新人教版九年级上册数学课件(第22章 二次函数)

合集下载

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程

x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究

人教版数学九年级上册22 二次函数(第一课时)课件

人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。

人教版数学九年级上册第二十二章《二次函数》课件(共22张)

人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18

人教版九年级数学上册课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质

人教版九年级数学上册课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质
A.y的最小值为1 B.图象顶点坐标为(2,1),对称轴为直线x=2 C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增 大而减小 D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个 单位长度得到
13.有相同对称轴的两条抛物线的图象如图所示,则下列关系不正确的 是( C )
A.h=m B.k>n C.k=n D.h>0,k>0
14.(2020·兰州)点A(-4,3),B(0,k)在二次函数y=-(x+2)2+h的图 象上,则k=__3__.
15.(2020·广安)已知二次函数 y=a(x-3)2+c(a,c 为常数,a<0),当
自变量 x 分别取 5 ,0,4 时,所对应的函数值分别为 y1,y2,y3,则 y1, y2,y3 的大小关系为_y__2<__y_3_<__y_1____(用“<”连接).
点坐标为(1,-5)
(3)当 x<1 时,y 随 x 的增大而增大
9.(2020·哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个 单位长度,所得到的拋物线为( D )
A.y=(x+3)2+5 B.y=(x-3)2+5 C.y=(x+5)2+3 D.y=(x-5)2+3
10.函数y=3(x-1)2+2是由函数y=3x2的图象先向_右___平移1个单位, 再向__上__平移__2__个单位得到的.
3.抛物线 y=- 2 (x-5)2+3 的开口向__下__,对称轴是直线__x_=__5__.
4.对于抛物线y=-(x+1)2-3,下列结论错误的是( B ) A.抛物线的开口向下 B.对称轴为直线x=1 C.顶点坐标为(-1,-3) D.x>1时,y随x的增大而减小
5.(兰州中考)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上, 则下列结论正确的是( A )

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

人教版九年级数学上册第22章二次函数章末复习课件 (共68张ppt)

(4)当图像与x轴 有两个交点时, b2-4ac>0;当图像与x轴只有一个 交点时, b2-4ac=0; 当图像与x轴没有交点时, b2-4ac<0. (5)图像过点(1, a+b+c)和点(-1, a-b+c), 再根据图像上的点的位置可 确定式子a+b+c和a-b+c的符号.
例1 已知二次函数y=ax2+bx+c的图像如图22-Z-1所示, 那么下
二次函数 的图像和
性质
开口方向
a>0, 图像开口向上 a<0, 图像开口向下
对称轴
a, b同号, 对称轴在y轴左侧 a, b异号, 对称轴在y轴右侧
烦烦烦鬼鬼鬼鬼 鬼鬼鬼鬼跟鬼鬼 鬼鬼鬼g鬼鬼
二次函数 的图像和
性质
a>0 增减性
a<0
最值
二次函数 的解析式
y=ax²+bx+c(a≠0)(一般式) y=a(x-h)²&#(a≠0)(交点式)
【要点指导】研究二次函数的图像的平移、轴对称变换过程, 实 际 就是确定变换后所得图像的二次函数解析式, 研究变换后的图 像和性质 的过程, 关键是找到变换后图像上的特殊点(如抛物线的 顶点), 从而得出 函数解析式, 最后利用二次函数的性质解答.
例4 如图22-Z-3, 在平面直角坐标系 xOy中, 将抛物线y=2x2沿y轴 向上平移1个单 位长度, 再沿x轴向右平移2个单位长度, 平移 后所 得抛物线的顶点记作A, 直线x=3与平移 后的抛物线相交于点B, 与 直线OA相交于点C. (1)求平移后的抛物线的函数解析式; (2)求点C的坐标及△ABC的面积.
例2 已知二次函数的图像以A(-1, 4)为顶点, 且过点B(2, -5). (1)求该函数的解析式; (2)求该函数图像与坐标轴的交点坐标.

九级数学上册第二十二章第2节二次函数y=ax2的图象和性质课件(共22张PPT)

九级数学上册第二十二章第2节二次函数y=ax2的图象和性质课件(共22张PPT)

