(新课标)_学年高中数学双基限时练28新人教A版必修4【含答案】
人教新课标A版高中数学必修4双基限时练及答案28.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二十八)1.已知cos α=-35,且α∈⎝ ⎛⎭⎪⎫π,3π2,则cos α2的值为( )A.55 B .-55 C.255D .-255解析 ∵π<α<3π2,∴π2<α2<3π4,∴cos α2<0. 由cos α=2cos 2α2-1=-35,得cos 2α2=15,∴cos α2=-55. 答案 B2.设α∈(π,2π),则 1-cos (π+α)2等于( ) A .sin α2 B .cos α2 C .-sin α2D .-cos α2解析 ∵α∈(π,2π),∴α2∈⎝ ⎛⎭⎪⎫π2,π,∴cos α2<0.∴1-cos (π+α)2= 1+cos α2=|cos α2|=-cos α2. 答案 D3.函数y =8sin x cos x cos2x 的最小正周期为T ,最大值为A ,则( )A .T =π,A =4B .T =π2,A =4 C .T =π,A =2D .T =π2,A =2解析 y =8sin x cos x cos2x =4sin2x cos2x =2sin4x , ∴最小正周期T =2π4=π2,最大值A =2. 答案 D4.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23D .-2解析 ∵3sin α+cos α=0,∴tan α=-13. 1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α =tan 2α+11+2tan α=⎝ ⎛⎭⎪⎫-132+11+2×⎝ ⎛⎭⎪⎫-13=10913=103. 故应选择A. 答案 A5.若f (x )=cos2x +8sin x ,则它的最大值和最小值分别是( ) A .最大值是9,最小值是-9 B .最大值不存在,最小值为7 C .最大值是7,最小值是-9 D .最大值是7,最小值不存在解析 f (x )=cos2x +8sin x =1-2sin 2x +8sin x =-2(sin 2x -4sin x )+1=-2(sin x -2)2+9. ∵x ∈R ,-1≤sin x ≤1, ∴当sin x =1时,f (x )有最大值7; 当sin x =-1时,f (x )有最小值-9. 答案 C6.使f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数,且在区间⎣⎢⎡⎦⎥⎤0,π4上是减函数的θ的一个值是( )A .-π3 B.π3 C.23πD.43π解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +θ+π3,当θ取-π3时,为奇函数,但在⎣⎢⎡⎦⎥⎤0,π4上递增;θ取π3和43π时为非奇非偶函数;当θ取2π3时,f (x )=-2sin2x 符合题意.答案 C7.⎝ ⎛⎭⎪⎫sin α2+cos α22+2sin 2⎝ ⎛⎭⎪⎫π4-α2的值等于__________. 解析 原式=1+sin α+2·1-cos ⎝ ⎛⎭⎪⎫π2-α2=1+sin α+1-sin α =2.答案 28.函数y =3sin x cos x +3cos 2x -32的最大值为________.解析 y =32sin2x +3×1+cos2x 2-32 =32sin2x +32cos2x =3sin ⎝ ⎛⎭⎪⎫2x +π3≤ 3.答案39.化简:sin A +sin2A1+cos A +cos2A =________.解析 原式=sin A +2sin A cos Acos A +2cos 2A =sin A (1+2cos A )cos A (1+2cos A )=tan A .答案 tan A10.若tan x =2,则2cos 2x2-sin x -1sin x +cos x =________.解析 2cos 2x2-sin x -1sin x +cos x=cos x -sin x sin x +cos x =1-tan x tan x +1 =1-22+1=22-3.答案 22-311.已知tan2θ=-22,π<2θ<2π,求2cos 2θ2-sin θ-12sin ⎝⎛⎭⎪⎫θ+π4. 解 2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ, ∵tan2θ=-22,∴2tan θ1-tan 2θ=-2 2. ∴2tan 2θ-tan θ-2=0.∴tan 2θ-22tan θ-1=0.∴tan θ=2或tan θ=-22.∵π<2θ<2π, ∴π2<θ<π,∴tan θ<0. ∴tan θ=-22.∴原式=1-⎝⎛⎭⎪⎫-221-22=3+2 2.12.如图所示,已知矩形ABCD 中,AB =a ,AD =b ,试求其外接矩形EFGH 面积的最大值.解 设∠CBF =θ,则∠EAB =θ,EB =a sin θ,BF =b cos θ,AE =a cos θ,HA =b sin θ,所以S矩形EFGH =(b sin θ+a cos θ)(b cos θ+a sin θ)=b2sin θcos θ+ab sin 2θ+ab cos 2θ+a 2sin θcos θ=(a 2+b 2)2sin2θ+ab .由|sin2θ|≤1,知当θ=45°时,S 矩形EFGH 取得最大值为12(a 2+b 2)+ab .13.已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域; (2)若f (α)=3210,求sin2α的值.分析 (1)先利用余弦的二倍角公式和辅助角公式将f (x )化成f (x )=A sin(ωx +φ)形式.再求解.(2)利用同角间三角函数关系与二倍角正弦公式求值.解 (1)由已知f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝ ⎛⎭⎪⎫x +π4.所以函数f (x )的最小正周期为2π,值域为⎣⎢⎡⎦⎥⎤-22,22.(2)由(1)知,f (x )=22cos ⎝ ⎛⎭⎪⎫α+π4=3210,∴cos ⎝ ⎛⎭⎪⎫α+π4=35.∴cos α-sin α=325,平方得1-sin2α=1825.∴sin2α=725.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
高中数学必修四同步练习及答案(新课标人教A版)
高之邯郸勺丸创作中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ....................................................... 0 1.2任意角的三角函数 ..................................................... 2 1.3三角函数的诱导公式 ................................................... 4 1.4三角函数的图像与性质 . (6))sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用...................... 9 第一章 三角函数基础过关测试卷 .......................................... 11 第一章三角函数单元能力测试卷 ........................................... 13 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 .................... 16 2.2向量减法运算与数乘运算 .............................................. 18 2.3平面向量的基本定理及坐标暗示 ........................................ 20 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 22 第二章平面向量基础过关测试卷 ........................................... 24 第二章平面向量单元能力测试卷 ........................................... 26 3.1两角和与差的正弦、余弦和正切公式 .................................... 29 3.2简单的三角恒等变换 .................................................. 31 第三章三角恒等变换单元能力测试卷 ....................................... 33 人教A 版必修4练习答案1.1任意角和弧度制 ...................................................... 36 1.2任意角的三角函数 .................................................... 36 1.3三角函数的诱导公式 .................................................. 37 1.4三角函数的图像与性质 (37))sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 (38)第一章三角函数基础过关测试卷 ........................................... 39 第一章三角函数单元能力测试卷 ........................................... 39 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 .................... 40 2.2向量减法运算与数乘运算 .............................................. 40 2.3平面向量的基本定理及坐标暗示 ........................................ 40 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 41 第二章平面向量基础过关测试卷 ........................................... 42 第二章平面向量单元能力测试卷 ........................................... 42 3.1两角和与差的正弦、余弦和正切公式 .................................... 43 3.2简单的三角恒等变换 .................................................. 43 第三章三角恒等变换单元能力测试卷 (44)一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398 -38 B.,398 -142 C.,398 - 1042 D.,1421042α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱ 180- 180<<β},则B A 等于( )A.,36{ -54} B.,126{ -144} C.,126{ -,36 -,54144}D.,126{ -54}θ{=A ︱θ为锐角},θ{=B ︱θ为小于 90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于 90的正角},则( )A.B A =B.C B =C.C A =D.D A =α与β终边相同,则一定有 ( )A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈α为第二象限的角,则2α所在的象限是 ( )5分钟,则分针转过的弧度数是 ( )A.3πB.3π-C.2πD.32πcm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( ) A.6π B.3π C.2π D.32π α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+ α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( )A.B A =B.B A ⊇C.B A ⊆D.B A ≠ 二、填空题(每题5分,共20分)a 小于 180而大于- 180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.a {∈θ︱a =+πk },4)1(Z k k ∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)a 的终边与y 轴的正半轴所夹的角是 30,且终边落在第二象限,又 720-<a < 0,求角a .45=a ,(1)在区间 720[- 0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.一、选择题(每题5分,共40分)α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55 C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( )A.αsinB.αcosC.αtanD.αtan 1α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于( ) A.34 B.43 C.34± D.43± x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ θ是第三象限角,且,02cos<θ则2θ是 ( ),54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.34()ααcos ,tan P 在第三象限,则角α在 ( )二、填空题(每题5分,共20分),0tan sin ≥αα则α的取值集合为__________.α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________. θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. (),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________.三、解答题(第15题20分,其余每题10分,共40分)43π的角的正弦,余弦和正切值. ,51sin =α求ααtan ,cos 的值.,22cos sin =+αα求αα22cos 1sin 1+的值.一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- ,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( )A.m 32-B.m 23- C.m 32 D.m 23,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- ),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ ,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa + C.21aa +-D.211a+-则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 ,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A.0B.1C.1- D.23△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形 B .直角三角形 C .等腰或直角三角形 D .等腰直角三角形二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.1312)125sin(=-α ,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ. ,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为.三、解答题(每题10分,共40分)3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( )A.[]1,0B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( ) A52 B 25 C π2 D π53.x x y sin sin -=的值域是( )A ]0,1-B ]1,0C ]1,1[-D ]0,2[-)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ))3sin(π-=x y )cos(sin x y =既是奇函数,也是偶函数x x y cos =x y sin =既不是奇函数,也不是偶函数()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 10 D.2-)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.4)32sin(π+=x y 的图象( )⎪⎭⎫ ⎝⎛0,12π⎪⎭⎫⎝⎛-0,6π对称 3π=x 6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分))23sin(2x y -=π的单调递增区间是__________.)21(cos log 2-=x y 的定义域是__________.)2sin(x y =的最小正周期为__________.)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) “五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图. ⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间;(2)求不等式3)(1≤≤-x f 的解集.x 值.(1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy)sin(ϕω+=x A y一、选择题(每题5分,共35分)1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω 的一个可能值为 ( ) A.3 B.2 C.31 D.21 )32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )3π3π6π6π个单位1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.4)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为( ) A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K []),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)))(32sin(4)(R x x x f ∈+=有下列命题:1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.60米,从乙楼底望甲楼顶的仰角为 45,从甲楼顶望乙楼顶的俯角为 30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分))421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间.)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)240-角终边位置相同的角是 ( )A.240 B.60 C.150 D.480()21cos -=+απ,则()απ+3cos 的值为 ( )A.21 B.23± C.21- D.23 x y sin 1-=的最大值为 ( )A.1B.0C.2D.1-⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( )A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ x y cos 1+=的图象 ( ) x y 2π=x 轴对称x x cos sin <成立的x 的一个区间是 ( )A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 ⎪⎭⎫ ⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )4π4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)β的终边过点()12,5--P ,求=βcos __________.x y tan lg =的定义域是__________.11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分)2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分)α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( ) A.0 B4π C 2πD π 4sin 5α=,而且α是第二象限的角,那么tan α的值等于 ( )A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ )42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个1sin 4x x π=的解的个数是 ( ) A B C 7 D 8 11.