指数函数教学课件

合集下载

《指数函数的概念》课件

《指数函数的概念》课件
2023
REPORTING
《指数函数的概念》 ppt课件
2023
目录
• 引言 • 指数函数的概念 • 指数函数的图像 • 指数函数的运算 • 指数函数与其他数学概念的联系 • 总结与回顾
2023
PART 01
引言
REPORTING
课程背景
数学的重要性
数学是现代科学的基础,而指数 函数在数学和实际生活中有着广 泛的应用。

人口增长模型
在生物学和人口统计学中,人口增 长通常使用指数函数来描述。通过 指数函数,可以预测未来人口数量 。
放射性物质衰变
在物理学中,放射性物质衰变通常 使用指数函数来描述。通过指数函 数,可以预测未来放射性物质的数 量。
2023
PART 03
指数函数的图像
REPORTING
指数函数的图像特点
2023
PART 04
指数函数的运算
REPORTING
指数函数的四则运算
01
02
03
04
指数加法
$a^m^n = a^{m+n}$
指数减法
$a^m / a^n = a^{m-n}$
指数乘法
$a^m * a^n = a^{m+n}$
指数除法
$frac{a^m}{a^n} = a^{mn}$
指数函数的复合运算
指数函数与一次函数的复合
$y = a^x * k$,其中k为常数
指数函数与二次函数的复合
$y = a^x * x^2$,其中a、x为变量
指数函数与对数函数的关系
对数函数的定义
如果 $y = a^x$,则 $x = log_a y$
对数函数的性质

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

《指数函数》公开课课件

《指数函数》公开课课件
《指数函数》公开 课课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数在科学研究中的应用举例 • 指数函数图像变换与性质变化规律 • 指数函数与其他知识点联系与拓展
01
指数函数基本概念与 性质
指数函数定义及图像特征
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
乘法法则
$a^m times b^m = (a times b)^m$,不同底数 幂相乘,指数不变,底数 相乘。
除法法则
$frac{a^m}{b^m}
=
left(frac{a}{b}right)^m$
,不同底数幂相除,指数
不变,底数相除。
幂的乘方法则
$(a times b)^n = a^n times b^n$,不同底数幂 的乘方,将每个底数分别 乘方。
在医学领域,指数函数可用于预 测肿瘤生长速度、评估治疗效果
等。
化学反应速率计算与分析
反应速率方程
化学反应速率与反应物浓度之间的关系可用指数函数表示。
速率常数计算
通过实验数据,利用指数函数拟合反应速率曲线,计算速率常数 。
反应机理研究
指数函数可用于分析化学反应机理,揭示反应过程中的速率控制 步骤。
物理学中波动现象描述
人口增长模型建立与预测
指数增长模型
人口增长可以采用指数增长模型进行 描述,即人口数量按照一定比例增长 ,增长速度随时间推移而加快。
预测应用
人口预测对于城市规划、资源分配、 环境保护等方面具有重要意义,可以 为政府和企业提供决策依据。
模型建立
根据历史人口数据和增长率,可以建 立出人口增长的指数模型,并预测未 来人口数量。

指数函数优秀课件

指数函数优秀课件

•指数函数基本概念•指数函数运算规则•指数函数在生活中的应用•指数函数与对数函数关系目•指数方程和不等式求解方法•指数函数在高级数学中的应用录指数函数的定义底数a的取值范围函数的单调性函数的值域函数的周期性030201指数函数的图像是一条从y轴上的点(0,1)出发的曲线。

当a>1时,曲线向上增长;当0<a<1时,曲线向下减少。

指数函数的图像关于y轴对称,即对于任意x值,f(-x)=f(x)。

指数函数的图像具有渐近线y=0,即当x趋近于负无穷大时,y趋近于0。

同时,当x趋近于正无穷大时,y趋近于正无穷大(a>1)或0(0<a<1)。

指数函数图像与特征同底数指数法则乘法法则除法法则幂的乘方法则不同底数指数法则乘法公式除法公式指数运算优先级01020304括号指数乘除加减复利计算复利公式A = P(1 + r/n)^(nt),其中A表示未来值,P表示本金,r表示年利率,n表示每年计息次数,t表示时间(年)。

