信与系统重点概念公式总结精修订
信号与系统重点概念公式总结
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统-公式总结
信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。
信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。
1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。
4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。
5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。
(完整版),信号与系统-公式总结,推荐文档
an (s p1)(s p2 )(s pn ) (s p1) (s p2 )
(s pn )
k i (s pi )F (s) |s pi
(i 1, 2,n)
变变变变变变变变变变
et ut 1
s α
z变变变变变变变
z
z
a
a n u( n) anu(n
1)
za za
⑵留数法
留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留数的运算,即
an
1
, a 1
n0
1 a
第二章 傅立叶变换
1 正变换: F () f (t)e jtdt
2 傅立叶变换的性质 性质 ※时移
※时频展缩
※※频移
逆变换: f (t) 1 F ()e jtd
2
时域
f (t t0 )
f (at) a 0 f (at b) a 0
f (t)e j0t
信号
名称
f (t)
波形图
F () F () e j()
频谱图
※※ 矩形
脉冲 E[u(t ) u(t )]
E
Sa(
)
2
冲激
脉冲
E (t)
E
※※
直流
E
函数
2 E ()
※ 冲激 序列
T 1 (t )
1 1 ( )
1
2 T1
第三章 拉普拉斯变换
1 定义
双边拉普拉斯变换 F (s) f (t)estdt
z
z i0 z pi
根据收敛域给出反变换
N
A: if z R ,则 f (n) 为因果序列(右边序列),即 f (n) Ai pinu(n) i 1
信号与系统公式大全
信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。
在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。
同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。
如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。
信号与系统重点概念公式总结
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
信号与系统公式总结
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统重点概念公式总结
信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:ni K dt t f ji dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统知识要点.
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
信号与系统-公式总结
4复频域微分
5复频域积分
※6时域卷积
※4. 拉普拉斯反变换 ⑴部分分式展开法
复频域,
⑵留数法 留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留 数的运算,即
其中 (为一阶极点) 或 (为阶极点)
第四章 Z变换
1. Z变换定义
正变换: 双边:
单边:
2. Z变换收敛域ROC:满足的所有z值
★ ROC内不包含任何极点(以极点为边界); ★ 右边序列的ROC为 的圆外; ★ 左边序列的ROC为 的圆内; ★ 双边序列的ROC为 的圆环。 ★ 有限长序列的ROC为整个 z 平面 (可能除去z = 0 和z = );
冲激 脉冲
※※
直流 函数 ※ 冲激 序列
第三章 拉普拉斯变换
1 定义 双边拉普拉斯变换 单边拉普拉斯变换 单边变换收敛条件:
拉普拉斯反变换 称为收敛域。
2 常见函数的拉普拉斯变换
公式序号
原函数,
※1
※2
※※3
像函数
频谱图
※※4 ※5 ※6
3 拉普拉斯的基本性质
性质
时域
※※1时间平 移
※2频率频移
※3时域微分
1 差分方程的一般形式
前向差分: 后向差分: 2 卷积法 (1)零输入响应 :激励时初始状态引起的响应 Step1 特征方程,特征根; Step2 解形式或 ;
Step3 初始条件代入,确定系统; (12)零状态响应 :初始状态为零时外加激励引起的响应 方法1:时域分析法 方法2:变换域分析法
Step1: 差分方程两边Z变换(注意初始状态为零); 左移位性质
第六章 第七章 第八章 连续系统时域、频域和复频 域分析
1 线性和非线性、时变和非时变系统判别 (1)线性和非线性 先线性运算,再经系统=先经系统,再线性运算
信号与系统重要公式总结
周期信号与非周期信号连续时间信号:()()f t f t kT =+0,1,2,k =±±⋅⋅⋅⋅⋅⋅ 离散时间信号:()()x n x n kn =+0,1,2,k =±±⋅⋅⋅⋅⋅⋅000()j t j t T e e ωω+=002T πω=00()j n j n N e e ωω+=02N k πω=为整数能量信号和功率信号 连续时间信号2|()|E f t dt ∞-∞=⎰2221|()|T T P f t dt T =⎰(周期信号) 2221|()|lim TT T f t T P dt →∞-=⎰(非周期信号)离散时间信号2|()|n E x n ∞=-∞=∑21|()|21N n N P x n N =-=+∑(周期信号) 21()21lim Nn NN P x n N =-→∞=+∑(非周期信号) 1、能量信号:E 有限0E <<∞,0P =; 2、功率信号:P 有限0P <<∞,P =∞;3、若E P →∞→∞,,则该信号既不是能量信号也不是功率信号;4、一般周期信号是功率信号。