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( ) A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( ) A.2π B 4π- C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅-- (2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y )32tan(π-=x y 的定义域、周期和单调区间.)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( )2.下列说法中,正确的是 ( )>,则b a >=,则=b a =,则a ∥b a ≠b ,则a 与b 不是共线向量O 为△ABC 的外心,则、、是 ( )ABCD 的边长为1,设=,=,=, +=( )A.0B.3C.22+D.2258==的取值范围是 ( )A.[]8,3B.()8,3C.[]13,3D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是A.CA BC AB =+B.BC AC AB =+C.=+D.=+ D C1的正三角形ABC 中,若向量a BA =,b BC =+( )A.7B.5C.3D.2a 、b 皆为非零向量,下列说法不正确的是 ( )与>,则向量+与的方向相同a 与b <,则向量+与a 的方向相同 与同向,则向量+与的方向相同 与同向,则向量+与的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.C B A ,,是不共线的三点,向量与向量是平行向量,与是共线向量,则=__________.ABCD 中,∠DAB ︒=601==__________.=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =.求证:四边形ABCD 是平行四边形.h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.一、选择题(每题5分,共40分)ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BCO 的有 ( )①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a24822131( )A.2a b -B.2b a -C.b a -D.()b a --12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.0△ABC 中,向量BC 可暗示为 () ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b cC 是线段AB 的中点,则AC BC += ()A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 暗示、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=? ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AG EFB D一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是暗示平面内所有向量的一组基底,下列四组向量中,不克不及作为一组基底的是 ( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且//,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )21,λλ使2211=+e e λλ,则021==λλ B.21,e e 可以为零向量21,λλ,2211e e λλ+纷歧定在平面内,使=2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21- B.2 C.21 D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,== 则 等于( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且//,则=x __________12.设向量)3,2(),2,1(==,若向量+λ与向量)7,4(--=共线,则=λ__________13.已知x 轴的正方向与的方向的夹角为3π4=,则的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴, y 轴的正向上,则向量++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量与不共线,实数y x ,满足等式x x y x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.=B.1=⋅C.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.3 3.对于非零向量,,下列命题中正确的是 ( )A.000==⇒=⋅或B. //⇒在bC.()2⋅=⋅⇒⊥ D.=⇒⋅=⋅4.下列四个命题,真命题的是 ( ) ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;ABC ∆中,若,0>⋅则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅;D.ABC ∆为斜三角形的充要条件是.0≠⋅.5.,8=为单位向量,与的夹角为,60o 则在方向上的投影为 ( ) A.34 B.4 C.24 D.238+6.若向量,,1==与b 的夹角为 120,则=⋅+⋅( ) A.21 B.21- C.23 D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-则ABC ∆ 的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是 ()(),1,,2,1x b a ==当向量2+与-2平行时,⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)(),2,1,3==且,⊥则的坐标是_____________.(),8,6-=则与平行的单位向量是_____________.21,e e 为两个不共线的向量,若21e e λ+=与()2132e e --=共线,则=λ________.ABCD ,设,,,====+-b __________.三、解答题(每题10分,共30分) ()()61232,34=+⋅-==,求a 与b 的夹角θ.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直? 321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a )1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.1a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D 的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-21,e e 为两不共线的向量,则21e e λ+=与()1232e e --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 AC OD( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;③零向量不克不及作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③()()5,0,1,221P P -且点P 在21P P 22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(- k b a 432,1||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分))2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b 的夹角的余弦值.ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.4ABCD 的边长为1,设c AC b BC a AB ===,,=++ ( )A.0B.3C.22+D.221e 、2e 是两个不共线向量,若向量 =2153e e +与向量213e e m -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- )3,1(),1,2(=-=则32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量,,40-=⋅=8,则向量与的夹角为 ( )A. 60B. 60-C. 120D. 120-8.已知)0,3(=,)5,5(-=,则与的夹角为 ( ) A.4πB.43πC.3πD.32π b a b a ⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-a =(2,3),b =(4-,7),则a 在b 上的投影值为 ( )N A B D M C A.13 B.513 C.565 D.65 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为( ) A.)11,2(- B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b 的夹角为__________.),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.a )2,3(-=,b )1,2(-,c )4,7(-=,且b a c μλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________.三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=, 求证:C N M ,,三点共线. C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量的坐标;2)求证:∥.19.24==b a a b 夹角为120,求:(1)⋅;(2))()2(+⋅-;(3)b 23+. )2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.)sin ,(cos ),3,0(),0,3(ααC B A ,(1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求与的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( ) A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23 D.21-1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.2621753)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )π2π的奇函数 π2π的偶函数 71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( ) A.45π B.4π C.45π或4π D.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4-56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________.11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. []则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan的值. ),,0(,,55cos ,31tan πβαβα∈=-=(1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21-2.下列各式中,最小的是( )A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin -D .41cos 2141sin 23- ()R x x y ∈+=2cos 21的最小正周期为 ( )A .2πB .πC .π2D .π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A .21B .23C .21-D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( ) A .97-B .31- C .31 D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinα C .2cos α-D .2sin α- 8.若()x x f 2sin tan =,则()=-1f ( ) A .1B .1- C .21D .21-二、填空题(每题5分,共20分)=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( ) A.26 B.23 C.45D.431+ 222tan -=θ,πθπ22<<,则θtan 的值为 ( )A.2B.22-C.2D.2或22- ︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系A.b a =B.b a >C.b a <D.b a ≠ ( )x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+=( ) A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( )A.2B.4C.8D.1651)cos(=+βα,53)cos(=-βα,则βαtan tan = ( )A.2B.21C.1D.0 []0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是A.97 B.23 C.1832+ D.183724+ ( ) 22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27二、填空题(每题5分,共20分)32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________. )2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________.xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α. (2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值. 135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-,求)cos(βα-的值.R x x x x x x f ∈++=,cos 3cos sin 2sin )(22,求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合;(2)函数)(x f 的单调增区间.α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值.a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数),(1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值. 16.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω), (1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案一、选择题1-5CCDCC 6-10CADBA 二、填空题11. 120{- 60,- 0, 60, 120,}12.(1)α{︱ 360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱ 360⋅k <<α 180 360⋅+k },Z k ∈ α{︱ 360⋅=k α270+},Z k ∈ (4)α{︱180⋅=k α45+},Z k ∈ 13.2三、解答题15.解:∵120=α360⋅+k Z k ∈,720,-0<<α ∴240-=α600,16.解:(1)45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k 0<,则2-=k 或1-=k675-=β或 315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=RlR l α一、选择题1-4ABAB 5-8BBAB 二、填空题⒐⎭⎬⎫⎩⎨⎧∈+=+<<+<≤Z k k k k k k ,222223222ππαππαπππαπα或或 10.1317或137- 11.33,21 12.⎪⎭⎫⎝⎛47,45ππ 三、解答题 13.22,1,22-- 14.126,562 15.16一、选择题1-4ABCC 5-8CCCC 二、填空题 9.1 10.1312 11.0 12.211aa ++-提示:12.由已知a -=26tan ,于是21126cos a+=;2126sin aa +-=.∴()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题 13.33 14.2515.0 16.3 提示:16.()()()42000cos 2000sin 2000++++=απαπb a f ()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f一、选择题1-5CDDBB 6-10BCBBA 二、填空题11.{}Z k k x k x ∈+≤≤+,1211125ππππ 12.)](32,32[Z k k k ∈+-ππππ 13.2π 14.x x x 2cos sin -- 三、解答题15.略 16.略17. (1) ⎭⎬⎫⎩⎨⎧∈+=Z k k x ,85ππ,3=大y ;⎭⎬⎫⎩⎨⎧∈-=Z k k x ,83ππ,1-=小y (2)1,6-=-=小y x π;56==大,y x π(3) 2,10==小大y y(4)20-==小大,y y)sin(ϕω+=x A y一、选择题1-7ABCDCDB二、填空题8.(2)(3) 9.60,32060- 10.5-15.解答题11.(1)略;(2)略;(3)π4=T ,3=A ,4πϕ-= 12.(1)ππππk x k +<<+-6512; (2)⎥⎦⎤⎢⎣⎡++->ππππk k a 6,12,1是单调递增,⎥⎦⎤⎢⎣⎡++ππππk k 65,6是单调递减 10<<a ,⎥⎦⎤⎢⎣⎡++-ππππk k 6,12是单调递减,⎥⎦⎤⎢⎣⎡++ππππk k 65,6是单调递增 (3)非奇非偶;(4)π=T。
