化,如电磁波的 传播等。
03
正弦函数与余弦函数的应用
在三角函数中的应用
三角恒等式证明
利用正弦和余弦函数的性质,证明和推导各种三角恒等式,如正弦和余弦的和差公式、倍角公式 等。
角度计算
利用正弦和余弦函数,将角度转换为弧度,或者将弧度转换为角度,特别是在物理学和工程学中 ,角度和弧度的转换是常见的需求。
正弦定理和余弦定理
返回
[研一题] [例 2] B、b. π 在△ABC 中,c= 6,C=3,a=2,求 A、
返回
[自主解答] π 3 ∴A=4或4π.
a c asin C 2 ∵sin A=sin C,∴sin A= c = 2 .
π 又∵c>a,∴C>A.∴A=4. 5π 6· sin 1n C = π = 3+1. sin 3
第四章
三角函数
四
正弦定理和余弦定理
• 1、正、余弦定理
定理 正弦定理
a b c = = sin A sin B sin C =2R
余弦定理 a2= a2+c2-2accos B b2=a2+b2-2abcosC c2 =
b2+c2-2bccos A
内
; ; .
容
定理
变 形 形 式
正弦定理 余弦定理 ①a= 2Rsin A , b= 2Rsin B , c= 2Rsin C ; b2+c2-a2 cosB= a b 2bc ②sin A=2R,sin B=2R, 2 a +c2-b2 c 2ac sin C=2R; cos B= ; 2 2 2 a + b - c (其中 R 是△ABC 外接圆半径) cos C= 2ab . ③a∶b∶c=sinA∶sin B∶sin C ④asin B=bsin A,bsin C=csin B, asin C=csin A.
(2)由正弦定理知sin A∶sin B∶sin C=a∶b∶c正确,即
(2)正确.
返回
2.在△ABC中,若A>B,是否有sin A>sin B?反之,是 否成立?
提示:∵A>B,∴a>b. a b 又∵sin A=sin B,∴sin A>sin B. 反之,若 sin A>sin B, 则 a>b,即 A>B. 故 A>B⇔sin A>sin B.
正弦定理和余弦定理
第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。
三角函数正弦余弦值
1、正弦值:
sin 0 =0 sin30°=0.5 sin60°=√3/2 sin90°=1 sin120°=√3/2 sin150°=0.5 sin180°=0
2、余弦值:
cos 0 =1 cos30°=√3/2 cos60°=0.5 cos90°=0 cos120°=-0.5 cos150°=-√
3/2 cos180 = -1
扩展资料
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA
即tanA=角A 的对边/角A的邻边。
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA
即sinA=角A的对边/角A的斜边。
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA
即cosA=角A的邻边/角A的斜边。
高中数学公式大全正弦余弦和正切的基本关系
高中数学公式大全正弦余弦和正切的基本关系高中数学公式大全: 正弦、余弦和正切的基本关系在高中数学学习中,正弦、余弦和正切是三角函数中最基本的三个函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
1. 正弦(Sin)的定义:在直角三角形中,正弦是指对边与斜边之比,即sinA = 对边/斜边2. 余弦(Cos)的定义:在直角三角形中,余弦是指邻边与斜边之比,即cosA = 邻边/斜边3. 正切(Tan)的定义:在直角三角形中,正切是指对边与邻边之比,即tanA = 对边/邻边4. 正弦、余弦和正切之间的基本关系:根据勾股定理和定义,可以得到以下关系式:sin^2A + cos^2A = 1以及tanA = sinA / cosA5. 三角函数的周期性:正弦、余弦和正切都是周期函数,其周期为360°或2π。
也就是说,对于任意角度A,有以下关系:sin(A + 360°) = sinAcos(A + 360°) = cosAtan(A + 360°) = tanA6. 三角函数的基本性质:(1)正弦和余弦函数的值域在[-1, 1]之间,即-1 ≤ sinA, cosA ≤ 1(2)正切函数的值域是所有实数,即tanA ∈ R7. 一些常用的角度-弧度转换关系:π弧度 = 180°角度A对应的弧度值= (π/180) * A8. 三角函数的图像:正弦函数的图像呈现周期性波浪形,以原点为中心对称;余弦函数的图像也呈现周期性波浪形,但与正弦函数相比,相位相差90°;正切函数的图像则呈现周期性的射线形。
9. 三角函数的应用:正弦、余弦和正切在几何、物理、工程等领域中有广泛的应用。
例如,在三角测量中,我们可以利用正弦、余弦和正切的关系来解决实际问题,如测量不可达高度、角度等。
总结:正弦、余弦和正切是高中数学中最基本的三角函数。
它们之间存在着紧密的关系,通过这些关系可以更好地理解和应用三角函数。
正弦函数、余弦函数的性质(经典)
sin2x=2sinxcosx,cos2x=cos²x-sin²x。
半角恒等式用于计算一个角的一半角的三角函数值,例如
sin(x/2)=±√[(1-cosx)/2],cos(x/2)=±√[(1+cosx)/2]。
三角函数的积分
三角函数的积分是数学中一类特殊的积分,主要涉及到三角函数的积分计算。通过三角函数的积分, 可以求得三角函数值的面积、体积和其他物理量。
三角函数与复数
三角函数与复数之间有着密切的联系 ,复数可以用三角函数的形式表示, 而三角函数也可以用复数进行计算和 分析。
在复平面上,复数可以用极坐标形式表 示为z=r(cosθ+i sinθ),其中r是模长, θ是辐角。这个表示方法与三角函数的 定义非常相似,因此可以将复数的运算 转化为三角函数的运算。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