线性系统)()()()()()()()(221122112211t y a t y a t x a t x a t y t x t y t x +→+→→,则,若 )()()()()()()()(221122112211n y a n y a n x a n x a n y n x n y n x +→+→→,则,若时不变系统)()()()(00t t y t t x t y t x -→-→,则若 )()()()(00t n y n n x n y n x -→-→,则若系统时不变性:1电路分析:元件的参数值是否随时间而变化 2方程分析:系数是否随时间而变3输入输出分析:输入激励信号有时移,输出响应信号也同样有时移i关系狄利克雷(Dirichlet)条件(只要满足这个条件信号就可以利用傅里叶级数展开)(1)在一周期内,如果有间断点存在,则间断点的数目应是有限个。
信号与系统公式总结
信号与系统公式总结信号与系统是电子工程、通信工程、自动控制等领域中的重要基础课程,它研究了信号的传输、处理以及系统的行为特性。
在学习信号与系统的过程中,我们需要掌握一些基本的数学公式,以便更好地理解和分析信号与系统的特性。
本文将对信号与系统中常用的公式进行总结和归纳,以帮助读者更好地掌握和应用。
一、信号的表示在信号与系统中,我们常常遇到时域信号、频域信号和复域信号。
它们分别通过不同的数学表示方法来描述。
1. 时域信号时域信号使用时间作为自变量进行描述,常用的时域信号表示方法有:- 脉冲函数(Impulse Function):δ(t)是一个函数,当t=0时取值为无穷大,其他时刻取值为零,即δ(t) = ∞,t = 0;δ(t) = 0,t ≠ 0。
- 阶跃函数(Step Function):u(t)是一个函数,当t≥0时取值为1,t<0时取值为0。
- 矩形函数(Rectangular Pulse):rect(t/T)是一个函数,在|t| < T/2时取值为1,其他时刻取值为零。
2. 频域信号频域信号使用频率作为自变量进行描述,常用的频域信号表示方法有:- 正弦函数(Sine Function):f(t)=A*sin(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 余弦函数(Cosine Function):g(t)=A*cos(2πft+φ)是一个函数,A为振幅,f为频率,φ为相位。
- 脉冲函数的频谱:脉冲函数的频谱是一个常数,即频率的绝对值小于无穷大的所有频率分量都具有相同的幅度。
3. 复域信号复域信号使用复数表示,并且可以同时描述时域信息和频域信息。
常用的复域信号表示方法有:- 复指数函数(Complex Exponential Function):x(t) = Ae^(2πft+jφ),其中A为振幅,f为频率,φ为相位。
二、线性时不变系统在信号与系统中,线性时不变系统(LTI system)是一类重要的系统。
信号与系统主要公式和内容摘要
信号与系统主要公式和内容摘要一.单位冲激信号()t δ的基本特性: 1. √()()()()()0t x dt t t t x dt t t t x =+=-⎰⎰∞∞-∞∞-δδ2.()()()⎩⎨⎧><=⎰00ab ab dt t t b aϕδϕ3.()()t aat δδ1=4. √ ()()()()000t t t x t t t x -=-δδ5. ()()t t δδ=- 偶函数6.()()t dtt du δ= ()()t u d t =⎰∞-ττδ 7. ()()()t x t t x =*δ ()()()00t t x t t t x -=-*δ 8. ()()()2121t t t t t t t --=-*-δδδ 9. ()()()t x t t x '='*δ ()()()ττd x t u t x t⎰∞-=*10. 若:()()()t x t x t y 21*=则:()()()()()t x t x t x t x t y 2121'*=*'=' ()()()()()()()()t x t x t x t x t y1212111---*=*=()()()212211t t t y t t x t t x --=-*- 二.单位脉冲序列[]n δ的基本特性: 1. [][]∑+∞=-=k k n n u δ [][]∑-∞==nk k n u δ √[][][]1--=n u n u n δ2. √[][][][]000n n n x n n n x -=-δδ√[][][]n x n n x =*δ √[][][]00n n x n n n x -=-*δ 3. [][][]k n k x n x k -=∑∞-∞=δ特殊:()()()()t r t tu t u t u ==* [][]()[]n u n n u n u 1+=* 1欧拉公式:()()()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+=+=--t j t j t j t j t j e e j t Sin e e t Cos t jSin t Cos e ααααααααα2121三.线性时不变系统(LTI 系统)的主要特性 1. 