17.1.2三角形高、中线与角平分线

合集下载

人教版初中数学目录及课时安排

人教版初中数学目录及课时安排

人教版初中数学目录及课时安排一、数与代数:有理数(19)、整式的加减(8)、一元一次方程(18)、平面直角坐标系(7)二元一次方程组(12)、不等式与不等式组(12)、实数(8)、一次函数(17)、整式的乘除与因式分解(13)、分式(14)、反比例函数(8)、二次根式(9)、一元二次方程(13)、二次函数(12)、锐角三角函数(12)总共182课时。

试题所占分值:110*(182/(182+135+39))=56.2分二、空间与图形:图形认识初步(16)、相交线与平行线(14)、三角形(8)、全等三角形(11)、轴对称(13)、勾股定理(8)、四边形(16)、旋转(8)、圆(17)、相似(13)、投影与视图(11)总共135课时,试题所占分值:110*(135/(182+135+39))=41.7分三、概率与统计:数据库的收集整理与描述(9)、数据的分析(15)、概率初步(15)、总共39课时,试题所占分值12.1分四、实践与综合应用最新人教版初中数学教材总目录七年级上册第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差1.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4有理数的乘除法观察与思考翻牌游戏中的数学道理1.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1整式阅读与思考数字1与字母X的对话2.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1多姿多彩的图形阅读与思考几何学的起源4.2直线、射线、线段阅读与思考长度的测量4.3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4 部分中英文词汇索引七年级下册第五章相交线与平行线5.1相交线5.1.2垂线 5.1.3同位角、内错角、同旁内角观察与猜想 5.2平行线及其判定 5.2.1平行线 5.3平行线的性质 5.3.1平行线的性质 5.3.2命题、定理5.4平移教学活动小结第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用阅读与思考 6.2坐标方法的简单应用教学活动小结第七章三角形7.1与三角形有关的线段7.1.2三角形的高、中线与角平分线7.1.3三角形的稳定性信息技术应用7.2与三角形有关的角7.2.2三角形的外角阅读与思考7.3多变形及其内角和阅读与思考7.4课题学习镶嵌教学活动小结第八章二元一次方程组8.1二元一次方程组8.2消元——二元一次方程组的解法8.3实际问题与二元一次方程组阅读与思考*8.4三元一次方程组解法举例教学活动小结第九章不等式与不等式组9.1不等式阅读与思考9.2实际问题与一元一次不等式实验与探究9.3一元一次不等式组阅读与思考教学活动小结第十章数据的收集、整理与描述10.1统计调查实验与探究10.2直方图10.3课题学习从数据谈节水教学活动小结部分中英文词汇索引八年级上册第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读与思考全等与全等三角形11.3 角的平分线的性质教学活动小结复习题11第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形教学活动小结复习题12第十三章实数13.1 平方根13.2 立方根13.3 实数教学活动小结复习题13第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法教学活动小结复习题第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20八年级下册第十六章分式16.1 分式16.2 分式的运算阅读与思考容器中的水能倒完吗16.3 分式方程数学活动小结复习题16 第十七章反比例函数17.1 反比例函数信息技术应用探索反比例函数的性质17.2 实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1 勾股定理阅读与思考勾股定理的证明18.2 勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1 平行四边形阅读与思考平行四边形法则19.2 特殊的平行四边形实验与探究巧拼正方形19.3 梯形观察与猜想平面直角坐标系中的特殊四边形19.4 课题学习重心数学活动小结复习题19第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20九年级上册第二十一章二次根式21.1二次根式21.2二次根式乘除阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆阅读与思考圆周率π24.4弧长和扇形面积实验与研究设计跑道数学活动小结复习题24第二十五章概率初步25.1概率25.2用列举法求概率阅读与思考概率与中奖25.3利用频率估计概率阅读与思考布丰投针实验25.4课题学习键盘上字母的排列规律数学活动小结复习题25部分中英文词汇索引九年级下册第二十六章二次函数26.1二次函数实验与探究推测植物的生长与温度的关系26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数数学活动小结复习题26第二十四章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数28.2解直角三角形数学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29。

三角形的高,中线与角平分线说课稿

三角形的高,中线与角平分线说课稿

三角形的高,中线与角平分线说课稿篇一:三角形高、中线与角平分线说课稿17.1.2《三角形的高、中线与角平分线》说课稿一、教材分析与学生分析(一)教材分析。

本节课是义务教育试验教科书《数学》七年级下册第十七章三角形高、中线与角平分线的知识。

本课时属于概念课堂教学的范畴,在雷米雷蒙县小学据此认识三角形的基础上,进一步学习三角形的强、中线、角平分线。

它们分别与已学习过的垂线、线段的中点、角的平分线知识有关.它既是上述知识的承续,又是后继讲授重心,内切圆、等腰(边)三角形等知识的基础.在知识体系上具有有着承上启下的作用。