该公式用于计算投资或存款在定期计息的情况下的未来值。

连续复利当计息次数趋于无穷大时,复利公式变为A = Pe^(rt),其中e是自然对数的底数,约等于2.71828。

连续复利更精确地描述了资金在连续时间内的增长情况。

放射性物质衰变衰变公式半衰期细菌繁殖模型细菌增长公式N = N₀e^(kt),其中N表示经过时间t后的细菌数量,N₀表示初始数量,k表示细菌增长率,t表示时间。

该公式用于描述在理想条件下细菌数量的指数增长。

细菌繁殖周期细菌从一个分裂成两个所需的时间称为繁殖周期。

在理想条件下,细菌数量每经过一个繁殖周期就会翻倍。

因此,细菌数量的增长与繁殖周期和经过的时间密切相关。

对数函数的定义:对于任意正实数a(a≠1),如果N (N>0)的a次幂等于X,那么X叫做以a 为底N的对数,记作X=logaN。

其中,a 叫做对数的底数,N 叫做真数。

对数函数的性质底数大于1时,函数是增函数;底数小于1时,函数是减函数。

指数函数图像和性质_完整ppt课件

指数函数图像和性质_完整ppt课件

-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6

指数函数ppt课件

指数函数ppt课件

04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系

《指数函数》课件

《指数函数》课件

应用广泛
指数函数是数学、物理、金融、 生物、化学等领域中的重要概 念,可应用于许多实际问题。
引领未来
了解和熟练掌握指数函数是探 索自然、认识世界和关注未来 的重要个人能力。
指数函数的导数可以通过 导数公式进行易解,使得 它在实际应用中更加方便。
指数函数和常见函数的比较
对数函数
指数函数和对数函数是一对互 为反函数的函数,它们在实际 应用中经常一同出现。
幂函数
幂函数是与指数函数类似的一 般形式函数,但其中自变量与 常数的次数可以不相等。
三角函数
三角函数是解析几何和物理学 中不可缺少的一部分,它们与 指数函数密切相关的。
指数增长可以应用于股票、金融市场的分析,为财 务规划和决策提供参考。
人口增长中的指数增长
应用于人口、社会发展的研究,探索城市规划、资 源分配等关键问题。
指数函数的特性
1 指数增长特性
指数函数的特殊增长和减 小特性使得它在许多现象 中都有着广泛的应用。
2 图像特性
3 求导特性
指数函数的图像特性是理 解和应用指数函数的关键, 因此必须加以理解。
指数函数PPT课件
欢迎来到《指数函数》PPT课件,我们将探讨指数函数的定义、性质和应用。 让我们开始吧!
指数函数是什么?
定义
指数函数的数学表达式是 $f(x)=a^x$,其中$a$是常数, $x$是自变量,$a>0$且 $a≠1$。
图像
当$a>1$时,函数增长迅速, 当$0<a<1$时,函数递减, 特殊情况:$a=1$时,函数 值恒为1。
基于指数函数的优化算法可以在数学和计算机应用领域中得到广泛应用。
梯度下降算法
梯度下降算法是使用最广泛的优化算法之一,它可以运用于指数函数的数据建模。

高中数学《指数函数》ppt课件

高中数学《指数函数》ppt课件

01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象

形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

指数函数及其性质PPT课件

指数函数及其性质PPT课件

05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

指数函数课件(共16张PPT)

指数函数课件(共16张PPT)
问题情境: 一种放射性物质不断变化为其他物质,毎经过一
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

值域 : ( 0 , + ∞)
过定点 : ( 0 , 1 ) 当x>0时, 0<y<1 当x<0时, y>1 在R上是减函数

多思有得
思考1:a>1和0<a<1时,图 x x y y a x 1 像给我们直观形象是什么? y a y (a 1) (0 a 1) --------“大撇小捺” 思考2:a的大小对图像将产 生怎样的影响? --------“底大图高” 思考3:不同底数的两个函数 的图像之间具有对称性吗?