线性:(1) 无初值:()()()()t y a t y a t x a t x a 22112211+→+ [][][][]n y a n y a n x a n x a 22112211+→+ (2) 含初值:若:()()()t y x t f 1110→⎥⎦⎤⎢⎣⎡ ()()()t y x t f 2220→⎥⎦⎤⎢⎣⎡ 则:()()()()()()t y t y x t f x t f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡[][][][][][]k y k y x k f x k f 21221100βαβα+→⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 2. 时不变性:()()00t t y t t x -→- [][]00n n y n n x -→- 3. 微(差)分性:()()dtt dy dt t dx → [][]k n y k n x -→- 4. 积分(累加)特性:()()⎰⎰→ttd y d x 0ττττ [][]∑∑==→Nk Nk k y k x 05. 因果性:若:()0=t h ,当0<t 时 √若:[]0=n h ,当0<n 时 6. 稳定性:()∞<⎰∞∞-ττd h √[]∑∞-∞=∞<k k h27. 卷积特性: ()()()()()()()ττττττd t x h d t h x t h t x t y f ⎰⎰∞∞-∞∞--=-=*=[][][][][][][]k n x k h k n h k x n h n x n y k k f -=-=*=∑∑∞-∞=∞-∞=有:()()()ωωωj H j X j Y f =()()()S H S X S Y f =()()()Z H Z X Z Y f =四.信号的基本运算: 1. 相加:()()()t x t x t y 21+= [][][]n x n x n y 21+=2. 相乘:()()()t x t x t y 21= [][][]n x n x n y 21=3. 幅度加权:()()t x t y α= [][]n x n y α=4. 反折:()()t x t y -= [][]n x n y -=5. 时移:()()0t t x t y -= [][]0n n x n y -=00>t (或00>n )为右移,00<t (或00<n )为左移 6. 尺度变换:(1) 连续时间信号的尺度变换:()()at x t y =1>a 时,表示()t x 在时间轴上被压缩a 倍 1<a 时,表示()t x 在时间轴上被扩展a 倍(2) 离散时间信号的内插与抽取: 内插:[]⎥⎦⎤⎢⎣⎡→L k f k f , L 为正整数[]0f 不动,在序列2点之间插入1-L 个零点 3抽取:[][]Mk f k f →, M 为正整数[]0f 不动,在原序列中每隔1-M 点抽取一点 7. 微分(差分): ()()dtt dx t y =[][][]1--=n x n x n y8. 积分(累加): ()()ττd x t y t⎰∞-= [][]∑-∞==nk k x n y9. 卷积()()()()()()()ττττττd t x x d t x x t x t x t y -=-=*=⎰⎰∞∞-∞∞-122121[][][][][][][]k n x k x k n x k x n x n x n y k k -=-=*=∑∑∞-∞=∞-∞=122121五.几何级数的求值公式:1. ⎪⎪⎩⎪⎪⎨⎧=+≠--=+=∑1111121220a n a a a a n n n n2. ⎪⎪⎩⎪⎪⎨⎧=+-≠--=+=∑11111212121a n n a a a a a n n n n n n210n n ≤<3.aa n n -=∑+∞=110 1<a 4. a a a n n-=∑+∞=111<a 5. a a a n n n n-=∑+∞=111 1<a六.傅里叶变换、拉普拉斯变换、Z 变换 1.LTI 系统对虚指数信号的响应:→t j e ω()()t j e j H t y ωω=→()()()tjn n n n tjn n e jn H C t y eC t f 000ωωω∑∑∞-∞=∞-∞==→=42.傅里叶级数公式: ()∑∞-∞==n tjn n eC t x0ω 其中:()dt e t x T C tjn Tn 01ω-⎰= 3. 傅里叶变换公式(系统稳定):(1)非周期信号:()()ωωπωd ej X t x tj ⎰∞+∞-=21()()dt e t x j X t j ωω-∞+∞-⎰=条件:()⎰∞+∞-∞<dt t x 或()⎰∞+∞-∞<dt t x 2(2)周期信号:()∑∞-∞==k t jk k e a t xω()()∑∞-∞=-=k k k a j X 02ωωδπω 002T πω=()dt e t x T a tjk Tk 01ω-⎰=4. 拉普拉斯变换公式: ()()dt et x S XtS -∞-⎰=0 ()()dS e S X j t x t S j j ⎰∞+∞-=σσπ215. Z 变换公式: ()[]n n Z n x Z X -∞=∑=[]()dZ Z Z X j n x n C121-⎰=π6. 典型信号的三种变换公式:(1)√()1−→←FTt δ√()1−→←LT t δ √()()n LTn S t −→←δROC:整个S 平面√[]1−→←Zn δ ROC:整个Z 平面 (2) √()00t j FTe t t ωδ-−→←-√()00tS LT e t t -−→←-δ ROC:整个S 平面√[]00nZ Z n n -−→←-δROC:整个Z 平面(可能去除0=Z )(3) ()()ωπδω+−→←j t u FT15()St u LT1−→← ROC:{}0>S R e √ []111--−→←Zn u ZROC: 1>Z (4) ()ωj a t u eFTat+−→←-1{}0>a R e√()a S t u eLTat+−→←-1ROC: {}a S R e -> []111--−→←aZn u a Z nROC: a Z > (5) ()()21ωj a t u teFTat+−→←- {}0>a R e ()()21a S t u teLTat+−→←- ROC: {}a