正弦函数满足$f(-x) = -f(x)$,即对于 任何实数x,都有$sin(-x) = -sin(x)$。 相反,余弦函数满足$f(-x) = f(x)$, 即对于任何实数x,都有$cos(-x) = cos(x)$。
最值和零点
总结词
正弦函数图像是一个周期函数,其基本周期为$2pi$。
在一个周期内,正弦函数图像呈现先上升后下降的趋势,且在$[0, pi]$区间内是单调递增的。
正弦函数的最大值为1,最小值为-1,且在$x=frac{pi}{2}+2kpi$($k in Z$)处取得最大 值,在$x=2kpi$($k in Z$)处取得最小值。
三角函数在复数域中有许多重要的性 质和应用,例如:傅里叶变换、拉普 拉斯变换、Z变换等。这些变换在信 号处理、控制系统等领域有着广泛的 应用。
余弦正弦定理
余弦正弦定理在数学中,余弦正弦定理是三角形中常用的定理之一。
它可以用来计算三角形中的各个角度和边长。
余弦正弦定理的公式如下:余弦定理:c² = a² + b² - 2ab cos C正弦定理:a/sin A = b/sin B = c/sin C其中,a、b、c 分别表示三角形的三条边,A、B、C 分别表示三角形的三个角度。
余弦定理可以用来计算三角形中的任意一个角度,只需要已知另外两个角度和两条边的长度即可。
例如,如果已知三角形的两条边分别为 3 和 4,夹角为 60 度,那么可以使用余弦定理来计算第三条边的长度:c² = a² + b² - 2ab cos Cc² = 3² + 4² - 2×3×4×cos 60°c² = 9 + 16 - 12c² = 13c = √13因此,第三条边的长度为√13。
正弦定理可以用来计算三角形中的任意一个角度或边长,只需要已知另外两个角度或边长即可。
例如,如果已知三角形的两条边分别为 3 和 4,夹角为 60 度,那么可以使用正弦定理来计算第三个角度的大小:a/sin A = b/sin B = c/sin C3/sin 60° = 4/sin B = c/sin Csin B = 4sin 60°/3sin B = √3/2B = 60°因此,第三个角度的大小为 60 度。
余弦正弦定理是解决三角形问题的重要工具,可以帮助我们计算三角形中的各个角度和边长。
在实际应用中,我们可以根据具体情况选择使用哪种定理来解决问题。
正弦定理和余弦定理公式
正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。
正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。
一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。
【注1】其中“R”为三角形△ABC外接圆半径。
下同。
【注2】正弦定理适用于所有三角形。
初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。
二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。
2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。
其中“R”为三角形△ABC的外接圆半径。
部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。
余弦定理与正弦定理
余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。
本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。
一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。
二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。
- 已知三边长:可以使用余弦定理计算其中一个角度。
2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。
- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。
四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。
余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。
而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。
此外,两个定理之间也存在一定的联系。
通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。
在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。
总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
几何中的正弦定理与余弦定理
几何中的正弦定理与余弦定理几何学是一门研究空间和形状的学科,其中涉及到许多重要的定理和公式。
正弦定理和余弦定理是几何学中两个基础而重要的定理,它们在解决三角形的边长和角度方面起着至关重要的作用。
一、正弦定理正弦定理是指在一个任意三角形中,三条边与其对应的角之间的关系。
根据正弦定理,我们可以得到以下公式:a/sin A = b/sin B = c/sin C其中,a、b和c分别代表三角形的三条边的长度,A、B和C分别代表三角形的三个对应角的度数。
通过正弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。
例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用正弦定理计算第三条边c的长度:c = (sin C * a) / sin B通过正弦定理,我们可以方便地解决一些与三角形相关的几何问题,比如寻找缺失的边长或角度。
