八年级下册数学北师大版期几何复习题
北师大版八年级数学下册几何综合练习试题一
八下几何综合练习一1.将两个等腰直角三角形ABC和DPE如图1摆放,点P是边AC的中点,点B在DP上,已知∠ABC=∠DPE=90°,BA=BC,PD=PE,连接BE、CD.(1)线段BE、CD之间存在什么关系?请给出证明;(2)将△PDE绕点P逆时旋转45°,得到△PD1E1,如图2所示,连接BE1、CD1.此时线BE1、CD1之间存在什么关系?请给出证明;(3)如图1,若AB=AE=4,连接AD,将△DPE绕点P逆时针旋转180°,请直接写出旋转过程中AD2的最大值和最小值.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm,把△DEC绕点C顺时针旋转15°得到△D1E1C(如图乙),这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数.(2)求线段AD1的长.(3)若把△D1E1C绕点C顺时针旋转30°得到△D2E2C,这时点B在△D2E2C的内部,外部,还是边上?证明你的判断.3.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角是度;②线段OD的长为;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,∠A0B=135︒,OA=1,0B=2,求OC的长.小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.5. 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.6.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.7.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图(1),若三角板两条直角边的外沿分别交正方形的边AB,BC于点M,N,则①OM+ON=MB+NB;②AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.如图(2),若以A为顶点的45°角的两边分别交正方形的边BC、CD于点M,N.交对角线BD于点E、F,我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图2中画出图形并写出小化所说的具体的旋转方式:.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图(3),设顶点为E的45°角位于正方形的边AD上方,这个角的两边分别经过点B、C,连接EA,ED,那么线段EB,EC,ED也存在确定的数量关系:(EB+ED)2=2EC2,请你证明这个结论.8.如图1,在Rt△ABC中,AB=AC,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.9.如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P与点A重合时停止运动,运动时间为t秒.(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;(2)连接PC、PD,求△CPD的面积S关于t的函数表达式;(3)点P在运动过程中,是否存在某个位置使得△CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.10.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.11.如图①,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A,以线段AC为边在直线l1的下方作正方形ACDE,此时点D恰好落在x轴上.(1)求出A,B,C三点的坐标.(2)求直线CD的函数表达式.12. 如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.13. 如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)*若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.14.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.15.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.16.【观察发现】(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)【深入探究】(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.【拓展应用】(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.17.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?(1)问题的转化:把△APC绕点A逆时针旋转60°得到△AP′C′,连接PP′,这样就把确定PA+PB+PC 的最小值的问题转化成确定BP+PP′+P′C的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C;(2)问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,求∠APB和∠APC的度数;(3)问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.18.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由19.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.20.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)。
北师大版八年级数学下册几何综合复习练习题(有答案)
几何练习题一.选择题1.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC 的长等于()A.12B.10C.8D.62.下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形3.已知A(a,1)与B(5,b)关于原点对称,则a b的值为()A.B.C.﹣5D.54.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.46.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4B.5C.6D.8二.填空题7.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)8.如图,等腰△ABC中,AB=AC=10,∠B=15°,则S△ABC=.9.如图,已知动点P可在射线OB上运动,∠AOB=40°,当∠A=°时,△AOP为直角三角形.10.如图,AB=AC,AC的垂直平分线MN交AB于点D交AC于点E,若AE=5,△BCD的周长为17,则△ABC的周长为.11.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.12.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.13.如图,▱ABCD中,EF过对角线的交点O如果AB=4cm,AD=3cm,OF=1cm,则四边形BCEF的周长为.14.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EF A.其中正确结论的序号是.15.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.16.如图,已知在等边△ABC中,沿图中虚线剪去∠C,则∠1+∠2=.三.解答题17.已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EH∥BC,分别交AC、CF于点G、H.求证:GE=GH.18.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.19.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.20.如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.23.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.24.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.25.如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF的中点,求证:GH⊥EF.26.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.27.已知:如图是某城市部分街道示意图,AF∥BC,且AF⊥CE,AB=DC,AB∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?说明理由.28.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,BE=CF.(1)求证:四边形DEFC是平行四边形;(2)若∠ABC=60°,BD=4,求四边形DEFC的面积.29.如图,已知在等边△ABC中,AD,CF分别为边CB,BA上的中线,以AD为边作等边△ADE.求证:(1)四边形CDEF是平行四边形;(2)EF平分∠AED.30.如图,在△ABC中,D,E,F分别为边BC,AB,AC上的点,ED∥AF且ED=AF,延长FD到点G,使DG=FD,求证:ED,AG互相平分.答案一.选择题1.B.2.A.3.B.4.C.5.C.6.B.二.填空题7.①②③.8.25.9.50°或90°.10.27.11.32.12.等边三角形.13.9cm.14.①②③④.15.6.16.240°.三.解答题7.解:∵EH∥BC,∴∠BCE=∠GEC,∠GHC=∠DCH,∵∠GCE=∠BCE,∠GCH=∠DCH,∴∠GEC=∠GCE,∠GCH=∠GHC,∴EG=GC=GH,∴GE=GH.18.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.19.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=6cm,∴AD=2cm.20.