S R e ->()[]()21111--−→←+aZ k u a k Zk ROC: a Z >(6)()∑∑+∞-∞=+∞-∞=-−→←k kFTk tjk k k a ea 020ωωδπω(7) ()020ωωπδω-−→←FT tj e()020ωωπδω+−→←-FTt j e(8) ()ωπδ21−→←FT(9) √()()[]000ωωδωωδπω++-−→←FTt Cos()2020)(ωω+−→←S St u t Cos LTROC: {}0>S R e (10) ()()[]000ωωδωωδπω--+−→←j t Sin FT()2020)(ωωω+−→←S t u t Sin LTROC: {}0>S R e (11) ()∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛-−→←-k FTn T kT nT t πωδπδ226(12) −→←FTT ASa T )(211ω(13) −→←FTtt ASin πλ√()()21ωSa t p FT−→← ()()()2211ωSa t p t p FT−→←*七.傅里叶变换、拉普拉斯变换、Z 变换的主要性质设:()S X :ROC {}0Re σ>S ()Z X :ROC Rf Z > 1. 线性:()()()()ωωj bY j aX t by t ax FT+−→←+()()()()S bY S aX t by t ax lT +−→←+ ROC :公共收敛域 [][]()()Z bY Z aX n by n ax ZT +−→←+ ROC :公共收敛域2. 时移: √()()ωωj X e t t x t j FT0-−→←-√()()S X e t t xt S LT 00-−→←- 要求:右移,即00>tROC :未变因果序列:√[][]()Z X Z n n u n n xn ZT00-−→←-- 要求:右移,即00>nROC :未变非因果序列:√[][]()[]111-+−→←--x Z X Z n u n x ZT√ [][]()[][]21212-+-+−→←---x x Z Z X Zn u n x ZT73. 频移:()()[]00ωωω-−→←j X t x e FTt j()()00S S X t x e LTtS -−→← ROC: {}00Re σ>-S S []⎪⎭⎫ ⎝⎛−→←a Z X n x a ZT n ROC: Rf a Z >()[]()Z X n x ZTn -−→←-1 ROC:Rf Z >-4.反折:()()ωj X t x FT -−→←-()()S X t x LT -−→←- ROC: {}0Re σ>-S5.尺度变换:()⎪⎭⎫ ⎝⎛−→←a j X a at x FT ω1 √()⎪⎭⎫ ⎝⎛−→←a S X a at x LT1 ROC :0Re σ>⎭⎬⎫⎩⎨⎧a S6.卷积:√()()()()ωωj Y j X t y t x FT−→←*()()()()S Y S X t y t x LT−→←* ROC :公共收敛域 [][]()()Z Y Z X n y n x ZT −→←* ROC :公共收敛域7.时域微分:()()ωωj X j t x dtd FT−→←:未修正 不含初值:√()()S SX t x dtd LT−→← √()()S X S t x dt d n LT n n −→← 含初值: √()()()--−→←0x S SX t x dtd LT √ ()()()()--'--−→←00222x Sx S X S t x dt d LT 8.频域微分: 8()()ωωj X d djt tx FT−→← ()()S X dSd t tx LT-−→← ROC :未变[]()dZZ dX Zn nx ZT-−→← ROC :未变 9.积分(累加):()()()()ωδπωωττ01X j X j d x FTt +−→←⎰∞- ()()S X Sd x LTt1−→←⎰-ττ ROC :{})0,m ax (Re 0σ>S []()Z X Zn x ZTkn 111-=-−→←∑ ROC :),1max(Rf Z > 10.调制(频域卷积):()()()(){}ωωπj Y j X t y t x FT *−→←2111.对偶:若:()()ωj F t g FT−→← 则:()()ωπ-−→←g jt F FT2 八.系统函数: 1.连续系统:()()∑∑===Nk M k kk k k k k dt t x d b dt t y d a 00√()()()()()∑∑====Nk kk kM k k j a j b j X j Y j H 00ωωωωω√()()()∑∑====Nk kkMk kk f S aSb S X S Y S H 0()()ωωπωd ej H t h tj ⎰∞∞-=21()()dS e S H j t h t S j j ⎰∞+∞-=σσπ212. 离散系统:[][]∑∑==-=-Mk kN k kk n x b k n y a 0√()()()k Nk k Mk Kk f Z a Zb Z X Z Y Z H -==-∑∑==[]()dZ Z Z H jn h n C121-⎰=π3. 系统的因果性:(1)连续系统:S 域 一个具有有理系统函数H(S)的LTI 系统,其因果性等价于H(S)的ROC 位于S 平面上最右边极 点的右半平面。
信与系统复习知识总结
