新人教A版高中数学(必修1)3.2《古典概型》word教案

合集下载

[精品]新人教A版必修3高中数学3.2.1古典概型优质课教案

[精品]新人教A版必修3高中数学3.2.1古典概型优质课教案

3. 2.1古典概型【教学目标】1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.会应用古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 3.会叙述求古典概型的步骤;【教学重难点】教学重点:正确理解掌握古典概型及其概率公式教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率【教学过程】前置测评1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A 发生时事件B 一定发生,则 .若事件A 发生时事件B 一定发生,反之亦然,则A=B.若事件A 与事件B 不同时发生,则A 与B 互斥.若事件A 与事件B 有且只有一个发生,则A 与B 相互对立.2。

概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则 P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.新知探究我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。

(2)掷一枚质地均匀的骰子的试验。

有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。

我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。

《古典概型》教案

《古典概型》教案

《古典概型》教案一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。

【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象从特殊到一般的分析问题的能力和解决问题的能力。

【情感态度与价值观】增加合作学习交流的机会,在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神,在次过程中还可以增加学习数学的学习兴趣。

二、教学重难点【重点】古典概型的概念以及概率公式。

【难点】如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三、教学过程(一)导入新课师:好,同学们,我们开始上课,大家看看我手里拿的是什么?对,是5张扑克牌,在上课前大家想不想玩玩游戏呢?,好我们现在5人为一小组,一个人记录,另外4个人来抓袋子里面的小球,抓到红桃的奖励,抓到黑桃的惩罚,现在开始玩起来吧。

师:好了,大家都玩完了,现在请同学把你们的记录的数据都拿出来看看吧,看看怎么样?有什么特点呢?生:发现抓住红桃和黑桃的机会是一样的。

师:我听到有同学说了,可以把每种都找出来,在加起来就知道总的概率了,这中方法也可,但是大家想想如果我不是5张,是50张,甚至500张,这样还行吗?有没有什么简便的方法呢?好,今天我们就一起来学习一个简单快速计算的方法-古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成如果把抽到红心记为事件B,那么事件B相当于抽到红心1,抽到红心2,抽到红心3,这三种情况,而抽到黑桃相当于,抽到黑桃4,黑桃5,这两种情况,因为是任意抽取的,可以认为出现这五种情况是都相等的。

当出现抽到红心1.2.3这三种情形之一时,事件B就发生了,于是P(B)=,追问1:这里所说的抽到红心1.2.3就是我们这组事件中的一个基本事件,那大家可以根据老师刚刚的分析总结出基本事件的概念吗?如果在一次实验中,每个基本事件发生的可能性相同,又叫什么呢?生:在一次实验中可能出现的每一个基本结果称为基本事件。

3.2《古典概型》教案1(新人教必修3)

3.2《古典概型》教案1(新人教必修3)

§3.2 古典概型(1)教学目标(1)理解基本事件、等可能事件等概念;(2)会用枚举法求解简单的古典概型问题;教学重点、难点古典概型的特征和用枚举法解决古典概型的概率问题.教学过程一、问题情境1.情境:将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?2.问题:是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?二、学生活动把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13中情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52中情况的可能性是相等的。

所以,当出现红心是“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13中情形之一时,事件B就发生,于是131 ()524P B==;三、建构数学1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的;4.古典概型的概率:如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n,如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为()mP An=.四、数学运用1.例题:例1.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,(1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?分析:可用枚举法找出所有的等可能基本事件.解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3)(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10个基本事件.(2)上述10个基本事件法上的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件A),即(1,2),(1,3),(2,3,),故3()10P A=∴共有10个基本事件,摸到两个白球的概率为3 10;例2.豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为Dd,若第二子代的,D d基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D则其就是高茎,只有两个基因全是d时,才显现矮茎).分析:由于第二子代的,D d基因的遗传是等可能的,可以将各种可能的遗传情形都枚举出来.解:Dd与Dd的搭配方式共有4中:,,,DD Dd dD dd,其中只有第四种表现为矮茎,故第二子代为高茎的概率为30.75 4=答:第二子代为高茎的概率为0.75.思考:第三代高茎的概率呢?2.练习:课本97页练习1,2,3五、回顾小结:1.古典概型、等可能事件的概念;2.古典概型求解――枚举法(枚举要按一定的规律);六、课外作业:课本第97页习题3.2第1、2、5、6题.§3.2 古典概型(2)教学目标(1)进一步掌握古典概型的计算公式;(2)能运用古典概型的知识解决一些实际问题;教学重点、难点古典概型中计算比较复杂的背景问题.教学过程一、问题情境问题:等可能事件的概念和古典概型的特征?二、数学运用例1.将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6中结果。