概念探微
1、对应法则是 y a ,a 前面系数为1.
x x
2、自变量x在指数位置,且定义域为R. 3、底数a为常数,a>0且a≠1.
为什么要a>0且a≠1?
①a=0时,当x>0,a x 恒等于0;当x≤0,a x 无意义. ②a<0时,如a=-2,x= 1 ,则 a 2 无意义.
x
1 y 2
x
x




4
2
1
0.5
0.25


动手实践
1 x y( ) 2
y
9 8 7 6 5 4 3 2 1
y2
x
-4 -3 -2 -1 o 1 2 3 4

x


§3 指数函数
情景再现
实例分析一:假设给你一张足够长
的纸,通过数次折叠能使它的厚度超 过珠穆朗玛峰的高度吗?
纸张折叠次数 纸张厚度倍数 1 2 2 4 3 8 4 16 … … … … 30 y
21
22
23
24
230
折叠X次后纸张厚度y与折叠次 数x的函数关系是
x y=2


情景再现
计算:一张纸的厚度是0.01mm
0.01mm×230 ≈ 10737418mm≈10737.8m>8848m
2
折叠30次纸的厚 度成倍增长,高 度超过了珠穆琅 玛峰!
8848m


情景再现
次数 长度 1
1 2
2
2
3
2 3
4
3 4
…… ……
x
1 2
x
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
我们可以看到每截一次后尺的长度都减为 前一次的二分之一,一把尺子 截x次 后, 得到的尺子的 长度 y 与 x 的函数关系式 是 x
x
1 2
2
③a=1时,a
x
恒等于1,无研究价值.

概念应用
问题1:下列函数中,哪些是指数函数?
(1) y=3
x x x
(2)
y=x3
(3) y=π
x
(4) y=(-3)
(5) y=-3x
2 1 (a> 且a≠ ) 3 3
(6) y=xx
答案:(1) (3) (7)
y=1
(0,1)
y=1
O o
x x
--------“底倒图对”
在 y a 中, x=1时,y=a.
x

例题分析 例1 比较下列各题中两个数的大小:
( 答:< ) ( 答:< )y < ) 0.3 0.2 (3) 0.3-0.3, 0.2-0.3( 答: ( 答:> )
1 y 2


概念引入
1 在函数 y 2 ,y 中指数x是自变量, 2
x x
底数是一个大于 0 且不等于 1 的常量.
指数函数的定义
一般地,函数y=ax(a>0,且a≠1)叫 做指数函数,其中x是自变量.函数的 定义域是R.
情景再现
实例分析二:”日取之半 “ 一把长为1的尺子第1次截去它的一半,第2
次截去剩余部分的一半,第3次截去第2次剩余 部分的一半, · · · · · · ,依次截下去,问截的次数 x与剩下的尺子长度y之间的关系.
《庄子•天下篇》 中写道:“一尺 之棰,日取之半, 万世不竭。”

∴解得 x<1- x , 解得 x<

1 x 2

例题分析
例3 求下列函数的定义域、值域:
解: (1)要使函数有意义,须x≠0 ,又∵
∴函数的定义域为{x|x 0}, 值域为{y|y>0 ,且y1}.
0 ,
方法小结:
(1)底同指不同—函数单调性 1 (2)指同底不同—图象或转化(如作商) 0 (3)底指皆不同—借助中间数 (如0、1) x

例题分析
例2 (1)已知 求x的取值范围.
(2)当x>0时, 求a 的取值范围. 解:(1) ∵ 解:(2) ∵x>0时, ∴ 函数 y= 是增函数. ∴ 由指数函数性质得 又
(7) y=(3a-1)
问题2:函数y=(a2-3a+3 )ax是指数函数, 则a的值是( B )
A.a=1 或 a=2 B .a=2 C. a=1 D.a∈(0, +∞)

动手实践 在同一坐标系中作出下列函数的图像:
1 (1) y 2 ( 2) y 作函数图像的基本步骤 2 : (1)列表; ( 2 )描点; … -2 -1 0 1 2 x 3)连线。 y 2x 0.25 ( 0.5 1 2 4 …
抽象概括
x y a (a 0,a 1) 的图象和性质 指数函数
a>1 y
0<a<1 y
图 象 (1)
(幂大于1
o
x
底指异向 1 幂小于 1
o
x
定义域: R
定义域: R
值域 : ( 0 , + ∞)
过定点: ( 0 , 1 ) 当x>0时,y>1 当x<0时,0<y<1 在R上是增函数
相关文档
最新文档