人教新课标A版高中数学必修4双基限时练及答案2.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二)1.终边在y 轴的非负半轴上的角的集合是( ) A .{α|α=k π,k ∈Z }B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+π2,k ∈Z C .{α|α=2k π,k ∈Z }D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+π2,k ∈Z 解析 A 选项表示的角的终边在x 轴上;B 选项表示的角的终边在y 轴上;C 选项表示的角的终边在x 轴非负半轴上;D 选项表示的角的终边在y 轴非负半轴上,故选D.答案 D2.在半径为5 cm 的圆中,圆心角为周角的23的角所对的圆弧长为( )A.4π3cm B.20π3cm C.10π3cmD.50π3cm解析 记r =5,圆心角α=23×2π=4π3, ∴l =|α|r =203π. 答案 B3.将-1485°化成α+2k π(0≤α<2π,k ∈Z )的形式是( ) A .-π4-8π B.74π-8π C.π4-10πD.7π4-10π解析 ∵-1485°=-5×360°+315°, 又2π=360°,315°=74π,∴-1485°=-5×2π+74π=7π4-10π. 答案 D4.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ为( ) A .-34π B.π4 C.34πD .-π4解析 ∵-11π4=-2π-3π4,∴θ=-34π. 又-11π4=-4π+5π4,∴θ=5π4. ∴使|θ|最小的θ=-3π4. 答案 A5.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数的绝对值为( )A.π3B.2π3C. 3 D .2解析 设所在圆的半径为r ,圆内接正三角形的边长为2r sin60°=3r ,所以弧长3r 的圆心角的弧度数为3rr = 3.答案 C6.用集合表示终边在阴影部分的角α的集合为( )A.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π4≤α≤π3 B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π4≤α≤5π3C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π+π4≤α≤2k π+π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ 2k π+π4≤α≤2k π+5π3,k ∈Z解析 由图可知在[0,2π)内角的终边落在阴影部分时π4≤α≤5π3, ∴满足条件的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π+π4≤α≤2k π+5π3,k ∈Z .答案 D7.圆的半径变为原来的12,而弧长不变,则该弧所对的圆心角变为原来的________倍.解析 由公式θ=l r 知,半径r 变为原来的12,而弧长不变,则该弧所对的圆心角变为原来的2倍.答案 28.将下列弧度转化为角度: (1)π12=________; (2)-7π8=________; (3)13π6=________; (4)-512π=________. 答案 (1)15° (2)-157°30′ (3)390° (4)-75°9.将下列角度化为弧度: (1)36°=________rad ; (2)-105°=________rad ; (3)37°30′=________rad ; (4)-75°=________rad.解析 利用1°=π180rad 计算. 答案 (1)π5 (2)-7π12 (3)5π24 (4)-5π1210.在直径为20 cm 的圆中,圆心角为150°时所对的弧长为________.解析 150°=150×π180=5π6, ∴l =5π6×10=25π3(cm). 答案 25π3 cm11.如图所示,分别写出适合下列条件的角的集合: (1)终边落在射线OM 上;(2)终边落在直线OM 上; (3)终边落在阴影区域内(含边界).用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断2 012°是不是这个集合的元素.解 ∵150°=5π6.∴终边在阴影区域内角的集合为S ={β|5π6+2k π≤β≤3π2+2k π,k ∈Z }.∵2012°=212°+5×360°=⎝ ⎛⎭⎪⎫53π45+10πrad , 又5π6<53π45<3π2. ∴2012°=503π45∈S . 12.如图所示,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P 、Q 第一次相遇所用的时间及P 、Q 各自走过的弧长.解 设P 、Q 第一次相遇时所用的时间为t 秒,则:t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π,解得t =4, 即第一次相遇时所用的时间为4秒. P 点走过的弧长为:43π×4=163π, Q 点走过的弧长为:8π-16π3=8π3. 13.扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解 (1)设扇形的圆心角为θ,扇形所在圆的半径为R ,依题意有⎩⎪⎨⎪⎧2R +Rθ=8,12θ·R 2=3,解得θ=23或6.即圆心角的大小为23弧度或6弧度.(2)设扇形所在圆的半径为 x cm ,则扇形的圆心角θ=8-2xx ,于是扇形的面积是S =12x 2·8-2xx =4x -x 2=-(x -2)2+4. 故当x =2 cm 时,S 取到最大值.此时圆心角θ=8-42=2弧度,弦长AB =2 ·2sin 1 =4sin1 (cm).即扇形的面积取得最大值时圆心角等于2弧度,弦长AB 等于4sin1 cm.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
高中数学必修四同步练习及答案(新课标人教A版)
高之巴公井开创作中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ................................................................................................................ 0 1.2任意角的三角函数 ............................................................................................................ 2 1.3三角函数的诱导公式 ........................................................................................................ 4 1.4三角函数的图像与性质 . (6)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ................................. 9 第一章 三角函数基础过关测试卷 ...................................................................................... 11 第一章三角函数单元能力测试卷 ........................................................................................ 132.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 16 2.2向量减法运算与数乘运算 .............................................................................................. 18 2.3平面向量的基本定理及坐标暗示 .................................................................................. 20 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 22 第二章平面向量基础过关测试卷 ........................................................................................ 24 第二章平面向量单元能力测试卷 ........................................................................................ 263.1两角和与差的正弦、余弦和正切公式 .......................................................................... 29 3.2简单的三角恒等变换 ...................................................................................................... 31 第三章三角恒等变换单元能力测试卷 ................................................................................ 33 人教A 版必修4练习答案1.1任意角和弧度制 .............................................................................................................. 36 1.2任意角的三角函数 .......................................................................................................... 36 1.3三角函数的诱导公式 ...................................................................................................... 37 1.4三角函数的图像与性质 .. (37)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ............................... 38 第一章三角函数基础过关测试卷 ........................................................................................ 39 第一章三角函数单元能力测试卷 ........................................................................................ 39 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 40 2.2向量减法运算与数乘运算 .............................................................................................. 40 2.3平面向量的基本定理及坐标暗示 .................................................................................. 40 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 41 第二章平面向量基础过关测试卷 ........................................................................................ 42 第二章平面向量单元能力测试卷 ........................................................................................ 42 3.1两角和与差的正弦、余弦和正切公式 .......................................................................... 43 3.2简单的三角恒等变换 ...................................................................................................... 43 第三章三角恒等变换单元能力测试卷 .. (44)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 - 38 B.,398 - 142 C.,398 - 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 ( )A.,36{ -54} B.,126{ -144} C.,126{ -,36 -,54144}D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55 C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23- C.m 32 D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa + C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0B.1C.1- D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为. 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( )52 B 25 C π2 D π53.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 10 D.7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图. 16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值.(1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , 1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( )A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( )A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,而且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-= C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域:(1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际布景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b +( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =+ ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==__________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( ) A.2a b - B.2b a - C.b a - D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可暗示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________,两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 暗示DE 、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标暗示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是暗示平面内所有向量的一组基底,下列四组向量中,不克不及作为一组基底的是( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+纷歧定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与 CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求yx ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.33.对于非零向量b a ,,下列命题中正确的是( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量b a ,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( ) A.21B.21- C.23D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ()A.4πB.3πC.43πD.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________.12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1( 4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;A C OD③零向量不克不及作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- 4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π 9.若b a b a ⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3-10.已知a =(2,3),b =(4-,7),则a 在b 上的投影值为 ( ) A.13 B.513 C.565 D.65N A B D M C 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分) 13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b 的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a c μλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________.三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=, 求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标;2)求证:EF ∥AB .19.24==b a a b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)b a 23+. 20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23 D.21-3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan的值. 16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21-2.下列各式中,最小的是 ( ) A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A.2πB.πC.π2D.π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3- 5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( ) A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinα C.2cos α- D.2sin α- 8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45D.431+ 2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )。