高中数学古典概型教案

高中数学古典概型教案

高中数学古典概型教案
教学目标:通过本节课的学习,学生能够掌握古典概型的基本概念和计算方法,并能够灵活运用古典概型解决实际问题。

教学重点:古典概型的定义和计算方法。

教学难点:灵活运用古典概型解决实际问题。

教学准备:
1. 教师准备好教案和教学素材。

2. 准备计算器、白板、彩色粉笔等教学工具。

教学过程:
一、引入(5分钟)
教师通过引入问题引发学生的思考:“如果一枚骰子同时投掷两次,求两次都为偶数的概率是多少?”
二、讲解古典概型(15分钟)
1. 介绍古典概型的定义:当一个试验只包含有限个基本事件,且每个基本事件发生的可能性相同,则称为古典概型。

2. 讲解古典概型的计算方法:利用古典概型的公式计算概率。

三、案例分析(20分钟)
1. 举例说明古典概型的应用。

2. 计算不同事件的概率,让学生逐步掌握古典概型的计算方法。

四、练习与讨论(15分钟)
1. 给学生一些练习题,让他们在课堂上互相讨论,相互解答。

2. 收集学生的答案,给予指导和讲解。

五、作业布置(5分钟)
布置作业,巩固本节课所学内容。

六、课堂总结(5分钟)
回顾本节课的重点内容,强调古典概型的应用和重要性,激发学生学习数学的兴趣。

以上就是本节课的教学安排,希朥能够帮助学生更好地理解古典概型的概念和计算方法,提高数学解题能力。

古典概型的教案

古典概型的教案

古典概型的教案【篇一:古典概型教学设计】一、教学背景分析(一)本课时教学内容的功能和地位本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。

从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。

古典概型是一种特殊的概率模型。

由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。

学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。

(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)1、学生的认知基础:学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。

在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。

了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。

这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。

学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。

2、学生的认知困难:我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。

根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。

新人教A版高中数学(必修1)3.2《古典概型》word教案

新人教A版高中数学(必修1)3.2《古典概型》word教案



在试验一中随机事件只有两个, 即 “正面朝上” 和 “反面朝上” , 并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机
事件的可能性相等,即它们的概率都是 思 分

在试验二中随机事件有六个,即“1 点” 、 “2 点” 、 “3 点” 、 “4 点” 、 “5 点”和“6 点” ,并且他们都是互斥的,由于骰子质地是均 让学生从问题

匀的,因此出现六种随机事件的可能性相等,即它们的概率都是
。 学生观察 对比得出 两个模拟 试验的相 同点和不 同点,教 师给出基 本事件的 概念,并
的相同点和不 同点中找出研 究对象的对立 统一面, 这能培 养学生分析问 题的能力, 同时 也教会学生运 用对立统一的 辩证唯物主义 观点来分析问 题的一种方法。 教师的注解可 以使学生更好 的把握问题的 关键。
根据新课程标准,并 结合学生心理发展的需求, 以及人格、情感、价值观的 具体要求制订而成。 这对激 发学生学好数学概念, 养成 数学习惯,感受数学思想, 提高数学能力起到了积极 的作用。
项 目


师生活动
理论依据或意 图

在课前,教师布置任务,以数学小组为单位,完成下面两个模 拟试验: 试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和 “反面朝上”的次数,要求每个数学小组至少完成 20 次(最好是整 十数) ,最后由科代表汇总; 试验二:抛掷一枚质地均匀的骰子,分别记录“1 点” 、 “2 点” 、 学生展示 模拟试验 的操作方 法和试验 结果,并 与同学交 流活动感 受,教师 最后汇总 方法、结 果和感 受,并提 出问题。 不好,要求出某一随机事件的概率,需要进行大量的试验,并 且求出来的结果是频率,而不是概率。 2. 根据以前的学习, 上述两个模拟试验的每个结果之间都有什 么特点? 通过课前的模 拟实验的展示, 让学生感受与 他人合作的重 要性, 培养学生 运用数学语言 的能力。 随着新 问题的提出, 激 发了学生的求 知欲望, 通过观 察对比, 培养了 学生发现问题 的能力。