3.二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
4.下列函数中,哪些是二次函数?
① y x2
② y x2 1 x
③ y xx2 ④ yx2 x1
⑤ y1x2 2x4 3
讲授新课
一 二次函数y=ax2的图象和性质
探究归纳
你会用描点法画二次函数y=x2的图象吗?
24
么关系?
-2
当a<0时,a的绝对值越大,开口越小.
-4
-6
y 1 x2
y 2x2
2
y x 2 -8
归纳总结
y=ax2 图象
位置开
口方向
对称性 顶点最值
增减性
a>0 y
O x
开口向上,在x轴上方
a<0 yx
O
开口向下,在x轴下方
a的绝对值越大,开口越小
关于y轴对称,对称轴方程是直线x=0 顶点坐标是原点(0,0)
图象 性质
抛物线 轴 对 称 图 形
开口方向及大小
重点关注4 个方面
对称轴 顶点坐标
增减性
课后作业
见《学练优》本课时练习
y
二次项系数互为相反数, 在对称轴的左侧, y随x的增大而
,
列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
(1)y=3x-1 (2)y=2x2+7 (3)y=x-2
开口相反,大小相同,它 (3)顶点坐标是
,顶点是抛物线上的最 值 .
3、如右图,观察函数y=( k-1)x2的图象,则k的取值范围是
影部分的面积之和.
分析:(1)把两点的横坐标代入二次函数表达式

最新人教版初中九年级上册数学【第二十二章 22.2二次函数与不等式】教学课件

最新人教版初中九年级上册数学【第二十二章 22.2二次函数与不等式】教学课件

=1 或 =2
1<2
1<<2
<1 或 >2
图像
【答疑过程】
例 1 已知二次函数 = − − .
(1) 画出二次函数的图象(如图 1);
(2)顶点在第______象限;
(3)对称轴为直线_______;
(4)与轴的交点坐标为____________;
(5)方程 − − = 的解为________;
(3)看清不等号方向(大于零还是小于零);
(4)写出满足不等式的解集.
2.常用的数学方法:
图象法和数形结合法、观察法.
谢谢观看!
(答疑)
【学习目标】
通过对一道例题的深度剖析,进一步
理解解决二次函数与不等式问题过程中,
数形结合思想的运用以及价值。
【教学回顾】
抛物线 1=2+b+c 与2=k+b的交点(1,1),(2,2)(1
<2)
>0
<0
1>2
<1 或 >2
1<<2
1=2
=1 或 =2
(6)取什么值时,函数值大于 0?
(7)取什么值时,函数值小于 0?
(8)取什么值时,函数值等于 0?
【答疑过程】
【答疑过程】
y>0
y<0
【答疑过程】
(1,3)
(-2,-1)

课堂小结
1.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
课堂小结
1.解不等式时灵活应用图象法与数形结合
法;
课堂小结
3.解题一般步骤:
(1)看图象找交点;
(2)确定交点坐标(关键是横坐标);
(3)看清不等号方向(大于零还是小于零);

人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质

人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质
解:(1) y = x2 − 2x + 1 = (x − 1)2,顶点坐标为(1,0). (2) y = 2x2 − 4x + 6 = 2(x −1)2 + 4,顶点坐标为(1,4).
问题1 你能说出 y 1 (x 6)2 3 的对称轴及顶点坐标吗
?答:对称轴是直线
2 x=
6,顶点坐标是
(6,3).
(1)a、b 同号;
(2)当 x = -1 和 x = 3 时,函数值相
等;
(3)4a + b = 0;
–1 O
(4)当 y = -2 时,x 的值只能取 0. –2
其中正确的是 (2) .
x 3
x=1
4. 已知抛物线 y = 2x2 - 12x + 13. (1)当 x 为何值时,y 有最小值?最小值是多少? (2)当 x 为何值时,y 随 x 的增大而减小? (3)将该抛物线向右平移 2 个单位长度,再向上平移 2 个单位长度,请直接写出新抛物线的解析式. 解:∵ y = 2x2 − 12x + 13 = 2(x − 3)2 − 5, ∴抛物线开口向上,顶点为(3,−5),对称轴为直线x =为 −5. (2)当 x<3 时,y 随 x 的增大而减小. (3)新抛物线的解析式为 y = 2(x − 5)2 − 3.
5 当 x>6 时,y 随 x 的增大而增大.
O
5 10 x
要点归纳 二次函数 y = ax2 + bx + c 的图象和性质
1.一般地,二次函数 y = ax2 + bx + c 可以通过配方化成
y = a(x - h)2 + k 的形式,即
y ax2 bx c
a

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)

人教版九年级数学上册课件:22.2二次函数与一元二次方程 (共12张PPT)
(2)若该抛物线的对称轴为直线x=5/2. ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的 抛物线与x轴只有一个公共点.
能力提升
挑战中考
12.(2016·江苏省宿迁)若二次函数y=ax2﹣2ax+c的图象
经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( C )
与y轴的交点坐标是_(__0_,__3_)____.
8.若二次函数y=mx2-2x+1的图像与x轴只有一个交点,则 m=____1_____.
9.画出抛物线y=x2-3x-4的图像,根据图像回答: (1)方程x2-3x-4=0的解是什么? (2)不等式x2-3x-4>0的解是什么? (3)不等式x2-3x-4<0的解是什么?
的对称轴是直线___X_=_-_1___.
类比精练
1.二次函数
的图象与x轴有两个交点,其中
一个交点坐标为(-1,0)则一元二次方程