重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号;正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的..其周期为各个周期的最小公倍数..① 连续正弦信号一定是周期信号..② 两连续周期信号之和不一定是周期信号..周期信号是功率信号..除了具有无限能量及无限功率的信号外;时限的或,∞→t 0)(=t f 的非周期信号就是能量信号;当∞→t ;0)(≠t f 的非周期信号是功率信号..1. 典型信号① 指数信号: ()at f t Ke =;a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =;s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点..(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数;必含有冲激函数;其跳变幅度就是冲激函数的强度..正跳变对应着正冲激;负跳变对应着负冲激..重难点2.信号的时域运算 ① 移位: 0()f t t +; 0t 为常数当0t >0时;0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时; 0()f t t +相当于()f t 波形在t 轴上右移0t ..② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶.. ③ 尺度变换: ()f at ;a 为常数当a >1时;()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时;()f at 的波形在时间轴上扩展为原来的1a.. ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分.. 2. 系统的分类根据其数学模型的差异;可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性;则称满足线性性..当激励为1122()()C f t C f t +1C 、2C 分别为常数时;系统的响应为1122()()C y t C y t +..线性系统具有分解特性: )()()(t y t y t y zs zi +=零输入响应是初始值的线性函数;零状态响应是输入信号的线性函数;但全响应既不是输入信号也不是初始值的线性函数..(2) 时不变性 :对于时不变系统;当激励为0()f t t -时;响应为0()f t t -.. (3) 因果性线性非时变系统具有微分特性、积分特性.. 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程;形式由特征根确定;待定系数由-0初始状态确定..零输入响应必然是自由响应的一部分.. 重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分;即)()()(t h t f t y zs *=..零状态响应可分解为自由响应和强迫响应两部分..重难点7.单位冲激响应的求解..冲激响应)(t h 是冲激信号作用系统的零状态响应.. 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ; f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分.. 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn nnf t f t f t f t f t f t t t t == 5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积;其积分限是从0到t .. 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=.. 重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数.. 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=;n 为正整数.. 直流分量01011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰正弦分量的幅度010112()sin()t T n t b f t n t dt T ω+=⎰ 三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn t n n f t F e ω∞=-∞=∑式中;n 为从-∞到+∞的整数.. 复数频谱011011()t T jn tn t F f t e dt T ω+-=⎰ 利用周期信号的对称性可以简化傅里叶级数中系数的计算..从而可知周期信号所包含的频率成分..有些周期信号的对称性是隐藏的;删除直流分量后就可以显示其对称性..①实偶函数的傅里叶级数中不包含正弦项;只可能包含直流项和余弦项.. ②实奇数的傅里叶级数中不包含余弦项和直流项;只可能包含正弦项..③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项;而不包含偶次谐波项..重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大;谱线越密;离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性..重难点12.傅里叶变换傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰ 逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数;可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模;它代表信号中个频谱分量的相对大小;是ω的偶函数..()ϕω是()F ω的相位函数;它表示信号中各频率分量之间的相位关系;是ω的奇函数..