有答案 全等三角形全章复习与巩固(基础)巩固练习

合集下载

《全等三角形》全章复习与巩固(提高)巩固练习

《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A =∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B 正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=1BE=1.27. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF=x,EF=y,则有x+1+3=x+y+2=3+3+2=8所以x=4,y=2,六边形ABCDEF的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4). 三.解答题 17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ). ∴ ∠EOA =∠FOA . ∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°)=120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ). ∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】 解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°, ∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°. ∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC . ∴AD 平分∠BAC . ∴∠2=21∠BAC = 3021 =15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点, ∴BN =NE ,且AN ⊥BE . ∴DN =NM .∴BN -DN =NE -NM , 即 BD =ME . ∵DB =DC , ∴ME =DC . 19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′; 则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ; 第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G , 过点F 作DH⊥DE 交DE 的延长线于点H , ∵∠B=∠E,∴180°﹣∠B=180°﹣∠E, 即∠CBG=∠FEH, 在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ), ∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).20.【解析】证明:问题1:21,2 ;问题2:(1)在AB上截取AG,使AG=AC,连接GD.(如图)∵AD平分∠BAC,∴∠1=∠2.在△AGD和△ACD中,AG AC12A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD≌△ACD.∴DG=DC.∵△BGD中,BD-DG<BG,∴BD-DC<BG.∵BG= AB-AG= AB-AC,∴BD-DC<AB-AC.(2)∵由(1)知△AGD≌△ACD,∴GD=CD,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°.∴∠5 =∠3.在△BGD和△ECD中,53DB DEDG DC=⎧⎪∠∠⎨⎪=⎩=,∴△BGD≌△ECD.∴∠B =∠6.∵△BFC中,∠BFC=180°-∠B-∠7 =180°-∠6-∠7 =∠3,∴∠BFC=60°.。

八年级数学上学期全等三角形全章复习与巩固(基础)知识讲解——含课后作业与答案

八年级数学上学期全等三角形全章复习与巩固(基础)知识讲解——含课后作业与答案

全等三角形全章复习与巩固(基础)责编:杜少波【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等. 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠ C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【高清课堂:388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【思路点拨】过点P作PE⊥BA于E,根据角平分线上的点到角的两边距离相等可得PE=PF,然后利用HL证明Rt△PEA与Rt△PFC全等,根据全等三角形对应角相等可得∠PAE=∠PCB,再根据平角的定义解答.【答案与解析】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.【答案与解析】证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB =5,AE =2,则EC 的长为( )A .2B .3C .5D . 2.52.(2015春•平顶山期末)请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是( )A.SAS B.A SA C.A AS D.SSS3. (2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.(2015春•成都校级期末)如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,CD=2cm ,则BD 的长是 .12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .14.(2016秋•扬中市月考)如图,AC ⊥AB ,AC ⊥CD ,要使得△ABC ≌△CDA .(1)若以“SAS ”为依据,需添加条件 ;(2)若以“HL ”为依据,需添加条件 .15. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.16. 在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于E.若AB =20cm ,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证: AC=AD19. 已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.(2015•北京校级模拟)感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3. 【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC ≌△DEF;故选D.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D;【解析】角平分线上的点到角两边的距离相等.6. 【答案】C;【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A;【解析】高线可以看成为直角三角形的一条直角边,进而用HL定理判定全等.8. 【答案】D;【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm;【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm .故答案为:4cm.12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14.【答案】AB=CD ;AD=BC【解析】(1)若以“SAS ”为依据,需添加条件:AB=CD ;△ABC ≌△CDA (SAS );(2)若以“HL ”为依据,需添加条件:AD=BC ;Rt △ABC ≌Rt △CDA (HL ).15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE =∠CAD ,∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD .在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABC ≌△AED . (AAS )∴AC =AD .∴∠ACD =∠ADC .18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB +∠1=∠CAB +∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF (AAS )∴AC =AD.19.【解析】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,(已知)∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD∴△BDE≌△CDF(HL)∴BE=CF20.【解析】解:感受理解EF=FD.理由如下:∵△ABC是等边三角形,∴∠BAC=∠BCA,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠ECA,∠BAD=∠BCE,∴FA=FC.∴在△EFA和△DFC中,,∴△EFA≌△DFC,∴EF=FD;学以致用:证明:如图1,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.。

有答案-全等三角形全章复习与巩固(基础)巩固练习

有答案-全等三角形全章复习与巩固(基础)巩固练习

欢迎回来初二数学2018年8月21日星期二一.选择题1. 如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52. 在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A. ∠AB. ∠BC. ∠CD. ∠B或∠C3. 如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________ 2cm ,若'''A B C△的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11. 如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则的面积为____.12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .14.如图,已知AB⊥BD, AB∥ED,AB =ED ,要说明ΔABC≌ΔEDC ,若以“SAS”为依据,还要添加的条件为______________;若添加条件AC =EC ,则可以用_______公理(或定理)判定全等.15. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.16. 在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于E.若AB =20cm ,则△DBE 的周长为_________.三.解答题17、已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.18、已知:如图,在ABC求证:AE=AF.19.已知:如图,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.20.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.求证: AC=AD21. 如图(1),AB⊥BD于点B,ED⊥BD于点D,点C是BD上一点.且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由;(2)如图(2),若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第(1)问中AC与BE的位置关系还成立吗?(注意字母的变化)22. 已知如图所示,PA=PB,∠1+∠2=180°,求证:OP平分∠AOB.1. 【答案】B;2. 【答案】A;3. 【答案】C;4. 【答案】D;5.【答案】D;6. 【答案】C;7. 【答案】A;8. 【答案】D;9. 【答案】10,16; 10.【答案】①②③;11.【答案】8; 12.【答案】①③13.【答案】1;14.【答案】BC=DC ,HL;15.【答案】45°;16.【答案】20cm;ab2。

人教版数学八年级上第十二章《全等三角形》巩固提高(Word版,含答案)

人教版数学八年级上第十二章《全等三角形》巩固提高(Word版,含答案)