解为__X__1_=_-1_,__X_2_=_3___.
课堂精讲
知识点2.运用一元二次方程根的判别式处理二次函数图
象与"轴的交点问题
例2.若二次函数
的图象与x轴有交点,则k
6.如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点, 则k= 1 .
7.若抛物线

= 10 .
经过点(-1,10),
课前小测
8.二次函数y=ax+bx+c的图象如图所示,则函数值y<0时 x的取值范围是 - 1<x元二次方程的关系
例1.方程
的两根为-3和1,那么抛物线
能力提升
10.如图是二次函数y=ax2+bx+c的图象,则下列说法: ① a>0;②2a+b=0; ③a+b+c=0; ④当-1<x<3时,y>0. 其中正确的个数为( B )

人教版九年级数学上册课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质

人教版九年级数学上册课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质

14.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x的 增大而减小.
(1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m+ 1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+1<0,m <-1,故m=-2
解:(1)直线AB的解析式为y=-x+2,抛物线 的解析式为y=x2
(2)令直线 AB 与 y 轴相交于点 E,在 y=-x+2 中,当 x=0 时,y=2,
∴点
E
y=-x+2, 的 坐 标 为 (0 , 2) , ∴ OE = 2. 联 立 y=x2,


x1=1, y1=1,
x2=-2, y2=4,
_增__大____,当x>0时,y随x的增大而__减__小___. 练习2:已知二次函数y=x2,当x>0时,y随x的增大而_增__大____.(填“增
大”或“减小”)
1.已知二次函数y=x2,则其图象经过下列点中的( A ) A.(-2,4) B.(-2,-4) C.(2,-4) D.(4,2)
A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3
12.如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标 系,作出函数y=2x2与y=-2x2的图象,则阴影部分的面积是____8____.
13.如图是下列二次函数的图象:①y=ax2;②y=bx2;③y=cx2;④y =dx2.比较a,b,c,d的大小,用“>”连接为___a_>__b_>__d_>__c____.
∴点
C
的坐标为(-2,4),∵S△BOC=12
OE·(xB-xC)=12

人教版数学九年级上册第二十二章二次函数课件22.1.1二次函数(共32张ppt)

人教版数学九年级上册第二十二章二次函数课件22.1.1二次函数(共32张ppt)