通过三角形的高、中线与角平分线的学习,培养学生的动手能力,提高学生的识图技能。

(二)学生分析。

初二学生好奇心相对而言,思维活跃。

已经具备作图了基本图形作图能力与简单推理能力,有一定的与人合作中、归纳总结、主动探究的经验。

但学生小也存在着注意力易分散这一缺点,教师要注意创设情境,调动学生的积极性,恰当的点拨引导。

二、教学目标分析。

依据课标数学课程应学生数学素养的形成与发展及对教材的剖析和学生的实际情况确知确定本课的教学目标为:三、教学方法分析。

根据本课教学内容运用到以几种教学方法:1、情境教学法。

设置疑问情境,引起兴趣,激发学习欲望,活跃课堂气氛,使学生进入积极的学生学习状态。

2、对比教学法。

三角形的高、中线、角平分线与已学过的垂线、线段的中点,角的平分线有关,相连接解说时将新旧知识融合贯通,进行对比,既利于学生掌握新知,又可帮他们形成一定的知识体系。

3、启发激励教学法。

教师是学生学习的演讲者、促进者、合作者,要激发学生的兴趣,适时点拨,指导他们需要进行自主学习,进行战略合作探究学习,鼓励学生发言,适当表扬评价,营造民主和谐的氛围,使学生受到鼓舞,充满自信,积极思维,发展能力。

4、多媒体辅助教学法。

运用多媒体辅助教学,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点。

三角形高中线与角平分线说课稿

三角形高中线与角平分线说课稿

17.1.2《三角形的高、中线与角平分线》说课稿一、教材分析与学生分析(一)教材分析。

本节课是义务教育课程标准试验教科书《数学》七年级下册第十七章三角形高、中线与角平分线的知识。

本课时属于概念教学的范畴,在小学初步认识三角形的基础上,进一步学习三角形的高、中线、角平分线。

它们分别与已学习过的垂线、线段的中点、角的平分线知识有关.它既是上述知识的延续,又是后继学习重心,内切圆、等腰(边)三角形等知识的基础.在知识体系上具有承上启下的作用。

通过三角形的高、中线与角平分线的学习,培养学生的动手能力,提高学生的识图技能。

(二)学生分析。

初二学生好奇心强,思维活跃。

已经具备了基本图形作图能力与简单推理能力,有一定的与人合作、归纳总结、主动探究的经验。

但学生小也存在着注意力易分散这一缺点,教师要注意创设情境,调动学生的积极性,恰当的点拨引导。

二、教学目标分析。

依据课标数学课程应致力于学生数学素养的形成与发展及对教材的剖析和学生的实际情况确定本课的教学目标为:三、教学方法分析。

根据本课教学内容运用到以几种教学方法:1、情境教学法。

设置疑问情境,引起兴趣,激发学习欲望,活跃课堂气氛,使学生进入积极的学习状态。

2、对比教学法。

三角形的高、中线、角平分线与已学过的垂线、线段的中点,角的平分线有关,讲解时将新旧知识融合贯通,进行对比,既利于学生掌握新知,又可帮他们形成一定的知识体系。

3、启发激励教学法。

教师是学生学习的组织者、促进者、合作者,要激发学生的兴趣,适时点拨,指导他们进行自主学习,进行合作探究学习,鼓励学生发言,适当表扬评价,营造民主和谐的氛围,使学生受到鼓舞,充满自信,积极思维,发展能力。

4、多媒体辅助教学法。

运用多媒体辅助教学,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点。

四、学习方法分析。

依据课标的要求,学生是学习和发展的主体,数学课程必须依据学生身心发展和数学学习的特点,关注学生的个体差异和不同的学习需求,爱护学生的好奇心、求知欲,充分激发学生的主动意识和进取精神,倡导自主、合作、探究的学习方法。

专题02 三角形的高、中线、角平分线 (知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线 (知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线重点突破知识点一三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

知识点二三角形的中线概念:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形三条中线的交于一点,这一点叫做“三角形的重心”。