实验中学人教版数学八年级上 第十二章《全等三角形》巩固提高题号 一 二 三 四 五 总分第分一.选择题(共 9 小题)1.如图,△ABC ≌△AED ,点 E 在线段 BC 上,∠1=40°,则∠AED 的度数是()A .70°B .68°C .65°D .60°2.如果△ABC ≌△DEF ,△DEF 的周长为 12,AB =3,BC =4,则 AC 的长为( )A .2B .3C .4D .53.如图,AB =AC ,D ,E 分别是 AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠CB .BE =CDC .AD =AED .BD =CE4.如图,D 、E 、F 分别为△ABC 边 AC 、AB 、BC 上的点,∠A =∠1=∠C ,DE =DF ,下面的结论一 定成立的是()A .AE =FCB .AE =DEC .AE +FC =ACD .AD +FC =AB5.如图,AB ⊥CD ,且 AB =CD ,E 、F 是 AD 上两点,CE ⊥AD ,BF ⊥AD .若 CE =8,BF =6,AD =10,则 EF 的长为()A .4B .72C .3D .526.如图,AD 是△ABC 的高,下列不能使△ABD ≌△ACD 的条件是()A .BD =CDB .∠BAC =90° C .∠B =∠CD .AB =AC7.如图,AB =DB ,∠ABD =∠CBE ,①BE =BC ,②∠D =∠A ,③∠C =∠E ,④AC =DE ,能使△ABC ≌△DBE的条件有()个.A .1B .2C .3D .48.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点 D 到 AB 的距离等于( )A .4B .3C .2D .19.如图,OB 平分∠MON ,A 为 OB 的中点,AE ⊥ON ,垂足为点 E ,EA =3,D 为 OM 上的一个动点,C 是 DA 的 延长线与 BC 的交点,BC ∥OM ,则 CD 的最小值为()A .6B .8C .10D .12二.填空题(共 10 小题)10.如图,△ABC ≌△DCB ,A 、B 的对应顶点分别为点 D 、C ,如果 AB =6cm ,BC =12cm ,AC =10cm ,DO =3cm ,那么 OC的长是 cm .11.如图,△ACB ≌△A ′CB ′,∠BCB ′=37°,则∠ACA ′的度数为 .12.如图,△ACF≌△ADE ,AC =6,AF =2,则 CE 的长 .13.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°, 则∠AOB 的度数为.14.如图所示,AB =AD ,∠1=∠2,在不改变图形的情况下,请你添加一个条件,使△ABC ≌△ADE , 则需添加的条件是.15.如图,AB ∥FC ,E 是 DF 的中点,若 AB =20,CF =12,则BD = .16.如图,AB ∥CD ,∠ABC 和∠DCB 的角平分线 BP ,CP 交于点 P ,过点 P 作PA ⊥AB 于 A ,交 CD 于 D .若 AD=10,则点 P 到 BC 的距离是 ,∠BPC = °.17.如图,△ABC 中,∠C =90°,AD 平分∠CAB 交 BC 于点 D ,DE ⊥AB 于点 E ,如果 AC =6cm ,BC =8cm ,那 么 EB 的长为cm ,DE 的长为cm .18.如图,∠C =90°,∠1=∠2,若 BC =10,BD =6,则 D 到 AB 的距离为.19.如图,△ABC 的周长是 12,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于 D ,且 OD =3,则△ABC 的面积是 .三.解答题(共 8 小题)20.如图,已知△ABE ≌△ACD .(1)如果 BE =6,DE =2,求 BC 的长;(2)如果∠BAC =75°,∠BAD =30°,求∠DAE 的度数.21.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数和 EC 的长.22.如图,△ACF ≌△ADE ,AD =9,AE =4,求 DF 的长.23.如图,在五边形 ABCDE ,∠BCD =∠EDC =130°,∠BAC =∠EAD ,AC =AD .(1)求证:△ABC ≌△AED ;(2)当∠BAE =120°时,求∠B 的度数.24.如图,在△ABC 中,∠BAC =90°,E 为边 BC 上的点,且 AB =AE ,D 为线段 BE 的中点,过点 E作 EF ⊥AE ,过点 A 作 AF ∥BC ,且 AF 、EF 相交于点 F .(1)求证:∠C =∠BAD ;(2)求证:AC =EF .25.如图,四边形 ABCD 中,∠B =90°,AB ∥CD ,M 为 BC 边上的一点,且 AM 平分∠BAD ,DM 平分∠ADC .求 证:(1)AM ⊥DM ;(2)M 为 BC 的中点.26.如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分 BC ,DE ⊥AB 于 E ,DF ⊥AC 于 F .(1)说明 BE =CF 的理由;(2)如果 AB =5,AC =3,求 AE 、BE 的长.27.如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于 E ,F 在 AC 上,BD =DF ,证明:(1)CF =EB .(2)AB =AF +2EB .参考答案与试题解析一.选择题(共9 小题)1.【分析】依据△ABC≌△AED,即可得到∠AED=∠B,AE=AB,∠BAC=∠EAD,再根据等腰三角形的性质,即可得到∠B 的度数,进而得出∠AED 的度数.【解答】解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE 中,∠B=70°,∴∠AED=70°,故选:A.【点评】本题考查的是全等三角形的性质、等腰三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.【分析】根据全等三角形的周长相等求出△ABC 的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF 的周长为12,∴△ABC 的周长为12,又AB=3,BC=4,∴AC=5,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.3.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A 为公共角,A、如添∠B=∠C,利用ASA 即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添加AD=AE,利用SAS 即可证明△ABE≌△ACD;D、如添BD=CE,可证明AD=AE,利用SAS 即可证明△ABE≌△ACD;故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【分析】由三角形的外角性质和已知条件得出∠CDF=∠AED,由AAS 证明△ADE≌△CFD 得出AE=CD,AD =CF,得出AE+FC=CD+AD=AC,即可得出结论.【解答】解:∵∠A=∠1,∠CDE=∠1+∠CDF=∠A+∠AED,∴∠CDF=∠AED,在△ADE 和△CFD 中,A CADE CDFDE EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFD(AAS),∴AE=CD,AD=CF,∴AE+FC=CD+AD=AC,故选:C.【点评】本题考查了全等三角形的判定与性质、三角形的外角性质;熟练掌握三角形的外角性质,证明三角形全等是解题的关键.5.【分析】由题意可证△ABF≌△CDF,可得BF=DE=6,CE=AF=8,可求EF 的长.【解答】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDF(AAS)∴BF=DE=6,CE=AF=8,∵AE=AD﹣DE=10﹣6=4∴EF=AF﹣AE=8﹣4=4,故选:A.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.6.【分析】添加AB=AC,∠B=∠C,可得△ABC 是等腰三角形,再根据三线合一的性质可得BD=CD,再利用SSS 定理可判定△ABD≌△ACD.【解答】解:当∠B=∠C 时,可得AB=AC,△ABD≌△ACD,或直接添加AB=AC,∵AD 是△ABC 的边BC 上的高,AB=AC,∴BD=CD,∵在△ABD 和△ADC 中AD ADBD CDAB AC=⎧⎪=⎨⎪=⎩,∴△ABD≌△ACD(SSS),或直接添加BD=CD,故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:∵AB=DB,∠ABD=∠CBE,∴∠ABC=∠DBE,∵BE=BC,利用SAS 可得△ABC≌△DBE;∵∠D=∠A,利用ASA 可得△ABC≌△DBE;∵∠C=∠E,利用AAS 可得△ABC≌△DBE;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【分析】过点D 作DE⊥AB 于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D 作DE⊥AB 于E,∵AC=8,DC=13 AD,∴CD=8×113+=2,∵∠C=90°,BD 平分∠ABC,∴DE=CD=2,即点D 到AB 的距离为2.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.【分析】根据两条平行线之间的距离可知当CD⊥OM 时,CD 取最小值,利用全等三角形的判定和性质得出AC =AD=AE=3,进而解答即可.【解答】解:由题意可得,当CD⊥OM 时,CD 取最小值,∵OB 平分∠MON,AE⊥ON 于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,∵A 为OB 的中点,∴AB=AO,在△ADO 与△ABC 中,B DOAAB AOBAC DAO∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故选:A.【点评】此题考查全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD=AE=3.二.填空题(共10 小题)10.【分析】根据全等三角形的性质得到DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,求出OB,根据等腰三角形的性质解答.【解答】解:∵△ABC≌△DCB,∴DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,∴OB=DB﹣DO=7cm,∠OBC=∠OCB,∴OC=OB=7cm,故答案为:7.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等,对应角相等是解题的关键.11.【分析】根据全等三角形的性质得到∠ACB=∠A′CB′,结合图形计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB′=37°,∴∠ACA′=37°,故答案为:37°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.【分析】CE 不是全等三角形的对应边,但它通过全等三角形的对应边转化为CE=AC﹣AE,可利用已知的AC 与AE 的差求得.【解答】解:∵△ACF≌△ADE,∴AE=AF,∴AC﹣AE=AC﹣AF,∴CE=AC﹣AF=6﹣2=4.故答案为:4.【点评】本题主要考查了全等三角形的对应边相等.难点在于根据图形得到线段AE=AF,也是解决本题的关键.13.【分析】据到角的两边的距离相等的点在平分线上可得OP 是∠AOB 的角平分线,可得∠AOP=∠BOP,即可求得∠AOB.【解答】解:∵点P 是∠AOB 内一点,PE⊥OA,PF⊥OB,垂足分别为E、F,若PE=PF,∴OP 是∠AOB 的角平分线.∴∠AOP=∠BOP.∴在Rt△OPE 中,∠AOP=180°﹣∠OEP﹣∠OPE=180°﹣90°﹣72°=18°,∴∠BOP=18°∠AOB=∠AOP+BOP=18°+18°=36°故答案为:36°【点评】此题主要考查了角平分线的性质和判定,关键是掌握角的平分线上的点到角的两边的距离相等.14.【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵AB=AD,∴根据SAS 只要添加AC=AE 即可,根据ASA 只要添加∠B=∠D 即可,根据AAS 只要添加∠C=∠E 即可.故答案为:AC=AE 或∠B=∠DA 或∠ACB=∠AED【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E 是DF 的中点,所以根据ASA 得出△ADE ≌△CFE,从而得出AD=CF,已知AB,CF 的长,那么BD 的长就不难求出.【解答】解:∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFCDE EFAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE≌△CFE(ASA),∴AD=CF,∵AB=20,CF=12,∴BD=AB﹣AD=20﹣12=8.故答案为:8.【点评】本题主要考查全等三角形的判定和性质,平行线的性质,解题的关键在于求证△ADE≌△CFE.16.【分析】作PH⊥BC 于H,根据角平分线的性质得到PA=PH,PD=PH,得到PA=PD;证明Rt△ABP≌Rt△HBP,根据全等三角形的性质计算即可.【解答】解:作PH⊥BC 于H,∵AB∥CD,PA⊥AB,∴PA⊥CD,∵BP 是∠ABC 的平分线,PA⊥AB,PH⊥BC,∴PA=PH,同理,PD=PH,∴PA=PD=5,则点P 到BC 的距离为5,在Rt△ABP 和Rt△HBP 中,PA PHPB PB=⎧⎨=⎩∴Rt△ABP≌Rt△HBP(HL)∴∠APB =∠HPB , 同理,∠CPH =∠CPD , ∴∠BPC =∠HPB +∠HPC =12×180°=90°, 故答案为:5;90.【点评】本题考查的是角平分线的性质、平行线的性质,角的平分线上的点到角的两边的距离相等.17.【分析】依据△ACD ≌△AED (AAS ),即可得到 AC =AE =6cm ,CD =ED ,再根据勾股定理可得AB 的长,进而得出 EB 的长;设 DE =CD =x ,则 BD =8﹣x ,依据勾股定理可得,Rt △BDE 中,DE 2+BE 2=BD 2,解方程即可得到 DE 的长.【解答】解:∵AD 平分∠CAB ,∴∠CAD =∠EAD , 又∵∠C =90°,DE ⊥AB , ∴∠C =∠AED =90°, 又∵AD =AD ,∴△ACD ≌△AED (AAS ),∴AC =AE =6cm ,CD =ED ,∵Rt △ABC 中,AB 22AC BC 10(cm ),∴BE =AB ﹣AE =10﹣6=4(cm ), 设 DE =CD =x ,则 BD =8﹣x , ∵Rt △BDE 中,DE 2+BE 2=BD 2,∴x 2+42=(8﹣x )2, 解得 x =3, ∴DE =3cm , 故答案为:4,3.【点评】本题主要考查了角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解 是解决问题的关键.18.【分析】由已知条件首先求出线段 CD 的大小,接着利用角平分线的性质得点 D 到边 AB 的距离等于 CD 的大小, 问题可解.【解答】解:∵BC =10,BD =6,∴CD =4,∵∠C =90°,∠1=∠2,∴点 D 到边 AB 的距离等于 CD =4, 故答案为:4.【点评】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;题目较为简单,属于基础题.19.【分析】过点 O 作 OE ⊥AB 于 E ,作 OF ⊥AC 于 F ,根据角平分线上的点到角的两边的距离相等可得 OE =OD=OF ,然后根据三角形的面积列式计算即可得解.【解答】解:如图,过点 O 作 OE ⊥AB 于 E ,作 OF ⊥AC 于 F ,∵OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE =OD =OF =3,∴△ABC的面积=12×12×3=18. 故答案为:18.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键. 三.解答题(共 8 小题)20.【分析】(1)根据全等三角形的性质,可得出 BE =CD ,根据 BE =6,DE =2,得出 CE =4,从而得出 BC 的 长;(2)根据全等三角形的性质可得出∠BAE =∠CAD ,即可得出∠BAD =∠CAE ,计算∠CAD ﹣∠CAE 即得出答案.【解答】解:(1)∵△ABE ≌△ACD ,∴BE =CD ,∠BAE =∠CAD , 又∵BE =6DE =2,∴EC =DC ﹣DE =BE ﹣DE =4,∴BC =BE +EC =10;(2)∠CAD=∠BAC﹣∠BAD=75°﹣30°=45°,∴∠BAE=∠CAD=45°,∴∠DAE=∠BAE﹣∠BAD=45°﹣30°=15°.【点评】本题考查了全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等.21.【分析】根据三角形的内角和等于180°求出∠ACB 的度数,然后根据全等三角形对应角相等即可求出∠DFE,全等三角形对应边相等可得EF=BC,然后推出EC=BF.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.【点评】本题主要考查了全等三角形对应边相等,全等三角形对应角相等的性质,三角形的内角和定理,比较简单,熟记性质是解题的关键.22.【分析】DF 不是全等三角形的对应边,但它通过全等三角形的对应边转化为AD=AC,而使AF+DF =AC﹣AE 可利用已知的AD 与AE 的差求得.【解答】解:∵△ACF≌△ADE,∴AE=AF,AD=AC,∴AD﹣AF=AD﹣AE,∴DF=AD﹣AF=AD﹣AE=9﹣4=5.【点评】本题主要考查了全等三角形的对应边相等.难点在于根据图形得到线段AE=AF,也是解决本题的关键.23.【分析】(1)由“ASA”可证△ABC≌△AED;(2)由全等三角形的性质和五边形内角和,可求∠B 的度数.【解答】证明:(1)∵AC=AD∴∠ACD=∠ADC∵∠BCD=∠EDC∴∠ACB=∠ADE,且AC=AD,∠BAC=∠EAD∴△ABC≌△AED(ASA)(2)∵△ABC≌△AED∴∠B=∠E∵∠B+∠E+∠BAE+∠BCD+∠EDC=540°,且∠BAE=120°,∠BCD=∠EDC=130°∴∠B=∠E=80°【点评】本题考查了全等三角形的判定和性质,多边形内角和,熟练运用全等三角形的判定是本题的关键.24.【分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD;(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.【解答】证明:(1)∵AB=AE,D 为线段BE 的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠FAE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠FAE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.25.【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM 平分∠BAD,DM 平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即 AM ⊥DM ;(2)作 NM ⊥AD 交 AD 于 N ,∵∠B =90°,AB ∥CD ,∴BM ⊥AB ,CM ⊥CD ,∵AM 平分∠BAD ,DM 平分∠ADC ,∴BM =MN ,MN =CM ,∴BM =CM ,即 M 为 BC 的中点.【点评】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相 等是解题的关键.26.【分析】(1)连接 BD ,CD ,由 AD 平分∠BAC ,DE ⊥AB 于 E ,DF ⊥AC 于 F ,根据角平分线的 性质,即可得 DE =DF ,又由 DG ⊥BC 且平分 BC ,根据线段垂直平分线的性质,可得 BD =CD ,继 而可证得 Rt △BED ≌Rt △CFD ,则可得 BE =CF ;(2)首先证得△AED ≌△AFD ,即可得 AE =AF ,然后设 BE =x ,由 AB ﹣BE =AC +CF ,即可得方程5﹣x =3+x ,解方程即可求得答案.【解答】(1)证明:连接 BD ,CD ,∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠BED =∠CFD =90°,∵DG ⊥BC 且平分 BC ,∴BD =CD ,在 Rt △BED 与 Rt △CFD 中,CD BDDF DE =⎧⎨=⎩,∴Rt △BED ≌Rt △CFD (HL ),∴BE =CF ;(2)解:在△AED 和△AFD 中,90AED AFD EAD FAD AD AD ⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△AED ≌△AFD (AAS ),∴AE =AF ,设 BE =x ,则 CF =x ,∵AB =5,AC =3,AE =AB ﹣BE ,AF =AC +CF ,∴5﹣x =3+x , 解得:x =1,∴BE =1,AE =AB ﹣BE =5﹣1=4.【点评】此题考查了角平分线的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,解 题的关键是准确作出辅助线,利用方程思想与数形结合思想求解.27.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点 D 到 AB 的距离=点D 到 AC 的距离即 CD =DE .再根据 Rt △CDF ≌Rt △EDB ,得 CF =EB ;(2)利用角平分线性质证明 Rt △ADC ≌Rt △ADE ,AC =AE ,再将线段 AB 进行转化.【解答】证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC ,在 Rt △CDF 和 Rt △EDB 中,BD DFDC DE =⎧⎨=⎩∴Rt △CDF ≌Rt △EDB (HL ).∴CF =EB ;(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE .在 Rt △ADC 与 Rt △ADE 中,CD DEAD AD=⎧⎨=⎩,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D 到AB 的距离=点D 到AC 的距离,即CD=DE,是解答本题的关键.。

