2016-2017学年人教版初中数学八年级数学上册全套精品课件2 三角形....ppt

合集下载

人教版数学八年级上册全册优质课件【全套】

人教版数学八年级上册全册优质课件【全套】

E AB边上的高是 CE
BC边上的高是 AD
CA边上的高是 BF
;
;
小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形的高。 三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
•高在三角形内部的数量 •高之间是否相交 •高所在的直线是否相交
练一练
已知等腰三角形的一边等于7,一边等于8,求它的周长。
通过本节课的学习, 你有哪些收获?
1.三角形的边、角、顶点;
2.会用符号表示三角形; 3.角的分类;
4.三角形三边关系及运用.
作业:能力培养与测试
11.1.1 三角形的边
三角形的高、 中线与角平分线
回 顾 思 考
你还记得 “过一点画已知直线的垂线” 吗?
锐角三角形的三条高相交于同一点.
锐角三角形的三条高都在三角形的内部。
做一做
直角三角形的三条高
A
画出直角三角形的三条高线, 它们有怎样的位置关系呢?
直角三角形的三条 高线相交于直角顶点.
D B C
口答:
如图的直角三角形ABC中, 直角边BC边上的高是 AB ;
直角边AB边上的高是 CB 斜边AC边上的高是 BD ; ;
1.下列长度的三条线段能否组 成三角形?为什么?
( ( ( ( ( ( ( ( 1
2


不能 3 ) 能 2 ) 能


4
5


8
6
3
4


5 不能 ) )
3


6
5


10

数学人教版八年级上册三角形ppt课件

数学人教版八年级上册三角形ppt课件
练一练 有 三 根 木 棒 长 分 别 为 3cm 、 6cm 和
2cm,用这木棒能否围成一个三角形? 课本P4练习1、2;
10
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
议一议 1.在同一个三角形中,任意两边之和与第
三边有什么关系? 2.在同一个三角形中,任意两边之差与第
三边有什么关系? 3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?
理由是什么?
9
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
想一想 三角形按边分可以,分成几类?按角分呢?
不等边三角形
三角形
腰与底不等的等腰三角形
等腰三角形 等边三角形
直角三角形
三角形
锐角三角形
斜三角形
钝角三角形
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
锐角三角形有2个;
21
采 用 PP管 及 配 件: 根据给 水设计 图配置 好PP管 及配件 ,用管 件在管 材垂直 角切断 管材, 边剪边 旋转, 以保证 切口面 的圆度 ,保持 熔接部 位干净 无污物
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C

2016最新人教版八年级数学上册课程讲义

2016最新人教版八年级数学上册课程讲义

新世纪博瑞教育(内部资料,严禁外传)八年级上第十一讲三角形11.1 与三角形有关的线段11.1.1 三角形的边11.1.2-11.1.3 三角形的高、中线、角平分线及三角形的稳定性11.2 与三角形有关的角11.2.1 三角形的内角11.2.2三角形的外角11.3 多边形及其内角和教学活动小结复习题11【知识精要】1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC 中,∠C=90°,那么∠A+∠B=90° (因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC 中,∠C=180°-(∠A+∠B )②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC 中,已知∠A :∠B :∠C=2:3:4,求∠A 、∠B 、∠C 的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 如图,∠ACD 为△ABC 的一个外角,∠BCE 也是△ABC 的一个外角, 这两个角为对顶角,大小相等. 2.性质:①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. 如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补 3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角. (六)多边形 ①多边形的对角线2)3( n n 条对角线 ②n 边形的内角和为(n -2)×180° ③多边形的外角和为360° 考点11.对下面每个三角形,过顶点A 画出中线,角平分线和高.考点21、下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点(1)CB AC B A (2)CBA(3)2题图D C B AE E A C B A C B A B C A B CE E 6题图7题图5题图F EDD F DE B C A A C B BCA 2、下列四个图形中,线段BE 是△ABC 的高的图形是( )3.如图3,在△ABC 中,点D 在BC 上,且AD=BD=CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( ) A .25° B.30° C .45° D.60°4. 如图4,已知AB=AC=BD ,那么∠1和∠2之间的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°5.如图5,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ∆= 42cm ,则S 阴影等于( )A .22cm B. 1ABCDOC.122cm D. 142cm 6.如图7,BD=DE=EF=FC ,那么,AE 是 _____ 的中线。