解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(4)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.21.解:如图,点P为所作.22.证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.23.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.24.解:设每个内角度数为x度,则与它相邻的外角度数为180°﹣x°,根据题意可得x﹣(180﹣x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.25.证明:∵E,F,G分别是AB,CD,AC的中点,∴FG=AD,EG=BC,∵AD=BC,∴FG=GE,∵H是EF的中点,∴GH⊥EF.26.证明:连接BD,交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.解:同时到达,理由如下:连接AC,如图,∵AF∥BC,AB=CD,∴四边形ABCD为等腰梯形,∴AC=BD,∵AB∥DE,BD∥AE,∴四边形ABDE为平行四边形,∴AE=BD=AC,AB=DE,∵AF⊥CE,∴AF为线段CE的垂直平分线,∴CF=EF,∴甲乘1路车,路程=BA+AE+EF=CD+BD+CF,乙乘2路车,路程=BD+DC+CF,∴两人同时到达.28.解:(1)∵ED∥BC,∴∠BDE=∠DBC.∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠BDE=∠ABD,∴BE=DE.∵BE=CF,∴DE=CF.又∵ED∥BC,∴四边形DEFC是平行四边形;(2)如图所示:过点B作BG⊥DE,垂足为G.由(1)可知∠EDB=∠ABC.∵∠ABC=60°.∴∠EDB=30°.又∵∠G=90°.∴BG=BD=2.∵ED∥FC,∴∠AED=∠ABC=60°.∴∠GEB=60°.∴ED=BE=BG÷=.∴平行四边形EDCF的面积=ED•BG=.29.证明:(1)∵△ABC是等边三角形,AD,CF分别为边CB,BA上的中线,∴AD=CF,AD⊥BC,∠BCF=30°,∵△ADE是等边三角形,∴DE=AD,∠ADE=60°,∴∠BDE=90°﹣60°=30°=∠BCF,∴DE=CF,DE∥CF,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形,∴EF∥CD,∴∠FED=∠BCF=30°,∵△ADE是等边三角形,∴∠AED=60°,∴∠AEF=30°=∠DEF,∴EF平分∠AED.30.证明:连接EG、AD,如图所示:∵ED∥AF,且ED=AF,∴四边形AEDF是平行四边形,∴AE=DF,又DG=DF,∴AE=DG,∴四边形AEGD是平行四边形,∴ED,AG互相平分.。
_期末复习解答培优:几何综合(三)2020-2021学年北师大版八年级数学下册
2020-2021学年北师大版八年级数学下册期末复习解答培优:几何综合(三)1.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.2.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD 于G,试判断AD与EF垂直吗?并说明理由.3.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.4.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.5.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.6.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC绕原点O逆时针旋转90°后的△A1B1C1;(2)请画出△ABC关于原点对称的△A1B1C1;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并写出点P的坐标为.7.如图,在平面直角坐标系xOy 中,A (﹣1,5),B (﹣1,0),C (﹣4,3). (1)过点B 作DB ∥CA ,且点D 在格点上,则点D 的坐标是 . (2)P (x 0,y 0)经平移后对应点为P (x 0+3,y 0﹣2),将△ABC 作同样的平移得到△A 1B 1C 1,在图中画出△A 1B 1C 1;(3)直接写出直线AC 与y 轴的交点坐标 .8.如图,方格纸中的每个小方格都是边长为1个单位的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点都在格点上,建立如图所示的平面直角坐标系,点A ,B ,C 的坐标分别为(1,1),(4,2),(2,3).(1)画出△ABC向左平移4个单位,再向上平移1个单位后得到的△A1B1C1;写出A1,B1、C1三点的坐标.(2)求△ABC面积为.9.已知直线a∥b,点A、B在直线a上(B在A左侧),点C在直线b上,E点在直线b的下方,连接AE交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC;(2)如图2,∠BAD的邻补角的角平分线与∠DEC的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由;(3)在(2)的条件下,将图2中点A向右平移,使得点D在C点右侧,直接写出∠AME 与∠ECD的数量关系.10.如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE,点F是BE上一点,连接CF.(1)如图1,若EC=3DE;BC=BF=4,DC=,求EF的长.(2)如图2,若BC=EC,连接BE,在BE上取点F,使∠FCD=45°,过点E作EM⊥CF 交CF延长线于点M,延长ME、CD相交于点G,连接BG交CM于点N.求证:EG=2MN.11.如图,在Rt△ABC中,∠ACB=90°,点F是CB的中点,点E是AB的中点,点D是CA 延长线上的一点,且AD=AC,连接DE、AF.(1)求证:四边形ADEF是平行四边形;(2)若四边形ADEF的周长是14cm,BC的长为6cm,求四边形ADEF的面积.12.如图,在▱ABCD中,点E是对角线BD上的一点,过点C作CF∥BD,且CF=DE,连接AE、BF.求证:AE=BF.13.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=74°,∠EAD=3∠CAE,直接写出∠BCA的度数.14.已知:在平行四边形ABCD中,BD是对角线,AE∥CF,AE,CF分别交BD于点E,点F.(1)如图1,求证:AE=CF;(2)如图2,当BE=EF=FD时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中的三角形,使所写每个三角形的面积都等于平行四边形ABCD面积的.15.阅读下列材料:如图1,在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)如图2,在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(2)如图3,在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD的面积.。
北师大版八年级下册数学期末几何压轴题专练(含答案)
八下数学期末复习专题几何压轴题专练1.如图1,在△ABC中,AB=AC,点D是直线BC上一点(不与点BC重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,△DAE=△BAC,连接CE.设△BAC=α,△DCE=β.(1)求证:△DAB△△EAC.(2)当点D在线段BC上运动时,①α=50°,则β=°.②猜想α与β之间的数量关系,并对你的结论进行证明.(3)如图2,当点D在线段BC的反向延长线上运动时,猜想α与β之间的数量关系,并对你的结论给出证明.2.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当△DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长. 3.如图(1)如图1,在□ABCD中,AE平分△BAD交CD边于点E,已知AB=5cm,AD=3cm,则EC等于cm。
(2)如图2,在□ABCD中,若AE,BE分别是△DAB,△CBA的平分线,点E在DC边上,且AB=4,则▱ABCD的周长为。
(3)如图3,已知四边形ABCD是平行四边形,AD=BC,若AF,BE分别是△DAB,△CBA的平分线。
求证:DF=EC(4)在(3)的条件下,如果AD=3,AB=5,则EF的长为。
4.已知,在▱ABCD中, AB⊥BD, AB=BD, E为射线BC上一点,连接AE交BD 于点F.(1)如图1,若点E与点C重合,且AF=√5,求AB的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证: AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G, M为AG 的中点,点N在BC边上且BN=1,已知AB=5√2,请直接写出MN的最小值.5.如图,在△ABC中,△ACB=90°,AC=a,BC=b,a>b,点P是边AB上一点,连接CP,将△ACP沿CP翻折得到△QCP.(1)若PQ△AB,由折叠性质可得△BPC=°;(2)若a=8,b=6,且PQ△AB,求C到AB的距离及BP的长;(3)连接BQ,若四边形BCPQ是平行四边形,直接写出a与b之间的关系式.6.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC 绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,写出线段AF与EC的数量关系,并证明;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并说明理由;(3)若AB=1,BC=√5,求当α等于多少度时,BF=DF?7.在Rt△ABC中,∠ABC=90°,BA=BC=4,将△ABC绕点C顺时针旋转得到△A1B1C,其中点A,B的对应点分别为点A1,B1.连接AA1,BB1交于点D.(1)如图1,当点A1落在BC的延长线上时,求线段AB1的长;(2)如图2,当△ABC旋转到任意位置时,求证:点D为线段AA1中点;(3)若△A1B1C从图1的位置绕点C继续顺时针旋转α(0°<α≤90°),当直线AB与直线A1B1相交构成的4个角中最小角为30°时,求α的值.8.如图①,在平行四边形ABCD中,AD=BD=2,BD△AD,点E为对角线AC上一动点,连接DE,将DE绕点D逆时针旋转90°得到DF,连接BF.(1)求证BF=AE;(2)如图②,若F点恰好落在AC,求OF的长;(3)如图③,当点F落在△OBC的外部,构成四边形DEMF时,求四边形DEMF 的面积.9.