∴点P(2
020a,2
020-a)的坐标为
2
1 020
,2
020,∴点P关于y轴的对称点是 -
2
1 020
,2
020
.
故选B.
3.(2019湖北荆门沙洋期中)如图,用一段长为40 m的篱笆围成一个一边靠墙的矩形
菜园ABCD,墙长为18 m,设AD的长为x m,菜园ABCD的面积为y m2,则y关于自变量x
资源拓展
1.(2020广东阳江江城期中,4,★★☆)对于任意实数m,下列函数一定是二次函数的
是( )
A.y=mx2+3x-1
B.y=(m-1)x2
C.y=(m-1)2x2
D.y=(-m2-1)x2
答案 D 选项A,当m=0时,不是二次函数;选项B,当m=1时,m-1=0,不是二次函数; 选项C,当m=1时,(m-1)2=0,不是二次函数;选项D,当m取任意实数时,-m2-1≠0,是二次 函数.故选D.
2.函数y=(a-1) xa21+x-3是二次函数时,点P(2 020a,2 020-a)关于y轴的对称点是 ( )
A.
2
1 020
,2
020
C.
2
1 020
,-2
020
B.
-
2
1 020
,2
020
D.(2 019,2 020)
答案 B ∵y=(a-1)xa21 +x-3是二次函数,∴a2+1=2且a-1≠0,解得a=-1,
人均可支配收入为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为
x,则y与x之间的函数表达式是
.
答案 y=0.75(1+x)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)有三种思路:如图,①减少的面积y=
S四边形AEMG+S四边形GMFD+S四边 形MHCF= x(10-x)+x2+x(10-x)=-x2+20x,
②减少的面积y=S四边形AEFD+S四边形
GHCD-S四边形GMFD=10x+10x-x2=-x2+ 20x,③减少的面积y=S四边形ABCD- S四边形EBHM=102-(10-x)2=-x2+ 20x.
5.
(3)将方程或等式整理成二次函数的一般形式.
知3-讲
例3 填空:
(1)已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底 V=14πr2(r>0); 面半径r(cm)之间的函数解析式是______________
(2)已知正方形的边长为10,若边长减少x,则面积减 y=-x2+20x(0≤x≤10) 少y,y与x之间的函数解析式是______________________ . 导引:(1)根据圆柱体积公式V=πr 2×h求解;
导入新知
正方体的六个面是全等的正方形(如图),设正
方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
知2-讲
总 结
当二次项系数是待定字母时,求出字母的值
必须满足二次项系数不为0这一条件.
知3-讲
知识点
3
建立二次函数的模型
1. 建立二次函数的模型,一般要经历以下几个步骤: 2. 3. 等 4. 量关系列出方程或等式. (1)确定自变量与函数代表的实际意义; (2)找到自变量与因变量之间的等量关系,根据
2 下列各式中,y是x的二次函数的是( B )
A.y=ax2+bx+c B.x2+y-2=0
C.y2-ax=2
D.x2-y2+1=0
知1-练
3 关于函数y=(500-10x)(40+x),下列说法不正 4 确的是C ( )
5
6 7 8
A.y是x的二次函数
B.二次项系数是-10 C.一次项是100 D.常数项是20 000
第二十二章
二次函数
22.1
二次函数的图象和性质
第1课时
二次函数
1
课堂讲解 二次函数的定义
二次函数的一般形式
2
课时流程 建立二次函数的模型
逐点 导讲练 课堂 小结 课后 作业
回顾旧知 我们已经学习了哪些函数?它们的解析式是什么? y=kx+b(k≠0) 一条直线 正比例函数 y=kx (k≠0) k 双曲线 反比例函数 y ( k 0). x 一次函数
一次项系数和常数项.
知1-讲
例1 下列函数中,哪些是二次函数?并指出二次函 数的二次项系数、一次项系数和常数项.
(1)y=7x-1; (3)y=3a3+2a2; (2)y=-5x2; (4)y=x-2+x; 1 (6)y=x2+ 2 . x
(5)y=3(x-2)(x-5);
知1-讲
解: (1)y=7x-1; 自变量的最高次数是1 × (2)y=-5x2 √ 自变量的最高次数是2 ; (3)y=3a3+2a2 自变量的最高次数是3 × ; (4)y=x-2+x; x-2不是整式 × (5)y=3(x-2)(x-5); 整理得到y=3x2-21x+30,是二次函数 √ 1 1 (6)y=x2+ 2 2 不是整式 × x x
知2-讲
知识点
2
二次函数的一般形式
2a b 3 例2 已知函数y=(a-b)x3+2x2+2+ x 是y关于x的二次函数,求a,b的值.
导引:若是二次函数,则等号的右边应是关于x的
ห้องสมุดไป่ตู้二次多项式,故a-b=0,2a+b-3=0,
于是a,b可求. a 1, a b 0, 解:由题意得 解得 b 1. 2a b 3 0,
知3-练
1 一台机器原价60万元,如果每年的折旧率为x,
两年后这台机器的价格为y万元,则y与x之间
2 3 4 5 A 的函数关系式为 ( A.y=60(1-x)2 B.y=60(1-x) C.y=60-x2 )
6
D.y=60(1+x)2
第二十二章
二次函数
22.1
二次函数的图象和性质
知1-导
1 1 思考:函数y=6x2,m= n2- n, 2 2 y=20x2+40x+20有什么共同点?
1、函数解析式是整式; ì ï ï ï 可以发现 ï í 2、化简后自变量的最高次数是2; ï ï ï ï î 3、二次项系数不为0.
知1-讲
定义 一般地,形如y=ax2+bx+c(a,b,c是常数, a≠0)的函数,叫做二次函数.其中,x是自变 量,a,b,c分别是函数解析式的二次项系数、
知3-讲
总 结
(1) 求几何问题中二次函数的解析式,除了根据有关
面积、体积公式写出二次函数解析式以外,还应考虑 问题的实际意义,明确自变量的取值(在一些问题中, 自
变量的取值可能是整数或者是在一定的范围内);
(2) 判断自变量的取值范围,应结合问题,考虑全面, 不要漏掉一些约束条件.列不等式组是求自变量的取 值范围的常见方法.
知1-讲
二次项系数 解: (2) y=-5x2
所以y=-5x2的二次项系数为-5,一次项系
数为0,常数项为0.
二次项系数
常数项
(5)化为一般式,得到y=3x2-21x+30,
一次项系数
所以y=3(x-2)(x-5)的二次项系数为3,
一次项系数为-21,常数项为30.
知1-练
1 下列函数关系式中,一定为二次函数的是( C ) A.y=3x-1 C.s=2t2-2t+1 B.y=ax2+bx+c 1 D.y=x2+ x
知1-导
知识点
问题1
1
二次函数的定义
n个球队参加比赛,每两队之间进行一场比赛, 比赛的场次数m与球队数n有什么关系? 比赛的场次数 1 m= 2 1 1 即m= n2- 2 2
n(n-1),
n.
知1-导
问题2
某种产品现在的年产量是20 t,计划今 后两年增加产量.如果每年都比上一年的产量增 加x倍,那么两年后这种产品的产量y将随计划所 定的x的值而确定,y与x之间的关系应怎样表示? 两年后的产量 y=20(1+x)2, 即y=20x2+40x+20.
相关文档
最新文档