重心到顶点的距离是它到对边中点距离的2倍。

(选学)三角形的中线可以将三角形分为面积相等的两个小三角形。

知识点三三角形的角平分线概念:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

考查题型考查题型一画三角形的高典例1(2020·泉州市期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A【提示】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.变式1-1.(2018·梁平区期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个【答案】D【解析】试题解析:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选D.变式1-2.(2020·海淀区期末)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【答案】D【解析】详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.变式1-3.(2020·苏州市期中)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD【答案】B【解析】试题提示:根据图形,BE是△ABC中AC边上的高.故选B.变式1-4.(2019·杭州市期中)如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A.3 B.4 C.5 D.6【答案】D【解析】结合三角形高的定义可知,以AD为高的三角形有:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC,共6个.故选D考查题型二与三角形高有关的计算典例2.(2019·济南市期中)如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大【答案】C【提示】根据三角形的面积公式、角和线段大小的比较以及三角形高的定义进行解答即可.【详解】解:A、在直角三角形ABC中,S△ABC=12BC•AC,点B沿CB所在直线远离C点移动时BC增大,则该三角形的面积越大.故A正确;B、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、BC边上的高是AC,线段AC的长度是不变的.故C错误.D、如图,随着点B的移动,边AB的长度随之增大.故D正确;故选:C.【名师点拨】本题考查了三角形的面积,角和线段大小的比较以及三角形高的定义,解题时要注意“数形结合”数学思想的应用.变式2-1.(2020·毕节市期末)如图,△ABC中,D,E分别是BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对【答案】A【提示】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD,△ADE,△ACE,3个三角形的面积都相等,组成了3对,还有△ABE和△ACD的面积相等,共4对.故选A.【名师点拨】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用.变式2-2.(2020·龙岩市期中)如图,AD,CE是△ABC的两条高,已知AD=10,CE=9,AB=12,则BC的长是()A.10 B.10.8 C.12 D.15【答案】B【解析】∵AD,CE是△ABC的两条高,AD=10,CE=9,AB=12,∴△ABC的面积=12×12×9=12BC⋅AD=54,即12BC⋅10=54,解得BC=10.8.故选B.变式2-3.(2018·合肥市期中)如图所示,是ABC∆的三条高,,则CE=()A.B.C.D.3【答案】C【提示】根据三角形的面积公式解答即可.【详解】解:因为AD、CE、BF是△ABC的三条高,,所以可得:12BC•AD=12AB•CE,可得:CE===.【名师点拨】此题考查三角形的面积,关键是根据同一三角形面积相等来提示.变式2-4.(2018·烟台市期末)如图,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A=50°,则∠BPC等于()A.90°B.130°C.270°D.315°【答案】B【详解】根据∠A=50°可得∠ABC+∠ACB=130°,根据CD⊥AB,BE⊥AC可得∠ABE=40°,∠ACD=40°,则∠PBC+∠PCB=130°-40°-40°=50°,则∠BPC=180°-50°=130°.故选:B.变式2-5.(2019·荆门市期末)如图,三角形ABC,∠BAC=90︒,AD是三角形ABC的高,图中相等的是().A.∠B=∠C B.∠BAD=∠B C.∠C=∠BAD D.∠DAC=∠C【答案】C【提示】根据直角三角形的性质可得∠B+∠C=90︒,由AD是三角形ABC的高,可得∠BDA=∠ADC=90︒,再运用三角形内角和定理依次判断即可.【详解】∵∠BAC=90︒,∴∠B+∠C=90︒,故选项A错误;∵AD是三角形ABC的高,∴∠BDA=90︒,∴∠BAD+∠B=90︒,故选项B错误;∵∠BAC=90︒,∴∠BAD+ ∠DAC=90︒,又∵∠ADC=90︒,∴∠DAC+ ∠C=90︒,∴∠C=∠BAD,故选项C正确,选项D错误.故选C.【名师点拨】本题考查了三角形的高线以及三角形的内角和定理,属于基础题型.变式2-6.(2019·济南市期中)如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )A.12 B.14 C.16 D.18【提示】连接AE 和CD ,要求三角形DEF 的面积,可以分成三部分(△FCD+△FCE+△DCE )来分别计算,三角形ABC 是一个重要的条件,抓住图形中与它同高的三角形进行提示计算,即可解得△DEF 的面积. 【详解】解:连接AE 和CD ,∵BD=AB ,∴S △ABC =S △BCD =1,S △ACD =1+1=2, ∵AF=3AC , ∴FC=4AC ,∴S △FCD =4S △ACD =4×2=8, 同理可以求得:S △ACE =2S △ABC =2,则S △FCE =4S △ACE =4×2=8; S △DCE =2S △BCD =2×1=2;∴S △DEF =S △FCD +S △FCE +S △DCE =8+8+2=18. 故选:D .【名师点拨】本题考查三角形面积及等积变换的知识,注意高相等时三角形的面积与底成正比的关系,并在实际问题中的灵活应用,有一定难度. 考查题型三 三角形中线有关的长度计算典例3.(2018·秦皇岛市期中)如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( ) A .2 B .3C .4D .6【答案】A【解析】试题解析:∵AE 是△ABC 的中线,EC=4, ∴BE=EC=4, ∵DE=2,∴BD=BE-DE=4-2=2. 故选A .变式3-1.(2019·肇庆市期中)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为( ) A .2cm B .3cmC .4cmD .6cm【答案】B【提示】根据三角形中线的定义可得BD=CD ,然后根据三角形的周长公式列式计算即可得解. 【详解】解:∵AD 是△ABC 的中线,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.故选B.【名师点拨】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC是解题的关键.变式3-2.(2020·哈尔滨市期中)如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A.高B.角平分线C.中线D.不能确定【答案】C【解析】解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.变式3-3.(2019·临清市期末)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB 与AC的和为13cm,那么AC的长为()A.8cm B.9cm C.10cm D.11cm【答案】B【提示】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=13cm.易求AC的长度.【详解】∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9cm.故选B.【名师点拨】本题考查了三角形的中线,根据周长的差表示出AC-AB=5cm,是解题的关键.考查题型四三角形中线有关的面积计算典例4.