如图(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,证明线段BC,DC,EC之间满足的等量关系;(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,探索线段AD,BD,CD之间满足的等量关系,并证明结论;(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°若BD=12,CD=4,求AD的长.10.把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求△ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分△BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出△F的度数(用含α的式子表示).11.如图1,在平面直角坐标系中.直线y=−12x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90∘得到CD,此时点D 恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC△ △CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.12.在等边三角形ABC中,AD⊥BC于D,AB=2.(1)如图①,点E为AD的中点,则点E到AB的距离为;(2)如图②,点M为AD上一动点,求12AM+MC的最小值.(3)(问题解决)如图③,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在使AM=(千米)处.13.已知Rt△ABC中,△BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE△AE,过点B作BD△AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求△EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG△FH,交FH的延长线于点G,若GH:FH=6:5,△FHM 的面积为30,△EHB=△BHG,求线段EH的长.14.阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求△APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′△△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出△APB =;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题:已知如图②,△ABC中,△CAB=90°,AB=AC,E、F为BC上的点且△EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,△C=90°,AC=1,△ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且△AOC=△COB=△BOA=120°,求OA+OB+OC的值.15.在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=4,CD=3,求DE的长;(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD⊥BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN;(3)如图3,若AD=AB,△ADE绕着点A旋转,取DE中点M,连接BM,取BM中点N,连接AN,点F为BC中点,连接DN,若DN恰好经过点F,请直接写出DF:DN:AN的值.16.如图1,△ABC是直角三角形,△ACB=90°,点D在AC上,DE△AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.17.我们定义:如图1、图2、图3,在ΔABC中,把AB绕点A顺时针旋转α(0∘<α<180∘)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180∘时,我们称ΔAB′C′是ΔABC的“旋补三角形”,ΔAB′C′边B′C′上的中线AD叫做ΔABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的ΔAB′C′均是ΔABC的“旋补三角形”.(1)①如图2,当ΔABC为等边三角形时,“旋补中线” AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90∘,BC=8时,则“旋补中线” AD长为.(2)在图1中,当ΔABC为任意三角形时,猜想“旋补中线” AD与BC的数量关系,并给予证明.18.在平行四边形ABCD中,∠BAD的角平分线交直线BC于点E,交直线DC于点F.(1)在(图25-1)中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图25-2),求∠BDG的度数;(3)若∠ABC=120°,FG//CE,FG=CE,分别连接BD、DG(如图25--3),直接写出∠BDG的度数.19.在△ABCD中,对角线AC、BD交于点O,将过点A的直线l绕点A旋转,交射线CD于点E,BF△l于点F,DG△l于点G,连接OF,OG.(1)如图①当点E与点C重合时,请直接写出线段OF,OG的数量关系;(2)如图②,当点E在线段CD上时,OF与OG有什么数量关系?请证明你的结论;(3)如图③,当点E在线段CD的延长线上时,上述的结论是否仍成立?请说明理由.20.如图,在平行四边形ABCD中,AB△AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=√5,且BF=DF,求旋转角度α的大小.21.如图1,在Rt△ABC中,△A=90°,AB=AC,点D,E分别在边AB,AC上,AD =AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.22.如图,已知函数y=﹣12x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.(1)求点A的坐标;(2)在x轴上有一动点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣12x+b和y=x的图象于点C、D.①若OB=2CD,求a的值;②是否存在这样的点P,使以B、O、C、D为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.答案与解析1.【答案】(1)证明:∵△DAE=△BAC,∴△CAD﹣△DAE=△CAD﹣△BAC,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAF AD=AE∴△DAB△△EAC(SAS)(2)解:①130;②α+β=180°,理由:由(1)知,△DAB△△EAC,∴△ABC=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴β=△ACB+△ACE=△ACB+△ABC=90°﹣12α+90°﹣12α=180°﹣α,∴α+β=180°(3)解:β=α;理由:∵△DAE=△BAC,∴△DAE﹣△BAE=△BAC﹣△BAE,∴△CAE=△BAD,在△DAB和△EAC中,{AB=AC∠BAD=∠CAB AD=AE∴△DAB△△EAC(SAS),∴△ABD=△ACE,在△ABC中,AB=AC,△BAC=α,∴△ABC=△ACB=12(180°﹣△BAC)=12(180°﹣α)=90°﹣12α,∴△ACE=△ABD=180°﹣△ABC=180°﹣(90°﹣12α)=90°+12α,∴β=△ACE﹣△ACB=90°+ 12α﹣(90°﹣12α)=α.2.【答案】(1)解:∵四边形ABCD是矩形,∴△BAD=90°,∵△DAG =30°,∴△BAG =60°由折叠知,△BAE =12△BAG =30°, 在Rt△BAE 中,△BAE =30°,AB =3,∴BE =√3(2)解:如图4,连接GE ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴△C =90°,∴△EFG =90°,∵在Rt△GFE 和Rt△GCE 中,{EG =EG EF =EC∴Rt△GFE△Rt△GCE (HL ),∴GF =GC ;设GC =x ,则AG =3+x ,DG =3﹣x ,在Rt△ADG 中,42+(3﹣x )2=(3+x )2,解得x =43. (3)解:BE =323.【答案】(1)2(2)12(3)证明:∵在▱ABCD 中,CD△AB ,∴△DFA=△FAB.又∵AF是△DAB的平分线∴△DAF=△FAB,∴△DAF=△DFA,∴AD=DF,同理可得EC=BC.∵AD=BC,∴DF=EC(4)14.【答案】(1)解:如图1中,∵AB⊥BD,∴∠ABD=90°,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∵四边形ABCD是平行四边形,∴E、C重合时BF=12BD=12AB,在RtΔABF中,∵AF2=AB2+BF2,∴(√5)2=(2BF)2+BF2,∴BF=1, AB=2,∴AB=2;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵AB⊥BD, DG⊥AE,∴∠ABF=∠FGD=90°,∵∠AFD=∠ABF+∠2=∠FGD+∠3, ∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和ΔDBH中, {AB=BD ∠2=∠3 AK=HD,∴ΔABK≅ΔDBH,∴BK=BH, ∠6=∠1,∵四边形ABCD是平行四边形,∴AD//BC,∴∠4=∠1,由(1)知∠4=45°,∴∠l=∠6=45°,∴∠5=∠ABD−∠6=45°,∠5=∠1,在ΔFBK和ΔFBH中, {BF=BF ∠5=∠1 BK=BH,∴ΔFBK≅ΔFBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:MN的最小值为√149−52.5.【答案】(1)45(2)解:如图,作CH△AB于H由翻折的性质可知:△APC=△QPC∵CH△AB,△BPC=45°∴CH=PH在Rt△ABC中,AB=√AC2+BC2=√82+62=10∵12⋅AB ⋅CH =12⋅AC ⋅BC ,即 5CH =24 ∴CH= 245; (3)解:如图:连接BQ由翻折的性质可得:PA=PQ ,△QPC=△APC∵四边形BCPQ 是平行四边形∴PQ=BC=PA=b ,PQ//BC ,∴△QPC+△PCB=180°∵△BPC+△APC=180°∴△PCB=△BPC∴PB=BC=b∴AP=PB=b ,AB=2b ,在Rt△ABC 中,则有(2b )2=a 2+b 2∴a 2=3b 2∵a>0.b>0,∴a= √3b .6.