人教版八年级数学上册全套PPT课件汇总 共计705张PPT

人教版八年级数学上册全套PPT课件汇总 共计705张PPT

3、在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比
△ADC的周长大2cm,则AB=__7_c_m____.
A
B
DC
知识点拨:三角形一边上的中线把原三角形分成两个底相等的三角形,这两个 三角形的周长差等于原三角形其余两边的差。
课堂练习 难点巩固 4、如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且
人教版八年级数学上册全套课件汇总
共计705张PPT
人教版八年级数学上册全套课件汇总
第十一章 三角形
第十一章 三角形
(1)
(2)
(3)
(4)
说一说:
你认为哪些图形是三角形? 其它图
形和这个三角形有什么区别?
判断依据: (1)三条线段 (2)不在同一直线上 (3)首尾顺次相接
三角形的定义 由不在同一条直线上的三条线段 首尾顺次相接所组成的图形,叫 做三角形。
知识讲解 2、三角形的中线
难点突破
三角形的中线的定义:
你能用同样方法,
画出△ABC的另外两
条边上的中线吗? A
在三角形中,连接一个顶点
与它对边中点的线段,叫作这个
三角形的中线。 如图:AE是BC边上的中线。
B
C
E
BE=EC
符号语言: ∵AE是△ABC的中线 ∴BE = CE = 1 BC
2
知识讲解 2、三角形的中线
1 2
间的线段,叫三角形的角平分线。 如图:AD是三角形的一条角平分线。
符号语言: ∵AD是△ABC的角平分线
1
∴∠1=∠2= 2 ∠BAC
B
D
C
∠1=∠2
注意:“三角形的角平分线” 是一条线段。

新人教版初二上册(八上)数学全册课件PPT

新人教版初二上册(八上)数学全册课件PPT
新人教版八年级上册数学
全册教学课件
11.1
与三角形有关的线段
11.1.1 三角形的边
导入新知
观察与思考
1. 你能从中找出4个不同的三角形吗?与同学交流
各自找出的三角形。
A
2. 这些三角形有什么共同
特点?
EE
F
B
D
G
C
探究新知
知识点 1
探究
三角形的有关概念
三角形是我们熟悉的图形,观察下列图片,你能
D.2,3,5
课堂检测
基 础 巩 固 题
3.下列说法:①等边三角形是等腰三角形;②三
角形按边分类可分为等腰三角形、等边三角形、不等边
三角形;③三角形的两边之差大于第三边;④三角形按
角分类应分为锐角三角形、直角三角形、钝角三角形.
其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
课堂检测
能力提升题
1. (2018•长沙)下列长度的三条线段,能组成三角形的
是( B )
A.4cm,5cm,9cm
B.8cm,8cm,15c
C.5cm,5cm,10cm
D.6cm,7cm,14cm
2. (2018•常德)已知三角形两边的长分别是3和7,则此三角形
第三边的长可能是( C )
A.1 B.2 C.8 D.11
厘米.
11.1 与三角形有关的线段
11.1.2 三角形的高、中线与角
平分线
导入新知
定义

垂线
当两条直线相交所成的四个角中,有一个
角是直角时,就说这两条直线互相垂直,
其中一条直线叫做另一条直线的垂线

线段

人教版八年级数学上册 三角形--知识点复习 优质 课件(共34张PPT)

人教版八年级数学上册  三角形--知识点复习 优质 课件(共34张PPT)

应用
6
知识点一:与三角形有关的线段
知识回顾
三角形的高、中线、角平分线
三角形的 重要线段
三角形 的高线
三角形 的中线
概念
图形
从三角形的一个顶点向它的 对边所在的直线作垂线,顶点 和垂足之间的线段
A
钝角三角形

高的画法
B
DC
A
一边上的中线把原三角形分 三对角边形中中 的成线,连两段接个一三个角顶形点和面它积相等,周长差
分线交于点D1,∠ABD与∠ACD的平分线 交于点D2,依此类推,∠ABD4与∠ACD4 的平分线交于点D5,则∠BD5C的度数 是( A ).A 56°B.60°C.68°D.94°
B
A
D2 D1
C
20
知识点二:三角形的内外角和
巩固练习
3.如图所示,AE是△ABC的角平分线,
AD⊥BC于点D,若∠BAC= 128°,
B
∠C=36°,则∠DAE的度数是( A )
A.10°B.12°C.15°D.18°
A
4.将一副三角尺按如图所示的方式放置,
已知AE// BC,则∠AFD的度数是( D )
B
A.45°B.50°C.60°D.75°
A ED C

E F
D
C
21
知识点二:三角形的内外角和
巩固练习
5.如图所示,G是△AFE两外角平分线的交 点,P是△ABC的两外角平分线的交点,F,C B 在AN上,B,E在AM上,如果∠FGE=66°,
知识回顾
三角形的外角
定义
三角形的 一边与另 一边的延 长线组成 的角叫做 三角形的
外角
性质