常用函数 F 变换对:δtπδωut 1()j πδωω+e -tut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→-6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→* 8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅11奇偶虚实性若()()()F R jX ωωω=+;则①()f t 是实偶函数()()f R ωω=;即()f ω为ω的实偶函数.. ②()f t 是实奇函数()()f jX ωω=;即()f ω为ω的虚奇函数.. 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的;这些冲激位于信号的谐频11(0,,2,)ωω±±处;每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍..即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期;()f ω为被抽样信号()f t 的频谱..上式表明;信号在时域被冲激序列抽样后;它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复..重难点16.对于线性非时变系统;若输入为非周期信号;系统的零状态响可用傅里叶变换求得..其方法为:1 求激励ft 的傅里叶变换F j..2 求频域系统函数H j..3 求零状态响应y zs t 的傅里叶变换Y zs j;即Y zs j= H j F j..4 求零状态响应的时域解;即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统;若输入为正弦信号)cos()(0t A t f ω=;则稳态响应为 其中;)()(00ϕωωj e j H j H =为频域系统函数..重难点18.对于线性非时变系统;若输入为非正弦的周期信号;则系统的稳态响应的频谱为其中;n F是输入信号的频谱;即)(t f 的指数傅里叶级数的复系统..)(Ωjn H 是系统函数;为基波..n Y是输出信号的频谱..时间响应为重难点19.在时域中;无失真传输的条件是 )()(0t t f K t y -= 在频域中;无失真传输系统的特性为 0)(t j eK j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过;且完全阻止通带之外的输入信号的所有频率分量的滤波器..理想滤波器是非因果性的;物理上不可实现的..重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比.. 重难点22.时域取样定理注意:为恢复原信号;必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低;必须f s ≥2f m;或者说;取样间隔不能太大;必须T s ≤1/2f m ;否则将发生混叠.. 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔.. 重难点23.单边拉氏变换的定义为积分下限定义为-=0t ..因此;单位冲激函数1)(⇔t δ;求解微分方程时;初始条件取为-=0t ..重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域..)(t f 是有限长时;收敛域整个S 平面;)(t f 是右边信号时;收敛域0σσ>的右边区域;)(t f 是左边信号时;收敛域0σσ<的左边区域;)(t f 是双边信号时;收敛域是S 平面上一条带状区域..要说明的是;我们讨论单边拉氏变换;只要σ取得足够大总是满足绝对可积条件;因此一般不写收敛域..单边拉氏变换;只要σ取得足够大总是满足绝对可积条件;因此一般不写收敛域..重难点25.拉普拉斯正变换求解: 常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s 7周期信号;只要求出第一周期的拉氏变换1()F s ;1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→ 频域积分性:()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在;并且 ft ← → F s ; Res>0; 0<0;则 0()lim ()s f sF s →∞=拉氏变换的性质及应用..一般规律:有t 相乘时;用频域微分性质.. 有实指数te α相乘时;用频移性质.. 分段直线组成的波形;用时域微分性质..周期信号;只要求出第一周期的拉氏变换1()F s ;1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换;对于非因果信号;在求其拉氏变换时应当作因果信号处理..重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时;可对方程取拉氏变换;并代入初始条件;从而将时域方程转化为S 域代数方程;求出响应的象函数;再对其求反变换得到系统的响应.. 重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型;是用拉普拉斯变换分析电路的基础..引入复频域阻抗后;电路定律的复频域形式与其相量形式相似.. 重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中;)()(s H t h ⇔;)(s H 是冲激响应的象函数;称为系统函数..系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定..① Hs 在左半平面的极点无论一阶极点或重极点;它们对应的时域函数都是按指数规律衰减的..结论:极点全部在左半开平面的系统因果是稳定的系统..② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数..Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大..