【答案】(1)解:AF=CE.理由如下:∵四边形ABCD 为平行四边形,∴AD // CB ,OA=OC.∴△FAO=△ECO.在 △AOF 和 △COE 中,∵{∠AOF =∠COE,OA =OC,∠FAO =∠ECO,∴△AOF ≌△COE(ASA) .∴AF=CE.(2)解:当旋转至90°时,四边形ABEF为平行四边形.理由如下:∵△AOF= 90°,△BAC= 90°,∴AB //EF.又∵四边形ABCD是平行四边形,∴AD//BC,即AF//BE.∴四边形ABEF为平行四边形(3)解:当α等于45度时,BF=DF.理由如下:∵AB=1,BC= √5,AB△AC,∴AC= √BC2−AB2=√(√5)2−12=2.∵四边形ABCD为平行四边形,∴OA=12AC=12×2=1,BO=DO.∴OA=AB=1.点O在线段BD的垂直平分线上.∴△ABO为等腰直角三角形.∴△AOB= 45°.当F在线段BD的垂直平分线上时,BF=DF,∴FO垂直平分BD.∴△BOF=90°.∴∠AOF=∠BOF−∠AOB=90°−45°=45°,即α=45°.∴当α等于45度时,BF=DF.7.【答案】(1)解:∵Rt△ABC中,∠ABC=90°,BA=BC=4,∴∠ACB=45°,AC=√AB2+BC2=√42+42=4√2.∵△ABC绕点C顺时针旋转得到△A1B1C,∴∠A1CB1=45°,B1C=BC=4.∴∠ACB1=180°−∠ACB−∠A1CB1=90°.∴AB1=√AC2+B1C2=√(4√2)2+42=4√3(2)证明:过点A1作A1E//AB交BB1的延长线于点E,∴∠ABD=∠DEA1.∵B1C=BC,∴∠CBB1=∠CB1B.∵∠ABC=∠A1B1C=90°,∴∠ABD+∠CBB1=∠CB1B+∠A1B1E=90°.∴∠A1B1E=∠ABD=∠DEA1.∴A1B1=A1E.∵AB=A1B1,∴AB=A1E.∵∠ADB=∠A1DE,∴△ADB≅△A1DE.∴AD=∠A1D.∴点D为线段AA1中点(3)解:如图3,当直线AB与直线A1B1相交于点A上方,延长BC交A1B1于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠CA1B1=45°,∴∠A1CE=∠PEB−∠CA1E=15°.如图4,当直线AB与直线A1B1相交于点A下方,延长BC交A1B1的延长线于点E,∵∠ABC=90°,∠P=30°,∴∠PEB=60°.∵∠A1B1C=90°,∴∠B1CE=∠A1B1C−∠PEB=30°.∴∠A1CE=∠B1CE+∠A1CB=75°.∴当直线AB与直线A1B1相交构成的4个角中最小角为30°时,α的值为15°或75°.8.【答案】(1)证明:根据旋转的性质可得,DE=DF,△EDF=90°∵BD△AD∴△ADB=90°∴△ADE=△BDF∵AD=BD∴△ADE△△BDF∴BF=AE(2)过点D 作DG△AC 于点G ,∵DE=DF ,△EDF=90°∴△DEF=△DFE=45°,△DEA=135°根据(1)可得,△ADE△△BDF∴△BFD=△DEA=135°,AE=BF∴△BFO=90°∵四边形ABCD 为平行四边形∴OB=OD∴△DGO△△BFO∴DG=BF ,OF=OG∴DG=EG=AE=BF设DG=a (a >0),则AG=2a在直角三角形ADG 中,∵AG 2+DG 2=AD 2∴(2a )2+a 2=22解得a=2√55 ∴OF=OG=12×2√55=√55(3)过点D 作DN△AC 于点N ,将△DEN 绕点D 逆时针旋转90°得到△DFH ,∴DH=DN ,△DNE=△DH=90°,△DEN=△DFG∵△DEF=△FME=90°∴△DEM+△DFM=180°∴△DFH+△DFM=180°∴点H ,点F ,点M 三点共线∵△DHF=△DNM=△FMN=90°∴四边形DNMG 为矩形∵DN=DH∴四边形DNMH 为正方形∴S 四边形DEMF=S 四边形DNMH=(2√55)2=459.【答案】(1)解:∵线段AD绕点A逆时针旋转90°得到AE∵Rt△ABC中AB=AC∴∠BAD=∠CAE∴△ABD≌△ACE(SAS)∴DB=EC∴BC=DC+DB=DC+EC(2)解:连结CE∵Rt△ABC与Rt△ADE中AB=AC,AD=AE∴∠B=∠ACE=45°,DE2=AD2+AE2=2AD2,∵由(1)同理可得△ABD≌△ACE∴DB=EC,∠ABD=∠ACE=45°∴∠ECD=90°∴Rt△ECD中,DE2=EC2+CD2=BD2+CD2∴2AD2=BD2+CD2(3)解:过点A作AE⊥AD,且AE=AD,连结DE,CE∵∠ABC=∠ACB=45°∴AB⊥AC,AB=AC∵AE⊥AD,AE=AD∴由(1)同理可得△ABD≌△ACE∴DB=EC=12∵∠ADC=45°∴∠EDC=∠ADC+∠ADE=90°∴DE=√CE2−CD2=√122−42=8√2∴等腰直角△ADE中AD=810.【答案】(1)解:∵α=60°,△ABC△△ADE,∴ AD=AB,△ABC=△ADE.∴ △ABD=△DAB=60°.∴ △ABC=△ADE=△DAB+△ABD=120°.(2)解:∵ AC=AE,△EAC= α,∴ △E=△ACE.∵ △ABC△△ADE,∴ △ACB=△E.∴ △ACB=△ACE.∴ CA平分△BCE.(3)解:△F= 90°−α.如下图:延长AD交EF于点G,则根据图形旋转的性质得,△GAF=α,∵△ABC△△ADE∴AC=AE,∴△AEC为等腰三角形,在△AED和△ACD中,{AE=AC DE=CD AD=AD,∴ △AED △ △ACD(SSS),∴ △DAE=△DAC,∴ AD平分△EAC,∵△AEC为等腰三角形,∴AG△EF,即△AGF=90°,∴∠EAF=3∠CAF=32α,∴∠F=180°−∠GAF−∠AGF=90°−α.11.【答案】(1)证明:∵∠BOC=∠BCD=∠CED=90∘,∴∠OCB+∠DCE=90∘,∠DCE+∠CDE=90∘,∴∠BCO=∠CDE,∵BC=CD,∴△BOC△ △CED.(2)解:∵△BOC△ △CED,∴OC=DE=m,BO=CE=3,∴D(m+3,m),把D(m+3,m)代入y=−12x+3得到,m=−12(m+3)+3,∴2m=−m−3+6,∴m=1,∴D(4,1),∵B(0,3),C(1,0),∴直线BC的解析式为y=−3x+3,设直线B′C′的解析式为y=−3x+b,把D(4,1)代入得到b=13,∴直线B′C′的解析式为y=−3x+13,∴C′(133,0),∴CC′=103,∴△BCD平移的距离是103个单位.(3)点Q的坐标为(3,32)或(5,12)或(−3,92).12.【答案】(1)√34(2)解:如图,作CN⊥AB,垂足为N,此时12AM+MC最小,最小值等于CN,∵在正三角形ABC中,AB=BC=AC=2,∠ANC=90°,∴AN=1,由勾股定理得,CN=√3由(1)知,MN=12AM∴MN+CM=12AM+MC=CN=√3,即12AM+MC的最小值为√3(3)( 480−120√3 )13.【答案】(1)证明:∵CE△AE,BD△AE,∴△AEC=△ADB=90°,∵△BAC=90°,∴△ACE+CAE=△CAE+△BAD=90°,∴△ACE=△BAD,在△CAE与△ABD中{∠ACE=∠BAD ∠AEC=∠ADB AC=AB∴△CAE△△ABD(AAS),∴AE=BD;(2)解:连接AH∵AB=AC,BH=CH,∴△BAH=12∠BAC=12×90°=45°,△AHB=90°,∴△ABH=△BAH=45°,∴AH=BH,∵△EAH=△BAH﹣△BAD=45°﹣△BAD,△DBH=180°﹣△ADB﹣△BAD﹣△ABH=45°﹣△BAD,∴△EAH=△DBH,在△AEH与△BDH中{AE=BD∠EAH=∠DBH AH=BH∴△AEH△△BDH(SAS),∴EH=DH,△AHE=△BHD,∴△AHE+△EHB=△BHD+△EHB=90°即△EHD=90°,∴△EDH =△DEH = 180°−90°2=45° ;(3)解:过点M 作MS△FH 于点S ,过点E 作ER△FH ,交HF 的延长线于点R ,过点E 作ET△BC ,交HR 的延长线于点T .∵DG△FH ,ER△FH ,∴△DGH =△ERH =90°,∴△HDG+△DHG =90°∵△DHE =90°,∴△EHR+△DHG =90°,∴△HDG =△HER在△DHG 与△HER 中{∠HDG =∠HER ∠DGH =∠ERH DH =EH∴△DHG△△HER (AAS ),∴HG =ER ,∵ET△BC ,∴△ETF =△BHG ,△EHB =△HET ,△ETF =△FHM ,∵△EHB =△BHG ,∴△HET =△ETF ,∴HE =HT ,在△EFT 与△MFH 中{∠ETF =∠FHM ∠EFT =∠MFH EF =FM,∴△EFT△△MFH (AAS ),∴HF =FT ,∴HF·MS 2=FT·ER 2, ∴ER =MS ,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,HF·MS 2=5k·6k2=30,k=√2,∴FH=5 √2,∴HE=HT=2HF=10 √2.14.【答案】(1)150°(2)解:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,△CAE′=△BAE,△ACE′=△B,△EAE′=90°,∵△EAF=45°,∴△E′AF=△EAE′-△EAF=45°,∴△EAF=△E′AF,在△EAF和△E′AF中,{AE=AE′∠EAF=∠E′AFAF=AF∴△EAF△△E′AF(SAS),∴E′F=EF,∵△CAB=90°,AB=AC,∴△B=△ACB=45°,∴△E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)解:如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,△ACB=90°,AC=1,△ABC=30°,∴AB=2,∴BC=√AB2−AC2=√3,∵△AOB绕点B顺时针方向旋转60°,△ABC=30°,∴△A′BC=△ABC+60°=30°+60°=90°,∵△C=90°,AC=1,△ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,△BOO′=△BO′O=60°,∵△AOC=△COB=△BOA=120°,∴△COB+△BOO′=△BO′A′+△BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=√BC2+A′B2=√(√3)2+22=√7,∴OA+OB+OC=A′O′+OO′+OC=A′C=√7.15.