(2020·渠县期中)如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且△ABC 的面积为4cm 2,则△BEF 的面积等于( ) A .2cm 2 B .1cm 2 C .0.5 cm 2 D .0.25 cm 2【答案】B【提示】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEFABC S S ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 14BEF ABC S S ∆∆∴=∵△ABC 的面积是4, ∴S △BEF =1. 故选:B【名师点拨】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S= 12×底×高,得出等底同高的两个三角形的面积相等.变式4-1.(2018·鄂尔多斯市期中)如图,△ABC 的面积为12cm 2,点D 在BC 边上,E 是AD 的中点,则△BCE 的面积是( ) A .4cm 2 B .6cm 2C .8cm 2D .6cm 2【答案】B【解析】∵E 是AD 的中点,∴S △BDE =12S △ABD ,S △DEC =12S △ADC , ∴△BCE 的面积=S △BDE +S △DEC =12×(S △ABD +S △ADC )=12×△ABC 的面积=6, 故选B .名师点拨:本题考查的是三角形的面积的计算,掌握三角形的一条中线把三角形分为面积相等的两部分是解题的关键.变式4-2.(2019·沧州市期末)如图,D ,E ,F 分别是边BC ,AD ,AC 上的中点,若S 阴影的面积为3,则△ABC 的面积是( )A .5B .6C .7D .8【答案】D【提示】利用三角形中线将三角形分成面积相等的两部分,111222ABDACDABC BDEABD ADFADC S SS SS SS ====,,,再得到1148BDEABC DEFABCSS SS ==,,所以83ABCSS =阴影部分即可得出. 【详解】∵D 为BC 的中点∴1122BDE ABD ADF ADC SS SS ==,,12DEF ADFS S =∴1148BDE ABC DEFABC S S S S ==, ∴BDE S △+DEF S △=14ABC S +18ABC S =38ABC S∴ABC S =83S 阴影部分=83×3=8故选:D【名师点拨】三角形的中线将三角形分成两个面积相等的三角形,根据中线找出图中三角形的面积关系是解决本题的关键.变式4-3.(2019·温州市期中)如图,在△ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S △CEF =5,则△ABC 的面积为( ) A .15 B .20C .25D .30【答案】B【提示】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案 【详解】解:根据等底同高的三角形面积相等,可得 ∵F 是BE 的中点, S △CFE =S △CFB =5,∴S △CEB =S △CEF +S △CBF =10, ∵E 是AD 的中点,∴S △AEB =S △DBE ,S △AEC =S △DEC , ∵S △CEB =S △BDE +S △CDE ∴S △BDE +S △CDE =10 ∴S △AEB +S △AEC =10∴S △ABC =S △BDE +S △CDE +S △AEB +S △AEC =20故选:B.【名师点拨】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用. 考查题型五三角形重心的有关性质典例5.(2019·北京市期中)如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点【答案】D【提示】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【详解】解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选D.【名师点拨】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.变式5-1.(2019·泉州市期中)如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A.2 B.3 C.4 D.5【答案】C【提示】根据D、E分别是边BC,AC的中点,AD、BF相交于G,即可得出G为三角形的重心,利用重心的性质得出AG的长即可.【详解】∵D、E分别是边BC,AC的中点,AD、BF相交于G∴G为△ABC的重心∴AG=2DG∵AD=6∴AG=4故选C.【名师点拨】本题考查的是三角形的重心性质,能够判断出点G是三角形的重心是解题的关键.考查题型六三角形的角平分线典例6.(2019·滨州市期末)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A .59°B .60°C .56°D .22°【答案】A【详解】根据题意可得,在△ABC 中,70,48︒︒∠=∠=C ABC ,则62︒∠=CAB , 又AD 为△ABC 的角平分线,1262231︒︒∴∠=∠=÷=又在△AEF 中,BE 为△ABC 的高∴90159359︒︒︒∠=-∠=∴∠=∠=EFA EFA变式6-1.(2019·宁德市期末)如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( ) A .5° B .13°C .15°D .20°【答案】C【提示】由三角形的内角和定理,可求∠BAC=82°,又由AE 是∠BAC 的平分线,可求∠BAE=41°,再由AD 是BC 边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE ,问题得解. 【详解】在△ABC 中, ∵∠ABC=34°,∠ACB=64°, ∴∠BAC=180°−∠B−∠C=82°, ∵AE 是∠BAC 的平分线, ∴∠BAE=∠CAE=41°. 又∵AD 是BC 边上的高, ∴∠ADB=90°,∵在△ABD 中∠BAD=90°−∠B=56°, ∴∠DAE=∠BAD −∠BAE =15°. 【名师点拨】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.变式6-2.(2019·信阳市期中)如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为7,AB=4,DE=2,则AC 的长是( ) A .4B .3C .6D .5【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.变式6-3.(2019·合肥市期中)如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE 等于()A.20°B.18°C.45°D.30°【答案】A【提示】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE的度数,进而得出答案.【详解】∵AD,AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,∴∠BAD=14°,∠CAD=54°,∴∠BAE=12∠BAC=12×68°=34°,∴∠DAE=34°-14°=20°.故选:A.【名师点拨】此题主要考查了高线以及角平分线的性质,得出∠DAE的度数是解题关键.变式6-4.(2020·泰兴市期中)如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是()A.115°B.110°C.100°D.90°【答案】A【提示】由于∠A=50°,根据三角形的内角和定理,得∠ABC与∠ACB的度数和,再由角平分线的定义,得∠DBC+∠DCB的度数,进而求出∠BDC的度数.【详解】∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴1122EBC ABC FCB ACB ∠=∠∠=∠,, ∴()1652EBC FCB ABC ACB ∠+∠=⨯∠+∠=︒, ∴∠BDC=180°﹣65°=115°, 故选A .【名师点拨】考查三角形内角和定理以及角平分线的性质,熟练掌握角平分线的性质是解题的关键.变式6-5.(2019·西安市期末)如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为( )A .135°B .120°C .90°D .60° 【答案】B【提示】由条件可知O 为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°-∠A ),在△BOC 中利用三角形的内角和定理可求得∠BOC .【详解】∵O 到三边的距离相等∴BO 平分∠ABC ,CO 平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A) ∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【名师点拨】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.。