③ H s 在虚轴上的高阶极点或右半平面上的极点;其所对应的响应函数都是递增的..重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面;边界稳定系统 Hs 的极点都在虚轴上;且为一阶; 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上..H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统;323210()D s a s a s a s a =+++的各项系数全为正;且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ)θ+2.单位阶跃序列()n ε与)(n δ的关系: ()()(1)n n n δεε=-- 延迟的表达式()n m ε-.. 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器;乘法器;相加器.. 重难点37、系统的零输入响应若其特征根均为单根;则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n ; f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和..即重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分.. 重难点42.熟悉基本序列的Z 变换..k ←→ 1 ; z>0 k ←→1zz -; z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换.. 重难点45.掌握离散系统Z 域的分析方法.. 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类..①极点全部在单位圆内的系统因果是稳定系统..② Hz在单位圆上是一阶极点;单位圆外无极点;系统是临界稳定系统..③ Hz在单位圆上的高阶极点或单位圆外的极点;系统是不稳定系统..。
信号与系统常用公式
信号与系统常用公式信号与系统是现代电子信息工程学科中的重要基础课程,它涉及到了信号的产生、传输和处理等方面的知识。
在学习和应用信号与系统的过程中,我们经常会使用到一些公式和定理。
本文将为大家介绍一些信号与系统中常用的公式和定理,希望能对大家的学习和工作有所帮助。
一、信号的基本性质:1.基本信号及其性质:矩形信号:rect(t/T) =1,-T/2≤t≤T/20,其他三角信号:tri(t/T) =1-,t/T,-T≤t≤T0,其他正弦信号:sin(ωt) = (e^jωt - e^(-jωt))/(2j)余弦信号:cos(ωt) = (e^jωt + e^(-jωt))/22.对称性:奇对称信号:如果s(t)=-s(-t),则s(t)是奇对称信号。
偶对称信号:如果s(t)=s(-t),则s(t)是偶对称信号。
3.平均功率:平均功率:P = lim(T→∞)1/T ∫_(T/2)^(T/2) ,s(t),^2 dt4.交流分量:交流分量:s_AC=1/2*[s(t)-s_DC]二、线性时不变系统的基本性质:1.线性时不变系统的定义:线性性:s_1(t)+s_2(t)—>LTI—>s_1(t)+s_2(t)时不变性:s(t-t_0)—>LTI—>s(t-t_0)2.系统的冲激响应:系统的冲激响应:h(t) = d(s(t))/dt,其中d是微分算子。
3.系统的单位阶跃响应:系统的单位阶跃响应:H(t)=∫_(-∞)^th(τ)dτ4.线性卷积定理:线性卷积定理:s_1(t)*s_2(t)—>LTI—>S_1(ω)*S_2(ω)三、频域分析:1.傅里叶级数:傅里叶级数:s(t)=∑_(n=-∞)^∞C_n*e^(jω_nt),其中C_n是频谱系数,ω_n是频率。
2.傅里叶变换:傅里叶变换:S(ω) = ∫_(-∞)^∞ s(t) * e^(-jωt) dt3.周期信号的频谱:周期性信号的频谱:S(ω)=∑_(k=-∞)^∞(1/T)*S(kω_0)*δ(ω-kω_0),其中S(kω_0)是周期频谱系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个正交函数集可以类比成一个坐标系统;
正交函数集中的每个函数均类比成该坐标系统中的一个轴;
在该坐标系统中,一个函数可以类比成一个点;
点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:
如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
6.连续系统冲激响应、卷积及其物理意义:
卷积: ,称为恒等系统。
物理意义:指冲激信号 经过系统的响应。换句话说,系统函数 就是输入信号为 时系统的输出信号。
7.连续互连系统的冲激响应:
级联:h(t)=h1(t)h2(t)
并联:h(t)=h1(t)+h2(t)
8.连续系统卷积的时域及频域的性质及对应关系:
若 为实偶函数, 则 为实偶函数
若 为实奇函数, 则 为虚奇函数
4.尺度变换:若 ,
则
其中 为非零的实常数。
5.时移:若 ,
则
6.频移:若 ,
则
即:
7.微分:若 ,
则
8.积分:若 ,
则
2.连续周期信号的傅里叶变换:
3.特殊信号的傅里叶变换:
1.直流信号 ,其付里叶变换得到的频谱即为
2. 的付里叶变换为
第十一章:滤波器设计
1.线性相位的物理意义及如何保证线性相位:
线性相位:h(n)的相位谱满足:
(w)=-w,其中为常数。
物理意义:线性相位是保证信号无失真传输的重要条件。
如果有限长的实序列h(n)满足偶对称条件:h(n)=h(N-1-n),那么它所对应的频率特性满足线性相位。
2.有限冲激响应滤波器FIR滤波器设计——窗函数法:
或C=|C|ejφ,其中, 为复数的模,tanφ=b/a,φ为复数的辐角。(复平面)
2.欧拉公式: (前加-,后变减)