【答案】(1)解:连接EC,又AB=AC,AD=AE,∴BD=CE=4,∠ACE=∠ABC,∵∠ABC+∠ACB=90°∴∠ACE+∠ACB=90°∴△ACE是直角三角形,∴DE=√CD2+CE2=√32+42=5;(2)解:∵∠BAD+∠DAC=90°,∠EAC+∠DAC=90°∴∠BAD=∠EAC∵{AB=AC∠BAD=∠EACAD=AE∴△BAD≅△CAE(SAS)∴∠ABD=∠ACE∵AD⊥BD∴∠BAD=90°−∠ABD∵∠BAC=90°∴∠DAC=90°−∠BAD∴∠DAC=∠ABD∴∠ACF=∠DAC∴AD//CF过点A作AP//BC交FC于点P,∴四边形ANCP是平行四边形∴AN=CP,NC=AP∵AP//BC∴∠FAP=∠ABC=45°{PA=NC∠PAF=∠NCM AF=CN∴△PAF≅△NCM(SAS)∴MN=PF∴AN+MN=CP+FP=CF;(3)DF:DN:AN=1:2:216.【答案】(1)EF=CF(2)EF=CF(3)解:猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF△AD,MF=12AD,∵AN=ND,∴MF=AN,MF△AN,∴四边形MFNA是平行四边形,∴NF=AM,△FMA=△ANF,在Rt△ADE中,∵AN=ND,△AED=90°,∴EN=12AD=AN=ND,同理CM=12AB=AM=MB,在△AEN和△ACM中,△AEN=△EAN,△MCA=△MAC,∵△MAC=△EAN,∴△AMC=△ANE,又∵△FMA=△ANF,∴△ENF=△FMC,∵AM=FN,AM=CM,∴CM=NF,在△MFC和△NEF中,{MF=EN∠FMC=∠ENFMC=NF,∴△MFC△△NEF(SAS),∴FE=FC.17.【答案】(1)12;4(2)解:结论:AD=12BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M,∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180∘,∠B′AC′+∠AB′M=180∘,∴∠BAC=∠MB′A,∵AB=AB′,∴ΔBAC≅ΔAB′M,∴BC=AM,∴AD=12BC.18.【答案】(1)证明:在平行四边形ABCD中,AB△CD,AD△BC∴△BAF=△F,△DAF=△CEF又∵AE平分△BAD∴△BAF=△DAF∴△F=△CEF∴CE=CF(2)如图,连接CG、BG.∵ABCD是平行四边形,△ABC=90°∴平行四边形ABCD是矩形∴AB=DC,AB△DC,AD△BC,△BAD=△ADC=△BCD=△ECF=90° ∴△F=△BAE,△DBC=△ADB∵△BAD=90° ,△BAE=12△BAD=45°∴AB=BE,△F=△BAE=45°∴CE=CF∴BC=BE+EC=AB+CF=CD+CF=DF又∵G 是EF 的中点,△ECF =90° ,CE=CF∴CG=FG=12EF,△ECG=12△ECF=45° ∴△ECG=△F∴△DFG△△BCG∴△FDG =△CBG ,DG=BG∴△DBG=△BDG∵△DBC=△ADB,△FDG =△CBG∴△DBC+△CBG=△ADB+△FDG即△DBG=△ADB+△FDG∴△BDG=△ADB+△FDG又∵△BDG+(△ADB+△FDG )=90°∴△BDG=12△ADC=45° (3)如图,连接GB 、GE 、GC 。
北师大版八年级数学下册期末复习:几何压轴题专项练习
2020-2021学年北师大版八年级数学下册期末复习:几何压轴题专项练习1、已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.2、如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是平行四边形ABCD的对角线,AG∥BD交CB的延长线于点G.(1)求证:四边形BEDF是平行四边形.(2)若AE=DE,求∠G的度数.3、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH ∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.求证:△AHF为等腰直角三角形.4、如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.5、如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、FA.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.6、如图,矩形ABCD ,延长CD 至点E ,使DE CD =,连接AC AE ,,过点C 作//CF AE 交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G ,当2AB =,30ACB ∠=︒时,求BG 的长.77、如图,在平行四边形ABCD 中,AF 平分BAD ∠交BC 于点F ,CE 平分BCD ∠交于点E(1)若12,6AD AB ==,求CF 的长;(2)连接BE 与AF 相交于点G ,连接DF ,与CE 相交于点H ,求证:GH 和EF 互相平分.8、如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.9、在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.10、问题提出:(1)如图1,在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=90°,∠DBC=30°,连接AD,将△ABD绕点A逆时针旋转90°得到△ACD′,连接BD'(如图2),可求出∠ADB的度数为.问题探究:(2)如图3,在(1)的条件下,若∠BAC=α,∠DBC=β,且α+β=120°,∠DBC<∠ABC,①求∠ADB的度数.②过点A作直线AE⊥BD,交直线BD于点E,BC=7,AD=2.请求出线段BE的长.11、如图1,菱形ABCD的对角线AC、BD相交于点O,且AC=6cm,BD=8cm,分别过点B、C作AC与BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A沿射线AC的方向以2cm/s的速度移动了t秒,连接BG,当S△=2S△OBG时,求t的值.ABG(3)如图2,长度为3cm的线段GH在射线AC上运动,求BG+BH的最小值.12、在▱ABCD中,以AD为边在▱ABCD内作等边△ADE,连接BE.(1)如图1,若点E在对角线BD上,过点A作AH⊥BD于点H,且∠DAB=75°,AB=,求AH的长度;(2)如图2,若点F是BE的中点,且CF⊥BE,过点E作MN∥CF,分别交AB,CD于点M,N,在DC上取DG=CN,连接CE,EG.求证:①△CEN≌△DEG;②△ENG是等边三角形.13、在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连结DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD的面积.14、已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.15、在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x 轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG 为边作菱形DEFG,顶点E在OA边上.(1)如图1,当菱形DEFG的一顶点F在AB边上.①若CG=OD时,求直线DG的函数表达式;②求证:△OED≌△BGF.(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,△FBG 面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.(直接写出答案).。
北师大版八年级数学下册几何综合练习一
八下几何综合练习一1.将两个等腰直角三角形ABC和DPE如图1摆放,点P是边AC的中点,点B在DP上,已知∠ABC=∠DPE=90°,BA=BC,PD=PE,连接BE、CD.(1)线段BE、CD之间存在什么关系?请给出证明;(2)将△PDE绕点P逆时旋转45°,得到△PD1E1,如图2所示,连接BE1、CD1.此时线BE1、CD1之间存在什么关系?请给出证明;(3)如图1,若AB=AE=4,连接AD,将△DPE绕点P逆时针旋转180°,请直接写出旋转过程中AD2的最大值和最小值.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm,把△DEC绕点C顺时针旋转15°得到△D1E1C(如图乙),这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数.(2)求线段AD1的长.(3)若把△D1E1C绕点C顺时针旋转30°得到△D2E2C,这时点B在△D2E2C的内部,外部,还是边上?证明你的判断.3.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角是度;②线段OD的长为;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,∠A0B=135︒,OA=1,0B=2,求OC的长.小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.5. 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.6.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.7.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图(1),若三角板两条直角边的外沿分别交正方形的边AB,BC于点M,N,则①OM+ON=MB+NB;②AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.如图(2),若以A为顶点的45°角的两边分别交正方形的边BC、CD于点M,N.交对角线BD于点E、F,我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图2中画出图形并写出小化所说的具体的旋转方式:.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图(3),设顶点为E的45°角位于正方形的边AD上方,这个角的两边分别经过点B、C,连接EA,ED,那么线段EB,EC,ED也存在确定的数量关系:(EB+ED)2=2EC2,请你证明这个结论.8.如图1,在Rt△ABC中,AB=AC,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.9.如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P与点A重合时停止运动,运动时间为t秒.(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;(2)连接PC、PD,求△CPD的面积S关于t的函数表达式;(3)点P在运动过程中,是否存在某个位置使得△CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.10.