人教版初三数学复习目录(全)

人教版初三数学复习目录(全)

人教版初三数学复习目录(全)人教版初三数学复习目录(全)第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程5.1 相交线5.1.2 垂线5.1.3 同位角、内错角、同旁内角观察与猜想5.2 平行线及其判定5.2.1 平行线5.3 平行线的性质5.3.1 平行线的性质5.3.2 命题、定理5.4 平移教学活动小结第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用阅读与思考6.2 坐标方法的简单应用教学活动小结第七章三角形7.1 与三角形有关的线段7.1.2 三角形的高、中线与角平分线7.1.3 三角形的稳定性信息技术应用7.2 与三角形有关的角7.2.2 三角形的外角阅读与思考7.3 多变形及其内角和阅读与思考7.4 课题学习镶嵌教学活动小结第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解法8.3 实际问题与二元一次方程组阅读与思考*8.4 三元一次方程组解法举例教学活动小结第九章不等式与不等式组9.1 不等式阅读与思考9.2 实际问题与一元一次不等式实验与探究9.3 一元一次不等式组阅读与思考教学活动小结第十章数据的收集、整理与描述10.1 统计调查实验与探究10.2 直方图10.3 课题学习从数据谈节水教学活动小结部分中英文词汇索引八年级上册第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读与思考全等与全等三角形11.3 角的平分线的性质教学活动小结复习题11第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形教学活动小结复习题12第十三章实数13.1 平方根13.2 立方根13.3 实数教学活动小结复习题13第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法教学活动小结复习题15部分中英文词汇索引八年级下册第十六章分式16.1 分式16.2 分式的运算阅读与思考容器中的水能倒完吗16.3 分式方程数学活动小结复习题16第十七章反比例函数17.1 反比例函数信息技术应用探索反比例函数的性质17.2 实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1 勾股定理阅读与思考勾股定理的证明18.2 勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1 平行四边形阅读与思考平行四边形法则19.2 特殊的平行四边形实验与探究巧拼正方形19.3 梯形观察与猜想平面直角坐标系中的特殊四边形19.4 课题学习重心数学活动小结复习题19第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读与思考海伦-秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程实验与探究三角点阵中前n行的点数计算数学活动小结复习题22第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计阅读与思考旋转对称性数学活动小结复习题23第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读与思考圆周率Π24.4 弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率阅读与思考概率与中奖25.3 用频率估计概率实验与探究П的估计25.4 课题学习键盘上字母的排列规律数学活动小结复习题25部分中英文词汇索引九年级下册第二十六章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题与二次函数实验与探索推测植物的生长与温度的关系教学活动小结复习题26第二十七章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质教学活动小结复习题27第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的三角函数表28.2 解直角三角形教学活动小结复习题28第二十九章投影与视图29.1 投影29.2 三视图。

人教版八年级上册11.1.2三角形的高、中线与角平分线(教案)

人教版八年级上册11.1.2三角形的高、中线与角平分线(教案)
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用直尺和圆规在纸上作出三角形的高、中线、角平分线。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形高、中线、角平分线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.引导学生在实际问题中运用三角形高、中线、角平分线的知识,培养解决实际问题的能力,增强数学应用的意识。
4.培养学生的合作意识和团队精神,通过小组讨论、互动交流,提高表达和倾听能力,促进数学交流与共享。
三、教学难点与重点
1.教学重点
-理解并掌握三角形高、中线、角平分线的定义及其性质。
-学会从三角形的一个顶点向对边作高、中线、角平分线。
2.教学难点
-理解三角形高、中线、角平分线的性质,并能够运用这些性质解决几何问题。
-在复杂图形中,能够准确地作出三角形的高、中线、角平分线。
举例解释:
-针对性质部分,通过对比、归纳的方法,让学生理解三角形高、中线、角平分线的共有性质(如:它们都分割三角形为两个相似三角形)和独特性质(如:中线将三角形底边平分)。
我注意到,有些学生在作图时遇到了一些困难,特别是在作三角形的高时,如何确保作出的线段是垂直的。这时,我强调了使用直尺和圆规的技巧,并提醒他们检查作图的准确性。此外,通过小组讨论和实验操作,学生们能够相互学习,共同解决难题。
在小组讨论环节,我看到了学生们的积极性和创造性。他们提出了很多关于三角形高、中线、角平分线在实际生活的应用,这超出了我的预期。我意识到,通过开放性的问题,可以激发学生们的思考,让他们将几何知识与现实世界联系起来。

三角形的高中线角平分线导学案及教学反思

三角形的高中线角平分线导学案及教学反思

11.1.2 三角形的高、中线与角平分线学习目标:1.经历折纸,画图等实践过程认识三角形的高、中线与角平分线;2.能准确画出三角形的高、中线与角平分线, 通过画图了解它们的交点情况3.激情投入,主动探究,发展动手操作能力。

学习重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出它们。

(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.学习难点:(1)三角形的角平分线与角平分线的区别,三角形的高与垂线的区别.(2)钝角三角形高的画法.(3)不同的三角形三条高的位置关系.学习过程一、导学提纲(一)、复习导入:上节课我们学习了三角形的三边关系,那么三角形中还有其他的线段吗?这一节我们就来认识三角形中的三种重要线段——高、____和______.(二)阅读导学:自学课本P4~5内容,完成下列问题:1.三角形的高(如图1)(1)定义:____________________________叫做三角形的高线,简称三角形的高.(2)表示法:1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°2.三角形的中线(如图2)(1)定义:______________________________________________________(2) 表示法:1. ___是△ABC的___上的中线.2. ___ =___=12 BC.(3)三角形的中线将该三角形分成面积______的两部分。

图1 A3.三角形的角平分线(如图3)(1)定义:_____________________________________________(2) 表示法:1. ___是△ABC 的___的平分线.2.∠1=___=12___. (3)三角形的角平分线与角的平分线的区别: _________________________________________________4.三角形的高、中线和角平分线都是________.(填线段、射线或直线)5.完成P5练习第2题二、合作、探究:1.(1)分别画锐角三角形、直角三角形、钝角三角形各一个,并分别作出各边 上的高。

13.1.2三角形高、中线与角平分线课件.ppt

13.1.2三角形高、中线与角平分线课件.ppt
锐角三角形 直角三角形 钝角三角形
高在三角形内部的数量 高之间是否相交 高所在的直线是否相交
3 相交 相交
三角形内部
1 相交 相交
直角顶点
1 不相交 相交
三角形外部
三条高所在直线的 交点的位置
三角形的三条高所在直线交于一点
拓展练习
1、下列各组图形中,哪一组图形中AD是△ABC 的高( D )
5
2 3
4
3
2
1
0
D
C
任意画一个锐角△ABC,
请你画出BC边上的高. 注意 ! 标明 垂直的记号 和垂足的字母.
B
D
C
1
2
3
4
5
0 1 4 5 6 7 8
9
锐角三角形的三条高
请你在练习本上画一个锐角三角形 然后画出这个三角形三条边上的高。
问题:
A F
E O C
锐角三角形的三条高的交 点是在三角形的内部还是 外部?
钝 角三角形的 三条高不相交于一点 (2)三条高所在的直线交于一点吗?
钝角三角形的三条高 所在直线交于一点
O
三角形的高的 表示法 ∵AD是△ ABC的高
∴∠ BDA = ∠ CDA =90° 三角形的面积计算公式 B
1 三角形的面积= 2 D
A
C
×

×

小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高。 三角形的三条高的特性:
你还记得
“过一点画已知直线的垂线” 吗?
画法
42 5 3 4 5
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

三角形的高、中线与角平分线 三角形PPT优秀课件

三角形的高、中线与角平分线 三角形PPT优秀课件

C
钝角三角形的三条高
A
在纸上画一个钝角三角形 (1)画出钝角三角形的三条高 (2)钝角三角形的三条高交于一点吗? (3)它们所在的直线交于一点吗?
D
钝角三角形的三条高不相 交于一点 钝角三角形的三条高所在直 线交于一点
B
C F
E
小结:三角形的高
从三角形中的一个顶点向它的对边所在直线作垂 线, 顶点和垂足之间的线段叫做三角形这边的高。
拓展练习
6.如图2所示,D,E分别是△ABC的边AC,BC的 中点,则下列说法不正确的是( C ) A.DE是△BCD的中线 B.BD是△ABC的中线 C.AD=DC,BD=EC D.∠C的对边是DE
A
D E
B
C
今天我们学了什么呀?
1.三角形的高、中线、角平分线
的有关概念及它们的画法。
2.三角形的高、中线、角平分线
A
5
2 3
4
3
2
1
0
D
C
1
2
3
4
5
0 1 4 5 6 7 8
9
锐角三角形的三条高
在纸上画一个锐角三角形 (1)你能画出这个三角形的三条高吗? (2)这三条高之间有怎样的位置关系? 将你的结果与同伴进行交流 锐角三角形的三条高是在三 B 角形的内部还是外部?
A F O D
E
C
锐角三角形的三条高交于同一点.
D
C
三角形的角平分线与角的平分 线有什么区别?
三角形的角平分线是一条 线段 , 角的平分线是一条 射线
思 考
练一练
如图,在△ABC中, ∠1=∠2,G为AD中点,延长BG 交AC于E,F为AB上一点,CF⊥AD于H,判断下列 说法那些是正确的,哪些是错误的? ①AD是△ABE的角平分线 (× ) ②BE是△ABD边AD上的中线(×) ③BE是△ABC边AC上的中线(×) ④CH是△ACD边AD上的高 ( √ ) B