人教新课标A版高中数学必修4双基限时练及答案17.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十七)1.给出下面三种说法:①一个平面内只有一对不共线的非零向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线的非零向量可作为表示该平面所有向量的基底;③零向量不可为基底中的向量.其中正确的说法是()A.①②B.②③C.①③D.②解析因为不共线的两个向量都可以作为一组基底,所以一个平面内有无数多个基底,又零向量和任何向量共线,所以基底中不含有零向量.因此本题中,①错,②、③正确,故选B.答案 B2.已知e1和e2是表示平面内所有向量的一组基底,那么下面四组向量中不能作为一组基底的是()A.e1和e1+e2B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1+e2和e1-e2解析分析四个选项知,在C中,4e2-2e1=-2(e1-2e2).∴e1-2e2与4e2-2e1共线,应选C.答案 C3.在△ABC 中,BC →=3BD →,则AD →等于( ) A.13(AC →+2AB →) B.13(AB →+2AC →) C.14(AC →+3AB →)D.14(AC →+2AB →)解析 如图所示, AD →=AB →+BD → =AB →+13BC → =AB →+13(AC →-AB →)=23AB →+13AC →=13(AC →+2AB →),故选A. 答案 A4.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP →等于( )A .λ(AB →+AD →),λ∈(0,1) B .λ(AB →+BC →),λ∈⎝⎛⎭⎪⎫0,22C .λ(AB →-AD →),λ∈(0,1) D .λ(AB →-BC →),λ∈⎝⎛⎭⎪⎫0,22解析 ∵ABCD 是菱形,且AC 是一条对角线,由向量加法的平行四边形法则知,AC →=AB →+AD →,而点P 在AC 上,∴三点A ,P ,C 共线,∴AP →=λAC →=λ(AB →+AD →),显然λ∈(0,1),故选A.答案 A5.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形解析 因为OA →+OC →=OB →+OD →, 所以OA →-OB →=OD →-OC →,即BA →=CD →.又A ,B ,C ,D 四点不共线, 所以|BA →|=|CD →|,且BA ∥CD , 故四边形ABCD 为平行四边形. 答案 B6.如图所示,点P 在∠AOB 的对角区域MON 的阴影内,满足OP →=xOA →+yOB →,则实数对(x ,y )可以是()A.⎝ ⎛⎭⎪⎫12,-13B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫-23,-13 D.⎝⎛⎭⎪⎫-34,25 解析 由图观察并根据平面向量基本定理,可知x <0,y <0,故选C.答案 C7.已知a ,b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1=________.解析 ∵a ,b 不共线,∴a ,b 可以作为一组基底,又c 与b 共线,∴c =λ2b ,∴λ1=0.答案 08.设向量a ,b 不共线,且OC 1→=k 1a +k 2b ,OC 2→=h 1a +h 2b ,若OC 1→+OC 2→=m a +n b ,则实数m =________,n =________.解析 OC 1→+OC 2→=(k 1+h 1)a +(k 2+h 2)b =m a +n b .∴m =k 1+h 1,n =k 2+h 2. 答案 k 1+h 1 k 2+h 29.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内所有向量的一组基底,则实数λ的取值范围是________.解析 使a 、b 为基底,则使a 、b 不共线,∴λ-2×2≠0.∴λ≠4. 答案 {λ|λ≠4}10.若a ≠0,且b ≠0,且|a |=|b |=|a -b |,则a 与a +b 的夹角是________.答案 30°11.设M ,N ,P 是△ABC 三边上的点,它们使BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.解 如图所示,MN →=CN →-CM →=-13AC →-23CB → =-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a . 同理可得NP →=13a -23b ,PM →=-MP →=-(MN →+NP →)=13a +13b .12.如图所示,在▱ABCD 中,M ,N 分别为DC ,BC 的中点.已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.解 设AB →=a ,AD →=b .由M ,N 分别为DC ,BC 的中点,得BN →=12b ,DM →=12a . 在△ABN 和△ADM 中, ⎩⎪⎨⎪⎧a +12b =d , ①b +12a =c . ②①×2-②,得a =23(2d -c ). ②×2-①,得b =23(2c -d ).∴AB →=23(2d -c ),AD →=23(2c -d ).13.若a ,b 是两个不共线的非零向量,且a 与b 起点相同,则当t 为何值时,a 、t b 、13(a +b )(t ∈R )三向量的终点在同一直线上?解 设a -t b =m ⎣⎢⎡⎦⎥⎤a -13(a +b )(m ∈R ),化简得⎝ ⎛⎭⎪⎫2m 3-1a =⎝ ⎛⎭⎪⎫m 3-t b ,∵a 与b 不共线, ∴⎩⎪⎨⎪⎧ 2m 3-1=0,m 3-t =0,∴⎩⎪⎨⎪⎧m =32,t =12.∴t =12时,a 、t b 、13(a +b )的终点在同一直线上.。
高中数学必修四同步练习及答案(新课标人教A版)
高之老阳三干创作中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ................................................................................................................ 0 1.2任意角的三角函数 ............................................................................................................ 2 1.3三角函数的诱导公式 ........................................................................................................ 4 1.4三角函数的图像与性质 . (6)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ................................. 9 第一章 三角函数基础过关测试卷 ...................................................................................... 11 第一章三角函数单元能力测试卷 ........................................................................................ 132.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 16 2.2向量减法运算与数乘运算 .............................................................................................. 18 2.3平面向量的基本定理及坐标暗示 .................................................................................. 20 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 22 第二章平面向量基础过关测试卷 ........................................................................................ 24 第二章平面向量单元能力测试卷 ........................................................................................ 263.1两角和与差的正弦、余弦和正切公式 .......................................................................... 29 3.2简单的三角恒等变换 ...................................................................................................... 31 第三章三角恒等变换单元能力测试卷 ................................................................................ 33 人教A 版必修4练习答案1.1任意角和弧度制 .............................................................................................................. 36 1.2任意角的三角函数 .......................................................................................................... 36 1.3三角函数的诱导公式 ...................................................................................................... 37 1.4三角函数的图像与性质 .. (37)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ............................... 38 第一章三角函数基础过关测试卷 ........................................................................................ 39 第一章三角函数单元能力测试卷 ........................................................................................ 39 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 40 2.2向量减法运算与数乘运算 .............................................................................................. 40 2.3平面向量的基本定理及坐标暗示 .................................................................................. 40 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 41 第二章平面向量基础过关测试卷 ........................................................................................ 42 第二章平面向量单元能力测试卷 ........................................................................................ 42 3.1两角和与差的正弦、余弦和正切公式 .......................................................................... 43 3.2简单的三角恒等变换 ...................................................................................................... 43 第三章三角恒等变换单元能力测试卷 .. (44)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 - 38 B.,398 - 142 C.,398 - 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 ( )A.,36{ -54} B.,126{ -144} C.,126{ -,36 -,54144}D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55 C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23- C.m 32 D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa + C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0B.1C.1- D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为. 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( )52 B 25 C π2 D π53.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 10 D.7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图. 16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值.(1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , 1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( )A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( )A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,而且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-= C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域:(1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际布景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b +( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =+ ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==__________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( ) A.2a b - B.2b a - C.b a - D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可暗示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________,两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 暗示DE 、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标暗示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是暗示平面内所有向量的一组基底,下列四组向量中,不克不及作为一组基底的是( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+纷歧定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与 CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求yx ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.33.对于非零向量b a ,,下列命题中正确的是( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量b a ,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( ) A.21B.21- C.23D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ()A.4πB.3πC.43πD.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________.12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1( 4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;A C OD③零向量不克不及作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- 4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π 9.若b a b a ⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3-10.已知a =(2,3),b =(4-,7),则a 在b 上的投影值为 ( ) A.13 B.513 C.565 D.65N A B D M C 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分) 13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b 的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a c μλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________.三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=, 求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标;2)求证:EF ∥AB .19.24==b a a b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)b a 23+. 20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23 D.21-3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan的值. 16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21-2.下列各式中,最小的是 ( ) A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A.2πB.πC.π2D.π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3- 5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( ) A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinα C.2cos α- D.2sin α- 8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45D.431+ 2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )。