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.11.如图①,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A,以线段AC为边在直线l1的下方作正方形ACDE,此时点D恰好落在x轴上.(1)求出A,B,C三点的坐标.(2)求直线CD的函数表达式.12. 如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.13. 如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)*若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.14.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.15.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.16.【观察发现】(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)【深入探究】(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.【拓展应用】(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.17.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?(1)问题的转化:把△APC绕点A逆时针旋转60°得到△AP′C′,连接PP′,这样就把确定PA+PB+PC 的最小值的问题转化成确定BP+PP′+P′C的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C;(2)问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,求∠APB和∠APC的度数;(3)问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.18.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由19.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.20.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)。
北师大版八年级数学下册几何综合练习题(有答案)
北师大版八年级数学下册几何综合练习题(有答案)1.在△ABC中,AB=AC,DE∥BC。
正确的结论是()。
A。
AD=AE B。
DE=EC C。
∠ADE=∠C D。
DB=EC2.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线交AC于点E,垂足为点D,连接BE。
求∠XXX的度数。
A。
30° B。
45° C。
60° D。
75°3.在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE。
若△XXX的周长为24,则BC的长为。
A。
18 B。
14 C。
12 D。
64.等边△ABO在平面直角坐标系内的位置如图所示,已知△ABO的边长为6,则点A的坐标为。
A。
(-3,3) B。
(3,-3) C。
(-3,3) D。
(-3,-3)5.在Rt△ABC中,∠C=90°,∠A-∠B=70°。
求∠A的度数。
A。
80° B。
70° C。
60° D。
50°6.在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD。
求∠A的度数。
A。
30° B。
36° C。
45° D。
70°7.将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C。
若∠ACB=∠A'C'B'=90°,AC=BC=3,则B'C的长为。
A。
3 B。
6 C。
3 D。
88.已知等腰三角形腰长是10,底边长是16.求这个等腰三角形的面积。
9.在等边△ABC中,点D为BC边上的点,DE⊥XXX于E,DF⊥XXX于F。
求∠EDF的度数。
10.在等边三角形ABC中,BD平分∠XXX于点D,过点D作DE⊥BC于E,且EC=1.求BC的长。
11.有一个内角为60°的等腰三角形,腰长为6cm。
度八年级数学下册期末几何综合题专项复习练习题
2020-2021学年度北师大版八年级数学下册期末几何综合题专项复习练习题1、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F.(1)求证:△ADC≌△BDF;(2)求证:BF=2AE.2、如图,AC⊥BC,垂足为C,AC=6,BC=4,将线段AC绕点C按顺时针方向旋转60°,得到线段CD,连接AD,DB.(1)求线段BD的长度;(2)求四边形ACBD的面积.3、如图,在△ABC中,∠C=2∠B,点D为BC上一点,且AD⊥AB,点E是BD的中点,连接AE,且AE=DE.(1)求证:∠AEC=∠C;(2)若AE=8.5,AD=8,求△ABE的周长.3、四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF、AC、DE,当BF⊥AE时,求证:四边形ACED是平行四边形.4、如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.(1)试说明四边形AECF是平行四边形.(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.5、如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=5,求四边形ADCE的面积.6、如图1,将线段AB平移至DC,使点A与点D对应,点B与点C对应,连接AD、BC.(1)填空:AB与CD的位置关系为,BC与AD的位置关系为.(2)如图2,若G、E为射线DC上的点,∠AGE=∠GAE,AF平分∠DAE交直线CD于F,且∠FAG=30°,求∠B的度数.7、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.8、已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.9、将两块全等的三角板如图①摆放,其中∠A 1CB 1=∠ACB =90°,∠A 1=∠A =30°.(1)将图①中的△A 1B 1C 顺时针旋转45°得图②,点P 1是A 1C 与AB 的交点,点Q 是A 1B 1与BC 的交点,求证:CP 1=CQ ;(2)在图②中,若AP 1=2,则CQ 等于多少?10、如图,在平行四边形ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长11、(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=(AB+BC+AC).(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图2),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.12、阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.13、在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)14、(1)在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系.请你按照小亮的思路写出推理过程.(2)如图2,已知正方形ABCD,△AEF是正方形ABCD的内接等边三角形,请你找出S△ABE、S△ADF、S△CEF之间的数量关系,并说明理由.15、定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接DE、DC,点M、P、N分别为DE、DC、BC的中点,且连接PM、PN.观察猜想(1)线段PM与PN“等垂线段”(填“是”或“不是”)猜想论证(2)△ADE绕点A按逆时针方向旋转到图2所示的位置,连接BD,CE,试判断PM与PN是否为“等垂线段”,并说明理由.拓展延伸(3)把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PM 与PN的积的最大值.。
北师大版八年级下数学几何综合(平行四边形与特殊四边形)
北师大版八年级下数学几何综合20.(10分)在正方形ABCD中,M为BC上一点,N为CD上一点.(1)如图1,若BM=CN,试判断AM和BN之间的关系,并说明理由;(2)如图2,若BM=CN,AB=4,求BN+DM的最小值;(3)如图3,当点P在CB的延长线上,若BP=DN,AM⊥PN于O,连接DO,试探究DA、DO、DN 三条线段间的数量关系,并说明理由.20.(10分)在正方形ABCD中,M为BC上一点,N为CD上一点.(1)如图1,若BM=CN,试判断AM和BN之间的关系,并说明理由;(2)如图2,若BM=CN,AB=4,求BN+DM的最小值;(3)如图3,当点P在CB的延长线上,若BP=DN,AM⊥PN于O,连接DO,试探究DA、DO、DN 三条线段间的数量关系,并说明理由.19.如图,在平行四边形ABCD中,点E是AB边上一点,CE=AB,DF⊥BC,垂足为点F,交CE于点G,连接DE,EF.(1)求证:∠AED=90°﹣∠DCE;(2)若点E是AB边的中点,求证:∠EFB=∠DEF.20.已知:在平行四边形ABCD中,过点C作CH⊥AB,过点B作AC的垂线,分别交CH、AC、AD于点E、F、G,且∠ABC=∠BEH,BG=BC.(1)若BE=10,BC=25,求DG的值;(2)连接HF,证明:HA=HF﹣HE.28.如图1,已知:在△ABC中,AD⊥BC.点D为BC的中点,且∠BAC=2∠B.(1)求∠B的度数;(2)点E为AC上一点,连接DE并延长至F,连接CF,过C作CH⊥DF于H,当H在线段EF上时,若DH=CF+HF,探究∠F与∠FDC之间的数量关系,并加以证明;(3)如图2,在(2)的条件下,在AD上取点P,连接CP,使得∠2=CF,将线段EF沿着EC折叠并延长交BC于点G,当CP:PD=12:5,GC﹣PD=3时,求GC的长.20.如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=6,求PQ的长.27.(10分)已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.27.(10分)(1)如图1,在△ABC中,AB=5,AC=3,AD为BC边上的中线.