11.1.2 三角形的高、中线与角平分线

11.1.2  三角形的高、中线与角平分线
〔情感、态度与价值观〕
体会数学与现实生活的联系,增强克服困难的勇气和信心
教学重点
三角形的高、中线与角平分线
教学难点
画钝角三角形的高
教学用具
多媒体 三角板
教学方法 (学习方法)
合作互助式
教学过程
一、导入新课我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。
教案
课 题
11.1.2 三角形的高、中线与角平分线
课时及授课时间
1课时
授课人
月日
教学目标 (学习目标)
〔知识与技能〕
1、经历画图的过程,认识三角形的高、中线与角平分线;
2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.
〔过程与方法〕
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯
二、三角形的高
请你在图中画出△ABC的一条高并说说你画法。
从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC于点D。注意:高与垂线不同,高是线段,垂线是直线。请你再画出这个三角形AB、AC边上的高,看看有什么发现?
三角形的三条高相交于一点。
如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答,上面的结论还成立。
三、三角形的中线
如图,我们把连结△ABC的顶点A和它的对边BC的中点D,所得线段AD叫做△ABC的边BC上的中线,表示为BD=DC或BD=DC=1/2BC或2BD=2DC=BC.
请你在图中画出△ABC的另两条边上的中线,看看有什么发现?

最新人教版初中数学课本目录新版旧版对照

最新人教版初中数学课本目录新版旧版对照

人教版初中数学课本目录(旧版)七年级上册第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4部分中英文词汇索引七年级下册第五章相交线与平行线5.1 相交线5.1.2 垂线5.1.3 同位角、内错角、同旁内角观察与猜想5.2 平行线及其判定5.2.1 平行线5.3 平行线的性质5.3.1 平行线的性质5.3.2 命题、定理5.4 平移教学活动小结第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用阅读与思考6.2 坐标方法的简单应用教学活动小结第七章三角形7.1 与三角形有关的线段7.1.2 三角形的高、中线与角平分线7.1.3 三角形的稳定性信息技术应用7.2 与三角形有关的角7.2.2 三角形的外角阅读与思考7.3 多变形及其内角和阅读与思考7.4 课题学习镶嵌教学活动小结第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解法8.3 实际问题与二元一次方程组阅读与思考*8.4 三元一次方程组解法举例教学活动小结第九章不等式与不等式组9.1 不等式阅读与思考9.2 实际问题与一元一次不等式实验与探究9.3 一元一次不等式组阅读与思考教学活动小结第十章数据的收集、整理与描述10.1 统计调查实验与探究10.2 直方图10.3 课题学习从数据谈节水教学活动小结部分中英文词汇索引八年级上册第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读与思考全等与全等三角形11.3 角的平分线的性质教学活动小结复习题11第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形教学活动小结复习题12第十三章实数13.1 平方根13.2 立方根13.3 实数教学活动小结复习题13第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法教学活动小结复习题15部分中英文词汇索引八年级下册第十六章分式16.1 分式16.2 分式的运算阅读与思考容器中的水能倒完吗16.3 分式方程数学活动小结复习题16第十七章反比例函数17.1 反比例函数信息技术应用探索反比例函数的性质17.2 实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1 勾股定理阅读与思考勾股定理的证明18.2 勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1 平行四边形阅读与思考平行四边形法则19.2 特殊的平行四边形实验与探究巧拼正方形19.3 梯形观察与猜想平面直角坐标系中的特殊四边形19.4 课题学习重心数学活动小结复习题19第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读与思考海伦-秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程实验与探究三角点阵中前n行的点数计算数学活动小结复习题22第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计阅读与思考旋转对称性数学活动小结复习题23第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读与思考圆周率Π24.4 弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率阅读与思考概率与中奖25.3 用频率估计概率实验与探究П的估计25.4 课题学习键盘上字母的排列规律数学活动小结复习题25部分中英文词汇索引九年级下册第二十六章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题与二次函数实验与探索推测植物的生长与温度的关系教学活动小结复习题26第二十七章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质教学活动小结复习题27第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的三角函数表28.2 解直角三角形教学活动小结复习题28第二十九章投影与视图29.1 投影29.2 三视图阅读与思考视图的产生与应用29.3 课题学习制作立体模型数学活动小结复习题29部分中英文词汇索引初中数学新教材目录(2012修订)七年级上(62)第1章有理数(19)1.1 正数和负数(2)1.2 有理数(4)1.2.1 有理数 1.2.2 数轴 1.2.3 相反数 1.2.4 绝对值1.3 有理数的加减法(4)1.3.1 有理数的加法 1.3.2 有理数的减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法(4)1.4.1 有理数的乘法 1.4.2 有理数的除法观察与猜想翻牌游戏中的数学道理1.5 有理数的乘方(3)1.5.1 乘方 1.5.2 科学记数法 1.5.3 近似数数学活动小结(2)。