高中数学3.2.1古典概型教案新人教A版必修3

高中数学3.2.1古典概型教案新人教A版必修3

高一数学集体备课教案:古典概型教学目:根据本的内容和学生的水平,通模学生理解古典概型的特征:果的有限性和每一个果出的等可能性,察比各个,正确理解古典概型的两大特点;立从具体到抽象、从特殊到一般的唯物主点,培养学生用随机的点来理性地理解世界,使得学生在体会概率意鼓励学生通察、比,提高、分析、解决的能力,出古典概型的概率算公式,掌握古典概型的概率算公式;注意公式:P〔A〕A包含的根本领件个数=的使用条件——古典概型,体了化的重要思想.掌握列法,总的根本领件个数学会运用分的思想解决概率的算,增学生数学思情趣.教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学点:如何判断一个是否是古典概型,分清在一个古典概型中某随机事件包含的根本领件的个数和中根本领件的数.教学方法:授法安排:教学程:一、入新:一枚地均匀的硬,果只有2个,即“正面朝上〞或“反面朝上〞,它都是随机事件.(2)一个盒子中有 10个完全相同的球,分以号1,2,3,不同的果,即号1,2,3,⋯,10.思考根据上述情况,你能它有什么共同特点?二、新解:1、提出:⋯,10,从中任取一球,只有10种一:抛一枚地均匀的硬,分“正面朝上〞和“反面朝上〞的次数,要求每个数学小至少完成20次〔最好是整十数〕,最后由学科代表;二:抛一枚地均匀的骰子,分“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞的次数,要求每个数学小至少完成60次〔最好是整十数〕,最后由学科代表.1〕用模的方法来求某一随机事件的概率好不好?什么?2〕根据以前的学,上述两个模的每个果之都有什么特点?3〕什么是根本领件?根本领件具有什么特点?4〕什么是古典概型?它具有什么特点?5〕于古典概型,怎算事件的概率?2、活:学生展示模的操作方法和果,并与同学交流活感受,可能出的情况,生共同方法、果和感受.3、果:〔1〕用模的方法来求某一随机事件的概率不好,因需要行大量的,同我只是把随机事件出的率近似地随机事件的概率,存在一定的差.2〕上述一的两个果是“正面朝上〞和“反面朝上〞,它都是随机事件,出的概率是相等的,都是0.5.上述二的6个果是“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞,它也都是随机事件,出的概率是相等的,都是1.63〕根据以前的学,上述一的两个果“正面朝上〞和“反面朝上〞,它都是随机事件;上述二的6个果“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞,它都是随机事件,像随机事件我称根本领件〔 elementary event〕;它是的每一个可能果.根本领件具有如下的两个特点:①任何两个根本领件是互斥的;②任何事件〔除不可能事件〕都可以表示成根本领件的和.〔4〕在一个中如果①中所有可能出的根本领件只有有限个;〔有限性〕②每个根本领件出的可能性相等.〔等可能性〕我将具有两个特点的概率模型称古典概率模型〔classical modelsofprobability 〕, 称古典概型.向一个面内随机地投射一个点,如果点落在内任意一点都是等可能的,你是古典概型?什么?因的所有可能果是面内所有的点,的所有可能果数是无限的一个果出的“可能性相同〞,但个缺乏古典概型的第一个条件如下,某同学随机地向一靶心行射,一的果只有有限个:命中中9⋯⋯命中5和不中.你是古典概型?什么?.,然每10、命不是古典概型,因的所有可能果只有7个,而命中10、命中和不中的出不是等可能的,即缺乏古典概型的第二个条件.〔5〕古典概型,随机事件的概率算于一中,出正面朝上的概率与反面朝上的概率相等,即P 〔“正面朝上〞〕=P〔“反面朝上〞〕由概率的加法公式,得P 〔“正面朝上〞〕+P〔“反面朝上〞〕=P〔必然事件〕=1.9⋯⋯命中5因此P〔“正面朝上〞〕=P〔“反面朝上〞〕1=.2即P〔“出现正面朝上〞)=1"出现正面朝上"所包含的根本领件的个数根本领件的总数. 2试验二中,出现各个点的概率相等,即〔“1点〞〕=P〔“2点〞〕=P〔“3点〞〕=P〔“4点〞〕=P〔“5点〞〕=P〔“6点〞〕.反复利用概率的加法公式,我们有P〔“1点〞〕+P〔“2点〞〕+P〔“3点〞〕+P〔“4点〞〕+P〔“5点〞〕+P〔“6点〞〕=P〔必然事件〕=1.所以P〔“1点〞〕=P〔“2点〞〕=P〔“3点〞〕=P〔“4点〞〕=P〔“5点〞〕=P 〔“6点〞〕=1.6进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率 ,例如,〔“出现偶数点〞〕=P〔“2点〞〕+P〔“4点〞〕+P〔“6点〞〕=1+1+1=3=1.66662即P〔“出现偶数点〞〕=3"出现偶数点"所包含的根本领件的个数.根本领件的总数6因此根据上述两那么模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:A所包含的根本领件的个数P〔A〕=.根本领件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的根本领件的个数和试验中根本领件的总数.三、例题讲解:例1从字母a,b,c,d活动:师生交流或讨论中任意取出两个不同字母的试验中,我们可以按照字典排序的顺序,有哪些根本领件?,把所有可能的结果都列出来.解:根本领件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有根本领件的结果,画树状图是列举法的根本方法.例2:单项选择题是标准化考试中常用的题型,一般是从A,B,C,D四个选项. 中选择一个正确答案如果考生掌握了考查的内容,他可以选择唯一正确的答案 .假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?解:〔略〕点评:古典概型解题步骤:1〕阅读题目,搜集信息;2〕判断是否是等可能事件,并用字母表示事件;3〕求出根本领件总数n和事件A所包含的结果数m;4〕用公式P(A)=m求出概率并下结论.n式抛两枚均匀硬,求出两个正面的概率.一次投两骰子,求出的点数之和奇数的概率.例3 同两个骰子,算:一共有多少种不同的果?其中向上的点数之和是5的果有多少种?向上的点数之和是5的概率是多少?解:〔略〕例4:假蓄卡的密由4个数字成一个.假一个人完全忘了自己的蓄卡密取到的概率是多少 ?,每个数字可以是 0,1,2, ⋯,9十个数字中的任意,他到自取款机上随机一次密就能解:〔略〕例5:某种料每箱装6听,如果其中有2听不合格,人从中随机抽出2听,出不合格品的概率有多大?解:〔略〕四、堂:教材第130:1、2、3五、堂小:古典概型我将具有1〕中所有可能出的根本领件只有有限个;〔有限性〕2〕每个根本领件出的可能性相等.〔等可能性〕两个特点的概率模型称古典概率概型,称古典概型.2.古典概型算任何事件的概率算公式P〔A〕=A所包含的根本领件的个根本领件的总数数.求某个随机事件A包含的根本领件的个数和中根本领件的数的常用方法是列法〔画状和列表〕,做到不重不漏.六、后作A 1、2、3、4.板古典概型1.古典概型2、P〔A〕=A所包含的根本领件的个根本领件的总数数.。