延长AD到点E,使DE =AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE 中,利用三角形三边的关系即可判断中线AD的取值范围是.(2)如图2,在Rt△ABC中,∠A=90°,D为BC的中点,E、F分别在边AB、AC上,且DE⊥DF,若BE=2,CF=5,求EF的长.(3)如图3,四边形ABCD中,∠A=90°,∠D=120°,E为AD中点,F、G分别边AB、CD上,且EF⊥EG,若AF=4,DG=,求GF长.28.(12分)如图,在△ABC中,∠B=∠ACB=45°,AB=3,点D是BC上一点,作DE⊥AD交射线AC于E,DF平分∠ADE交AC于F.(1)求证:AB•CF=BD•CD;(2)如图2,当∠AED=75°时,求CF的长;(3)若CD=2BD,求.28.在△ABC中,∠C=90°,AC=BC,BP是△ABC的角平分线,过点P作PD⊥AB于点D,将∠EPF 绕点P旋转,使∠EPF的两边交直线AB于点E,交直线BC于点F,请解答下列问题:(1)当∠EPF绕点P旋转到如图①的位置,点E在线段AD上,点F在线段BC上时,且满足PE=PF.①请判断线段CP、CF、AE之间的数量关系,并加以证明;②求出∠EPF的度数.(2)当∠EPF保持等于(1)中度数且绕点P旋转到图②的位置时,若∠CFP=60°,BE=+﹣1,求△AEP的面积.(3)当∠EPF保持等于(1)中度数且绕点P旋转到图③的位置时,若∠CFP=30°,BE=(++1)m,请用含m的代数式直接表示△AEP的面积.27.(10分)已知在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D.(1)如图1,将线段CD绕点C顺时针旋转90°得到CF,连接AF交CD于点G.求证:AG=GF;(2)如图2,点E是线段CB上一点(CE<CB).连接ED,将线段ED绕点E顺时针旋转90°得到EF,连接AF交CD于点G.①求证:AG=GF;②若AC=BC=7,CE=2,求DG的长.27.(10分)如图,在正方形ABCD中,对角线AC与BD相交于点O,以B为顶点的等腰Rt△BEF绕点B 旋转,连接AF与CE相交于点G,连接DG.(1)求证:CE⊥AF;(2)求证:AG+CG=DG;(3)连接CF,当EG:AG:FG=1:2:5,且S正方形ABCD=100时,求DG的长和△BCF的面积.28.已知ABCD是平行四边形.(1)若AB=5,AD=2,∠DAD=45°,画出▱ABCD;(2)证明:AB2+AD2=(AC2+BD2);(3)若相邻两边AB、AD满足AD≤AB,想在▱ABCD中截一个直角三角形,并且希望以AB为斜边,直角顶点在CD上,问此想法是否可行?如果可行的话,请说明应该怎样截;如果不行,请说明理由.20.阅读材料:我们已经学习了《二次根式》和《乘法公式》,可以发现:当a>0,b>0时,有(﹣)2=a﹣2+b≥0,∴a+b≥2,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,x+的最小值为;当x<0时,x+的最大值为.(2)当x>0时,求y=的最小值.(3)如图,四边形ABCD的对角线AC,BD相交于点O,△AOB、△COD的面积分别为9和16,求四边形ABCD面积的最小值.25.在△ABC中,AB=6,AC=BC=5.将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.如图,当α=60°时,延长BE交AD于点F:①△ABD是等边三角形;②BF⊥AD;③AF=EF;④BE=3﹣4.其中所有正确的序号是.24.(4分)如图,正方形ABCD边长为2,F为BC上一动点,作DE⊥AF于E,连接CE.当△CDE是以CD为腰的等腰三角形时,DE的长为.25.(4分)如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为.20.(10分)如图1,菱形ABCD的对角线AC、BD相交于点O,且AC=6cm,BD=8cm,分别过点B、C 作AC与BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A沿射线AC的方向以2cm/s的速度移动了t秒,连接BG,当S△ABG=2S△OBG时,求t 的值.(3)如图2,长度为3cm的线段GH在射线AC上运动,求BG+BH的最小值.24.(4分)在边长为4的正方形ABCD中,点E,F是AD上两点,且AE=DF,∠BCE=60°,CE交对角线BD于G,交BF于点P,连接AP.则四边形ABGP的面积为.25.(4分)如图,直线y=x+2交y轴于点A,交x轴于点B,点C和点B关于y轴对称,连接AC,点D是△ABC外一点,∠BDC=60°,点E是BD上一点,点F是CD上一点,且CF=BE,连接FE,FB.若∠BFE=30°,则BF2+EF2的值为.19.(10分)如图1,在▱ABCD中,以BC为边作等边△BCP,交AD于点E,F,且AE=DF.(1)求证:四边形ABCD是矩形;(2)如图2,连接AP,AC,若EF=1,BC=3.①求证:AP⊥PC;②求AC的长.20.(10分)如图1,在▱ABCD中,∠ABC=60°,AB:AD=7:8,E为CD边上一点,CE=8,连接AE,BE,且AE=AB.(1)求证:EB平分∠AEC;(2)当CE:ED=2:5时,在AD上找一点P,使PB+PE的和最小,并求出最小值;(3)如图2,过点E作EF⊥BE交AD于点F,求的值.24.已知平面直角坐标系中A、B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q的坐标.25.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D,E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的是.23.(4分)如图,把Rt△ABC绕点A顺时针旋转35°得到△AB′C′,B′C′与AC相交于点D,∠B=60°,则∠ADB′的度数是.24.(4分)如图,在正方形ABCD中,AB=9,E,F分别是AB,CD上的点,连接EF,将四边形BCFE 沿EF折叠得到四边形B′C′FE,点B′恰好在AD上,若DB′=2AB′,则折痕EF的长是.25.(4分)如图,在Rt△ABC中,AC=6,∠C=90°,∠B=30°,AD平分∠BAC交BC于点D,点E 为AB上一点,作∠DEF=60°交AC于点F,若AE=,则AF的长是.五、解答题(共3个小题,共30分)26.(10分)如图,在Rt△ABC中,AC=4,∠BAC=90°,∠B=30°,D是BC上一点,AE⊥AD,∠ADE =30°,连接CE.(1)求证:△ADE∽△ABC;(2)求证:△ACE∽△ABD;(3)设CE=x,当CD=2CE时,求x的值.24.(4分)如图,在等腰Rt△ABC和等腰Rt△BDE中,AC=BC=,BE=DE=2,连接CD,以AC、CD为邻边作平行四边形ACDF,连接CE,当平行四边形ACDF为菱形时,线段CE的长度为.25.(4分)如图(1),在△ABC中,AB=AC,点D、E分别为AB、AC上一点,且AD=AE,把△ADE绕点A旋转至图(2)位置,连接BD、CE,BD的延长线交CE于点F,连接AF,作AG⊥EF于点G,若S ADFE=,AG=8,则FG=.24.(4分)如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.25.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.20.(10分)如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.。
北师大版八年级数学下册几何综合练习题(有答案)
八年级下册几何综合练习AB=AC, DE//BC,则下列结论中,不正确的是(AB = AC, ZA=30° , AB 的垂直平分线交 AC 于点E,垂足为点 D,连接BE,则AB=AC=15, AD 平分/ BAC,点E 为AC 的中点,连接 DE,若△ CDE 的周长为24,A . 18B. 14C. 12D. 64 .等边△ ABO 在平面直角坐标系内的位置如图所示,已知△A. (- 3, 3)B. (3, - 373)C. (- 3,炳)D. (- 3, - 3/3)5 .在 RtAABC 中,/ C=90°,/ A — / B = 70° ,则/ A 的度数为() 6 .如图,△ ABC 中,AB=AC,点D 在AC 边上,且 BD = BC=AD,则/A 的度数为() 三角形的证明 则BC 的长为(1.如图,在^ ABC 中, B. DE = —EC 2 C. / ADE = Z C D. DB = EC2.如图,在^ ABC 中,/ EBC 的度数是( B. 45 C. 60° D. 75 3.如图,△ ABC 中,ABO 的边长为6,则点A 的坐标为( B. 70°C. 60°D. 50°B. 36C. 45D. 70°A . AD= AEA . 30° A .30°7 .如图,将两个大小、形状完全相同的^ ABC 和AA' B' C'拼在一起,其中点 A'与点A 重合,点C落在边 AB 上,连接 B' C.若/ ACB=Z AC' B8 .已知等腰三角形腰长是 10,底边长是16,则这个等腰三角形的面积为 .9 .如图,在等边△ ABC 中,点D 为BC 边上的点,DELBC 交AB 于E, DFXACT F,则/ EDF 的度数10 .如图,在等边三角形 ABC 中,BD 平分/ ABC 交AC 于点D,过点D 作DELBC 于E,且EC=1,则11 .有一个内角为 60。
1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册
角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C
东
小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.
北师大版八年级数学下册第六章平行四边形专项测试题 附答案解析(四)
B. 个
C. 个
D. 个
14、如图,平行四边形 的对角线 和 相交于点 ,与 面积相等的三角形(不包括自身)的个数是( )
A.
B.
C.
D.
15、如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
即 ,
解得 ;
②当 时,
四边形 是平行四边形,
即 ,
解得 ;
所以当 或 秒时,直线 将四边形截出一个平行四边形.
故答案为 或 .
20、如图所示,六边 中, 平行且等于 , 平行且等于 , 平行且等于 ,对角线 .已知 , .则六边形 的面积是平方厘米.
【答案】300
【解析】解:连接 交 于 , 交 于 .
14、如图,平行四边形 的对角线 和 相交于点 ,与 面积相等的三角形(不包括自身)的个数是( )
A.
B.
C.
D.
【答案】C
【解析】解:在平行四边形 中, , ,
,
与 面积相等的三角形是 个.
15、如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.
A.
B.
C.
A.
B.
C.
D.