人教版八年级数学上册等腰三角形PPT课件

人教版八年级数学上册等腰三角形PPT课件
A
2
1
B
D
C
已知,如图AB=AC,AD=AE。
求证:BD=CE。
B
D
E
C
A
B D FE
C
如图,在△ABC中,AB=AC,AC的垂直平
分线交AC于点D,交AB于点E,交CD的延
长线于点F,若AD=3, △BEC的周长为10,
∠BEC=80°。求:
(1) △ABC的周长
A
(2) ∠F的度数。
D E
F
“三线合一”的操作
如图,在ΔABC中,AB=AC, ∠A=40 °,求∠B与 ∠C的度数。
A
B
C
判断下列语句是否正确。
(1)等腰三角形的角平分线、中线和高 互相重合
(2)有一个角是60°的等腰三角形, 其它两个内角也为60 °
(3)等腰三角形的底角都是锐角 (4)钝角三角形不可能是等腰三角形 .
等腰三角形
等边对等角
常用来证明 两角相等, 求等腰三角 形各角的度 数.
三线合一
研究等腰三 角形的有关 问题时“三 线”是常用 的辅助线.
等腰三角形的性质2:
等腰三角形的顶角平
A
分线、底边上的中线、
底边上的高互相重合
(三线合一)
BDC
用符号语言表示为:
如图,在△ABC中,AB=AC时, 1、 ∵ AD⊥BC,
∴ ∠BAD= ∠CAD,BD=CD。
2、∵BD=CD, ∴ ∠BAD= ∠CAD ,AD⊥BC。
3、 ∵∠BAD =∠CAD, ∴ BD=CD,AD⊥BC。
C
B
如图,在△ABC中 , AB=AC,BD=BC,AD=DE=EB. A 则∠A的度数。

人教版8年级上册全册PPT课件:三角形

人教版8年级上册全册PPT课件:三角形
3. 从n边形的一个顶点作对角线,把这个n边形分成 三角形的个数是( D)
A. n个 B. (n-1)个 C. (n-2)个 D. (n-3)个
4. n边形所有对角线的条数有( C )
A. nn 1 条
2
B. nn 2 条
2
C. nn 3 条
2
D. nn 4 条
2
5. 装饰大世界出售下列形状的地砖:1正方形;2长
三角形知识结构图
三角形的边
与三角形有
关的线段



三角形内角和
高线 中线 角平分线
三角形的外角
1. 三角形的三边关系: (1)三角形的任何两边之和大于第三边: (2)三角形的任何两边之差小于第三边 (3)判断三条已知线段a、b、c能否组成三角形; 当a最长,且有b+c>a时,就可构成三角形。 (4)确定三角形第三边的取值范围: 两边之差<第三边<两边之和。
又Q C DBC BDC 1800
2 X X 2 X 1800
5X 1800
X 360 ,即DBC 360
2. 三角形的三条高线(或高线所在的直线)交于一点, 锐角三角形三条高线交于三角形内部一点, 直角三角形三条高线交于直角顶点, 钝角三角形三条高线所在的直线交于三角形外部一点。
3. 三角形的三条中线交于三角形内部一点。
4. 三角形的三条角平分线交于三角形内部一点。
5. 三角形木架的形状不会改变,而四边形木架的形状会改变.这就 是说,三角形具有稳定性的图形,而四边形没有稳定性。
BD CD,
B
DE
C
又Q SVABC 60cm2
SVABD
1 2
BD
AE,

1三角形课件八年级上册数学公开课人教版

1三角形课件八年级上册数学公开课人教版

理解三角形的有关概念
问题1 三角形是我们熟悉的图形,观察下列图 片,你能说一说三角形是怎样的图形吗?
c
b
第6页,共21页。
理解三角形的有关概念
追问:对于教科书图11.1-1中的三角形,你能说出三角形的
定义,表示方法以及它的边、顶点与内角吗?
定义:由不在同一条直线上的三条线段首尾顺次相 接所组成的一个封闭图形叫做三角形。
解:因为4 + 4<10, 不符合三角形两边的和大于第三边, 所以不能围成腰长为4 的等腰三角形. 由以上讨论可知, 可以围成底边长为4 cm的等腰三角形.
第19页,共21页。
课堂小结
(1)本节课学习了哪些知识? (2)三角形按角怎样分类?按边呢? (3)三角形的边具有怎样的性质?是怎样得到的?
第20页,共21页。
为什么?
解:如果4 cm长的边为底边,设腰长为x cm,则 4 + 2x = 18. 解得 x = 7.
如果4 cm长的边为腰,设底边长为x cm, 则4×2 + x = 18. 解得 x = 10.
第18页,共21页。
巩固并运用“三角形两边的和大于第三边”
例2 用一条长为18 cm的细绳围成一个等腰三角 形.(2)能围成有一边的长为4 cm的等腰三角形吗? 为什么?
八年级 上册
11.1.1 三角形的边
第1页,共21页。
第2页,共21页。
第3页,共21页。
第4页,共21页。
• 学习目标: 1.理解三角形及其有关概念及三角形的分类. 2.理解“三角形两边的和大于第三边”,并运用这
个性质解决问题. • 学习重点:
“三角形两边的和大于第三边”的理解和运用.
第5页,共21页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档