《3.2古典概型(2)》教案1

《3.2古典概型(2)》教案1

《古典概型(2)》教案教学目标:1.进一步理解古典概型的两大特点:有限性、等可能性;2.了解实际问题中基本事件的含义;3.能运用古典概型的知识解决一些实际问题.教学重难点:重点:实际问题中基本事件的含义;难点:运用古典概型的知识解决一些实际问题.教学过程:一、问题情境如何判断一个试验是否为古典概型?古典概型的解题步骤是什么?二、学生活动一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性;古典概型的解题步骤是:(1)判断概率模型是否为古典概型;(2)找出随机事件A中包含的基本事件的个数m和试验中基本事件的总数n;(3)计算P(A).三、数学运用1.例题.例1有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投郑这两颗正四面体玩具的试验,试写出:(1)试验的基本事件的总数;(2)事件“出现点数之和大于3”的概率;(3)事件出现点数相同的概率.探究:(1)该实验为古典概型吗?(2)怎样才能把实验的所有可能结果的个数准确写出?学生活动:(1)要满足古典概型的条件:有有限个基本事件,基本事件发生的可能性相同;(2)学生们用枚举法、图表法写出实验的所有基本事件.建构数学:介绍树形图探究:(1)点数之和为质数的概率为多少?(2)点数之和为多少时,概率最大且概率是多少?例2用3种不同颜色给图3-2-3中三个矩形随机涂色,每个矩形只涂一种颜色,求(1)三个矩形颜色都相同的概率;(2)三个矩形颜色都不同的概率.图问题:本题中基本事件的含义是什么?如何快速、准确的确定实验的基本事件的个数?例3 口袋中有形状、大小都相同的两只白球和一只黑球,先摸出一只球,记下颜色后放回口袋,然后再摸出一只球,求“出现一只白球、一只黑球”的概率是多少?学生活动:记白球为1,2号,黑球为3号,画出树形图,分析该实验有27个基本事件.变式:一次摸一只球,摸两次,求“出现一只白球、一只黑球”的概率是多少?问题:例3与例3的变式有何区别?学生活动:例3中先摸出一只球,记下颜色后放回口袋,然后再摸出一只球,属于有序可重复类型,而变式中一次摸一只球,再摸一只球,属于有序不重复类型的问题.2.练习.(1)从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为_________.(2)口袋中有形状、大小都相同的一只白球和一只黑球,现依次有放回地随机摸取3次,每次摸取一个球.一共有多少种不同的结果?请列出所有可能的结果.四、要点归纳与方法小结本节课学习了以下内容:1.进一步理解古典概型的概念和特点;2.进一步掌握古典概型的计算公式;3.能运用古典概型的知识解决一些实际问题.。