【答案】D
【解析】解:
过点 作 交 于 ,连接 , ,
, ,
四边形 是平行四边形,
, ,
四边形 是平行四边形,
, ,
即 ,
, , 共线,
设 ,
,
,
则 ,
,
,
,
期末数学几何综合题专题复习北师大版八年级下册
2020-2021学年度八年级下学期期末数学几何综合题专题复习1、如图,已知E是平行四边形ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.求证:四边形ABFC是平行四边形.2、如图,在▱ABCD中,AB=2BC,E是AB的中点,连接CE、DE.(1)求证:CE是∠BCD的平分线;(2)求∠DEC的大小.3、如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.4、如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点O作直线EF⊥AB,分别交AB,CD于点E,F.(1)求证:OE=OF;(2)若AC=18,EF=10,求AE的长.5、如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平分线EG交AB于点E,交BD于点G.(1)当∠B=30°时,AE和EF有什么关系?请说明理由;(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?6、在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C顺时针旋转一定角度得到△DEC,点D恰好在AB上.(1)若AC=4,求DE的值;(2)确定△ACD的形状,并说明理由.7、如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.8、(1)如图①所示,将等腰△ABC绕顶点A按逆时针方向旋转α(0<α<90)角,得到△ADE,∠BAC=∠DAE=90°,ED分别与AC.BC交于点F,G,BC与AD 相交于点H,求证:AH=AF;(2)如图②所示,△ABC和△ADE是全等的等腰直角三角形,∠BAC=∠D=90°,BC与AD,AE分别交于点F,G,请说明BF,FG,GC之间的数量.9、如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?10、如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.(1)∠CAF=°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.11、已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为:.(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE =CF;(3)求△AEF周长的最小值.12、如图1,在△CEF中,CE=CF,∠ECF=90°,点A是∠ECF的平分线上一点,AG⊥CE于G,交FE的延长线于B,AD⊥AE交CF的延长线于D,连接BC.(1)直接写出∠ABF的大小;(2)求证:四边形ABCD是平行四边形;(3)建立如图2所示的坐标系,若BG=2,BC=,直线AD绕点D顺时针旋转45°得到直线l,求直线l的表达式.13、如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE ⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长.14、如图1,已知∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.(这几何模型具备“一线三直角”)如下图1:(1)①请你证明:△ACE≌△CBD;②若AE=3,BD=5,求DE的长;(2)迁移:如图2:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E 分别是边BC,AC上的点,将DE绕点D顺时针旋转90°,点E刚好落在边AB上的点F处,则CE=.(不要求写过程)15、如图,在三角形△ABC中,AB=AC=20cm,BD⊥AC于点D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为1cm/s,过点P的直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形是平行四边形?16、如图所示,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB中点.点P 在线段BC上以2cm/s的速度由B点向C点运动,点Q在线段CA上以cm/s的速度由C点向A点运动,P、Q两点同时出发.(1)设运动时间为t,则BP的距离可表示为;CQ的距离可表示为;(2)在点P、Q的运动过程中,存在某一时刻,使得△BPD≌△CPQ吗?若存在,求出此时t的值;若不存在,请说明理由.(3)若点P、Q均以原来的速度按逆时针方向沿△ABC的三边循环运动,经过多长时间点P与点Q第一次相遇?此时它们在哪条边上?17、已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为2秒时,△OMN的面积是多少?18、将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=;(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD 绕点C旋转的度数=;(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证:AF=FD′.。
北师大版八年级数学下册几何专题期末复习练习题(无答案)
北师大版八年级数学下册几何专题期末复习练习题1.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC 的面积为2,则△ABC的面积为( )A.3 B.4 C.5 D.62.已知Rt△ABC中,∠C=90°,若a+b=12cm,c=10cm,则Rt△ABC的面积是( )A.48cm2B.24cm2C.16cm2D.11cm23.如图,△APB与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有( )A.0个 B.1个 C.2个 D.3个4.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.5.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________.6.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC=________.7.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC 于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.8.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.9.如图,已知△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.10.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.11.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.12.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB交EF于点N.求证:(1)AF=AD;(2)EF=BD.13.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB.求证:EB⊥AB.14.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC=AB+CD.15.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.16.如图,A,B两个村在河CD的同侧,且AB=13km,A,B两村到河的距离分别为AC=1km,BD=3km.现要在河边CD上建一水厂分别向A,B两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W(元).17.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC全等吗?请说明理由;(2)试说明AE∥BC的理由;(3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.。
北师大版数学八年级下册立体几何计算强化练习题
北师大版数学八年级下册立体几何计算强化练习题引言本文档是针对___版数学八年级下册立体几何计算强化练题编写的。
通过这些练题,学生可以进一步巩固和加深对立体几何计算的理解和应用能力。
本文档将对练题进行梳理和总结,并提供相关答案和解析。
练题梳理本部分将对数学八年级下册立体几何计算强化练题进行分类和梳理,以便学生更好地掌握不同类型题目的解法和技巧。
1.体积计算1.1 立方体和长方体题1: 计算一个边长为5cm的立方体的体积是多少?答案:125cm³解析:立方体的体积计算公式为边长的立方。
因此,5cm的立方体的体积为5³=125cm³。
题2: 一个长方体的长、宽、高分别为3cm、4cm、5cm,求其体积是多少?答案:60cm³解析:长方体的体积计算公式为长乘以宽乘以高。
因此,该长方体的体积为3cm × 4cm × 5cm = 60cm³。
1.2 圆柱体题3: 计算一个半径为2cm、高为6cm的圆柱体的体积是多少?答案:24πcm³(约75.4cm³)解析:圆柱体的体积计算公式为底面积乘以高。
底面积为πr²,其中r为半径。
因此,该圆柱体的体积为π × 2² × 6 = 24πcm³。
2.表面积计算2.1 立方体和长方体题4: 计算一个边长为5cm的立方体的表面积是多少?答案:150cm²解析:立方体的表面积计算公式为6倍的边长的平方。
因此,5cm的立方体的表面积为6 × 5² = 150cm²。
题5: 一个长方体的长、宽、高分别为3cm、4cm、5cm,求其表面积是多少?答案:94cm²解析:长方体的表面积计算公式为2倍的长乘以宽、长乘以高、宽乘以高的和。
因此,该长方体的表面积为2(3cm×4cm + 3cm×5cm + 4cm×5cm) = 94cm²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何部分总复习
一、选择题
1. 手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是
她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是(
)
A B C D
2. 如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC
绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .下列结论中正确的个数有( ) ①45EAF ∠=︒ ②△ABE ∽△ACD ③EA 平分CEF ∠ ④222BE DC DE += A .1个 B .2个 C .3个 D .4个
3. 已知:如图,在正方形ABCD 外取一点E ,连接
AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .
若1AE AP ==, 5PB =.下列结论:
①△APD ≌△AEB ;②点B 到直线AE 的距离为2; ③EB ED ⊥;④16APD APB S S ∆∆+=+; ⑤46ABCD S =+正方形.
其中正确结论的序号是( )
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
A P
E
D
C
B
4. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、
△BCD 的角平分线 则图中的等腰三角形有( )
(A)5个 (B)4个 (C)3个 (D)2个
二、填空题
5. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶
点恰好落在另一张矩形纸片的一条边上,
则∠1+∠
2=
.
6. 如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转
动刀片时形成1∠,2∠,则12∠+∠= .
三、证明题
7. 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED .
(1)求证:△BEC ≌△DEC ;
(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.
8. 如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o ,
且EF 交正方形外角的平分线CF 于点F . (1)证明:∠BAE =∠FEC ; (2)证明:△AGE ≌△ECF ; (3)求△AEF 的面积.
E
D C
B
A
E
B D A
C F A F
D
E B C
9. 如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.
(1)求证:FGC EBC
△≌△;
(2)若84
AB AD
==
,,求四边形ECGF(阴影部分)的面积.
10. 如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
11. 如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC
上,点B的对应点为F,同时将△CEG沿EG对折,
使CE边落在EF所在直线上,点C的对应点为H.
(1)证明:AF∥HG(图(1));
(2)证明:△AEF∽△EGH(图(1));
(3)如果点C的对应点H恰好落在边AD上(图
(2)).求此时∠BAC的大小.
四、应用题
12. Rt △ABC 与Rt △FED 是两块全等的含30o
、60o
角的三角板,按如图(一)所示
拼在一起,CB 与DE 重合.
(1)求证:四边形ABFC 为平行四边形;
(2)取BC 中点O ,将△ABC 绕点O 顺时钟方向旋转到如图(二)中△C B A '''位置,直线C B ''与AB 、CF 分别相交于P 、Q 两点,猜想OQ 、OP 长度的大小关系,并证明你的猜想.
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB 为菱形(不要求证明).
图(二)
图(一)
F
F
B(D)
五、猜想、探究题
13. 如图1,已知矩形ABED ,点C 是边DE 的中点,且AB =2AD .
(1)判断△ABC 的形状,并说明理由;
(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;
(3)保持图2中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置
D
E
B C O
A
P
M
N
(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.
六、动态几何
14. 如图,一个直角三角形纸片的顶点A 在∠MON 的边OM 上移动,移动过程中始终保持
AB ⊥ON 于点B,AC ⊥OM 于点A.∠MON 的角平分线OP 分别交AB 、AC 于D 、E 两点. (1)点A 在移动的过程中,线段AD 和AE 有怎样的数量关系,并说明理由. (2)点A 在移动的过程中,若射线ON 上始终存在一点F 与点A 关于OP 所在的直线对称,判断并说明以A 、D 、F 、E 为顶点的四边形是怎样特殊的四边形?
(3)若∠MON=45°,猜想线段AC 、AD 、OC 之间有怎样的数量关系,并证明你的猜想.
15. 如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.
B
25题图。