11.1.2 三角形的高、中线与角平分线

11.1.2  三角形的高、中线与角平分线

一课一案 创新导学
1.小华在电话中问小明:“已知一个三角形三边长分别是
4,9,12,如何求这个三角形的面积?”小明提示说:“可通 过作最长边上的高来求解.”小华根据小明的提示作出的 图形正确的是( C ) A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11
一课一案 创新导学
2.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的
如题:
如图,在△ABC中,点D,E分别在BC,AC上,E为AC 的中点,AD,BE交于点G,BD=2DC,=3,S△GDC=4,
求△ABC的面积.
解:∵E 为 AC 的中点,∴������△ ������������������=������△ ������������������=3. ∴������△ ������������������=������△ ������������������+������△ ������������������+������△ ������������������=3×2+4=10. 又∵BD=2DC,△BDA 与△CDA 的高相同,∴������△ ������������������=2������△ ������������������=20. ∴������△ ������������������=������△ ������������������+������△ ������������������=20+10=30.
一课一案 创新导学
1.回答“问题导引”中的问题. 在另一端点移动的过程中,有三个特殊的位置,有一个位
置使连线垂直于BC,有一连线平分BC,有一连线平分 ∠BAC.
2.三角形的角平分线与角的平分线有什么不同?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
E
O
D
C
三角形的角平分线与角的 思 平分线有什么区别?

三角形的角平分 线是一条线段 , 角的平分线是一 条射线
现在做中考题 如图,在⊿ABC中, ∠1=∠2,G为AD中 点,延长BG交AC于E,F为AB上一 点,CF⊥AD于H,判断下列说法那些是 正确的,哪些是错误的. A ①AD是⊿ABE的角平分线 ( × ) ②BE是⊿ABD边AD上的中线 ( × ) 12 ③BE是⊿ABC边AC上的中线 ( × ) G
• 4.如图2所示,D,E分别是△ABC的边 AC,BC的中点,则下列说法不正确的是 ( D) A A.DE是△BCD的中线 B.BD是△ABC的中线 D C.AD=DC,BE=EC E B D.∠C的对边是DE
C
知识小结
今天我们学了什么呀?
1.三角形中线、角平分线等有关概念 及它们的画法。 2.三角形中线、角平分线 几何表达及简单应用。
④CH是⊿ACD边AD上的高 ( √ )
F H D B
E
ቤተ መጻሕፍቲ ባይዱ
C
三角形的高、中线与角平分线都是线段
拓展练习
1、填空:(1)如图1,AD,BE,CF是 AF , ΔABC的三条中线,则AB=2 1 AC 。 BD= CD,AE=
2
(2)如图2,AD,BE,CF是ΔABC的三 条角平分线,则∠1= ∠2 , 1 ∠3= ∠ABC , ∠ACB=2 ∠4 。
相关知识回顾
1.线段中点的定义:
把一条线段分成两条相等的线段的点。
2.角平分线的定义:
从一个角的顶点出发,把这个 角分成两个相等的角的射线, 叫做 这个角的平分线。
17.1.2三角形的高.中线
与角平分线(2)
三角形的中线
叫做这个三角形这边的中线.
A F B E O D C
在三角形中,连接一个 顶点与它对边中点的线段,
2
A F B D 图1 E C
B A F 1 2 3 D 图2 E 4 C
2.如图,在ΔABC中,AE是中线,AD 是角平分线,AF是高。填空:
1 BC CE = (1)BE= ; 2 1 (2)∠BAD= ∠CAD = 2 ∠BAC;
(3)∠AFB=
∠AFC
=90°;
A
C
E D F
B
• 3.如图所示,在△ABC中,∠ACB=90°, 把△ABC沿直线AC翻折180°,使点B 落 在点B′的位置,则线段AC具有性质 ( D) A A.是边BB′上的中线 B.是边BB′上的高 C.是∠BAB′的角平分线 B C B' D.以上三种性质合一
三角形的 重要线段
概念
从三角形的一个 顶点向它的对边 所在的直线作垂 线,顶点和垂足之 间的线段
图形
A
推理格式
∵AD是△ABC的BC上的 高线. ∴AD⊥BC ∠ADB=∠ADC=90°.
三角形 的高线
B
D
C
三角形 的中线
三角形 的角平 分线
三角形中,连结一 个顶点和它对边 中点的线段
三角形一个内角 的平分线与它的 对边相交,这个角 顶点与交点之间 的线段
A
B
D
C
∵ AD是△ABC的BC上 的中线. ∴ BD=CD= ½BC.
∵.AD是△ABC的 ∠BAC的平分线 ∴ ∠1=∠2= ½ ∠BAC
A
2 1
B
D
C
三角形的角平分线
在三角形中,一个内角的角平分线与它的对边相交, 这个角的顶点与交点之间的线段, 叫做三角形的角平分线。
A

B
1 2
D
C
角平分线的理解
∵BE是△ABC的角平分线 1 F ∠ABE _____ ∠ABC ∴____ = ∠CBE 2 =___ ∵CF是△ABC的角平分线
∠ACF ∠BCF ∴∠ACB=2______=2______B
相关文档
最新文档