高中数学 3.2.1 古典概型(一)教案 新人教A版必修3

高中数学 3.2.1 古典概型(一)教案 新人教A版必修3

3.2.1古典概型(一)精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中高三数学《古典概型》教案、教学设计

高中高三数学《古典概型》教案、教学设计
-例如:将学生分成小组,针对某一实际问题进行讨论,共同找出解决问题的方法。
5.教学过程中,注重启发式教学,引导学生自主探究、发现规律,提高学生的自主学习能力。
-例如:在讲解古典概型计算方法时,教师给出部分提示,让学生自主完成计算过程。
6.设计丰富的课堂练习,巩固所学知识,并及时给予反馈,帮助学生查漏补缺。
-请学生尝试解决以下问题:一个袋子里有5个白球、4个黑球和1个红球,随机取出两个球,求取出的两个球颜色相同的概率。
作业要求:
1.学生在完成作业时,要注重理解古典概型的概念和计算方法,避免死记硬背。
2.在设计生活实例时,要尽量选择有趣、富有挑战性的问题,提高自己的实际应用能力。
3.完成作业后,要进行自我检查,确保解答过程正确无误,并对自己的作业进行适当的批改和反思。
四、教学内容与过程
(一)导入新课
1.教学活动:教师以一个生动的实际例子引入新课,如“一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。”
2.提出问题:通过上述例子,教师引导学生思考以下问题:
-概率是什么?如何计算概率?
-在这个问题中,为什么红球和蓝球的个数会影响概率的计算?
3.过渡:通过讨论,引出古典概型的概念,指出古典概型是解决此类问题的有效方法。
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
-生活中还有哪些问题可以用古典概型来解决?
-在解决古典概型问题时,如何运用排列组合知识?
2.讨论过程:小组成员相互交流,共同解决问题,教师巡回指导。
3.分享与评价:各小组汇报讨论成果,其他小组进行评价,教师给予点评。
(四)课堂练习
1.教学活动:学生完成以下练习题,巩固所学知识。

人教A版高中数学必修三古典概型教案新(1)

人教A版高中数学必修三古典概型教案新(1)

3.2.1<<古典概型>>教案(新人教A 必修3)一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式.三、学法与教学用具:与学生共同探讨,应用数学解决现实问题.四、教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。

(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A . 3、例题分析:课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。

分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。

解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点) 所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。

例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

2020高中数学 3.2.1古典概型教学设计 新人教A版必修3

2020高中数学 3.2.1古典概型教学设计 新人教A版必修3

课题:3.2.1 古典概型一、教学内容分析本节课的内容选自《普通高中课程标准实验教科书数学A版》必修三第三章中的第3.2.1节古典概型,它安排在随机事件的概率之后,几何概型之前。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,同时古典概型也是后面学习其它概率的基础。

在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,能解释生活中的一些问题,也有利于计算一些事件的概率,起到承前启后的作用,所以在概率论中占有相当重要的地位。

本节教材主要是学习古典概型,教学安排是2课时,本节是第一课时。

教学中让学生通过生活中的实例与数学模型理解基本事件的概念和古典概型的两个特征,通过具体的实例来推导古典概型下的概率公式,并通过当堂练习和典型例题加以引申,让学生初步学会把一些实际问题转化为古典概型问题。