二、余弦定理余弦定理是描述一个三角形中的边长和角度之间的关系。
与正弦定理类似,余弦定理也是解决三角形问题的重要工具。
根据余弦定理,我们可以得到以下公式:c^2 = a^2 + b^2 - 2abcos C其中,a、b和c分别代表三角形的三条边的长度,C代表三角形的夹角的度数。
通过余弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。
例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用余弦定理计算第三条边c的长度:c = √(a^2 + b^2 - 2abcos C)除了求解边长,余弦定理也可以用来求解角度。
例如,当我们已知三角形的三条边长a、b和c时,我们可以利用余弦定理求解夹角A的余弦值:cos A = (b^2 + c^2 - a^2) / 2bc通过计算余弦值的反函数,我们可以得到夹角A的度数。
综上所述,正弦定理和余弦定理是解决几何学中三角形问题的重要工具。
它们可以帮助我们计算未知的边长和角度,解决各种与三角形相关的几何问题。
正弦和余弦公式
正弦和余弦公式篇一:正弦和余弦公式是三角学中的基本公式,它们被广泛运用于各种数学和科学领域。
以下是正弦和余弦公式的正文和拓展:正文:正弦和余弦公式是三角学中的基本公式,它们可以用来计算三角形中的角度和边长。
正弦公式表示为:sinθ = 對數據數 (∫-180°/2πdθ)其中,θ是角度,對數據數是角度的对数。
余弦公式表示为:cosθ = 平氣據數 (∫-180°/2πdθ)其中,θ是角度,平氣據數是角度的对数。
拓展:正弦和余弦公式在各种数学和科学领域中都有广泛的应用。
以下是一些例子:1. 物理学:正弦和余弦公式可以用来计算弦的振动频率和波长。
2. 天文学:正弦和余弦公式可以用来计算行星的轨道大小和倾角。
3. 工程学:正弦和余弦公式可以用来计算机械振动的周期和振幅。
4. 计算机科学:正弦和余弦公式可以用来计算图形的亮度和颜色。
5. 物理学:余弦定理可以用来计算两个物体之间的引力和距离。
总结起来,正弦和余弦公式是三角学中的基本公式,它们在我们的日常生活中有着广泛的应用。
篇二:正弦和余弦公式是三角学中非常重要的公式,它们可以用来计算三角形中各种角度的正弦和余弦值。
以下是正弦和余弦公式的正文和拓展: 正文:正弦公式:sinθ = 對數× esinθ其中,對數表示半周長,esinθ表示正弦值。
余弦公式:cosθ = 對數× ecsθ其中,對數表示半周長,ecsθ表示余弦值。
拓展:正弦和余弦公式可以用于计算任何角度的正弦和余弦值。
假设角度θ是三角形中的角度,可以用以下公式来计算其正弦和余弦值:正弦值:sinθ = 對數× cos(90° - θ)其中,90° - θ表示角度θ的对角度。
余弦值:cosθ = 對數× sin(90° - θ)其中,90° - θ表示角度θ的对角度。
正弦和余弦公式也可以用于计算弦长和角度之间的关系。
正弦定理与余弦定理的关系
正弦定理与余弦定理的关系
正弦余弦正切的关系:sinA/cosA=tanA,三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
定要确定角的范围,本题中sinα·cosα大于0,则sinα和cosα同号,正弦值和余弦值符号相同,说明角α是第一或者第三象限角,又已知中π≤α≤2π,则就可以确定α是第三象限角,则sinα和cosα都是负数,则sinα+cosα的值是负值。
正弦函数余弦函数
正弦函数余弦函数
正弦函数(Sine Function)和余弦函数(Cosine Function)是三角函数的两个主要
的分支,是在平面直角坐标系形参数化的曲线,也是描述光、电信号传播及物理数据变化
情况的非常重要的函数。
正弦函数是三角函数的代表,由正弦定理可以知道,三角形的对边和斜边之间的关系
其实就是正弦函数中的一个特殊情况:Sine (x) = Opposite of Triangle / Hypotenuse,也就是其函数表达式为Sine (x) = ysinθ。
正弦函数和余弦函数作为一对关联函数 major branching of trigonomettric functions,在描述诸如光、电信号传播和物理数据变化情况等方面发挥着很重要的作用。
例如,它们可以用来描述声音、地震及水波等信号的传播情况。
它们也被称作周期函数,
通常应用于古典物理、天文学、数学方程和抽样数据分析等多个领域,以反映数据的随时
间的变化情况,或以描述星象律的位置,相位和方向变化等。
在数学上,正弦函数与余弦函数共同构成了三角函数,它们具有直接和间接的关联。
由于它们符合微积分中积分和导数的概念,因此它们也可以在许多领域(如信号和图像处理)中得到广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦和余弦导读:本文正弦和余弦,仅供参考,如果觉得很不错,欢迎点评和分享。
教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.2.重点、难点分析(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号.应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:很显然,这些表达式提供给我们丰富的边与角间的数量关系.5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.利用勾股定理,很容易求出含有或角的直角三角形三边的比;如图(1)和图(2)所示.根据定义,有另一方面,可以想像,当时,边与AC重合(即),所以当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有把以上结果可以集中列出下面的表:116.教法建议:(1)联系实际,提出问题通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:锐角三角函数作了十分必要的准备.(2) 动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.(3)加强数形结合思想的教学“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.第一课时一、教学目标1. 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。