北师大版八年级数学下册 《三角形的证明》全章复习与巩固--巩固练习(基础) 含答案解析

北师大版八年级数学下册 《三角形的证明》全章复习与巩固--巩固练习(基础)  含答案解析

《三角形的证明》全章复习与巩固(基础)【巩固练习】一、选择题1.△ABC中,AB=AC,BD 平分∠ABC交AC 边于点D,∠BDC=75°,则∠A的度数是()A.35°B.40°C.70°D.110°2.三角形的三个内角中,锐角的个数不少于()A. 1 个B. 2 个C. 3个D.不确定3.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,其中一定可以拼成的图形的是()A.①②③B.②③④C.①③④D.①②④4.如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A. AD=AE B.∠AEB=∠ADC C. BE=CD D. AB=AC5.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD 是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+26.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm 或14cm D.以上都不对7.有两个角和其中一个角的对边对应相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对8.面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对二、填空题9.如果等腰三角形的一个底角是80°,那么顶角是_________ 度.10.△ABC中,∠A是∠B的2 倍,∠C比∠A+∠B还大12°,那么∠B=_________ 度.11.(2015 秋•洛阳校级月考)如果a,b,c 为三角形的三边,且(a﹣b)+(a﹣c)+|b2 2﹣c|=0,则这个三角形是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE 交于点H,请你添加一个适当的条件:_________ ,使△AEH≌△CEB.13.等腰直角三角形一条边长是1 cm,那么它斜边上的高是_________ .14.在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:_________ .15.在△ABC中,边AB、BC、AC 的垂直平分线相交于P,则PA、PB、PC 的大小关系是_________ .16.已知△ABC中,∠A=90°,角平分线BE、CF 交于点O,则∠BOC=_________ .三、解答题17.(2015 秋•定州市期中)如图,四边形ABCD 中,∠B=90°,AB∥CD,M 为BC 边上的一点,且AM 平分∠BAD,DM 平分∠ADC.求证:(1)AM⊥DM;(2)M 为BC 的中点.18.(2016 秋•太和县期中)如图:△ABC中,∠ABC和∠ACB的平分线交于F 点,过F 点作DE∥BC,分别交AB、AC 于点D、E.求证:(1)BD=DF.(2)△ADE的周长等于AB+AC.19. 如图,D,E 是△ABC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.20.(2015春•建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为(2)在图2中,当BA=BD=10m时,△ABD的周长为(3)在图3中,当DA=DB时,求△ABD的周长.;;【答案与解析】一.选择题1.【答案】B;【解析】解:设∠A的度数是x,则∠C=∠B=∵BD平分∠ABC交AC边于点D,∴∠DBC=,∴++75=180°,∴x=40°.∴∠A的度数是40°.故选B.2.【答案】B;【解析】解:由三角形内角和为180度可知:三角形的三个内角中,锐角的个数不少于2个.故选B.3.【答案】D;【解析】解:两个全等的直角三角形,一定可以拼成平行四边形(直角边重合,两直角不邻),等腰三角形(直角边重合,两直角相邻),以及矩形(斜边重合);若为等腰直角三角形,则可拼成正方形;所以①②④一定可以拼接而成,③不一定拼成.4.【答案】B;【解析】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;5.【答案】C;【解析】解:∵AD 是△ABC 的角平分线,DE⊥AB ,∠C=90°,∴CD=DE=1, 又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2,∴BC=CD+BD=1+2=3. 故选 C .6.【答案】C ;【解析】解:当 4cm 为等腰三角形的腰时,三角形的三边分别是 4cm ,4cm ,5cm 符合三角形的三边关系, ∴周长为 13cm ;当 5cm 为等腰三角形的腰时,三边分别是,5cm ,5cm ,4cm ,符合三角形的三边关系, ∴周长为 14cm , 故选 C.7.【答案】A ;【解析】解:有两个角和其中一个角的对边对应相等, 符合“角角边”判定方法, 所以,两个三角形必定全等. 8.【答案】C ;【解析】解:因为两个面积相等的三角形,也就是底乘高相等;但是一个数可以有许多不 同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角 形不一定全等. 二、填空题9.【答案】 20;【解析】解:∵三角形是等腰三角形, ∴两个底角相等,∵等腰三角形的一个底角是 80°, ∴另一个底角也是 80°, ∴顶角的度数为 180°﹣80°﹣80°=20°. 10.【答案】28;【解析】解:设∠B=x ,则∠A=2x ,∠C=3x+12°,∵∠A+∠B+∠C=180°,∴x+2x+3x+12°=180°,解得 x=28°. 故答案为:28.11.【答案】等边三角形;【解析】解:∵(a ﹣b ) +(a ﹣c ) +|b ﹣c|=0,22 ∴a ﹣b=0,a ﹣c=0,b ﹣c=0, ∴a=b ,a=c ,b=c , ∴a=b=c ,∴这个三角形是等边三角形; 故答案为:等边三角形.12.【答案】AH=CB或EH=BE或AE=CE;【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.13.【答案】cm或cm;【解析】解:(1)当1cm是斜边,则其高就是斜边1的一半是cm;(2)当其直角边是1cm时,根据勾股定理得其斜边是cm,再根据其高是斜边的一半得高是cm;所以它斜边上的高是cm或cm.14.【答案】在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.【解析】解:把①②作为条件③作为结论,∵AB=AD,∠BAC=∠DAC,又∵AC=AC,∴△ABC≌△ADC,∴BC=BD.故答案为:在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.15.【答案】PA=PB=PC;【解析】∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.16.【答案】135°;【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为135°.三、解答题17.【解析】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.18.【解析】证明:(1)∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF;(2)由(1)证得DB=DF,同理EC=EF.∵DE=DF+EF,∴DE=BD+CE,∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.19.【解析】解:因为AD=DE=AE,所以∠ADE=∠DEA=∠DAE=60°,所以∠ADB=120°,∠AEC=120°.因为BD=AD,AE=EC,所以∠B=∠BAD=(180°﹣∠ADB)=(180°﹣120°)=30°,∠C=∠CAE=(180°﹣∠AEC)=(180°﹣120°)=30°.所以∠BAC=∠BAD+∠DAE+∠CAE=30°+60°+30°=120°.20.【解析】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC+AC=AD,222即x+8=(6+x),222解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。