二.学情分析教学进行时,在数学必修三学习了“算法案例”和“统计”之后,进入了第三章“概率”的学习.学生在学习了随机事件的概率,了解随机事件发生的不确定性和频率的稳定性的基础上,得到了用频率估计概率的思想和方法,并通过用概率知识澄清日常生活中遇到的一些错误认识,加深了对概率意义的正确理解,概率的基本性质、互斥事件的概率加法公式等知识的学习又为简化概率的计算提供依据.通过试验和观察的方法,虽然可以得到一些事件的概率估计:如抛硬币试验,但是这种通过大量重复试验,用频率估计概率的方法耗时多,并且得到的仅是概率的近似值,有没有更方便、更有效、更精确的计算概率的方法呢?古典概型的知识构建顺应的是学生内在的认知需要,符合学生的认知规律.三、教学设计思路1.设计理念概率教学的核心任务是让学生理解概率的意义和概率的思想,学会用概率知识解释和解决一些实际问题.古典概型作为一种特殊而重要的概率模型,一方面有着其独有的特征,必须准确理解严格把握;另一方面,与日常生活息息相关,应用非常广泛,充满着问题解决的情景.故本课采用探究式教学,重点是古典概型的概念教学,创设适当的问题情景,引发必要的认知冲突,通过对教材内容的再创造,再设计,构建一个反映数学内在发展逻辑、符合学生数学认知规律的概念体系,呈现概念的来龙去脉,揭示概念的内涵和外延,突出概念的核心,引导学生观察、思考、分析、归纳、尝试、体验,亲历概念的生成,从浅入深,逐步加深对古典概型本质的理解,掌握研究途径,领悟思想方法,用问题引导思维,以活动培养能力.2.设计重点概念的动态生成.灵活创设情景,主动“创造”知识,有效提升能力.3.难点突破古典概型的特征,实验结果的有限性和等可能性.四、教学目标:知识目标:正确理解基本事件的概念,准确求出基本事件及其个数;在数学建模的过程中,正确理解古典概型的两个特点;推导和掌握古典概型的概率计算公式,体现了化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。

古典概型教案7篇

古典概型教案7篇

古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。

三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。

四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。

师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。

依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。

在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。

在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。

2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。

(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。

) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。

高中数学新人教版A版精品教案《3.2.1古典概型》

高中数学新人教版A版精品教案《3.2.1古典概型》

教学目标1.知识与技能(1)理解基本事件概念;(2)理解古典概型概念,掌握古典概型概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,小组合作探究,观察类比分析各个试验,归纳总结出古典概型的概率计算公式,体现了从特殊到一般,化归的等重要数学思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性的理解世界。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。

这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。

项目内容师生活动理论依据或意图教一创设情境引入游戏热身环节……同学们,如果同时掷两颗骰子,则点数之和为9与点数之和为10,押哪个点数赢的机会较大?你会选择哪一个?师:这是概率大小的问题,怎么求这类问题的概率?我们一起来学习本节课内容。

教师创设情境,为引入新知做准备,学生初步思考,带着问题进入课堂。

由生活常见的实例,快速地将学生的注意力引入课堂,提出可能性大小实质上是概率大小问题,进而切入本堂课的主题。

同时,概率背景的引入,也是对数学史的渗透。

学过程分析新课板书课题二试验观测揭示规律考察两个试验试验1:掷一枚质地均匀的硬币,观察出现哪几种结果?(见课件)试验2:抛掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?我们把一次试验中可能出现的每一个结果称为一个基本事件问题1:(1)在一次试验中,会同时出现“1点”与“2点”这两个基本事件吗?(不会,任何两个基本事件都是互斥的。

(教案)3.2.古典概型

(教案)3.2.古典概型

第一课时 3.2 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1.教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4对于古典概型,任何事件的概率为:AP(A)=包含的基本事件的个数基本事件的总数P120例2:(关键:这个问题什么情况下可以看成古典概型的)P120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P127第2题,②教材P128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)①如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a到整数b的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN函数或者查看P95的随机数表.P126例6,天气预报说,在今后的三天中,每一天下雨的概率均为040。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目
内容
师生活动
理论依据或意图















例1从字母 中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。
我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。
让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。
教师的注解可以使学生更好的把握问题的关键。
教学重点
理解古典概型的概念及利用古典概型求解随机事件的概率。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。
教学难点
如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。









在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;
在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。
3.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
思考交流:
(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
学生互相交流,回答补充,教师归纳。
古典概型
课题
古典概型
项目
内容
理论依据或意图




教材地位及作用
本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。




1.知识与技能
(1)理解古典概型及其概率计算公式,
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法
根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。
(树状图)
解:所求的基本事件共有6个:
, , ,
, ,
观察对比,发现两个模拟试验和例1的共同特点:
试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;
试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。
教师最后汇总方法、结果和感受,并提出问题?
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是 ;
经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。
项目
内容
师生活动
理论依据或意图







提出问题引入新课
在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。
通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,பைடு நூலகம்发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
相关文档
最新文档