2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。
3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、学法引导1.教学方法:引导发现和探索研究相结合,尝试成功教法。
2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。
三、重点、难点、疑点及解决办法1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。
4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。
四、教具准备自制投影片,一副三角板五、教学步骤(一)明确目标1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?2.长5米的梯子以倾斜角为30°靠在墙上,则、间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则、间距离为多少?4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。
通过四个例子引出课题。
(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)教学过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?引导学生独立证明:易知,……,∴ ∽ ∽ ∽……,∴ ,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。
这一设计同时起到培养学生思维能力的作用。
3.练习:教科书P3练习。
此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结、扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。
六、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
七、板书设计第二课时一、教学目标1.使学生初步了解正弦、余弦概念;能够较正确地用、表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.2.逐步培养学生观察、比较、分析、概括的思维能力.3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、学法引导1.教学方法:指导发现探索法.2.学生学法:自主、合作、探究式学习.三、重点、难点、疑点及解决方法1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组、表示正弦、余弦;正弦、余弦概念.3.疑点:锐角的正弦、余弦值的范围.4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点.四、教具准备三角板一副五、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—正弦和余弦.(二)整体感知当直角三角形有一锐角为30°时,它的对边与斜边的比值为,只要知道三角形任一边长,其他两边就可知.而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)教学过程正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在中,为直角,我们把锐角的对边与余边的比叫做的正弦,记作,锐角的邻边与斜边的比叫做的余弦,记作 ..若把的对边记作,邻边记作,斜边记作,则, .引导学生思考:当为锐角时,、的值会在什么范围内?得结论,(为锐角),这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“ 、”,经过反复强化,使全体学生都达到目标,更加突出重点.【例1】求出如下图所示的中的、和、的值.解:(1)∵斜边,∴ ,.,.(2),.,∴ ,.学生练习教材P6~7中1、2、3题.让每个学生画含30°、45°的直角三角形,分别求、、和、、 .这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.,,.,,.【例2】求下列各式的值:(1);(2).解:(1).(2).这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1);(2);(3);(4).(5)若,则锐角 .(6)若,则锐角 .在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,大概在什么范围内,呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神,还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小”.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即,(为锐角).还发现的两锐角、,,,正弦值随角度增大而增大,余弦值随角度增大而减小”.六、布置作业教材P10中2,3.预习下一课内容.补充:(1)若,则锐角.(2)若,则锐角.七、板书设计感谢阅读,希望能帮助您!。