人教新课标A版高中数学必修4双基限时练及答案22.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二十二)1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ) A.BD →=CE → B.BD →与CE →共线 C.BE →=BC →D.DE →与BC →共线解析 由题意知,DE 为△ABC 的中位线, ∴DE ∥BC ,∴DE →与BC →共线. 答案 D2.设平面上有四个互异的点A ,B ,C ,D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形解析 DB →+DC →-2DA →=(DB →+AD →)+(DC →+AD →)=AB →+AC →, ∴(DB →+DC →-2DA →)·(AB →-AC →)=(AB →+AC →)·(AB →-AC →)=AB →2-AC →2=0.即AB →2=AC →2,∴|AB →|=|AC →|.故选B.答案 B3.(2009·福建高考)设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a ⊥c ,|a |=|c |,则|b ·c |的值一定等于( )A .以a ,b 为邻边的平行四边形的面积B .以b ,c 为邻边的平行四边形的面积C .以a ,b 为两边的三角形的面积D .以b ,c 为两边的三角形的面积 解析如右图,设b 与c 的夹角为θ,a 与b 的夹角为α, ∵a ⊥c ,∴|cos θ|=|sin α|. 又|a |=|c |, ∴|b ·c |=|b ||c ||cos θ|=|b ||a ||sin α|,即|b ·c |的值一定等于以a ,b 为邻边的平行四边形的面积.答案 A4.已知点A ,B 的坐标分别为A (4,6),B ⎝⎛⎭⎪⎫-3,32,则与直线AB平行的向量的坐标可以是( )①⎝ ⎛⎭⎪⎫143,3;②⎝ ⎛⎭⎪⎫7,92;③⎝ ⎛⎭⎪⎫-143,-3;④(-7,9). A .① B .①② C .①②③D .①②③④解析 ∵A (4,6),B ⎝ ⎛⎭⎪⎫-3,32,∴AB →=⎝⎛⎭⎪⎫-7,-92,易知①、②、③与AB →平行,故选C.答案 C5.设O (0,0),A (1,0),B (0,1),点P 是线段AB 上的一个动点,AP →=λAB →,若OP →·AB →≥P A →·PB →,则实数λ的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,1 B.⎣⎢⎡⎦⎥⎤1-22,1C.⎣⎢⎡⎦⎥⎤12,1+22D.⎣⎢⎡⎦⎥⎤1-22,1+22解析 设P (x ,y ),则OP →=(x ,y ),AB →=(-1,1),P A →=(1-x ,-y ),PB →=(-x,1-y ),∵AP →=λAB →,∴(x -1,y )=(-λ,λ),∴⎩⎨⎧x -1=-λ,y =λ,∴⎩⎨⎧x =1-λ,y =λ,①又∵OP →·AB →=(x ,y )·(-1,1)=-x +y ,P A →·PB →=(1-x ,-y )·(-x,1-y )=-x (1-x )-y (1-y ), ∴-x +y ≥-x (1-x )-y (1-y ),将①代入可得:λ-1+λ≥(λ-1)·λ-λ(1-λ),整理可得:2λ2-4λ+1≤0,解得:1-22≤λ≤1+22,又P 是线段AB 上的动点,∴λ≤1,∴1-22≤λ≤1,故选B.答案 B6.在Rt △ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( )A .2B .4C .5D .10解析 ∵P A →=CA →-CP →, ∴|P A →|2=CA →2-2CP →·CA →+CP →2.∵PB →=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2.∴|P A →|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD →+2CP →2.又AB →2=16CP →2,CD →=2CP →,代入上式整理得|P A →|2+|PB →|2=10CP →2,故所求值为10.答案 D7.在△ABC 所在平面上有一点P ,满足P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积之比为________.解析 ∵P A →+PB →+PC →=AB →,∴PC →=AB →-P A →-PB →=AP →+AB →+BP →=2AP →,∴A ,P ,C 三点共线,且点P 是靠近点A 的线段AC 的三等分点, 故S △P ABS △ABC =13. 答案 138.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为__________.已知直线ax +by +c =0与圆x 2+y 2=1相交于A ,B 两点,且|AB |=3,则OA →·OB →=________.解析 如图,∵AB =3,取D 为AB 的中点,又OA =1,∴∠AOD =π3.∴∠AOB =2π3.∴OA →·OB →=1×1×cos 2π3=-12. 答案 -12 9.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴和y 轴建立平面直角坐标系,则由题意知,点B (2,0),点E (2,1),设点F (a,2), 所以AB →=(2,0),AF →=(a,2). 由条件解得点F (1,2),所以AE →=(2,1),BF →=(1-2,2). 所以AE →·BF →= 2. 答案210.如下图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.解析 如下图,过B 作BD ∥MN , 易知m =AB AM =AD AN ,n =ACAN ,∴m +n =AD +AC AN .∵BO OC =DNNC =1, ∴AD +AC =2AN . ∴m +n =2. 答案 2 11.如图所示,若D 是△ABC 内的一点,且AB 2-AC 2=DB 2-DC 2. 求证:AD ⊥BC .分析 解答本题可先表示出图中线段对应的向量,找出所给等式所蕴含的等量关系,再利用它计算所需向量的数量积.证明 设AB →=a ,AC →=b ,AD →=e ,DB →=c ,DC →=d ,则a =e +c ,b =e +d .∴a 2-b 2=(e +c )2-(e +d )2=c 2+2e ·c -2e ·d -d 2. 由已知a 2-b 2=c 2-d 2,∴c 2+2e ·c -2e ·d -d 2=c 2-d 2,即e ·(c -d )=0. ∵BC →=BD →+DC →=d -c , ∴AD →·BC →=e ·(d -c )=0. ∴AD →⊥BC →,即AD ⊥BC .12.已知点A 、B 的坐标分别是(-4,3),(2,5),并且OC →=3OA →,OD →=3OB →,求证:AB ∥CD .证明 ∵OC →=3OA →,OD →=3OB →, ∴C (-12,9),D (6,15), ∴AB →=(6,2),CD →=(18,6).∴CD →=3AB →,∴AB ∥CD .13.如图所示,以原点和A (5,2)为两个顶点作等腰直角三角形OAB ,∠B =90°,求点B 的坐标.解 设B (x ,y ),则|OB →|=x 2+y 2.∵B (x ,y ),A (5,2), ∴|AB →|=(x -5)2+(y -2)2.又|AB →|=|OB →|, ∴(x -5)2+(y -2)2=x 2+y 2,整理,得10x +4y =29①∴又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →. ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2+y 2-5x -2y =0,② 由①、②解得⎩⎪⎨⎪⎧ x =32,y =72,或⎩⎪⎨⎪⎧x =72,y =-32.∴B ⎝ ⎛⎭⎪⎫32,72或⎝ ⎛⎭⎪⎫72,-32.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
人教新课标A版高中数学必修4双基限时练及答案3.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(三)1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-32,-12,则sin α的值为( )A .-32 B .-12 C.32D.12解析 利用三角函数的定义可得sin α=-12,故选B. 答案 B2.若角α的终边经过M (0,2),则下列各式中,无意义的是( ) A .sin α B .cos α C .tan αD .sin α+cos α解析 因为M (0,2)在y 轴上,所以α=π2+2k π,k ∈Z ,此时tan α无意义.答案 C3.下列命题正确的是( )A .若cos θ<0,则θ是第二或第三象限的角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析 当θ=π时,cos θ=-1,此时π既不是第二象限的角,也不是第三象限的角,故A 错误;当α=390°,β=30°时,cos α=cos β,故B 错误;当α=30°,β=150°时,sin α=sin β,但α与β终边并不相同,故C 错误,只有D 正确.答案 D4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能解析 ∵α,β为三角形的内角,且sin αcos β<0, 又sin α>0,∴cos β<0,∴β为钝角. ∴三角形为钝角三角形. 答案 B5.设角α的终边过点P (3a,4a )(a ≠0),则下列式子中正确的是( )A .sin α=45 B .cos α=35 C .tan α=43D .tan α=-43解析 ∵a ≠0,∴tan α=4a 3a =43. 答案 C6.已知⎝ ⎛⎭⎪⎫12sin2θ<1,则θ所在的象限为( )A .第一或第三象限B .第二或第四象限C .第二或第三象限D .第一或第四象限解析 ∵⎝ ⎛⎭⎪⎫12sin2θ<1,且y =⎝ ⎛⎭⎪⎫12x在R 上递减,∴sin2θ>0,∴2k π<2θ<π+2k π,k ∈Z ,∴kπ<θ<π2+kπ,k∈Z.当k=2n,n∈Z时,2nπ<θ<π2+2nπ,此时θ在第一象限内.当k=2n+1,n∈Z时,π+2nπ<θ<3π2+2nπ,n∈Z,此时θ在第三象限内.综上可得θ所在的象限为第一象限或第三象限,故选A.答案 A7.角α终边上有一点P(x,x)(x∈R,且x≠0),则sinα的值为________.解析由题意知,角α终边在直线y=x上,当点P在第一象限时,x>0,r=x2+x2=2x,∴sinα=x2x =22.当点P在第三象限时,同理,sinα=-22.答案±2 28.使得lg(cosαtanα)有意义的角α是第________象限角.解析要使原式有意义,必须cosαtanα>0,即需cosα,tanα同号,所以α是第一或第二象限角.答案一或二9.点P(tan2 012°,cos2 012°)位于第____________象限.解析∵2 012°=5×360°+212°,212°是第三象限角,∴tan2 012°>0,cos2 012°<0,故点P位于第四象限.答案 四10.若角α的终边经过P (-3,b ),且cos α=-35,则b =________,sin α=________.解析 ∵cos α=-39+b 2,∴-39+b 2=-35,∴b =4或b =-4.当b =4时,sin α=b9+b2=45,当b =-4时,sin α=b9+b 2=-45. 答案 4或-4 45或-4511.计算sin810°+tan765°+tan1125°+cos360°.解 原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0° =1+1+1+1=4.12.一只蚂蚁从坐标原点沿北偏西30°方向爬行6 cm 至点P 的位置.试问蚂蚁离x 轴的距离是多少?解 如下图所示,蚂蚁离开x 轴的距离是P A .在△OP A 中,OP =6,∠AOP =60°, ∴P A =OP sin60° =6×32=3 3.即蚂蚁离x 轴的距离是3 3 cm.13.已知角α的终边落在直线y =2x 上,试求α的三个三角函数值.解 当角α的终边在第一象限时,在y =2x 上任取一点P (1,2),则有r =5,∴sin α=25=255,cos α=15=55,tan α=2. 当角α的终边在第三象限时,同理可求得: sin α=-255,cos α=-55,tan α=2.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
人教新课标A版高中数学必修4双基限时练及答案15.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十五)1.若非零向量a ,b 互为相反向量,则下列说法错误的是( ) A .a ∥b B .a ≠b C .|a |≠|b |D .b =-a解析 根据相反向量的定义:大小相等,方向相反,可知|a |=|b |. 答案 C2.给出下列四个结论:①AB →=AO →+OB →; ②AB →-AC →=BC →; ③AB →+BC →+CA →=0; ④|a +b |≥|a -b |. 其中错误的有( ) A .1个 B .2个 C .3个D .4个解析 ①正确,②错误,∵AB →-AC →=AB →+CA →=CB →≠BC →.③错误,∵AB →+BC →+CA →=0≠0.④错误,当a 与b 方向相反时,有|a +b |<|a -b |.综上知,仅①正确,故选C.答案 C3.在△ABC 中,BC →=a ,AC →=b ,则AB →等于( ) A .a +b B .a -b C .-a -(-b )D .-a +(-b )解析 AB →=AC →+CB →=AC →-BC →=b -a .故选C.答案 C4.如图,P 是△ABC 所在平面内一点,且满足BA →+BC →=BP →,则( )A.BA →=PC →B.BC →=P A →C.BC →+CP →=BP →D.BA →-BP →=AP →解析 由题意知,BP 是以BA →,BC →为邻边所作平行四边形的对角线,BC →+CP →=BC →+BA →=BP →.答案 C5.如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( )A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 ∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴BE →=DF →,CF →=F A →,∴AD →+BE →+CF →=AD →+DF →+F A →=0. 答案 A6.设点M 是线段BC 的中点,点A 在直线BC 外,|BC →|2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=( )A .8B .4C .2D .1解析 以AB ,AC 为邻边作平行四边形ACDB ,则由加减法的几何意义可知AD →=AB →+AC →,CB →=AB →-AC →,因为|AB →+AC →|=|AB →-AC →|,所以|AD →|=|CB →|.又四边形ACDB 为平行四边形,所以四边形ACDB 为矩形,故AC ⊥AB ,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM →|=12|BC →|=2.答案 C7.若菱形ABCD 的边长为2,则|AB →-CB →-DC →|=________________________________________________________.解析 |AB →-CB →-DC →|=|AB →+BC →+CD →|=|AD →|=2. 答案 28.如图,平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是________.解析 ∵OA →+OC →=OB →+OD →, ∴OA →-OB →=OD →-OC →.即BA →=CD →.又A ,B ,C ,D 四点不共线,∴|BA →|=|CD →|,且BA ∥CD ,故四边形ABCD 为平行四边形. 答案 平行四边形9.已知a 与b 均为非零向量,若|a -b |=||a |-|b ||,则a 与b 方向________.解析 当a 与b 不共线时,如图1,a -b =BC →,|BC →|>||AC →|-|AB →||可得|a -b |>||a |-|b ||;当a 与b 反向时,如图2,知a -b =CB →,|CB →|>||AB →|-|AC →||,∴|a -b |>||a |-|b ||.当a 与b 同向时,如图3,a -b =CB →,|CB →|=||AB →|-|AC →||,∴|a -b |=||a |-|b ||.答案 相同 10.给出下列命题:①若OD →+OE →=OM →,则OM →-OE →=OD →; ②若OD →+OE →=OM →,则OM →+DO →=OE →; ③若OD →+OE →=OM →,则OD →-EO →=OM →;④若OD →+OE →=OM →,则DO →+EO →=MO →. 其中所有正确命题的序号为________. 答案 ①②③④11.如图,解答下列各题: (1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.解 ∵AB →=a ,BC →=b ,CD →=c , DE →=d ,EA →=e ,∴(1)DB →=DE →+EA →+AB →=d +e +a . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e .(4)EC →=-CE →=-(CD →+DE →)=-c -d . 12.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作向量b +c -a .解 以OB →,OC →为邻边作▱OBDC ,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .13.已知|a |=6,|b |=8,且|a +b |=|a -b |,求|a -b |.解 如下图,设AB →=a ,AD →=b ,以AB ,AD 为邻边作▱ABCD ,则AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b .由|a +b |=|a -b |知,|AC →|=|DB →|, ∴四边形ABCD 是矩形,故AD ⊥AB . 在Rt △ABD 中,高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教新课标A版高中数学必修4双基限时练及答案14.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十四)1.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的向量的个数为( )A .5B .4C .3D .2解析 向量加法满足交换律, 所以五个向量均等于a +b +c . 答案 A2.向量(AB →+MB →)+(BO →+BC →)+OM →化简后等于( ) A.CB → B.AB → C.AC →D.AM → 解析 (AB →+MB →)+(BO →+BC →)+OM →=(AB →+BC →)+(BO →+OM →+MB →)=AC →+0=AC →,故选C.答案 C3.向量a ,b 皆为非零向量,下列说法不正确的是( ) A .向量a 与b 反向,且|a |>|b |,则向量a +b 与a 的方向相同 B .向量a 与b 反向,且|a |<|b |,则向量a +b 与a 的方向相同 C .向量a 与b 同向,则向量a +b 与a 的方向相同 D .向量a 与b 同向,则向量a +b 与b 的方向相同解析 向量a 与b 反向,且|a |<|b |,则a +b 应与b 方向相同,因此B 错.答案 B4.设P 是△ABC 所在平面内一点,BC →+BA →=2BP →,则( ) A.P A →+PB →=0 B.PB →+PC →=0 C.PC →+P A →=0D.P A →+PB →+PC →=0解析 由向量加法的平行四边形法则易知,BA →与BC →的和向量过AC 边的中点,且长度是AC 边中线长的2倍,结合已知条件知,P 为AC 的中点,故P A →+PC →=0.答案 C5.正方形ABCD 的边长为1,AB →=a ,AC →=c ,BC →=b ,则|a +b +c |为( )A .0 B. 2 C .3D .2 2解析 |a +b +c |=|2c |=2|c |=2 2.应选D. 答案 D6.在▱ABCD 中,若|BC →+B A →|=|B C →+AB →|,则四边形ABCD 是( )A .菱形B .矩形C .正方形D .不确定解析 |BC +AB |=|AB +BC |=|AC |, |BC →+BA →|=|BD →|,由|BD →|=|AC →|知四边形ABCD 为矩形. 答案 B 7.根据图示填空. (1)AB →+OA →=________; (2)BO →+OD →+DO →=________; (3)AO →+BO →+2OD →=________. 解析 由三角形法则知 (1)AB →+OA →=OA →+AB →=OB →; (2)BO →+OD →+DO →=BO →; (3)AO →+BO →+2OD →=AD →+BD →.答案 (1)OB (2)BO (3)AD +BD8.在正方形ABCD 中,边长为1,AB →=a ,BC →=b ,则|a +b |=________.解析 a +b =AB →+BC →=AC →, ∴|a +b |=|AC →|= 2. 答案29.若P 为△ABC 的外心,且P A →+PB →=PC →,则∠ACB =__________.解析 ∵P A →+PB →=PC →,则四边形APBC 是平行四边形. 又P 为△ABC 的外心, ∴|P A →|=|PB →|=|PC →|. 因此∠ACB =120°. 答案 120°10.设a 表示“向东走了2 km ”,b 表示“向南走了2 km ”,c 表示“向西走了2 km ”,d 表示“向北走了2 km ”,则(1)a +b +c 表示向________走了________km ; (2)b +c +d 表示向________走了________km ; (3)|a +b |=________,a +b 的方向是________. 解析 (1)如图①所示,a +b +c表示向南走了2 km.(2)如图②所示,b +c +d 表示向西走了2 km.(3)如图①所示,|a +b |=22+22=22,a +b 的方向是东南. 答案 (1)南 2 km (2)西 2 km (3)22 东南 11.如图,O 为正六边形ABCDEF 的中心,试通过计算用图中有向线段表示下列向量的和:(1)OA →+OC →; (2)BC →+FE →; (3)OA →+FE →.解 (1)因为四边形OABC 是平行四边形,所以OA →+OC →=OB →. (2)因为BC ∥AD ∥FE ;BC =FE =12AD , 所以BC →=AO →,FE →=OD →, 所以BC →+FE →=AO →+OD →=AD →. (3)因为|OA →|=|FE →|,且OA →与FE →反向. 所以利用三角形法则可知OA →+FE →=0. 12.化简:(1)AB →+CD →+BC →; (2)(MA →+BN →)+(AC →+CB →); (3)AB →+(BD →+CA →)+DC →.解 (1)AB →+CD →+BC →=AB →+BC →+CD →=AD →. (2)(MA →+BN →)+(AC →+CB →) =(MA →+AC →)+(CB →+BN →) =MC →+CN →=MN →. (3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0 13.如右图所示,P ,Q 是△ABC 的边BC 上的两点,且BP →=QC →. 求证:AB →+AC →=AP →+AQ →. 证明 由图可知AB →=AP →+PB →, AC →=AQ →+QC →,∴AB →+AC →=AP →+AQ →+PB →+QC →. ∵BP →=QC →,又PB →与BP →模相等,方向相反, 故PB →+QC →=PB →+BP →=0.∴AB →+AC →=AP →+AQ →.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
人教新课标A版高中数学必修4双基限时练及答案6.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(六)1.cos300°=( ) A .-32 B .-12 C.12 D.32答案 C2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12 B.12 C.32D .-32解析 ∵sin(3π+α)=sin(π+α)=-sin α=-12, ∴sin α=12.∴cos ⎝ ⎛⎭⎪⎫7π2-α=cos ⎣⎢⎡⎦⎥⎤4π-(π2+α) =cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-12. 答案 A3.sin(π-2)-cos ⎝ ⎛⎭⎪⎫π2-2化简的结果是( ) A .0 B .-1 C .2sin2D .-2sin2解析 sin(π-2)-cos ⎝ ⎛⎭⎪⎫π2-2=sin2-sin2=0.答案 A4.若tan(7π+α)=a ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.a -1a +1B.a +1a -1 C .-1D .1解析 由tan(7π+α)=a ,得tan α=a , ∴sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin (3π-α)-cos α-sin α+cos α =sin α+cos αsin α-cos α=tan α+1tan α-1=a +1a -1. 答案 B5.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α的值等于( ) A.223 B .-223 C.13D .-13解析 ∵π4+α-⎝ ⎛⎭⎪⎫α-π4=π2,∴cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫α-π4=-13.故选D.答案 D6.A ,B ,C 为△ABC 的三个内角,下列关系式中不成立的是( ) ①cos(A +B )=cos C ②cos B +C 2=sin A2 ③tan(A +B )=-tan C ④sin(2A +B +C )=sin AA .①②B .③④C .①④D .②③解析 因为cos(A +B )=-cos C ,所以①错;cos B +C 2=cos ⎝⎛⎭⎪⎫π2-A 2=sin A 2,所以②正确;tan(A +B )=tan(π-C )=-tan C ,故③正确;sin(2A +B +C )=si n(π+A )=-sin A ,故④错.所以选C.答案 C7.若θ∈(0,π),cos(π+θ)=35,则sin θ=__________. 解析 ∵cos(π+θ)=35,∴cos θ=-35,故θ∈⎝ ⎛⎭⎪⎫π2,π, ∴sin θ=45. 答案 458.化简:sin(450°-α)-sin(180°-α)+cos(450°-α)+cos(180°-α)=________.解析 原式=sin(90°-α)-sin α+cos(90°-α)-cos α =cos α-sin α+sin α-cos α=0. 答案 09.化简:sin(-236π)+cos 13π7·tan4π-cos 133π=________. 解析 原式=-sin ⎝⎛⎭⎪⎫4π-π6+cos ⎝⎛⎭⎪⎫2π-π7·0-cos ⎝ ⎛⎭⎪⎫4π+π3=sin π6+0-cos π3=12-12=0. 答案 010.已知cos ⎝⎛⎭⎪⎫π2+α=2sin ⎝⎛⎭⎪⎫α-π2,则sin (π-α)+cos (π+α)5cos ⎝ ⎛⎭⎪⎫5π2-α+3sin ⎝ ⎛⎭⎪⎫7π2-α=________.解析 ∵cos ⎝⎛⎭⎪⎫π2+α=2sin ⎝⎛⎭⎪⎫α-π2,∴sin α=2cos α.原式=sin α-cos α5sin α-3cos α=2cos α-cos α10cos α-3cos α=17.答案 1711.已知sin ⎝ ⎛⎭⎪⎫π3-α=12,求cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α的值. 解 cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α·sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α =sin ⎝ ⎛⎭⎪⎫π3-α·sin ⎝ ⎛⎭⎪⎫π3-α =12×12=14.12.在△ABC 中,sin A +B -C 2=sin A -B +C2,试判断△ABC 的形状.解 ∵A +B +C =π,∴A +B -C =π-2C ,A -B +C =π-2B . ∵sin A +B -C 2=sin A -B +C 2, ∴sin π-2B 2=sin π-2C 2.∴sin ⎝⎛⎭⎪⎫π2-B =sin ⎝⎛⎭⎪⎫π2-C .∴cos B =cos C . ∴B =C .∴△ABC 为等腰三角形.13.已知α是第三象限的角,f (α)= sin ⎝ ⎛⎭⎪⎫α-π2cos ⎝ ⎛⎭⎪⎫3π2+αtan (π-α)tan (-α-π)sin (-α-π)(1)化简f (α);(2)若cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值.解 (1)f (α)=-cos α·sin α·(-tan α)-tan α·sin α=-cos α.(2)∵cos ⎝⎛⎭⎪⎫α-3π2=cos ⎝⎛⎭⎪⎫3π2-α=-sin α=15,∴sin α=-15.又α是第三象限的角, ∴cos α=-1-sin 2α=-265.∴f(α)=265.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
(新课标)_学年高中数学双基限时练8新人教A版必修4【含答案】
双基限时练(八)1.下列函数以π为周期的是( ) A .y =cos 12xB .y =sin xC .y =1+cos2xD .y =cos3x答案 C2.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos2x .∴最小正周期为T =2π2=π,且为偶函数.答案 B3.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( )解析 显然D 中函数图象不是经过相同单位长度,图象重复出现.而A 、C 中每经过一个单位长度,图象重复出现.B 中图象每经过2个单位,图象重复出现.所以A 、B 、C 中函数是周期函数,D 中函数不是周期函数.答案 D4.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3解析 ∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.∴sin φ3=±1.∴φ3=k π+π2(k ∈Z ). ∴φ=3k π+3π2(k ∈Z ).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.答案 C5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( )A .10B .11C .12D .13解析 ∵T =2πk4=8πk≤2,∴k ≥4π,又k ∈Z ,∴正整数k 的最小值为13. 答案 D6.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x ≤π,则f ⎝ ⎛⎭⎪⎫-15π4的值等于( )A .1B.22 C .0 D .-22解析 f ⎝ ⎛⎭⎪⎫-15π4=f ⎝ ⎛⎭⎪⎫32π-+34π=f ⎝ ⎛⎭⎪⎫34π=sin 34π=22. 答案 B7.函数y =12sin2x 的最小正周期T =________.解析 T =2π2=π.答案 π8.y =3sin ⎝ ⎛⎭⎪⎫ax +π6的最小正周期为π,则a =______. 解析 由最小正周期的定义知2π|a |=π,∴|a |=2,a =±2.答案 ±2 9.已知f (n )=sinn π4(n ∈Z ),那么f (1)+f (2)+…+f (100)=________. 解析 ∵f (n )=sin n π4(n ∈Z ),∴f (1)=22,f (2)=1,f (3)=22,f (4)=0,f (5)=-22,f (6)=-1,f (7)=-22,f (8)=0,…,不难发现,f (n )=sin n π4(n ∈Z )的周期T =8,且每一个周期内的函数值之和为0.∴f (1)+f (2)+…+f (100) =f (97)+f (98)+f (99)+f (100) =f (1)+f (2)+f (3)+f (4) =22+1+22+0=2+1. 答案2+110.函数y =cos x -sin x 1-sin x 的奇偶性为________.解析 由题意,当sin x ≠1时,y =cos x -sin x1-sin x=cos x ,所以函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≠2k π+π2,k ∈Z ,由于定义域不关于原点对称,所以该函数是非奇非偶函数.答案 非奇非偶函数11.函数f (x )满足f (x +2)=-1f x.求证:f (x )是周期函数,并求出它的一个周期. 解 因为f (x +4)=f ((x +2)+2) =-1fx +=f (x ),所以f (x )是周期函数,且4是它的一个周期.12.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.解 ∵1+sin 2x >|sin x |≥-sin x , ∴sin x +1+sin 2x >0. ∴定义域为R . 又f (-x )=ln []-x +1+sin2-x=ln(1+sin 2x -sin x ) =ln ⎝ ⎛⎭⎪⎫11+sin 2x +sin x =ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2x ) =-f (x ), ∴f (x )为奇函数.13.设有函数f (x )=a sin ⎝ ⎛⎭⎪⎫kx -π3和函数g (x )=b cos ⎝ ⎛⎭⎪⎫2kx -π6(a >0,b >0,k >0),若它们的最小正周期之和为3π2,且f ⎝ ⎛⎭⎪⎫π2=g ⎝ ⎛⎭⎪⎫π2,f ⎝ ⎛⎭⎪⎫π4=-3g ⎝ ⎛⎭⎪⎫π4-1,求这两个函数的解析式.解 ∵f (x )和g (x )的最小正周期之和为3π2,∴2πk +2π2k =3π2,解得k =2. ∵f ⎝ ⎛⎭⎪⎫π2=g ⎝ ⎛⎭⎪⎫π2,∴a sin ⎝ ⎛⎭⎪⎫2×π2-π3=b cos ⎝⎛⎭⎪⎫4×π2-π6, 即a ·sin ⎝ ⎛⎭⎪⎫π-π3=b ·cos ⎝ ⎛⎭⎪⎫2π-π6.∴32a =32b ,即a =b .① 又f ⎝ ⎛⎭⎪⎫π4=-3g ⎝ ⎛⎭⎪⎫π4-1, 则有a ·sin π6=-3b ·cos 5π6-1,即12a =32b -1.② 由①②解得a =b =1,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3, g (x )=cos ⎝⎛⎭⎪⎫4x -π6.。
人教新课标A版高中数学必修4双基限时练及答案11.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十一)1.把函数f (x )的图象向右平移π12个单位后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,则f (x )为( )A .sin ⎝⎛⎭⎪⎫x +712πB .sin ⎝⎛⎭⎪⎫x +34πC .sin ⎝ ⎛⎭⎪⎫x +5π12D .sin ⎝ ⎛⎭⎪⎫x -512π解析 用x -π12代换选项中的x ,化简得到y =sin ⎝ ⎛⎭⎪⎫x +π3的就是f (x ),代入选项C ,有f (x )=sin ⎝ ⎛⎭⎪⎫x -π12+5π12=sin ⎝ ⎛⎭⎪⎫x +π3.答案 C2.下列四个函数中,同时具有:①最小正周期是π,②图象关于x =π3对称的是( )A .y =sin(x 2+π6) B .y =sin(2x +π6) C .y =sin(2x -π3) D .y =sin(2x -π6)解析 当x =π3时,y =sin ⎝ ⎛⎭⎪⎫2x -π6=sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1.∴函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象关于x =π3对称,且周期T =2π2=π.答案 D3.要将y =sin ⎝⎛⎭⎪⎫2x +π4的图象转化为某一个偶函数图象,只需将y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象( )A .向左平移π4个单位 B .向右平移π4个单位 C .向左平移π8个单位 D .向右平移π8个单位解析 把y =sin ⎝⎛⎭⎪⎫2x +π4的图象向左平移π8个单位即得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+π4=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 的图象.因为y =cos2x 为偶函数,所以符合题意.答案 C4.函数y =3sin ⎝⎛⎭⎪⎫-x +π6的相位和初相分别是( )A .-x +π6,π6 B .x -π6,-π6 C .x +5π6,5π6D .x +5π6,π6解析 因为y =3sin ⎝ ⎛⎭⎪⎫-x +π6=3sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫-x +π6 =3sin ⎝ ⎛⎭⎪⎫x +5π6,所以相位和初相分别是x +5π6,5π6. 答案 C5.如下图是函数y =A sin(ωx +φ)+b 在一个周期内的图象,那么这个函数的一个解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫x 2+π6-1B .y =2sin ⎝ ⎛⎭⎪⎫2x +π6-1C .y =3sin ⎝ ⎛⎭⎪⎫2x +π3-1D .y =3sin ⎝⎛⎭⎪⎫2x +π6-1 解析 由图象知A =2-(-4)2=3,b =-1, T =5π6-⎝⎛⎭⎪⎫-π6=π.∴ω=2πT =2,故可设解析式为y =3sin(2x +φ)-1,代入点⎝ ⎛⎭⎪⎫7π12,-4,得-4=3sin ⎝ ⎛⎭⎪⎫2×7π12+φ-1,即sin ⎝⎛⎭⎪⎫7π6+φ=-1,∴φ+7π6=2k π-π2(k ∈Z ).令k =1,解得φ=π3,所以y =3sin ⎝ ⎛⎭⎪⎫2x +π3-1. 答案 C6.将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位长度,若所得图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12解析 由题意可得,sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +φω+π2=sin ⎝ ⎛⎭⎪⎫ωx +φ+π2ω,则π2ω=2k π,k ∈Z ,所以ω=4k ,k ∈Z ,因为6不是4的整数倍,所以ω的值不可能是6,故选B.答案 B7.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________.解析 ∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ), ∴sin(-2x +5θ)=sin(2x +5θ),∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ),即10θ=2k π+π,故θ=k π5+π10(k ∈Z ).答案 k π5+π10,k ∈Z8.若函数f (x )=2sin(ωx +φ),x ∈R (其中ω>0,|φ|<π2)的最小正周期为π,且f (0)=3,则ω=________, φ=________.解析 由原函数的最小正周期为π,得到ω=2(ω>0).又由f (0)=3且|φ|<π2得到φ=π3.答案 2 π39.函数y =-52sin ⎝ ⎛⎭⎪⎫4x +2π3的图象与x 轴的各个交点中,离原点最近的一点是__________.解析 令-52sin ⎝ ⎛⎭⎪⎫4x +2π3=0.则4x +2π3=k π,∴x =k π4-π6,k ∈Z . 故取k =1时,x =π12.∴离原点最近的一点是⎝ ⎛⎭⎪⎫π12,0.答案 ⎝ ⎛⎭⎪⎫π12,010.将函数f (x )=sin ωx (其中ω>0) 的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎫3π4,0,则ω的最小值是________. 解析 把f (x )=sin ωx 的图象向右平移π4个单位长度得:y =sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π4. 又所得图象过点⎝ ⎛⎭⎪⎫3π4,0, ∴sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫3π4-π4=0.∴sin ωπ2=0. ∴ωπ2=k π(k ∈Z ). ∴ω=2k (k ∈Z ). ∵ω>0,∴ω的最小值为2. 答案 211.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,且以π2为最小正周期.(1)求f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-π12,π6时,求f (x )的最值.解 (1)∵f (x )的最小正周期为π2,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎪⎫4x +π6. (2)由x ∈⎣⎢⎡⎦⎥⎤-π12,π6,得4x +π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫4x +π6∈⎣⎢⎡⎦⎥⎤-12,1. ∴当sin ⎝⎛⎭⎪⎫4x +π6=-12, 即x =-π12时,f (x )有最小值-32,当sin ⎝⎛⎭⎪⎫4x +π6=1,即x =π12时,f (x )有最大值3. 12.设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +φ⎝ ⎛⎭⎪⎫0<φ<π2,y =f (x )的图象的一条对称轴是直线x =π4.(1)求φ;(2)求函数y =f (x )的单调增区间.解 (1)∵x =π4是y =f (x )图象的一条对称轴,∴sin ⎝ ⎛⎭⎪⎫12×π4+φ=±1.∴π8+φ=k π+π2,k ∈Z . ∵0<φ<π2,∴φ=3π8. (2)由(1)知φ=3π8, ∴f (x )=sin ⎝ ⎛⎭⎪⎫12x +3π8. 由题意得2k π-π2≤12x +3π8≤2k π+π2,k ∈Z , 即4k π-74π≤x ≤4k π+π4,k ∈Z . ∴函数y =f (x )的单调增区间为 ⎣⎢⎡⎦⎥⎤4k π-74π,4k π+π4(k ∈Z ).13.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,x ∈R ),在一个周期内的图象如下图所示,求直线y =3与函数f (x )图象的所有交点的坐标.解 由图象得A =2, T =72π-⎝ ⎛⎭⎪⎫-π2=4π.则ω=2πT =12,故y =2sin ⎝ ⎛⎭⎪⎫12x +φ.又12×⎝ ⎛⎭⎪⎫-π2+φ=0,∴φ=π4.∴y =2sin ⎝⎛⎭⎪⎫12x +π4.由条件知3=2sin ⎝⎛⎭⎪⎫12x +π4,得12x +π4=2k π+π3(k ∈Z ), 或12x +π4=2k π+23π(k ∈Z ).∴x =4k π+π6(k ∈Z ),或x =4k π+56π(k ∈Z ). 则所有交点的坐标为⎝ ⎛⎭⎪⎫4k π+π6,3或⎝ ⎛⎭⎪⎫4k π+5π6,3(k ∈Z ).高中数学知识点 三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教新课标A版高中数学必修4双基限时练及答案23.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二十三)1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1),A (1,1),则合力F =F 1+F 2+F 3的终点坐标是( )A .(8,2)B .(9,1)C .(-1,9)D .(3,1)解析 由已知得F =F 1+F 2+F 3=(8,0). ∴OF →=OA →+AF →=(1,1)+(8,0)=(9,1). 答案 B2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为12v 0,则发射角θ应为( )A .15°B .30°C .45°D .60°解析 炮弹的水平速度为v =v 0·cos θ=12v 0⇒cos θ=12⇒θ=60°. 答案 D3.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某一物体上一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析 由题意知,F 1+F 2+F 3+F 4=0. 又F 1+F 2+F 3=(-1,-2),∴F 4=(1,2). 答案 D4.已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 1的大小为( )A .5 3 NB .5 NC .10 ND .5 2 N解析 如下图所示,|F 1|=|F |cos60°=10×12=5 N ,应选B.答案 B5.一船从某河的一岸驶向另一岸,船速为v 1,水速为v 2,已知船可垂直到达对岸,则( )A .|v 1|<|v 2|B .|v 1|>|v 2|C .|v 1|≤|v 2|D .|v 1|≥|v 2|解析 船速v 1应大于水速v 2,即|v 1|>|v 2|. 答案 B6.当两人提重为|G |的书包时,夹角为θ,用力为|F |,则当|F |最小时,θ应为( )A .0 B.π2 C.2π3 D. π答案 A7.河水从东向西流,流速为2 m/s ,一轮船以2 m/s 垂直水流方向向北横渡,则轮船实际航行的方向是________,航速是________.解析 如图所示,记水速|v 1|=2 m/s ,船速|v 2|=2 m/s. v 表示船实际航行的速度,则由图知:|v |=22+22=22(m/s).方向与水流方向成45°. 答案 西北方向 2 2 m/s8.三个力F 1,F 2,F 3同时作用于O 点且处于平衡状态,已知F 1与F 2的夹角为120°,又|F 1|=|F 2|=20 N ,则|F 3|=________.解析 由题意有F 1+F 2+F 3=0,∴F 3=-F 1-F 2,∴|F 3|2=F 21+2F 1·F 2+F 22=202+2|F 1|·|F 2|cos120°+202=202,∴|F 3|=20 N.答案 20 N9.已知速度v 1=(1,-2),速度v 2=(3,4),则合速度v =________. 答案 (4,2)10.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为__________.解析 水平力在3 s 内对物体所做的功:F·s =F ·12a t 2=12F·F m t 2=12m F 2t 2=12×12×42×32=36(J).答案 36 J 11.今有一小船位于d =60 m 宽的河边P 处,从这里起,在下游l =80 m 处河流有一瀑布,若河水流速方向由上游指向下游(与河岸平行),水速大小为5 m/s ,如图,为了使小船能安全渡河,船的划速不能小于多少?当划速最小时,划速方向如何?解如图,由题设可知,船的实际速度v =v 划+v 水,其方向为临界方向PO →.则最小划速|v |=|v 水|·sin θ, sin θ=d d 2+l 2=60602+802=35,∴θ=37°,∴最小划速应为|v 划|=5×sin θ=5×35=3(m/s).12.平面上有两个向量e 1=(1,0),e 2=(0,1),今有动点P ,从P 0(-1,2)开始沿着与向量e 1+e 2相同的方向作匀速直线运动,速度大小为|e 1+e 2|,另一动点Q ,从点Q 0(-2,-1)出发,沿着与向量3e 1+2e 2相同的方向作匀速直线运动,速度大小为|3e 1+2e 2|.设P ,Q 在t =0秒时分别在P 0,Q 0处,则当PQ →⊥P 0Q 0→时,t 等于多少秒.解 ∵P 0(-1,2),Q 0(-2,-1), ∴P 0Q 0→=(-1,-3).又∵e 1+e 2=(1,1),∴|e 1+e 2|= 2. ∵3e 1+2e 2=(3,2),∴|3e 1+2e 2|=13.∴当t 时刻时,点P 的位置为(-1+t,2+t ),点Q 位置为(-2+3t ,-1+2t ).∴PQ →=(-1+2t ,-3+t ). ∵P 0Q 0→⊥PQ →,∴(-1)×(-1+2t )+(-3)×(-3+t )=0. ∴t =2.即当PQ →⊥P 0Q 0→时所需时间为2秒.13.如图,用两根分别长52米和10米的绳子,将100 N的物体吊在水平屋顶AB上,平衡后,G点距屋顶距离恰好为5米,求A 处所受力的大小(绳子的重量忽略不计).解如图,由已知条件可知AG与竖直方向成45°角,BG与竖直方向成60°角.设A处所受力为F a,B处所受力为F b,物体的重力为G,∠EGC=60°,∠EGD=45°,则有|F a|cos45°+|F b|cos60°=|G|=100,①且|F a|sin45°=|F b|sin60°.②由①②解得|F a|=1502-506,∴A处所受力的大小为(1502-506) N.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
人教新课标A版高中数学必修4双基限时练及答案26.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二十六)1.已知下列四个等式:①sin(α+β)=sin αcos β+cos αsin β; ②cos(α+β)=cos αcos β-sin αsin β;③cos ⎝ ⎛⎭⎪⎫π2+α=-sin α; ④tan(α-β)=tan α-tan β1+tan αtan β.其中恒成立的等式有( )A .2个B .3个C .4个D .5个解析 ①,②,③对任意角α,β恒成立,④中的α,β还要使正切函数有意义.答案 B2.1-tan15°1+tan15°的值为( ) A. 3 B.33 C .1 D .- 3解析 原式=tan45°-tan15°1+tan45°tan15°=tan(45°-15°)=tan30°=33.答案 B3.设tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4等于( ) A.1328 B.1322 C.322 D.163.已知α,β为锐角,cos α=45,tan(α-β)=-13,则tan β的值为( )A.13B.139C.1315D.59 答案 B4.已知tan α+tan β=2,tan(α+β)=4,则tan αtan β等于( ) A .2 B .1 C.12 D .4解析 因为tan(α+β)=tan α+tan β1-tan αtan β=21-tan αtan β=4,所以tan αtan β=12.答案 C5.若0<α<π2,0<β<π2,且tan α=17,tan β=34,则α+β等于( ) A.π6 B.π4 C.π3 D.3π4解析 由已知可求得tan(α+β)=1. 又0<α+β<π,∴α+β=π4. 答案 B6.已知tan α和tan ⎝ ⎛⎭⎪⎫π4-α是方程ax 2+bx +c =0的两个根,则a ,b ,c 的关系是( )A .b =a +cB .2b =a +cC .c =b +aD .c =ab解析 由韦达定理可知tan α+tan ⎝⎛⎭⎪⎫π4-α=-ba 且tan αtan ⎝⎛⎭⎪⎫π4-a =c a ,∴tan π4=tan ⎣⎢⎡⎦⎥⎤a +⎝ ⎛⎭⎪⎫π4-α=-b a1-c a =1.∴-b a =1-c a .∴-b =a -c .∴c =a +b .故选C.答案 C7.若tan α=3,tan β=43,则tan(α-β)=________. 解析 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 答案 138.tan51°-tan6°1+tan51°tan6°=________. 解析 原式=tan(51°-6°)=tan45°=1. 答案 19.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则tan ⎝ ⎛⎭⎪⎫α+π4=______.解析 ∵π2<α<π,sin α=35, ∴cos α=-45,∴tan α=-34. ∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17. 答案 1710.tan67°-tan22°-tan67°tan22°=________.解析 因为tan67°-tan22°=tan(67°-22°)(1+tan67°tan22°) =tan45°(1+tan67°tan22°) =1+tan67°tan22°所以tan67°-tan22°-tan67°tan22° =1+tan67°tan22°-tan67°tan22°=1. 答案 111.求下列各式的值. (1)tan π12;(2)tan75°-tan15°1+tan75°tan15°.解 (1)tan π12=tan ⎝ ⎛⎭⎪⎫π4-π6=tan π4-tan π61+tan π4·tan π6 =1-331+33=2- 3.(2)原式=tan(75°-15°)=tan60°= 3. 12.(1)已知α+β=π4,求(1+tan α)(1+tan β).(2)利用(1)的结论求(1+tan1°)·(1+tan2°)·(1+tan3°)·…·(1+tan45°)的值.解 (1)∵α+β=π4,∴tan(α+β)=1,即tan α+tan β1-tan αtan β=1,∴tan α+tan β=1-tan αtan β.∴(1+tan α)(1+tan β)=(tan α+tan β)+1+tan αtan β=2. (2)由(1)知当α+β=45°时, (1+tan α)(1+tan β)=2.∴原式=(1+tan1°)(1+tan44°)(1+tan2°)(1+tan43°)…(1+tan22°)(1+tan23°)·(1+tan45°)=222·2=223.13.已知tan α=-13,cos β=55,α,β∈(0,π). (1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值. 解 (1)tan α=-13,cos β=55,β∈(0,π), ∴sin β=255,∴tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21-⎝ ⎛⎭⎪⎫-13×2=1. (2)∵tan α=-13, α∈(0,π), ∴sin α=110,cos α=-310.∴f (x )=2(sin x cos α-cos x sin α)+cos x cos β-sin x sin β =-35sin x -15cos x +55cos x -255sin x=-5sin x . ∴f (x )的最大值为 5.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教新课标A版高中数学必修4双基限时练及答案13.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十三)1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功,其中不是向量的有()A.1个B.2个C.3个D.4个1.下列说法中正确的个数是()(1)零向量是没有方向的(2)零向量的长度为0(3)零向量的方向是任意的(4)单位向量的模都相等A.0 B.1C.2 D.3答案 D2.在下列命题中,正确的是()A.若|a|>|b|,则a>bB.若|a|=|b|,则a=bC.若a=b,则a与b共线D.若a≠b,则a一定不与b共线解析分析四个选项知,C正确.答案 C3.设a,b为两个单位向量,下列四个命题中正确的是()A. a=bB.若a∥b,则a=bC. a=b或a=-bD.若a=c,b=c,则a=b答案 D4.设M 是等边△ABC 的中心,则AM →,MB →,MC →是( ) A .有相同起点的向量 B .相等的向量 C .模相等的向量 D .平行向量解析 由正三角形的性质知,|MA |=|MB |=|MC |. ∴|MA →|=|MB →|=|MC →|.故选C. 答案 C5.如右图,在四边形ABCD 中,其中AB →=DC →,则相等的向量是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →解析 由AB →=DC →知,四边形ABCD 是平行四边形,由平行四边形的性质知,|DO →|=|OB →|,且方向相同,故选D.答案 D6.下列结论中,正确的是( )A .2014 cm 长的有向线段不可能表示单位向量B .若O 是直线l 上的一点,单位长度已选定,则l 上有且只有两个点A ,B ,使得OA →,OB →是单位向量C .方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量D .一人从A 点向东走500米到达B 点,则向量AB →不能表示这个人从A 点到B 点的位移解析 一个单位长度取作2014 cm 时,2014 cm 长的有向线段刚好表示单位向量,故A 错误;易确定B 正确,C 选项为平行向量;D 选项的AB →表示从点A 到点B 的位移.答案 B7.如图,ABCD 为边长为3的正方形,把各边三等分后,共有16个交点,从中选取两个交点作为向量,则与AC →平行且长度为22的向量个数是________.解析 如图所示,满足条件的向量有EF →,FE →,HG →,GH →,AQ →,QA →,PC →,CP →共8个.答案8个8.把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是__________.解析这些向量的始点在同一直线,其终点构成一条直线.答案一条直线9.如图,某人想要从点A出发绕阴影部分走一圈,他可按图中提供的向量行走,则将这些向量按顺序排列为________.解析注意到从A点出发,这些向量的顺序是a,e,d,c,b.答案a,e,d,c,b10.给出下列说法(1)若a与b同向,且|a|>|b|,则a>b;(2)若a∥b,则a=b;(3)若a=b,则a∥b;(4)若a=b,则|a|=|b|;(5)若a≠b,则a与b不是共线向量,其中正确说法的序号是________.解析(1)错误.因为两个向量不能比较大小.(2)错误.若a∥b,则a与b的方向不一定相同,模也不一定相等,故无法得到a =b .(3)正确.若a =b ,则a 与b 的方向相同,故a ∥b . (4)正确.若a =b ,则a 与b 模相等,即|a |=|b |.(5)错误.若a ≠b ,则a 与b 有可能模不相等但方向相同,所以有可能是共线向量.答案 (3)(4)11.如下图,E ,F ,G ,H 分别是四边形ABCD 的各边中点,分别指出图中:(1)与向量HG →相等的向量; (2)与向量HG →平行的向量; (3)与向量HG →模相等的向量;(4)与向量HG →模相等、方向相反的向量. 解 (1)与向量HG →相等的向量有EF →.(2)与向量HG →平行的向量有EF →,FE →,AC →,CA →,GH →. (3)与向量HG →模相等的向量有GH →,EF →,FE →. (4)与向量HG →模相等、方向相反的向量有GH →,FE →.12.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北45°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.解 (1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →平行. 又|AB →|=|CD →|=100 km , ∴在四边形ABCD 中,AB 綊CD . ∴四边形ABCD 为平行四边形. ∴|AD →|=|BC →|=200 km. 13.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,F ,G 分别是DB ,EC 的中点,求证:向量DE →与FG →共线.证明 ∵D ,E 分别是边AB ,AC 的中点, ∴DE 是△ABC 的中位线.∴DE ∥BC . ∴四边形DBCE 是梯形.又∵F ,G 分别是DB ,EC 的中点, ∴FG 是梯形DBCE 的中位线. ∴FG ∥DE .∴向量DE →与FG →共线.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教新课标A版高中数学必修4双基限时练及答案20.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(二十)1.已知|a |=6,|b |=2,a 与b 的夹角为60°,则a ·b 等于( ) A .6+ 3 B .6- 3 C .6D .7解析 a ·b =|a ||b |cos60°=6×2×cos60°=6. 答案 C2.已知|a |=2,|b |=4,a ·b =-4,则向量a 与b 的夹角为( ) A .30° B .60° C .150°D .120°解析 cos θ=a ·b |a ||b |=-42×4=-12,∵θ∈[0°,180°],∴θ=120°,故选D. 答案 D3.已知|b |=3,a 在b 方向上的投影为32,则a ·b =( ) A .3 B.92 C .2D.12解析 由题意,得|a |cos 〈a ,b 〉=32, ∴a ·b =|a ||b |cos 〈a ,b 〉=3×32=92. 答案 B4.已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |=( ) A .0B .2 2C .4D .8解析 |2a -b |2=4a 2-4a ·b +b 2=8, ∴|2a -b |=2 2. 答案 B5.若非零向量a 与b 的夹角为2π3,|b |=4,(a +2b )·(a -b )=-32,则向量a 的模为( )A .2B .4C .6D .12解析 (a +2b )·(a -b )=a 2+2a ·b -a ·b -2b 2 =a 2+a ·b -2b 2=-32,又a ·b =|a ||b |cos 2π3=|a |×4×⎝ ⎛⎭⎪⎫-12=-2|a |,∴|a |2-2|a |-2×42=-32. ∴|a |=2,或|a |=0(舍去). 答案 A6.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( )A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形解析 因为AB →2=AB →·AC →+BA →·BC →+CA →·CB →=AB →·(AC →-BC →)+CA →·CB →=AB →·AB →+CA →·CB →,所以CA →·CB →=0,即CA →⊥CB →,所以三角形为直角三角形,选D.答案 D7.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b =________.解析设b =(x ,y ),则⎩⎨⎧y =-2x ,x 2+y 2=45.∴x 2=9.∴x =±3,又a =(-1,2)与b 方向相反. ∴b =(3,-6). 答案 (3,-6)8.设向量a ,b 满足|a |=1,|b |=1,且|k a +b |=3|a -k b|(k >0).若a 与b 的夹角为60°,则k =________.解析 由|k a +b |=3|a -k b|,得k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2, 即(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0. ∵|a |=1,|b |=1,a ·b =1×1cos60°=12, ∴k 2-2k +1=0,∴k =1. 答案 19.若向量a ,b 满足|a |=2,|b |=1,a ·(a +b )=1,则向量a ,b 的夹角的大小为________.解析 ∵|a |=2,a ·(a +b )=1, ∴a 2+a ·b =2+a ·b =1.∴a ·b =-1.设a ,b 的夹角为θ,则cos θ=a ·b |a ||b |=-12×1=-22,又θ∈[0,π],∴θ=3π4. 答案 3π410.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.解析 因为BE →=BA →+AD →+DE →=-AB →+AD →+12AB →=AD →-12AB →, 所以AC →·BE →=(AB →+AD →)·⎝ ⎛⎭⎪⎪⎫AD →-12AB →=AD →2+12AD →·AB →-12AB →2=1+12×1×|AB →|cos60°-12|AB →|2=1,所以14|AB →|-12|AB →|2=0,解得|AB →|=12.答案 1211.在△ABC 中,|BC →|=4,|CA →|=9,∠ACB =30°, 求BC →·CA →. 解 如图所示,BC →与CA →所成的角为∠ACB 的补角即150°, 又因为|BC →|=4,|CA →|=9,所以BC →·CA →=|BC →|·|CA →|cos150°=4×9×⎝ ⎛⎭⎪⎫-32=-18 3.12.已知|a |=1,a ·b =12,(a -b )·(a +b )=12,求: (1)a 与b 的夹角;(2)a -b 与a +b 的夹角的余弦值. 解 (1)∵(a -b )·(a +b )=12, ∴|a |2-|b |2=12.∵|a |=1, ∴|b |=|a |2-12=22.设a 与b 的夹角为θ,则 cos θ=a ·b|a ||b |=121·22=22,∵0°≤θ≤180°, ∴θ=45°.(2)∵(a -b )2=a 2-2a ·b +b 2=12,∴|a -b |=22.∵(a +b )2=a 2+2a ·b +b 2=52,∴|a +b |=102.设a -b 与a +b 的夹角为α,则 cos α=(a -b )·(a +b )|a -b ||a +b |=1222×102=55.13.已知a ,b 是两个非零向量,当a +t b (t ∈R )的模取得最小值时.(1)求t 的值(用a ,b 表示); (2)求证:b 与a +t b 垂直.(1)解 |a +t b |2=a 2+t 2b 2+2t a ·b =b 2⎝ ⎛⎭⎪⎫t +a ·b b 22+a 2-(a ·b )2b 2.当t =-a ·bb2时,|a +t b |取最小值. (2)证明 (a +t b )·b =a ·b +t b 2=a ·b -a ·bb2×b 2=0,所以a +t b 与b垂直.。
人教新课标A版高中数学必修4双基限时练及答案4.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(四)1.利用正弦线比较sin1,sin1.2,sin1.5的大小关系,有( ) A .sin1>sin1.2>sin1.5 B .sin1>sin1.5>sin1.2 C .sin1.5>sin1.2>sin 1 D .sin1.2>sin 1>sin 1.5解析 π4<1<1.2<1.5<π2,画图易知. 答案 C2.若α为第二象限角,则下列各式恒小于零的是( ) A .sin α+cos α B .tan α+sin α C .cos α-tan αD .sin α-tan α解析 由α为第二象限角知,sin α>0,tan α<0,由三角函数线知|tan α|>sin α. ∴-tan α>sin α,即sin α+tan α<0. 答案 B3.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( )A.π4B.3π4C.7π4D.3π4或7π4 答案 D4.依据三角函数线,作出如下判断:①sin π6=sin 7π6;②cos ⎝ ⎛⎭⎪⎫-π4=cos π4;③tan π8>tan 3π5;④sin 3π5>sin 4π5.其中正确的有( ) A .1个 B .2个 C .3个 D .4个答案 C5.已知角α的余弦线是长度为单位长度的有向线段,那么角α的终边在( )A .x 轴的非负半轴上B .x 轴的非正半轴上C .x 轴上D .y 轴上 解析 由角α的余弦线是长度为单位长度的有向线段,得cos α=±1,故角α的终边在x 轴上.答案 C6.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β解析 方法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=60°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.方法二:如图,P 1,P 2为单位圆上的两点,设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β,则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2.∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P ′1(x ′1,y ′1),P ′2(x ′2,y ′2),其中sin α=y ′1,sin β=y ′2,则tan α-tan β=y ′1x ′1-y ′2x ′2=x ′2y ′1-x ′1y ′2x ′1x ′2.而y ′1>y ′2>0,x ′2<x ′1<0, ∴-x ′2>-x ′1>0,∴x ′1x ′2>0,x ′2y ′1-x ′1y ′2<0, 即tan α<tan β.∴B 不正确.同理,C 不正确.故选D. 答案 D7.若角α的正弦线的长度为34,且方向与y 轴的正方向相反,则sin α的值为________.答案 -348.比较大小:sin1155°________sin(-1654°)(填“<”或“>”). 答案 >9.已知α∈(0,4π),且sin α=12,则α的值为________. 解析 作出满足sin α=12的角的终边,如图:直线y =12交单位圆于A ,B 两点,连接OA ,OB ,则终边在OA ,OB 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=π6+2k π或α=5π6+2k π,k ∈Z .又α∈(0,4π),所以α=π6或5π6或13π6或17π6 答案 π6或5π6或13π6或17π610.在(0,2π)内,使sin α>cos α成立的α的取值范围为________.答案 ⎝ ⎛⎭⎪⎫π4,54π11.试作出角α=7π6的正弦线、余弦线、正切线. 解 如图:α=7π6的余弦线、正弦线、正切线分别为OM ,MP ,AT . 12.利用三角函数线比较下列各组数的大小. (1)sin 2π3与sin 4π5; (2)tan 2π3与tan 4π5. 解如图所示,角2π3的终边与单位圆的交点为P ,其反向延长线与单位圆的过点A 的切线的交点为T ,作PM ⊥x 轴,垂足为M ,sin 2π3=MP ,tan 2π3=AT ;角4π5的终边与单位圆的交点为P ′,其反向延长线与单位圆的过点A 的切线交点为T ′,作P ′M ′⊥x 轴,垂足为M ′,则sin 4π5=M ′P ′,tan 4π5=AT ′,由图可见,MP >M ′P ′,AT <AT ′,所以(1)sin 2π3>sin 4π5. (2)tan 2π3<tan 4π5.13.利用三角函数线,求满足下列条件的角α的集合: (1)tan α=-1;(2)sin α<-12.解 (1)如图①所示,过点(1,-1)和原点作直线交单位圆于点P和P ′,则OP 和OP ′就是角α的终边,∴∠xOP =3π4=π-π4,∠xOP ′=-π4,∴满足条件的所有角α的集合是{α|α=-π4+k π,k ∈Z }.①②(2)如图②所示,过点⎝ ⎛⎭⎪⎫0,-12作x 轴的平行线,交单位圆于点P和P ′,则sin ∠xOP =sin ∠xOP ′=-12,∴∠xOP =11π6,∠xOP ′=7π6, ∴满足条件的所有角α的集合是 {α|7π6+2k π<α<11π6+2k π,k ∈Z }.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教新课标A版高中数学必修4双基限时练及答案10.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】双基限时练(十)1.当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,函数y =tan|x |的图象( )A .关于原点对称B .关于y 轴对称C .关于x 轴对称D .没有对称轴答案 B2.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠k π2+3π8,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x ≠k π2+3π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x |x ≠k π+3π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x ≠k π+3π4,k ∈Z 解析 由2x -π4≠k π+π2,得x ≠k π2+3π8,k ∈Z . 答案 A3.函数f (x )=tan ωx (ω>0)的图象上的相邻两支曲线截直线y =1所得的线段长为π4.则ω的值是( )A .1B .2C .4D .8解析 由题意可得f (x )的周期为π4,则πω=π4,∴ω=4. 答案 C4.y =cos ⎝⎛⎭⎪⎫x -π2+tan(π+x )是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析 y =cos ⎝ ⎛⎭⎪⎫x -π2+tan(π+x )=sin x +tan x .∵y =sin x ,y =tan x 均为奇函数,∴原函数为奇函数. 答案 A5.设a =log 12tan70°,b =log 12sin25°,c =⎝ ⎛⎭⎪⎫12cos25°,则有( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b解析 ∵tan70°>tan45°=1,∴a =log 12tan70°<0.又0<sin25°<sin30°=12,∴b =log 12sin25°>log 1212=1,而c =⎝ ⎛⎭⎪⎫12cos25°∈(0,1),∴b >c >a .答案 D6.下列图形分别是①y =|tan x |;②y =tan x ;③y =tan(-x );④y=tan|x |在x ∈⎝ ⎛⎭⎪⎫-3π2,3π2内的大致图象,那么由a 到d 对应的函数关系式应是( )abcdA .①②③④B .①③④②C .③②④①D .①②④③解析 y =tan(-x )=-tan x 在⎝⎛⎭⎪⎫-π2,π2上是减函数,只有图象d符合,即d 对应③.答案 D7.函数f (x )=tan ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为2π,则f ⎝ ⎛⎭⎪⎫π6=________.解析 由已知πω=2π,∴ω=12,∴f (x )=tan ⎝ ⎛⎭⎪⎫12x +π6, ∴f ⎝ ⎛⎭⎪⎫π6=tan ⎝ ⎛⎭⎪⎫12×π6+π6=tan π4=1. 答案 18.函数y =tan x ⎝⎛⎭⎪⎫π4≤x ≤3π4,且x ≠π2的值域是________.解析 ∵y =tan x 在⎣⎢⎡⎭⎪⎫π4,π2,⎝ ⎛⎦⎥⎤π2,3π4上都是增函数,∴y ≥tan π4=1或y ≤tan 3π4=-1.答案 (-∞,-1]∪[1,+∞)9.满足tan ⎝ ⎛⎭⎪⎫x +π3≥-3的x 的集合是________.解析 把x +π3看作一个整体,利用正切函数图象可得k π-π3≤x +π3<k π+π2,所以k π-2π3≤x <k π+π6,k ∈Z .故满足tan ⎝ ⎛⎭⎪⎫x +π3≥-3的x 的集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-2π3≤x <k π+π6,k ∈Z答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-2π3≤x <k π+π6,k ∈Z 10.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________.解析 由图象可知,此正切函数的半周期等于38π-18π=28π=14π,即周期为12π,所以,ω=2.由题意可知,图象过定点⎝ ⎛⎭⎪⎫38π,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×38π+φ,即34π+φ=k π(k ∈Z ),所以,φ=k π-34π(k ∈Z ),又|φ|<12π,所以,φ=14π.再由图象过定点(0,1),所以,A =1.综上可知,f (x )=tan ⎝ ⎛⎭⎪⎫2x +14π.故有f ⎝ ⎛⎭⎪⎫124π=tan ⎝ ⎛⎭⎪⎫2×124π+14π=tan 13π= 3.答案311.已知函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx -π3的最小正周期T 满足1<T <32,求正整数k 的值,并指出f (x )的奇偶性、单调区间.解 ∵1<T <32,∴1<πk <32,即2π3<k <π. ∵k ∈N *,∴k =3,则f (x )=2tan ⎝ ⎛⎭⎪⎫3x -π3,由3x -π3≠π2+k π得x ≠5π18+k π3,k ∈Z ,定义域不关于原点对称, ∴f (x )=2tan ⎝ ⎛⎭⎪⎫3x -π3是非奇非偶函数.由-π2+k π<3x -π3<π2+k π得-π18+k π3<x <5π18+k π3,k ∈Z .∴f (x )=2tan ⎝ ⎛⎭⎪⎫3x -π3的单调增区间为⎝ ⎛⎭⎪⎫-π18+k π3,5π18+k π3,k ∈Z . 12.函数f (x )=tan(3x +φ)图象的一个对称中心是⎝ ⎛⎭⎪⎫π4,0,其中0<φ<π2,试求函数f (x )的单调区间.解 由于函数y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0,其中k ∈Z .故令3x +φ=k π2,其中x =π4,即φ=k π2-3π4. 由于0<φ<π2, 所以当k =2时,φ=π4.故函数解析式为f (x )=tan ⎝⎛⎭⎪⎫3x +π4.由于正切函数y =tan x 在区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上为增函数.则令k π-π2<3x +π4<k π+π2, 解得k π3-π4<x <k π3+π12,k ∈Z ,故函数的单调增区间为⎝ ⎛⎭⎪⎫k π3-π4,k π3 +π12,k ∈Z .13.求函数y =-tan 2x +10tan x -1,x ∈⎣⎢⎡⎦⎥⎤π4,π3的最值及相应的x的值.解 y =-tan 2x +10tan x -1=-(tan x -5)2+24. ∵π4≤x ≤π3,∴1≤tan x ≤ 3.∴当tan x =3时,y 有最大值103-4,此时x =π3. 当tan x =1时,y 有最小值8,此时x =π4.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin= ,cos = ,tg = ,ctg = ,sec = ,csc = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双基限时练(二十八)
1.已知cos α=-35,且α∈⎝ ⎛⎭⎪⎫π,3π2,则cos α2的值为( ) A.5
5 B .-
55
C.25
5
D .-255
解析 ∵π<α<3π2,∴π2<α2<3π4,∴cos α
2<0.
由cos α=2cos
2
α2-1=-35,得cos 2α
2=15
, ∴cos α2=-5
5.
答案 B
2.设α∈(π,2π),则 1-
π+α2
等于( ) A .sin α2
B .cos α2
C .-sin α
2
D .-cos α
2
解析 ∵α∈(π,2π),∴α2∈⎝ ⎛⎭⎪⎫π2,π,∴cos α2<0. ∴
1-cos π+α
2
=
1+cos α2=|cos α
2
| =-cos α
2.
答案 D
3.函数y =8sin x cos x cos2x 的最小正周期为T ,最大值为A ,则( ) A .T =π,A =4 B .T =π
2,A =4
C .T =π,A =2
D .T =π
2
,A =2
解析 y =8sin x cos x cos2x =4sin2x cos2x =2sin4x , ∴最小正周期T =2π4=π
2,最大值A =2.
答案 D
4.若3sin α+cos α=0,则
1
cos 2
α+sin2α
的值为( )
A.
103 B.53 C.23
D .-2
解析 ∵3sin α+cos α=0,∴tan α=-1
3.
1cos 2α+sin2α=sin 2
α+cos 2
α
cos 2
α+2sin αcos α
=tan 2
α+11+2tan α=⎝ ⎛⎭
⎪⎫-132+11+2×⎝ ⎛⎭⎪
⎫-13=10913
=103
. 故应选择A. 答案 A
5.若f (x )=cos2x +8sin x ,则它的最大值和最小值分别是( ) A .最大值是9,最小值是-9 B .最大值不存在,最小值为7 C .最大值是7,最小值是-9 D .最大值是7,最小值不存在
解析 f (x )=cos2x +8sin x =1-2sin 2
x +8sin x =-2(sin 2
x -4sin x )+1=-2(sin x -2)2+9. ∵x ∈R ,-1≤sin x ≤1,
∴当sin x =1时,f (x )有最大值7; 当sin x =-1时,f (x )有最小值-9. 答案 C
6.使f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数,且在区间⎣
⎢⎡⎦⎥⎤0,π4上是减函数的
θ的一个值是( )
A .-π
3
B.π3
C.2
3
π D.43
π 解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +θ+π3,当θ取-π3时,为奇函数,但在⎣⎢⎡⎦⎥⎤0,π4上递增;θ取π3和43π时为非奇非偶函数;当θ取2π
3
时,f (x )=-2sin2x 符合题意. 答案 C
7.⎝ ⎛⎭⎪⎫sin α2+cos α22+2sin 2⎝ ⎛⎭
⎪⎫π
4-α2的值等于__________.
解析 原式=1+sin α+2·
1-cos ⎝ ⎛⎭
⎪⎫π
2
-α
2
=1+sin α+1-sin α =2. 答案 2
8.函数y =3sin x cos x +3cos 2
x -32的最大值为________.
解析 y =32sin2x +3×1+cos2x 2-32
=
32sin2x +3
2
cos2x =3sin ⎝ ⎛⎭⎪⎫2x +π3≤ 3.
答案
3
9.化简:sin A +sin2A
1+cos A +cos2A =________.
解析 原式=sin A +2sin A cos A
cos A +2cos 2
A =
sin A 1+2cos A
cos A 1+2cos A
=tan A .
答案 tan A
10.若tan x =2,则2cos 2
x
2
-sin x -1
sin x +cos x =________.
解析 2cos 2
x
2
-sin x -1
sin x +cos x
=cos x -sin x sin x +cos x =1-tan x
tan x +1
=
1-2
2+1
=22-3. 答案 22-3
11.已知tan2θ=-22,π<2θ<2π,求2cos 2θ
2
-sin θ-1
2sin ⎝
⎛⎭⎪⎫θ+π4.
解
2cos 2
θ
2-sin θ-12sin ⎝
⎛⎭⎪⎫θ+π4=cos θ-sin θcos θ+sin θ=1-tan θ
1+tan θ, ∵tan2θ=-22,∴
2tan θ
1-tan 2
θ
=-2 2. ∴2tan 2
θ-tan θ-2=0.∴tan 2
θ-2
2
tan θ-1=0. ∴tan θ=2或tan θ=-2
2
.∵π<2θ<2π, ∴π
2
<θ<π,∴tan θ<0. ∴tan θ=-22.∴原式=1-⎝ ⎛
⎭
⎪
⎫-221-
2
2=3+2 2.
12.
如图所示,已知矩形ABCD 中,AB =a ,AD =b ,试求其外接矩形EFGH 面积的最大值. 解 设∠CBF =θ,则∠EAB =θ,EB =a sin θ,BF =b cos θ,AE =a cos θ,HA =b sin θ, 所以S
矩形EFGH
=(b sin θ+a cos θ)(b cos θ+a sin θ)=b 2sin θcos θ+ab sin 2
θ+
ab cos 2
θ+a 2
sin θcos θ=
a 2+
b 2
2
sin2θ+ab .由|sin2θ|≤1,知当θ=45°时,S 矩形EFGH
取得最大值为12
(a 2+b 2
)+ab .
13.已知函数f (x )=cos 2x 2-sin x 2cos x 2-12
. (1)求函数f (x )的最小正周期和值域; (2)若f (α)=32
10
,求sin2α的值.
分析 (1)先利用余弦的二倍角公式和辅助角公式将f (x )化成f (x )=A sin(ωx +φ)形式.再求解.
(2)利用同角间三角函数关系与二倍角正弦公式求值.
解 (1)由已知f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝
⎛⎭⎪⎫x +π4.
所以函数f (x )的最小正周期为2π,值域为⎣⎢⎡
⎦
⎥⎤-22,22. (2)由(1)知,f (x )=22cos ⎝
⎛
⎭⎪⎫α+π4=3210,
∴cos ⎝
⎛⎭⎪⎫α+π4=35.
∴cos α-sin α=325,平方得1-sin2α=18
25.
∴sin2α=7
25.。