17《三角形》全章复习与巩固—知识讲解(提高)

17《三角形》全章复习与巩固—知识讲解(提高)

17《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11).2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC <AB+AC 的理由吗?(2)若AB =5,AC =6,BC =7,你能写出OB+OC 的取值范围吗?【答案与解析】解:(1)如图,延长BO 交AC 于点E ,根据三角形的三边关系可以得到,在△ABE 中,AB+AE >BE ;在△EOC 中,OE+EC >OC ,两不等式相加,得AB+AE+OE+EC >BE+OC .由图可知,AE+EC =AC ,BE =OB+OE .所以AB+AC+OE >OB+OC+OE ,即OB+OC <AB+AC .(2)因为OB+OC >BC ,所以OB+OC >7.【总结升华】充分利用三角形三边关系的性质进行解题.类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

《三角形》全章复习与巩固(培优篇)(含答案)

《三角形》全章复习与巩固(培优篇)(含答案)

《三角形》全章复习与巩固(培优篇)(含答案)一、单选题1.如图,ZkABC的面积为3()C∏Λ AE=ED, BD=2DC,则图中四边形EDCF的面积等于()A. 8.5B. 8C. 9.5D. 92.如图,41/,。

“平分/^位>和/88,若/8 = 34。

,/0 = 42。

,则NΛ∕=()A. 34oB. 38oC. 40oD. 42°3.已知MBC中,CD是A8边上的高,C£平分ZAC8.若NA =机。

,ZB = ∕ιo, m≠n,则NQCE的度数等于()A. -m oB. -n oC. ,(〃?。

一〃。

)D. -∖m o-n o2 2 2v f2l4.如图,AD∕∕BC,N力=NA8C,点E是边力。

上一点,连接4E交5C的延长线于点儿点尸是边A8上一点,使得NFBE= ∕FEB,作NFE"的角平分线EG交5〃于点G.若N8EG=40。

,则NOE”的度数为()A. 50oB. 75oC. 100oD. 125°5.如图,在第1个4A∕3C中,ZB=3()o, A1B=CB,在边A/3上任取一点力,延长C4/到使A∕A2=A∕O,得到第2个△ A lΛ2D i在边4。

上任取一点E,延长4/2到4,使A2A3=A2E,得到第3个AA2λ3E,…按此做法继续下去,则第2021个三角形中以A2O2O为顶点的底角度数是()7 .如图,在四边形A5CO 中,AD//BC,若ND45的角平分线A£交。

于E,连接8E,且8E 边平分NABC,得到如下结 论:(l)ZAEB=90o ;(2)I3C+AD=AB ;③BE=^CD ; ®BC=CE-⑤若 A8=x,则 BE 的取值范围为 0<3EVx,那么以 8 .如图,已知AB = AC,点。

、E 分别在AC 、A8上且ΛE = AD,连接EC, BD, EC 交BD 于点、M,连接AM,过点A 分别 作AE_LC£AG_L8O,垂足分别为F 、G,卜.列结论:①.EBM 咨&DCM ;②NEMB = NFAG ;③M4平分NEMD ;④如果 S.BEM =S,ADM ,则E 是的中点;其中正确结论的个数为( )9 .“经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:A. (!) 2020∙75oB.弓)2020∙65oC. (;) 2021 ∙75D. (!) 2021 ∙6506.如图所示,锐角^ABC 中,D, E 分别是AB, AC 边上的点,2∖ADC/ z √iOC, ∆AEB^ ^AEB ,, 且C'D∕∕EB f "BC, BE 、CD 交于点F,若NBAO40。

《三角形的证明》全章复习与巩固--知识讲解(提高)

《三角形的证明》全章复习与巩固--知识讲解(提高)

《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础. 要点二、直角三角形 1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ) 要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线. 要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围; ②利用线段的垂直平分线定理可解决两条线段的和距离最短问题. 要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 3.如何用尺规作图法作出角平分线 要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD . 【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE , 即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形, ∴AC=CD ,CE=CB , ∵在△ACE 与△DCB 中, ,AC DCACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ), ∴AE=BD , ∠CAE=∠CDB ; ∵∠AFC=∠DFH ,∠FAC+∠AFC=90°, ∴∠DHF=∠ACD=90°, ∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点. 举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . (1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BEBF BF=⎧⎨=⎩ ∴△BCF ≌△BEF , ∴CF=EF ; ∵△ABC ≌△DBE , ∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( ) ①两个锐角对应相等的两个直角三角形全等, ②斜边及一锐角对应相等的两个直角三角形全等, ③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. A.1 B.2 C.3 D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可; 【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确; 所以,正确的说法个数是3个. 故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景: 在△ABC 中,AB 、BC 、AC 三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。

备战中考数学(苏版五四学制)巩固复习第十八章全等三角形(含解析)

备战中考数学(苏版五四学制)巩固复习第十八章全等三角形(含解析)

备战中考数学(苏版五四学制)巩固复习第十八章全等三角形(含解析)一、单选题1.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,依照(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均能够2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DC C.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D3.如图,△ABC≌△EDF,∠FED=70°,则∠A的度数是()A.50°B.70°C.90°D.20°4.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△AC D的条件是()A.AB=AC B.∠B AC=90°C.BD=AC D.∠B=45°5.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠26.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为()A.B.1C.2D.57.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE= FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对8.如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DA B=30°,以下三个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG=BG.其中正确的个数为()A.1B.2C.3D.49.如图,AD平分∠BAC,AB=AC,那么判定△ABD≌△ACD的理由是()A.SSSB.SASC.ASAD.AAS10.在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′ B.∠B =∠B′,∠C=∠C′,AB=A′B′C.∠A=∠A′,AB=A′B′,BC=B′C′ D.AB =A′B′,BC=B′C′,AC=A′C11.下列图形是全等三角形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形 D.一个钝角相等的两个等腰三角形12.如图,已知AB=AD,添加一个条件后,仍旧不能判定△ABC≌△ADC 的是()A.CB=CDB.∠BA C=∠DACC.∠BCA=∠D CAD.∠B=∠D=90°二、填空题13.如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3=________°.14.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,那个条件是________.15.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC 上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF =5cm,则AE=________cm.16.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=F N,②CD=DN,③∠FAN=∠EAM.④△ACN≌△ABM.其中正确的有________.17.要用反证法证明命题“一个三角形中不可能有两个角是直角”,第一应假设那个三角形中________.18.如图,在△ABC中,D,E分别是AB,AC的中点,延长DE至F,使EF = DE,若AB = 10,BC = 8,则四边形BCFD的周长为________19.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为__ ______20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE =CF,若BD=10,BF=3.5,则EF=________.21.若△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是________,∠ACB的对应角是________.三、解答题22.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.四、综合题23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直截了当写出AB+AC与AE之间的等量关系.24.在△ABC中,∠ACB=90°,AC=BC,直线MN通过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC ≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣B E;(3)当直线MN绕点C旋转到图(3)的位置时,请直截了当写出D E,AD,BE之间的等量关系.25.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,请你添加一个条件使∠DAB=∠EAC.(1)你添加的条件是________;(2)依照上述添加的条件证明∠DAB=∠EAC.答案解析部分一、单选题1.【答案】B【考点】全等三角形的判定【解析】【分析】依照三角形全等的判定中的SAS,即两边夹角.做题时依照已知条件,结合全等的判定方法逐一验证,要由位置选择方法。

新编:人教版八年级上册数学第12章《全等三角形小结与复习》

新编:人教版八年级上册数学第12章《全等三角形小结与复习》

图7
达标测试
1.如图8,点M是AB的中点,∠1=∠2,∠C=∠D,判定 △AMC≌△BMD的方法是(
D)
图8
A.SAS
C. SSS
B. ASA
D. AAS
2.下列方法中,不能判定两个三角形全等的是( D ) A. SAS B. ASA C. SSS D. SSA
3、如图,已知AD∥BC,AE=CF,根据所给条件能否证明
课堂练习 1.如图1,△AOC≌△BOD,则
∠A和∠B, ∠C和∠D,∠AOC和∠BOD , 对应角是__________________________________________
AO和BO,OC和OD,AC和BD 对应边是__________________________________________ 。
C O A
B
B
图1
D
图2
A
3.如图3所示,图中两个三角形能完全重合,下列写法正确的 是(
B)
B.△ABE≌△ABF D.△ABE≌△FAB B
F
A E
A.△ABE≌△AFB C.△ABE≌△FBA
基础知识
(二)全等三角形的性质
1.全等三角形的对应边相等 ;
2.全等三角形的对应角 相等 ;
3.全等三角形的对应中线.对应角平分线.
课堂练习
1. 下列条件不能判定两个三角形全等的是(C ) A. 有两边和夹角对应相等; B. 有三边分别对应相等;
C. 有两边和一角对应相等;
D. 有两角和一边对应相等。
2. 下列条件能判定两个三角形全等的是( )
D
A. 有三个角相等;
C. 有一条边和一个角相等;
B. 有一条边和一个角相等;

全等三角形经典例题

全等三角形经典例题

全等三角形经典例题(全等三角形的概念和性质)类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角 类型三、全等三角形性质3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,那么DAE ∠等于( ).A 。

60° B 。

45° C 。

30° D.15°(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE,所以∠FAE=∠DAE ,又因为60BAF ∠=︒,所以∠FAE =∠DAE =90602︒-︒=15°.(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________。

(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题。

2022年人教版初中数学8年级上册全等三角形判定二(SSS,AAS)(基础)巩固练习及答案

2022年人教版初中数学8年级上册全等三角形判定二(SSS,AAS)(基础)巩固练习及答案

2022年人教版初中数学8年级上册【巩固练习】一、选择题1.(2020•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45° B.∠BAC=90° C.BD=AC D.AB=AC2.如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3.下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对5.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC6.如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED+AB=DBD.DC=CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.如图,已知:∠1=∠2,∠3=∠4,要证BD=CD,需先证△AEB≌△AEC,根据是,再证△BDE≌△,根据是.9.(2020秋•大同期末)如下图∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是.10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌.三、解答题13.(2020•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.14.如图,已知D、E、B三点共线,AE=CE,AE⊥CE,∠D=∠B=90°.求证:CD+AB=DB.15.如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.【答案与解析】一.选择题1.【答案】D;【解析】解:当AB=AC时,△ABD≌△ACD,∵AD是△ABC的边BC上的高,AB=AC,∴BD=CD,∵在△ABD 和△ADC 中,∴△ABD≌△ACD(SSS).2.【答案】D;【解析】连接AC 或BD 证全等.3.【答案】D;4.【答案】C;【解析】△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5.【答案】A;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA='OA ,OB='OB ,再由对顶角相等可证.6.【答案】D;【解析】△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.二.填空题7.【答案】66°;【解析】可由SSS 证明△ABC≌△DCB,∠OBC=∠OCB=82412︒=︒,所以∠DCB=∠ABC=25°+41°=66°.8.【答案】ASA,CDE,SAS;【解析】△AEB ≌△AEC 后可得BE=CE.9.【答案】∠B=∠C.【解析】解:由图可知,只能是∠B=∠C,才能组成“AAS”.故填∠B=∠C.10.【答案】56°;【解析】∠CBE=26°+30°=56°.11.【答案】20°;【解析】△ABE≌△ACD(SAS).12.【答案】△DCB,△DAB;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC 和△DEC 中,,∴△ABC≌△DEC(AAS).14.【解析】证明:∵AE⊥CE,∴∠AEB+∠CED=90°,又∵∠B=90°∴∠A+∠AEB=90°,∴∠A=∠CED,在△AEB 与△ECD 中,A CEDB DAE CE ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△AEB≌△ECD(AAS)∴AB=DE ,BE=CD∵DE+BE=DB∴CD+AB=DB15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,在△ABE 和△DCE 中ABC DCB AB DC BE CE =∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△DCE(SAS)∴AE=DE.全等三角形的判定二(SSS,AAS)(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、已知:如图,△RPQ 中,RP=RQ,M 为PQ 的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM=QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM≌△RQM(SSS).∴∠PRM=∠QRM(全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中.把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC,在△ACD 与△BDC 中()AD BC AC BD CD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”2、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC=AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C、B 分别作AD 及AD 的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED 和△CFD 中BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF3、(2020春•雅安期末)如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的一个条件有()种.A.1B.2C.3D.4【思路点拨】本题要证明△ABC≌△A′B′C′,已知了AB=A′B′,∠A=∠A′,可用的判别方法有ASA,AAS,及SAS,所以可添加一对角∠B=∠B′,或∠C=∠C′,或一对边AC=A′C′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A′C′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA);若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS);若添加AC=A′C′,证明:在△ABC 和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH≌△DFH(SSS)∴∠DEH=∠DFH.【总结升华】证明△DEH≌△DFH,就可以得到∠DEH=∠DFH,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS”定理就能解决问题.举一反三:【变式】(2020秋•紫阳县期末)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE 与△AOF 中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.【巩固练习】一、选择题1.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB.BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB.△BDA≌FCEC.△DEC≌CADD.△BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是()A.AE=ECB.∠D=∠AC.BE=BCD.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(2020•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(2020春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①AB=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF的长是___________.12.在△ABC 和△DEF 中(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2020秋•景洪市校级期中)如图,O 为码头,A,B 两个灯塔与码头的距离相等,OA,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.15.如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E,过E 的直线分别交DC、AB 于C、B 两点.求证:AD=AB+DC.【答案与解析】一、选择题1.【答案】C;2.【答案】D;3.【答案】D;【解析】满足判定定理AAS的只有D选项.4.【答案】B;【解析】C选项和D选项都可以由SSS定理证全等.5.【答案】D;【解析】解:A、∵在△ABD和△ACD中,∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中,∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】BC=ED.8.【答案】④【解析】三个角对应相等不能判定三角形全等.9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】13;【解析】ASA类型3种,AAS类型6种,SAS类型3种,SSS类型一种,共13种.三、解答题13.【解析】解:此时轮船没有偏离航线.理由:由题意知:假设轮船在D处,则DA=DB,AO=BO,在△ADC和△BDC中,,∴△ADO≌△BDO(SSS),∴∠AOD=∠BOD,即DO 为∠AOB 的角平分线,∴此时轮船没有偏离航线.14.【解析】证明:∵CD AB⊥∴90BDC CDA ∠=∠=︒∵45ABC ∠=︒∴45DCB ABC ∠=∠=︒∴DB DC=∵BE AC⊥∴90AEB ∠=︒∴90A ABE ∠+∠=︒∵90CDA ∠=︒∴90A ACD ∠+∠=︒∴ABE ACD∠=∠在BDF ∆和CDA ∆中BDC CDADB DC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆(AAS)∴BF AC =.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F,∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA,∠DAE=∠EAF=21∠BAD∴∠ADE=∠F,∠EDA+∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE ∴△ADE≌△AFE (AAS)∴DE=EF,AD=AF在△DCE 与△FBE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FE DE F CDE ∴△DCE≌△FBE(ASA)∴DC=BF,∴AD=AB+DC.全等三角形的判定二(SSS,AAS)(提高)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB,''A C =AC,''B C =BC,则△ABC≌△'''A B C.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SASSSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、如图,在△ABC 和△ADE 中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE(全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质.要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA 和△CAE,然后证这两个三角形全等.【变式】(2020•静海县模拟)已知点A、D、C、F 在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是.【答案】AC=DF.解:理由是:∵在△ABC 和△DEF中,∴△ABC≌△DEF(SSS),故答案为:AC=DF.类型二、全等三角形的判定4——“角角边”2、已知:如图,∠ACB=90°,AC=BC,CD 是经过点C 的一条直线,过点A、B 分别作AE⊥CD、BF⊥CD,垂足为E、F.求证:CE=BF【答案与解析】证明:∵AE⊥CD、BF⊥CD,∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC ∴△BCF≌△CAE(AAS)∴CE=BF.【总结升华】要证CE=BF,只需证含有这两个线段的△BCF≌△CAE.同角的余角相等是找角3、平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C 作CE⊥MN 于点E,过点B 作BF⊥MN 于点F.当点E 与点A 重合时(如图1),易证:AF+BF=2CE.当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH⊥CE 与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【答案与解析】解:图2,AF+BF=2CE 仍成立,证明:过B 作BH⊥CE 于点H,∵∠CBH+∠BCH=∠ACE+∠BCH=90°∴∠CBH=∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE≌△CBH.(AAS)∴CH=AE,BF=HE,CE=EF,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.【总结升华】正确作出垂线,构造全等三角形是解决本题的关键.举一反三:【变式】已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D 点旋转,它的两边分别交AC、CB 于E、F.当∠EDF 绕D 点旋转到DE⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.图2ADBC E M N F 【答案】解:图2成立;证明图2:过点D 作DM AC DN BC⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD≌△DNB(AAS)∴DM=DN∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME≌△DNF(ASA)∴DME DNFS S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△.类型三、全等三角形判定的实际应用4、(2020秋•内丘县期中)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD,并保证CD⊥AD,然后在竿顶C 处垂下一根绳CE,与斜坡的交点为点E,他调整好绳子CE 的长度,使得CE=AD,此时他测得DE=2米,求DB 的长度.【思路点拨】延长CE交AB于F,根据等角的余角相等求出∠A=∠C,再利用“角角边”证明△ABD和△CDE全等,根据全等三角形对应边相等可得DB=DE.【答案与解析】解:如图,延长CE交AB于F,则∠A+∠1=90°,∠C+∠2=90°,∵∠1=∠2(对顶角相等),∴∠A=∠C,在△ABD和△CDE中,,∴△ABD≌△CDE(AAS),∴DB=DE,∵DE=2米,∴DB的长度是2米.【总结升华】本题考查了全等三角形的应用,仔细观察图形求出∠A=∠C是解题的关键.。

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)

备战中考数学(苏版)巩固复习第十二章全等三角形(含解析)一、单选题1.一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和往常一样的玻璃,你认为她带哪两块去玻璃店了。

()A.带其中的任意两块B.带1,4或3,4就能够了C.带1,4或2,4就能够了D.带1,4或2,4或3,4均可2.使两个直角三角形全等的条件是()A.斜边相等B.一锐角对应相等C.两锐角对应相等 D.两直角边对应相等3.如图,∠ACB=90°,CD⊥AB,则∠1与∠B的关系是()A.互余B.互补C.相等D.不确定4.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2B.3C.4D.55.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE确实是∠AOB的平分线.小明如此做的依据是()A.SASB.ASAC.AASD.SSS6.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=DE2 .其中正确的结论有()A.1个B.2个C.3个D.4个7.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,因此测得ED的长确实是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.如图所示,亮亮书上的三角形被墨迹污染了一部分,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASAB.AASC.SASD.SSS9.下面关于直角三角形的全等的判定,不正确的是()A.有一锐角和一边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两角对应相等,且有一条公共边的两个直角三角形全等D.有两角和一边对应相等的两个直角三角形全等二、填空题10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,运算图中阴影部分的面积S是________11.如图,在Rt△ABC中,∠B=90°,CD平分∠ACB,过点D作DE ⊥AC于点E,若AE=4,AB=10,则△ADE的周长为________.12.如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.假如A B=6,BD=5,AD=4,那么BC的长度是________13.判定两个直角三角形全等的方法有________.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD ≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).15.在数学综合实践活动课上,张老师给了各活动小组大直角三角板一个、皮尺一条,测量如图所示小河的宽度(A为河岸边一棵柳树).小颖是如此做的:①在A点的对岸作直线MN;②用三角板作AB⊥MN垂足为B;③在直线MN取两点C、D,使BC=CD;④过D作DE⊥MN交AC的延长线于E,由三角形全等可知DE的长度等于河宽AB.在以上的做法中,△ABC≌△DEC的依照是________16.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是________.17.已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为________.18.如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:________,并给予证明.三、解答题19.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:PE=PF;20.现有10个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:在图1中用实线画出分割线,并在图2的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.四、综合题21.如图,在△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:AG平分∠BAC;(2)若∠E=40°,求∠AGB的度数.答案解析部分一、单选题1.【答案】D【考点】全等三角形的应用【解析】【解答】由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,因此两块玻璃一样;同理,3,4中有两角夹一边(AAS),同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故答案为:D.【分析】观看图形,可知利用全等三角形的判定方法:ASA,可得出答案。

人教版 八年级数学上册 第12章 全等三角形 巩固训练

人教版 八年级数学上册 第12章 全等三角形 巩固训练
19. 【答案】
证明:如图,连接 AD.
∵DE⊥AB,DF⊥AC,DE=DF, ∴∠BAD=∠CAD.
AB=AC, 在△ABD 和△ACD 中,∠BAD=∠CAD,
AD=AD,
∴△ABD≌△ACD(SAS).∴BD=CD.
20. 【答案】
解:∵BO,CO 分别平分∠ABC 和∠ACB, ∴点 O 到 AB,AC,BC 的距离相等.
A.40°
B.50°
C.55°
D.60°
二、填空题(本大题共 8 道小题) 9. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB 的是________(只填序号).
10. △ABC 的周长为 8,面积为 10,若其内部一点 O 到三边的距离相等,则点 O 到 AB 的距离为________.
2. 【答案】C
3. 【答案】D
4. 【答案】A 5. 【答案】B [解析] 选项 A,D 均可由“AAS”判定 Rt△ABC≌Rt△DEF,选项 C 可由“HL”判定 Rt△ABC≌Rt△DEF,只有选项 B 不能判定 Rt△ABC≌Rt△DEF.
6. 【答案】C [解析] 如图,过点 P 作 PQ⊥AC 于点 Q,PW⊥BC 于点 W,PR⊥AB 于点 R.
A.3 C.5
B.4 D.7
1/9
5. 在 Rt△ABC 和 Rt△DEF 中 , ∠C = ∠F = 90°, 下 列 条 件 不 能 判 定
Rt△ABC≌Rt△DEF 的是( )
A.AC=DF,∠B=∠E C.AB=DE,AC=DF
B.∠A=∠D,∠B=∠E D.AB=DE,∠A=∠D
6. 如图,△ABC 的外角平分线 BD,CE 相交于点 P,若点 P 到 AC 的距离为 3, 则点 P 到 AB 的距离为( )

人教版数学八年级上12.2-1三角形全等的判定(SSS)巩固训练(有答案)

人教版数学八年级上12.2-1三角形全等的判定(SSS)巩固训练(有答案)

人教版数学八年级上12.2-1三角形全等的判定(SSS)巩固训练(有答案) 一、知识要点1.三边分别相等的两个三角形全等(可以简写成 或2.三角形三条边的长度确定了,这个三角形的和 就完全确定了3.利用无刻度的直尺和圆规作一个角等于已知角,其理论依据是二、双基训练1.如图所示的三角形中,与△ABC 全等的是( )2.如图所示,如果AB=AC′,BC=B'C′,AC=A'B',则下列结论正确的是( )BA.△ABC≌△A 'B'C'B.△ABC≌△A 'C'B'C.△ABC≌△B'A'C'D.这两个三角形不全等3.如图所示,AD=BC,AC=BD,用三角形全等的判定“ ”可证明 ≌ 或 ≌4.如图,AB=AC, DB=DC,EB=EC(1)图中有几对全等三角形?请写出来(2)选择(1)中的一对全等三角形加以证明.5.如图所示,在△ABC 和△DBC 中,已知AB=DB,AC=DC,则下列结论中错误的是( )A.△ABC≌△DBCB.∠A=∠DC.BC 是∠ACD 的平分线 D ∠A=∠BCD6、如图,△ABC 中,AB =AC ,EB =EC ,则直接由“SSS ”可以判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BDE ≌△CDED .以上答案都不对7、如图,11AB A B =,11BC B C =,11AC A C =,且∠A =110°,∠B =40°,则1C ∠=( )第1题图 第2题图第3题图 第4题图 第5题图 第6题图 第7题图A.110° B.40° C.30° D.20°8、如图是雨伞的中截面,伞骨AB= AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.9、△ABC和△DEF中,AB=2,BC=3,CA=4,DE=4,EF=3,要使△ABC与△DEF全等,则DF等于( )A.2 B.3 C.4 D.不能确定10、如图,已知AC=BD,要使△ABC≌△DCB,只需增加的一个条件是.三、综合训练11、如图所示,示,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD 沿着角的两边放下,沿AC画一条射线AE,AE是∠BAD的平分线吗?为什么?12、已知∠AOB,点C是OB边上的一点.用尺规作图画出经过点C与OA平行的直线第11题图第9题图第10题图第12题图13、如图所示,AB=AC,BD=CE,AD=AE,求证:△ABE≌△ACD14、如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可作(C)A.2个B.3个C.4个D.5个15.如图,已知AB=AC,D为BC的中点,下列结论①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC,其中正确的个数有(D)A.1个B.2个 3个 D.4个16.如图,以△ABC的顶点A为圆心,BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD、CD.若∠B=65°,则∠ADC的大小为17、已知:如图,AB=CD,AD=BC,求证:∠A=∠C第13题图第14题图第15题图第16题图第17题图18.如图,已知AB=AC,AD=AE,BD=CE,B、D、E三点在一条直线上.求证:(1)∠BAC=∠DAE(2)∠3=∠1+∠2第18题图19.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF(1)求证:△ABC≌△DEF(2)若∠A=55°,∠B=88°,求∠F的度数第19题图20.如图,AD=CB,E,F是AC上的两动点,且有DE=BF(1)若E,F运动至如图①所示的位置,有AF=CE,求证:△ADE≌△CBF(2)若E,F运动至如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E、F不重合,且AF=CE,那么AD和CB平行吗?请说明理由一、知识要点1、边边边 SSS2、形状 大小3、SSS二、双基训练1、C2、B3、SSS △ADC △BCD △ABD △BAC4、解:(1)3对,△ABD≌△ACD△ABE≌△ACE△DBE≌△DCE(2)以△ABD≌△ACD 为例,证明:在△ABD 与△ACD 中,AB ACDB DC AD AD=⎧⎪=⎨⎪=⎩△ABD≌△ACD(SS S)5、D6、B7、C8、解:∠BAD =∠CAD ,理由:证△AEO ≌△AFO(SSS )9、A 10、AB=DC11、解:AE 是∠BAD 的平分理由:在△ABC 和△ADC 中AB ADBC DC AC AC=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(S SS)12、解:①以点O 为圆心,任惫长为半径画弧,交OA 于点E,交OB 于点D;②以点C 为圆心,OD 的长为半径画弧、交OB 于点G③以点G 为圆心,DE 的长为半径画弧,交前弧于点H,连接CH,则CH∥OA13、证明BD=CEBD+DE=CE+ED∴BE=CD在△ABE 和△ACD 中AB ACBE CD AE AD=⎧⎪=⎨⎪=⎩∴△AB E ≌△A CD(SSS)14、C 15、D 16、65°17、证明:如图,连接BD在△ABD 和△CDB 中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩△ABD≌△CDB(SSS)∠A=∠C18、证明:(1)在△ABD 和△ACEAB AC AD AE BD CE =⎧⎪=⎨⎪=⎩△ABD≌△ACE(SSS)∠BAD=∠1∠BAD+∠DAC=∠1+∠DAC即∠BAC=∠DAE(2)由(1)知△ABD≌△ACE,∠2=∠ABD,∠1=∠BAD ,∠3=∠ABD+∠BAD,∠3=∠1+∠219、(1)证明:AD=CFAD+DC=CF+DC即AC=DF在△ABC 和△DEF 中AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC≌△DEF(S SS)(2)解:在△ABC 中,∠A=55°,∠B=88°,∠ACB=180°-∠A -∠B=180°-55°-88°=37°又∵△ABC≌△DEF,∴∠F=∠ACB=37°20、(1)证明AF=CE. AF+EF=CE+EFAE=CF,在△ADE 和△CBF 中, AD CB AE CF DE BF =⎧⎪=⎨⎪=⎩△ADE△CBF(SSS)(2)解:成立,理由同(1)(3)解:AD∥CB理由:由(1)(2)知,△ADE≌△CBF ∠A=∠C,,AD∥CB。

全等三角形全章复习与巩固(提高)巩固练习

全等三角形全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(2)(3)(4)D.(4)(6)(1)2.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个3. 如图, AB∥CD, AC∥BD, AD与BC交于O, AE⊥BC于E, DF⊥BC于F, 那么图中全等的三角形有( )A. 5对B. 6对C. 7对D. 8对4.如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则().A.∠1=∠EF D B.FD∥BC C.BF=DF=CD D.BE=EC5. 如图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A.20°B.30°C.40°D.150°6. 根据下列条件能画出唯一确定的△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=AC=67. 如图,已知AB=AC,PB=PC,且点A、P、D、E在同一条直线上.下面的结论:①EB=EC;②AD⊥BC;③EA平分∠BEC;④∠PBC=∠PCB.其中正确的有()A.1个B. 2个C.3个D. 4个8. 如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题9. 在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.12. 如图,△ABC中,∠C=90°,ED∥AB,∠1=∠2,若CD=1.3cm,则点D到AB边的距离是_______.13. 如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14. 如图,BA⊥AC,CD∥AB,BC=DE,且BC⊥DE.若AB=2,CD=6,则AE=_______.15. 如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是.16. 如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18. 在四边形ABCP中,BP平分∠ABC,PD⊥BC于D,且AB+BC=2BD.求证:∠BAP+∠BCP=180°.19. 如图:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.20.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案与解析】一.选择题1. 【答案】C;【解析】解:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.故选C.2. 【答案】D;【解析】△ABD≌△CBD(SSS),故①正确;△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选D.3. 【答案】C;4. 【答案】B ;【解析】证△ADF≌△ABF,则∠ABF=∠ADF=∠ACB,所以FD∥BC.5. 【答案】B;【解析】∠C=∠E,∠B=∠FDE=180°-110°-40°=30°.6. 【答案】C;【解析】A项构不成三角形,B项是SSA,D项斜边和直角边一样长,是不可能的.7. 【答案】D;8. 【答案】A;【解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】(1,5)或(1,-1)或(5,-1);10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】20cm;【解析】BC=AC=AE,△DBE的周长等于AB.12.【答案】1.3cm;【解析】AD是∠BAC的平分线,点D到AB的距离等于DC.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14.【答案】4;【解析】证△ABC≌△CED.15.【答案】3+4;【解析】解:如图,过点B作BE⊥BP,且BE=PB,连接AE、PE、PC,则PE=PB=4,∵∠ABE=∠ABP+90°,∠CBP=∠ABP+90°,∴∠ABE=∠CBP,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴AE=PC,由两点之间线段最短可知,点A、P、E三点共线时AE最大,此时AE=AP+PE=3+4,所以,PC的最大值是3+4.故答案为:3+4.16.【答案】(2,4)或(4,2);【解析】①当点P在正方形的边AB上时,Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC上时,同①的方法,得出CP=BC=2,∴P(2,4).三.解答题17.【解析】证明:如图所示,在AC上取点F,使AF=AE,连接OF,在△AEO和△AFO中,,12, AE AF AO AO=⎧⎪∠=∠⎨⎪=⎩∴△AEO≌△AFO(SAS).∴∠EOA=∠FOA.∵∠B=60°,∴∠AOC=180°-(∠OAC+∠OCA)=180°-12(∠BAC+∠BCA)=180°-12(180°-60°)=120°.∴∠AOE=∠AOF=∠COF=∠DOC=60°.在△COD和△COF中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】证明:过点P 作PE ⊥AB ,交BA 的延长线于E ,∵ BP 平分∠ABC ,PD ⊥BC ,PE ⊥AB ,∴PE =PD在Rt △PBE 与Rt △PBD 中,BP =BP ,PE =PD∴Rt △PBE ≌Rt △PBD (HL )∴BE =BD又∵AB +BC =2BD.∴AB +BD +DC =2BD ,即AB +DC =BD∴AE =DC由(SAS )可证Rt △PEA ≌Rt △PDC ,∴∠PAE =∠PCD∵∠BAP +∠PAE =180°∴∠BAP +∠BCP =180°.19.【解析】证明:在DA 上截取DN =DB ,连接NE ,NF ,则DN =DC , 在△DBE 和△DNE 中:∴△DBE ≌△DNE (SAS )∴BE =NE (全等三角形对应边相等)同理可得:CF =NF在△EFN 中EN +FN >EF (三角形两边之和大于第三边) ∴BE +CF >EF.20.【解析】证明:(1)①正方形ADEF 中,AD=AF ,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD.②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△C AF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.。

北京四中八年级下册数学三角形的证明全章复习与巩固-巩固练习(提高)

北京四中八年级下册数学三角形的证明全章复习与巩固-巩固练习(提高)

《三角形的证明》全章复习与巩固(提高)【巩固练习】一.选择题1.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是()A. 3米 B. 4米C. 5米 D.6米2. 设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A B C D3. 如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。

其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)4. 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°6.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C7. 如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点若∠APD=60°,则CD的长为( )A.12 B.23C.34D.18. 在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A、三边中线的交点B、三条角平分线的交点C、三边上高的交点D、三边中垂线的交点二、填空题9. 如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________ .10. 用反证法证明“三角形中至少有一个角不小于60°时,第一步为假设“”11. 如图,在Rt△ABC中.∠C=90°,BC=6,AC=8,点D在AC上,将△BCD沿BD折叠,使35点C恰好落在AB边的点C′处,则△ADC′的面积是_________.12. 如图,长方体的长为5,宽为3,高为12,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.13. 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是___________.14. 如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__15. 已知⊿ABC中,∠A = 90°,角平分线BE、CF交于点O,则∠BOC = .16. 如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.三、解答题17. 如图:△ABD和△CDH都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等的三角形,并写出证明过程.18. 如图,在长方形ABCD 中,DC=5cm ,在DC 上存在一点E ,沿直线AE 把△AED 折叠,使点D 恰好落在BC 边上,设此点为F ,若△ABF 的面积为30cm 2,求折叠△AED 的面积.19. 如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点E,直线BM 、CN 交与F 点.(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)20.阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.【答案与解析】一.选择题1. 【答案】D;【解析】解:因为是一块正方形的绿地,所以∠C=90°,由勾股定理得,AB=25米,计算得由A点顺着AC,CB到B点的路程是24+7=31米,而AB=25米,则少走31﹣25=6米.故选D.2. 【答案】A;3. 【答案】D;【解析】解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°-90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE,故选D.4. 【答案】B;【解析】∵AD平分∠CAB交BC于点D∴CAD=∠EAD∵E⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=CE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC=22AB=26322,∴BD=AB-AE=AB-AC=6-32,∴BC+BE= 32 +6- 32 =6(cm),∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6(cm).故选B.5. 【答案】B;【解析】解:∵AB=AC,AD=BD=BC,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,∴x=36,∴∠A=36°,∠ABC=∠C=72°.6. 【答案】B;【解析】添加A选项中条件可用ASA判定两个三角形全等;添加B选项中条件无法判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是ASA证明三角形全等.故选B.7. 【答案】B;【解析】解:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60,∴△ABP∽△PCD.∴AB BPCP CD=,即312CD=.∴CD=2/3.故选B.8. 【答案】D;【解析】三角形三边中垂线的运用.二.填空题9. 【答案】125°;【解析】解:∵AB=AC,∠B=35°,∴∠C=35°,∠A=110°,∵DE ⊥BC ,∴∠ADE=360°-110°-35°-90°=125°,∵125°>110°>90°>35°,∴四边形中,最大角的度数为:125°.故选C .10.【答案】三角形的三个内角都小于60°;【解析】第一步应假设结论不成立,即三角形的三个内角都小于60°.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.11.【答案】6;【解析】∵∠C=90°,BC=6,AC=8, ∴AB= 22AB BC +=10,∵△BCD 沿BD 折叠,使点C 恰好落在AB 边的点C′处,∴∠BC′D=∠C=90°,BC′=BC=6,DC′=DC,∴AC′=AB -BC′=10-6=4,∵S △ADB +S △DBC =S △ABC ,∴12 •AB•DC′+ 12 BC•DC= 12AC•BC, ∴10DC′+6DC′=6×8,∴DC′=3,∴S △ADC′= 12 DC′•AC′= 12×4×3=6. 【解析】将长方体展开,连接A 、B ,根据两点之间线段最短,BD=2+3=5,AD=12,由勾股定理得:AB= 22AD BD +=13.13.【答案】20;【解析】根据题意得,x-4=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.14.【答案】65°;【解析】∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=12∠DAC,∠ECA=12∠ACF;又∵∠B=50°(已知),∠B+∠BAC+∠BCA=180°(三角形内角和定理),∴12∠DAC+12∠ACF=12(∠B+∠BCA)+12(∠B+∠BAC)=12(∠B+∠B+∠BCA+∠BAC)=2302(外角定理),∴∠AEC=180°-(12∠DAC+12ACF)=65°;故答案是:65°.15.【答案】135°;【解析】∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°-45°=135°.故答案为135°.16.【答案】AH=CB或EH=BE或AE=CE;【解析】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°-∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°-∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=BE;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=BE或AE=CE.三.解答题17.【解析】解:△ACD≌△BHD;证明:∵△ABD和△CDH都是等腰直角三角形,∴CD=DH,AD=BD,∠ADC=∠ADB=90°,∴在△ACD和△BHD中,∴△ACD≌△BHD(SAS).18.【解析】解:由折叠的对称性,得AD=AF,DE=EF.由S△ABF=BF•AB=30,AB=5,得BF=12.在Rt△ABF中,由勾股定理,得.所以AD=13.设DE=x,则EC=5﹣x,EF=x,FC=1,在Rt△ECF中,EC2+FC2=EF2,即(5﹣x)2+12=x2.解得.故.19.【解析】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,∴△ACN≌△MCB,∴AN=MB.20.【解析】解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.。

初一数学《三角形》全章复习与巩固(基础)《三角形》全章复习与巩固(基础)知识讲解

初一数学《三角形》全章复习与巩固(基础)《三角形》全章复习与巩固(基础)知识讲解

《三角形》全章复习与巩固(基础)责编:康红梅【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类【高清课堂:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理, 得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三【变式】(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( ) A.11B.5C.2D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD 证明:∠BAC=∠EAD=90° ∠BAC+∠CAE=∠EAD+∠CAE 即∠BAE=∠CAD 又AB=AC,AE=AD, △ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA, 又∠COE=∠AOD ∠BEA+∠COE=∠CDA+∠AOD=90° 则有∠DCE=180°- 90°=90°, 所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB 与△EAC 中,DAB EAC AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA )∴BD=CE.6.己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC+【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD=CD在△ADC 与△EDB 中DC DB ADC BDEAD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS )∴AC=BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD<.()12AB AC +【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长的取值范围是( )x A.1 << 6 B.5 << 7 C.2 << 12 D.无法确定x x x 【答案】A ;提示:倍长中线构造全等三角形,7-5<<7+5,所以选A 选项.2x 类型五、全等三角形判定的实际应用 7.如图,小叶和小丽两家分别位于A 、B 两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB 相等的线段的长,从而得知两家的距离.解:在点B 所在的河岸上取点C ,连结BC ,使CD=CB ,利用测角仪器使得∠B=∠D ,且A 、C 、E 三点在同一直线上,测量出DE 的长,就是AB 的长.在△ABC 和△ECD 中B D CD CBACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC ≌△ECD (ASA )∴AB=DE .【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△ABC ≌△ECD ,可得AB=DE ,所以测得DE 的长也就知道两家的距离是多少.类型六、用尺规作三角形8.作图:请你作出一个以线段a 为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.【答案与解析】解:已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.。

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版八年级上册数学[全等三角形全章复习与巩固(基础)知识点整理及重点题型梳理]本文介绍了八年级上册数学中的全等三角形知识点,包括全等三角形的概念和性质,三角形全等的判定方法,角的平分线的性质以及全等三角形证明方法。

要点一介绍了全等三角形的判定与性质,其中包括边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边定理(HL)、边边边(SSS)等判定方法,并说明了对应元素相等的性质。

要点二介绍了全等三角形的证明思路,包括找夹角、找直角、找另一边、边为角的对边等方法。

要点三介绍了角平分线的性质和判定定理,以及与角平分线有关的辅助线。

要点四介绍了全等三角形证明方法,包括证明线段相等的方法、证明角相等的方法等。

XXX∠FAE。

又∠EAG+∠XXX∠BAG=180°。

AEF≌△AGF(AAS)。

XXX.结论:BE=FD,EF=FD/2.2、(2014•北京市海淀区期末)如图,在△ABC中,AB=AC,D为BC边上一点,且AD=AC.连接CD,交AB于E点.证明:AE=DE.思路点拨】1)延长AD交CE于点F;2)证明△AFE≌△CFD,得到∠AFE=∠CFD,再证明△AED≌△CED,得到AE=DE.答案与解析】证明:(1)连接AF,CF,DF,因为AB=AC,AD=AC,∴∠BAD=∠CAD,∠AFD=∠CFD。

又∠AFE=∠XXX,∴△AFE≌△CFD(AAS)。

AE=DE.证明:作角平分线AD,连接BD,CD.AB=AC。

BAD=∠CAD。

又∠ABD=∠ACD。

ABD≌△ACD(AAS)。

BD=CD。

又∠BDA=∠CDA。

BDA≌△CDA(SAS)。

B=∠C.总结升华】本题考查了角平分线的性质,以及全等三角形的判定方法,即AAS和SAS定理。

证明:过点A作AD⊥BC,则在Rt△ABD与Rt△ACD 中,由于AB=AC,AD=AD,根据HL(斜边-直角边-斜边)可得Rt△ABD≌Rt△ACD,因此∠B=∠C。

冀教版八年级数学上册第十三章全等三角形巩固练习(含答案)

 冀教版八年级数学上册第十三章全等三角形巩固练习(含答案)

冀教版数学八年级上册-第十三章-全等三角形-巩固练习一、单选题1.如图,已知AB=CD,∠1=∠2,AO=3,则AC=()A. 3B. 6C. 9D. 122.下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是( )A. 1B. 2C. 3D. 43.下列定理中逆定理不存在的是( )A. 角平分线上的点到这个角的两边距离相等B. 在一个三角形中,如果两边相等,那么它们所对的角也相等C. 同位角相等,两直线平行D. 全等三角形的对应角相等4.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°5.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度与M、N重合,过角尺顶点C作射线OC.那么判定△MOC≌△NOC的依据是()A. 边角边B. 边边边C. 角边角D. 角角边6.依据下列选项条件,不能判定两个三角形全等的是()A. 两角和一边B. 两边及夹角C. 三个角D. 三条边7.某班有50人,在一次数学考试中,得分均为整数,全班最低分为48分,最高分为96分,那么该班考试中( )A. 至少有两人得分相同B. 至多有两人得分相同C. 得分相同的情况不会出现D. 以上结论都不对8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论是( )A. 只有①B. 只有②C. 只有①②D. 有①②③二、填空题9.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是________.(添一个即可)10.作线段的垂直平分线的理论根据是________和两点确定一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】
一.选择题
1. 如图所示,若△ABE≌△ACF,且AB =5,AE =2,则EC 的长为( )
A .2
B .3
C .5
D .2.5
2. 在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是
( )
A. ∠A
B. ∠B
C. ∠C
D. ∠B 或∠C
3. 如图,△ABC ≌△AEF ,若∠ABC 和∠AEF 是对应角,则∠EAC 等于 ( )
A .∠AC
B B .∠CAF
C .∠BAF
D .∠BAC
4. 在下列结论中, 正确的是( )
A.全等三角形的高相等
B.顶角相等的两个等腰三角形全等
C. 一角对应相等的两个直角三角形全等
D.一边对应相等的两个等边三角形全等
5. 如图,点C 、D 分别在∠AOB 的边OA 、OB 上,若在线段CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ).
A. 线段CD 的中点
B. OA 与OB 的中垂线的交点
C. OA 与CD 的中垂线的交点
D. CD 与∠AOB 的平分线的交点
6.在△ABC 与△DEF 中,给出下列四组条件:(1)AB =DE ,BC =EF ,AC =DF ;(2)AB =DE ,∠B=∠E,BC =EF ;(3)
∠B=∠E,BC =EF ,∠C=∠F;(4)AB =DE ,AC =DF ,∠B=∠E.其中,能使△ABC≌△DEF 的条件共有( )
组.
A .1组
B .2组
C .3组
D .4组
7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是
( )
A. 相等
B.不相等
C.互补
D.相等或互补
8. △ABC 中,∠BAC =90° AD ⊥BC ,AE 平分∠BAC ,∠B =2∠C ,∠DAE 的度数是( )
A.45°
B.20°
C.、30°
D.15°
二.填空题
9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________ 2cm ,若'''A B C
△的周长为16cm ,则△ABC 的周长为________cm .
10. △ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论
断作为结论构成一个命题,写出一个真命题:__________.
11. 如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD
的面积为16,则的面积为____.
12. 下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;
②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给
出的条件中至少要有一对边对应相等.正确的是_____.
13. 如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=a,CD=b,则△ADB的面积为
______________ .
14.如图,已知AB⊥BD,AB∥ED,AB=ED,要说明
ΔABC≌ΔEDC,若以“SAS”为依据,还要添加的条件为______________;若添加条件AC=EC,则可以用_______公理(或定理)判定全等.
15. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.
16. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.
三.解答题
17、已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.
求证:ED⊥AC.
【答案】
证明:∵AE⊥AB,BC⊥AB,
∴∠DAE=∠CBA=90°
在Rt△DAE 与Rt△CBA中,
ED AC
AE AB




=,
∴Rt △DAE ≌Rt △CBA (HL )
∴∠E =∠CAB
∵∠CAB +∠EAF =90°,
∴∠E +∠EAF =90°,即∠AFE =90°
即ED ⊥AC .
18、已知:如图,在ABC ∆中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F.
求证:AE =AF .
【答案与解析】
证明:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F.
∴DE =DF (角平分线上的点到角两边的距离相等)
90AED AFD ∠=∠=︒(垂直定义)
在Rt AED ∆和Rt AFD ∆中 DE DF AD AD =⎧⎨=⎩
∴Rt AED ∆≌Rt AFD ∆(HL )
∴AE AF =
19.已知:如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2.
求证:OB =
OC.
20.已知:△ABC 中,AC⊥BC,CE⊥AB 于E ,AF 平分∠CAB 交CE 于F ,过F 作FD∥BC 交AB 于D .
求证: AC =
AD
20.【解析】
证明:∵AC⊥BC,CE⊥AB
∴∠CAB +∠1=∠CAB +∠3=90°,
∴∠1=∠3 又∵FD∥BC ∴∠2=∠3, ∴∠1=∠2
在△CAF 与△DAF 中
CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩
∴△CAF 与△DAF (AAS ) ∴AC =AD.
21. 如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .
(1)试判断AC 与CE 的位置关系,并说明理由;
(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位
置关系还成立吗?(注意字母的变化)
21.【解析】
证明:(1)AC ⊥CE .理由如下:
在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩
∴ △ABC ≌△CDE (SAS ). ∴ ∠ACB =∠E .
又∵ ∠E +∠ECD =90°, ∴ ∠ACB +∠ECD =90°. ∴ AC ⊥CE .
(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,
∠ABC =∠EDC =90°,
∴ 也一直有△ABC ≌△C DE '(SAS). ∴ ∠ACB =∠E .而∠E +∠EC D '=90°,
∴ ∠ACB +∠EC D '=90°. 故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.
22. 已知如图所示,PA =PB ,∠1+∠2=180°,求证:OP 平分∠AOB .
证明:如图所示,过点P 作PE ⊥AO ,PF ⊥OB ,
垂足分别为E 、F .
∵∠2+∠1=180°,
又∵∠2+∠PBO =180°,
∴∠1=∠PBO .
在△AEP 和△BFP 中,
∴△AEP ≌△BFP (AAS ). ∴PE =PF (全等三角形对应边相等).
∴OP 平分∠AOB (到角两边距离相等的点在这个角的平分线上).
【答案与解析】
一.选择题
1. 【答案】B ; 【解析】根据全等三角形对应边相等,EC =AC -AE =5-2=3;
2. 【答案】A ; 【解析】如果选B 或者C 的话,三角形内角和就会超过180°.
3. 【答案】C ; 【解析】∠EAF =∠BAC ,∠EAC =∠EAF -∠CAF =∠BAC -∠CAF =∠BAF.
4. 【答案】D ; 【解析】A 项应为全等三角形对应边上的高相等;B 项如果腰不相等不能证明全等;C 项直角三角形至少要有一边相等.
5.【答案】D ; 【解析】角平分线上的点到角两边的距离相等.
6. 【答案】C ; 【解析】(1)(2)(3)能使两个三角形全等.
7. 【答案】A ; 【解析】高线可以看成为直角三角形的一条直角边,进而用HL 定理判定全等.
8. 【答案】D ; 【解析】由题意可得∠B =∠DAC =60°,∠C =30°,所以∠DAE =60°-45°=15°.
二.填空题
9. 【答案】10,16; 【解析】全等三角形面积相等,周长相等.
10.【答案】①②③;
11.【答案】8; 【解析】1162BD h = ,h =4,1482
AE ⨯=. 12.【答案】①③
【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.
13.【答案】ab 2
1; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为
ab 21. 14.【答案】BC =DC ,HL ;
15.【答案】45°;
【解析】Rt △BDH ≌Rt △ADC ,BD =AD.
16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.。

相关文档
最新文档