第三章:正交函数集及信号在其上的分解
1.正交函数集的定义:设函数集合
如果满足:
则称集合 为正交函数集
如果 ,则称 为标准正交函数集。
如果 中的函数为复数函数
条件变为:
其中 为 的复共轭。
则:
的付里叶变换为
4.差分
5.频域微分:若 的付里叶变换为
则:
的付里叶变换为
3.离散傅里叶变换:
物理含义:对原信号做周期拓展可使其变成周期信号,DFT实际上是该周期信号的离散时间付里叶变换DTFT,不过只取了一个周期。DFT从数值上讲是对原信号的离散时间付里叶变换(DTFT)频谱的采样。
4.快速付里叶变换:
设正交函数集 为 ,信号为
所谓正交函数集上的分解就是找到一组系数 ,
使均方误差 最小。
的定义为:
如果 中的函数为实函数
则有:
如果 中的函数为复函数
则有:
第四章:连续周期信号的傅里叶级数
1.物理意义:付里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少
信与系统重点概念公式总结
信号与系统重点概念及公式总结:
第一章:概论
1.信号:信号是消息的表现形式。(消息是信号的具体内容)
2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:
1.复数的两种表示方法:设C为复数,a、b为实数。
常数形式的复数C=a+jb a为实部,b为虚部;
3.连续因果系统:
如果某系统在 时刻的输出 仅于 时刻前的输入 有关,而与 时刻以后的输入 无关,则该系统为因果系统。
4.连续稳定系统:
对有界输入信号的响应还是有界信号的系统是稳定系统。
5.卷积公式:
即为卷积公式,表示为:
物理意义:将信号分解为冲激信号之和,借助系统的冲激响应h(t),求解系统对任意激励信号的状态响应。
则:
求解方法:对于方程 ,有:
,所以
9.圆周卷积及处理方法:
园卷积与正常卷积不同,但在特殊处理之后,可以相同。
求解步骤:
第一步将K点的x(n)和L点的h(n)展成大于K+L-1点且最贴近的2M长序列。
第二步分别做展长后的序列的FFT变换得X(k)和H(k)
第三步将X(k)和H(k)相乘得Y(k)
第四步将Y(k)做IFFT变换得y(n)即可。
,则:
,则:
时域卷积等价与频域乘积的物理意义:从广义上看,任何一个系统(h(t))都可以看成是一个滤波器。因为它们均实现了一定的频率选择性。
第八章:离散信号的傅里叶变换:
1.离散周期信号的傅里叶变换:
2.离散时间付里叶变换及性质:
性质:1.线性
2.时移:若 的付里叶变换为
则:
的付里叶变换为
3.频移:若 的付里叶变换为
如采样点为偶数,相位谱为两段直线(保证线性相位),斜率为-(N-1)/2,零点分别为n=0,和n=N。前半段直线的起止点为0~N/2-1,后一段直线的起止点为N/2+1~N-1。要求N/2点处的幅度值必须为0,即H(N/2)=0,N/2点的相位可取0,这样可以保证h(n)为实数。
采样间隔为2/N,H(k)为复数,即:
由
令 则:
第九章:离散时间系统及卷积
1.离散时间系统的概念及模型:
离散时间系统是指输入及的关系可以采用一些数学模型来描述,如:
2.离散线性系统:
设某系统对输入 ,有输出 ,则该系统对输入 ,有输出 ,则该系统为线性系统。
3.离散时不变系统:
设某系统对输入 ,有输出 ,则该系统对输入 ,有输出 ,
3.单边指数:
幅度谱:
相位谱:
4.双边指数:
幅度谱:
相位谱:
5.矩形脉冲信号:F(w)
6.钟形信号:
7.符号函数:
幅度谱
相位谱
第七章:连续时间系统及卷积
1.连续线性系统:
设某系统,如果该系统对输入 有输出 ,则该系统对输入 ,有输出 。该系统为线性系统。
2.连续时不变系统:
设某系统,如该系统对输入 有输出 ,则该系统对输入 有输出 。该系统为时不变系统。
2.三角函数形式: 可以表示成:
其中, 被称为直流分量
被称为 次谐波分量。
3.一般形式:
或者:
,
4.指数形式:
第五章:连续信号的傅里叶变换
1.连续非周期信号的傅里叶变换及性质:
性质:
1.对称性:若 , 表示对 做付里叶变换,则:
2.线性:若 ,则
3.奇偶虚实性:若 为实函数,则 的实部 为偶函数,虚部 为奇函数;其幅度谱 为偶函数,相位谱 为奇函数:
如果在正交函数集 之外,不存在函数x(t) ,满足等式: ,则此函数集称为完备正交函数集。
一个信号所含有的功率恒等于此信号在完备正交函数集中各分量的功率总和,如果正交函数集不完备,那么信号在正交函数集中各分量的总和不等于信号本身的功率,也就是说,完备性保证了信号能量不变的物理本质。
4.均方误差准则进行信号分解:
3.FIR滤波器设计——频域采样法:
思路:根据需要的滤波器频谱,每隔一个频率间隔采一次样,在一个周期内,可得H(k),k=0,1,2,…N-1。然后对H(k)做逆DFT即可得到h(n)。
方法:如采样点数为奇数,相位谱为两段直线(保证线性相位),斜率均为-(N-1)/2,零点分别为n=0,和n=N。前一段直线的起止点为0~(N-1)/2,后一段直线的起止点为(N-1)/2~N-1。这样可以保证h(n)为实数,采样间隔为2/N,H(k)为复数,即:
窗函数是人们经过长期研究后找到的一些函数,用这些函数去乘IIR无限长冲激响应滤波器的h1(n),实现窗口截断,达到构造FIR有限长冲激响应滤波器h(n)的目的。
步骤:从理想特性的滤波器H()出发,经过离散付里叶反变换可以得到h1(n)
对h1(n)再乘一个窗函数w(n),可以得到:h(n)=h1(n)w(n)。其中,窗函数w(n)有两个作用,一个作用是对频谱的修整,另一个作用是做截断,使无限序列h1(n)变成有限长序列h(n),从而构成FIR滤波器。
则该系统为时不变系统。
4.离散因果系统:
如果某系统在 时刻的输出 仅于 时刻前的输入 有关,而与 时刻以后的输入 无关,则该系统为因果系统。
5.离散稳定系统:
对有界输入信号的响应还是有界信号的系统是稳定系统。
6.卷积:
当
7.离散互联系统的冲激响应(同连续)
8.离散卷积的时域和频域性质及对应关系:
如果: