2019年秋七年级数学上册 第四章 几何图形初步 4.3 角 4.3.2 角的比较与运算练习课件

合集下载

2019-2020 人教版七年级上册数学4.3.1 角

2019-2020 人教版七年级上册数学4.3.1 角
图4-3.1-5
思路导图
将起始时刻定 为15:00,此 时时针和分针 所构成的角是 90°
从15:00到 15:25,分 别算出时针 和分针转过 的角度
通过加减运算, 求出在15:25时时 针和分针夹角的 度数
解:将起始时刻定为15:00(下午3点整时),此时时针 和分针构成的角是90°,将终止时刻定为15:25,从图 4-3.1-5中可以看出分针从12转到5用了25分钟,即分针 转了6°×25=150°,时针转了0.5°×25=12.5°,所 以在15:25时,钟面上的时针和分针所构成的角为 150°-90°-12.5°=47.5°.
度、分、秒相邻两单位之间是60进制.大单位 化小单位对应乘60,小单位化大单位对应除以60.
对表示角的方法不清楚而致错
例4 如图4-3.1-3,下列说法正确的是(D)
①∠1就是∠A,②∠2就是∠B,
③∠3就是∠C,④∠4就是∠D.
A.①②
B.③④
C.①②③④ D.只有②
图4-3.1-3
解析:①∠1的顶点处有三个角,不能用一个大 写字母表示,故错误;②∠2的顶点处只有一个角, 能用一个大写字母表示,故正确;同样∠3,∠4也 不能用一个大写字母表示,故错误.故选D.
(1)角的两边是射线,而非线段,因此角的 大小与角的两边的长短无关,只与角的两边张 开的幅度有关;
知识 (2)角的符号是“∠”,注意不能写成“<”; 解读 (3)没有特殊说明时,所说的角都是小于
180°的角; (4)不能将平角当成一条直线,也不能将周 角当成一条射线
巧记乐背
两条射线共端点, 组成角的两条边; 也可看成一射线, 绕其端点来旋转. 起始位置叫始边, 终止位置叫终边; 转了半圈叫平角, 转了一整圈叫周角.

七年级数学上册第四章基本平面图形4.3角教案北师大版(最新整理)

七年级数学上册第四章基本平面图形4.3角教案北师大版(最新整理)

4。

3角教学过程第一环节:预习新课——阅读书本P114-115页,完成学案预习导学第二环节:情景引入——在现实生活中发现角互动一:课件展示图片(学生感受角),以提问的方式引入学习的内容——角.问:在上这节课前,我们先看一组图片,你从以上画面中发现了什么我们熟悉的图形?(角)提示:剪刀张口,屋顶的尖角,钟表的时针和分针夹角.师:在小学时,已经学过角,除了刚才我们在画面中看到的这些角外,在生活中你还能说出一些角吗?例如在我们教室周围?生:桌子的角,黑板上相邻的两条边构成角,学习工具尺子上的角和圆规两脚张开后构成角.师:可以说我们生活中处处含有角。

第三环节:新课探究互动二:明确角的概念—-角的静态定义(自主学习)师:小学,我们说从一个顶点起画的两条射线,可以组成角.师:换个说法来说,角其实就是由两条具有公共端点的射线组成的图形,其中两条射线不能乱摆,一定要有公共端点。

师生:认识角的顶点和边,(1)公共的端点其实就是角的顶点;(2)两条射线叫做角的两边。

师:这是构成角的两个要素,初中阶段,没有特别说明,我们只研究小于或等于180°的角.互动三:用运动的观点描述角,认识平角、周角—-动态定义(自主学习)师:前面在静止的情况下,通过观察角,我们给角下定义,角是由两条具有公共端点的两条射线组成, 下面,我们从运动的观点观察一下角的形成(几何画板动态演示)。

现在有一条射线,绕着其端点旋转,我们可以发现初始位置和最终位置作为始边和终边,也会形成不同的角.师:因此角又可以看成是一射线绕其端点旋转所形成的图形,那么,旋转时有无特殊情况呢?由电脑演示并说明:当终边和始边成一条直线时,所成的角叫做平角;终边继续旋转一周,终边回到始边,和始边重合时,所成的角叫做周角.师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同,它们含有两条射线.(2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角。

人教版七年级数学上册第四章4.3《角》例题与讲解

人教版七年级数学上册第四章4.3《角》例题与讲解

4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

子长县第二中学七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件新版新人教版3

子长县第二中学七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件新版新人教版3
105°、120°、135°、150°、 165 °180°
75°
15°
观察思考 , 探究新知
动手做一做 : 在纸上画∠AOC , 然后将其剪下来 , 将其沿经过顶点的线対折 , 使边OA与OC重合.将角展开 , 折痕上任取一点记作点B.类比线段中点的定义 , 填 空:
C
∠AOB=∠BOC= 1 ∠AOC ;
即 a + b - c = a + b + ( -c )
➢ 把加减混合运算的算式转化为加法运算后 , 为书写 简单 , 可以省略算式中的括号及它前面的加号.
8 + 3 +〔-5〕+〔-7〕可以写成 : 8 + 3–5 + 7
计算 : (-21)+30-15-(-17).
解 (-21)+ 30-15-(-17) = (-21)+ 30 +(-15)+ 17 = (-21)+ (-15)+ 30 + 17 = -36 + 47 = 11
2
E
D
C
B
O
A
(2) 如果∠AOB=40° , ∠DOE=30° , 那么∠BOD
是多少度 ? 解 : 因为 OB 平分∠AOC ,
E
D
C
B
所以 ∠BOC=∠AOB = 40°.
因为 OD 平分∠COE ,
所以∠COD=∠DOE = 30° ,
O
A
所以 ∠BOD =∠BOC+∠COD = 40°+30°= 70°.
数的
〔-2〕× 3 = -6
发现 : 两数相乘 , 把一个因数换成它的相反数 , 所得的积是原来积的相反数.

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α

∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O

人教版七年级数学上册第四章几何图形初步4.3.1角(教案)

人教版七年级数学上册第四章几何图形初步4.3.1角(教案)
同学们,今天我们将要学习的是《角》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过角度的测量问题?”比如,如何测量桌面上的角度,或是屋顶的倾斜角度。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角的奥秘。
(二)新课讲授(用时10分钟)
2.发展学生的逻辑推理能力:在学习角的分类和性质过程中,引导学生运用逻辑推理分析问题,掌握角的性质和分类方法。
3.提升学生的数学运算能力:使学生掌握角的度量和特殊角的计算方法,并能熟练进行角度的加减运算。
4.培养学生的数学抽象能力:通过角的图形操作,让学生抽象出角的和差、补角、余角等概念,形成数学抽象思维。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了角的基本概念、分类、性质及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-补角与余角的概念:理解补角和余角的定义,并能够进行计算。
-举例:通过图示或实际例子,解释补角和余角的概念,并指导学生进行相关练习。
-角在实际问题中的应用:将角的知识应用到实际问题中,如计算物体的倾斜角度等。
-举例:设计一些实际问题,如屋顶的倾斜角度,让学生运用所学知识解决问题。
四、教学流程
(一)导入新课(用时5分钟) Nhomakorabea2.教学难点

七年级上册数学第四章4.3角(人教版)

七年级上册数学第四章4.3角(人教版)

七年级上册数学第四章4.3角(人教版) 本资料为woRD文档,请点击下载地址下载全文下载地址4.3 角4.3.1 角1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.阅读教材P132,知道角的定义、角的表示方法.什么是周角、平角?知识探究.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.用三个大写字母表示;用表示角的顶点的字母表示;用一个数字或一个希腊字母表示.自学反馈.如图,下列表示角的方法错误的为A.∠AoBB.∠Bocc.∠αD.∠o2.你能用不同的方法表示图中的各个角吗?阅读教材P133,理解角的度量单位和换算.知识探究度、分、秒是角的基本度量单位.°的角等分成60份就是1′的角;′的角等分成60份就是1″的角.角度制:1°=60′,1′=°.′=60″,1″=′.°=3__600″.度、分、秒是60进制的.自学反馈.用度、分、秒表示:0.75°=45′=2__700″;°=16′=960″;16.24°=16°14′24″.2.用度表示:1800″=30′=0.5°;50°40′30″=50.675°.活动1 小组讨论例1 如图,图中的∠1表示成∠A,图中的∠2表示成∠D,图中的∠3表示成∠c,这样的表示方法对不对,如果错了,应该怎样改正?解:不正确,∠1表示成∠DAc,∠2表示成∠ADc,∠3表示成∠EcF.例2 38.15°与38°15′相等吗?如不相等,哪个大?解:38°15′大.例3 想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?解:67.5°.活动2 跟踪训练教材P134练习第1、2、3题.活动3 课堂小结角角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算1.会用量角器度量角,并会比较两个角的大小.2.会根据图形判断角的和差倍分.3.记住角平分线的定义.阅读教材P134~136,理解角的比较方法及角的定义和性质,会进行角度的加减运算.知识探究.比较两个角的大小,我们可以用量出,然后比较它们的大小,也可以把它们在一起比较它们的大小,这两种方法分别叫和.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.自学反馈.如图,用心填一填:∠Aoc=∠AoB+∠Boc,∠BoD=∠coD+∠Boc,∠Aoc=∠AoD-∠coD,∠BoD=∠AoD-∠AoB.2.细心想一想,看谁做得最快.如图1,若oB是∠Aoc的平分线,则∠Aoc=2∠AoB=2∠Boc,∠AoB=∠Boc=12∠Aoc;图1图2如图2,若oB是∠Aoc的平分线,oc是∠BoD的平分线,你能从中找出哪些相等的角?解:∠AoB=∠Boc=∠coD,∠Aoc=∠BoD.活动1 小组讨论例如图,oD是∠AoB的平分线,oE是∠Boc的平分线,且∠Aoc=130°,求∠DoE的度数.如果改变∠Aoc的大小,其他条件不变,请你探究∠DoE的大小变化,从中得到的启示.解:∠DoE=65°,∠DoE=∠Aoc.活动2 跟踪训练如图,点A、o、B在一条直线上,∠Aoc=80°,∠coE =50°,oD是∠Aoc的平分线.试比较∠DoE与∠AoE,∠Aoc与∠Boc的大小;求∠DoE的度数;oE是∠Boc的平分线吗?为什么?解:∠DoE<∠AoE,∠Aoc<∠Boc.90°.是,因为∠coE=∠BoE=50°.活动3 课堂小结角的大小比较和运算角的大小比较度量法叠合法角的运算角平分线4.3.3 余角和补角1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等;同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.阅读教材P137~138,知道什么是补角和余角,以及它们的性质.知识探究.一般地,如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°,就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角的余角相等,等角的补角相等.自学反馈.判断题:90度的角叫余角,180度的角叫补角.若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.如果一个角有补角,那么这个角一定是钝角.互补的两个角不可能相等.钝角没有余角,但一定有补角.互余的两个角一定都是锐角,两个锐角一定互余.如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.如果∠A=x°,∠B=°,那么∠A与∠B互余.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:45°.活动1 小组讨论例1 如图,点o在直线AB上,oD平分∠coA,oE平分∠coB.∠coB+∠Aoc=180°,∠EoD=90°;图中互余的角有4对,互补的角有5对.例2 如图1,货轮o在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北方向上又分别发现了客轮B、货轮c和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮c和海岛D方向的射线.画法:以点o为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边oB落在东与北之间.射线oB的方向就是北偏东40°,即客轮B所在的方向.请你在图2上画出表示货轮c和海岛D方向的射线.解:略.活动2 跟踪训练.如图,点A、o、B在同一直线上,oD平分∠AoB,∠coE=90°.回答下列问题:写出图中所有的直角∠AoD,∠BoD,∠Eoc;写出图中与∠AoE相等的角∠3;写出图中∠AoE所有的余角∠2,∠4;写出图中∠coD的补角∠EoB;写出图中∠DoE的补角∠Aoc.2.用方位角描述下列方向.解:略.活动3 课堂小结.余角、补角的概念:和为90°的两个角互为余角;和为180°的两个角互为补角.2.余角、补角的性质:等角的余角相等;等角的补角相等.。

初一数学上册(人教版)第四章 几何图形初步4.3 知识点总结含同步练习及答案

初一数学上册(人教版)第四章 几何图形初步4.3 知识点总结含同步练习及答案

已知 ∠A = 37∘ ,则 ∠A 的余角等于(

A. 37∘
B. 63∘
C. 143∘
D. 53∘
解:D.
如图,将一副三角尺的直角顶点重合后叠放在一起,若 ∠1 = 40∘ ,则 ∠2 的度数为( )
A. 60∘ 解:C.
B. 50∘
同角的余角相等.
C. 40∘
D. 30∘
下列关于角的说法,正确的有( )
分析:根据角平分线的定义求得 ∠COB + ∠DOC = 70∘,由已知条件和图示求得
∠AOB = ∠BOC = 40∘.
解:因为 OB 是 ∠AOC 的平分线,OD 是 ∠COE 的平分线,
所以 ∠COB + ∠DOC = 又因为 ∠COD = 30∘ ,
1 2
∠AOE =
1 2
× 140∘
= 70∘.
所以 ∠AOB = ∠BOC = 40∘.
已知一个角的补角比这个角的余角的 3 倍大 10∘ ,求这个角的度数 解:设这个角是 x,则
(180∘ − x) − 3(90∘ − x) = 10∘ .
解得
所以这个角的度数 50∘ .
x = 50∘ .
四、课后作业 (查看更多本章节同步练习题,请到快乐学) 1. 如图所示,用两种方法表示同一角的是 ( )
① 角是由两条有公共端点的两条射线组成的图形,故原命题错误;
② 角的大小与边的长短无关,只与两条边张开的角度有关,故原命题正确; ③ 角的边是射线,无需延长,故在角的一边的延长线上取一点 D 说法错误;
④ 角可以看做由一条射线绕着它的端点旋转而形成的图形,正确;
⑤ 把一个角放到一个放大 10 倍的放大镜下观看,角的度数不变,故原命题错误, 故正确的有两个.

兴仁县四中七年级数学上册 第四章 几何图形初步 4.3 角4.3.2 角的比较与运算导学案新人教版

兴仁县四中七年级数学上册 第四章 几何图形初步 4.3 角4.3.2 角的比较与运算导学案新人教版

一、新课导入1.导入课题:这节课我们学习角的大小比较与运算(板书课题).2.三维目标:(1)知识与技能①会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.②会进行度、分、秒的换算,并能解决角的运算题.(2)过程与方法①实际观察、操作,体会角的大小,培养学生的观察思维能力.②动手计算,熟练解决有关角的运算题,培养学生的计算能力.(3)情感态度①角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.②帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣.3.学习重、难点:重点:①角的大小比较与运算;②角平分线的概念;③感受类比思想.难点:图形语言、文字语言、符号语言的相互转换.二、分层学习1.自学指导:(1)自学范围:教材第134页至第135页的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读课文,类比线段的相关内容进行学习.(4)自学参考提纲:①与线段的大小比较相类似,比较两个角的大小,也有两种方法:一是度量,二是叠合法,用叠合法比较时,必须使两个角的顶点及一边重合,另一边落在同一侧.(如课本图4.3-6所示).②如图,图中共有3个角?∠AOC是∠AOB与∠BOC的和.记作:∠AOC=∠AOB+∠BOC;∠AOB是∠AOC与∠BOC的差,记作:∠AOB=∠AOC-∠BOC;类似地,∠BOC=∠AOC-∠AOB.③一副三角尺的角有哪些?利用角的和或差,用一副三角形尺你还能画出哪些度数的角?与同学交流一下.④a.从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如图,若射线OB是∠AOC的角平分线,则有∠AOB=∠BOC,或∠AOB=12∠AOC,或∠BOC=12∠AOC或∠AOC=2∠AOB,或∠AOC=2∠BOC,反过来也成立.b.与a类似地,还有角的三等分线,四等分线等,你能分别画出图形,并用几何语言描述它们吗?2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,充分了解学生的自学情况.②差异指导:根据学情进行相应的指导,重点是几何语言描述.(2)生助生:小组内同学间相互交流研讨,互助解题疑难.4.强化:(1)角的大小比较方法.(2)角平分线的意义、注意几种语言间的转换.(3)类比思想.(4)练习:如图,OC平分∠AOB,OD平分∠AOC,则图中相等的角有∠AOD=∠DOC,∠AOC=∠BOC,∠AOD=12∠AOC=14∠AOB.1.自学指导:(1)自学范围:教材第136页例1和例2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,注意解题格式,并按照例题旁边方框中的提示动手演算验证.不懂的地方,小组内讨论解决.(4)自学参考提纲:①角度的加减运算,要将单位对齐相加减,即度与度,分与分,秒与秒分别相加、减.分、秒相加时逢60要进位,如23°45′37″+70°26′40″=93°71′77″=94°12′17″;相减时要借1当作60,例1中应借1°,化为60′.即:180°-53°17′=179°60′-53°17′=126°43′②例2中,是怎样将剩余的度数化成分的?如果用精确到秒来表示计算的结果,答案是多少呢?例2中,将余数的度数乘以60化成分.360°÷7=51°+3°÷7=51°+180′÷7=51°+25′+5′÷7=51°25′+300″÷7=51°25′43″③做教材第136页“练习”的第2、3题.练习2:360°÷8=45°,360°÷45°=24(份).练习3:∠AOD=12∠AOB-∠COD=90°-31°28′=58°32′.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:小组内同学间相互交流研讨,互助解疑难.4.强化:学生交流展示学习成果,教师再归纳强化.三、评价1.学生自我评价:让学生交流学习目标的达成情况及学生的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学过程应体现:(1)善于从图形中发现角与角之间的关系,转化为数学式子进行计算.特别是像角平分线这些特殊几何元素.(2)角的计算要根据问题适时进行分类讨论.(3)结合已有的线段计算认知,来类比角的计算规律和方法.一、基础巩固1.(10分)如果∠1=∠2,∠2=∠3,则∠1=∠3,如果∠1>∠2,∠2>∠3,则∠1>∠3.2.(10分)按图填空:(1)∠AOB+∠BOC=∠AOC;(2)∠AOC+COD=∠AOD;(3)∠BOD-∠COD=∠BOC;(4)∠AOD-∠BOD=∠AOB.3.(10分)下列说法正确的是(C)A.若∠AOB=2∠AOC,则OC是∠AOB的平分线B.若∠AOC=12∠AOB,则OC是∠AOB的平分线C.若∠AOC=∠BOC=12∠AOB,则OC是∠AOB的平分线D.以上说法都不对4.(40分)(1)48°39′+67°31′(2)77°42′-34°45′(3)21°17′×5(4)109°24′÷6解:(1)116°10′;(2)42°57′;(3)106°25′;(4)18°14′.二、综合应用5. (20分)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=140°,∠COD=30°,那么∠AOB是多少度?解:(1)由题意知∠AOB=∠BOC,∠EOD=∠DOC,∴∠BOD=∠BOC+∠COD=∠AOB+∠DOE=40°+30°=70°.(2)∠COD=30°,∵∠COE=2∠COD=60°,∴∠AOC=∠AOE-∠COE=140°-60°=80°,∴∠AOB=12∠AOC=40°.三、拓展延伸6.(10分)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB.(1)判断∠A′EB与∠FEA的大小关系.(2)你能求出∠FEB的度数吗?解:(1)∵EA′平分∠FEB,∴∠BEA′=∠FEA′又∵△A′EF由△AEF折叠得到.∴∠AEF=∠A′EF,∴∠FEA=∠A′EB(2)∵∠FEA+∠FEA′+∠A′EB=180°,又三者相等,∴∠FEA=∠FEA′=∠A′EB=60°,∴∠FEB=∠FEA′+∠A′EB=120°.第2章代数式章末复习【知识与技能】1.用字母表示数.2.列出代数式.3.对代数式进行加减.4.合并同类项.5.先化简,再求值.【过程与方法】1.加强学生对所学知识的理解.2.提高运用知识解决问题的能力.【情感态度】在观察、想象、推理、交流的数学活动中,初步养成言之有据的习惯,并初步形成积极参与数学活动,与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】列代数式,求代数式的值.【教学难点】代数式的化简.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.代数式:把数与表示数的字母用运算符号连接而成的式子叫做代数式.单独的一个字母或一个数也是代数式.2.用字母表示式子时应注意:①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写.省略乘号时,一般把数字写在字母的前面.②两个相同字母相乘时,也写成乘方的形式.③当数字1与字母相乘时,1也省略不写.3.代数式的值:如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.4.单项式:由数与字母的积组成的代数式叫做单项式.单独的一个字母或一个数也是单项式.单项式中,与字母相乘得数叫做单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.5.多项式:由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.6.整式:单项式和多项式统称为整式.7.同类项:含有的字母相同,并且相同字母的指数也分别相同的项称为同类项.把多项式中的同类项合并成一项,叫做合并同类项.8.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.9.去括号法则:括号前面是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变.括号前面是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列语句正确的是(A)A.0是代数式.B.S=2πR是一个代数式.C.单独的一个数12不是代数式.D.单独一个字母a不是代数式.2.有一个两位数,十位数字是a,个位数字是b,若把它们的位置交换,得到新的两位数是(C)A.abB.baC.10b+aD.10a+b3.计算:(2x2-3xy+6)-2(3y2x-xy-3) 解:原式=2x2-3xy+6-6xy2+2xy+6=2x2-6xy2-xy+124.先化简,再求值:-5+x2-5x-x2+3x+4,其中x=-12.解:原式=(x2-x2)+(-5x+3x)+(-5+4)=-2x-1把x=-12代入原式=-2×(-12)-1=05.某物体运动的速度与时间的关系如下表:(1)请你用含t的代数式来表示该物体运动速度y.(2)当该物体运动的时间为20秒时,此时物体的速度是多少?答案:(1)y=0.2t+0.5;(2)4.5(米/秒).6.1千瓦时电(即通常所说的1度电)可供一盏40瓦的电灯点亮25小时.(1)1千瓦时的电量可供n瓦的电灯点亮多少时间?(2)若每度电的电费为a元,一个100瓦的电灯使用12时的电费是几元?答案:(1)1000n时,(2)1.2a元.【教学说明】通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.已知多项式ax+bx合并的结果为0,则下列说法正确的是(D)A.a=b=0B.a=b=x=0C.a-b=0D.a+b=02.某同学自己装订笔记本,第一本用了a张纸,第二本用的纸张数是第一本的78,两本共用了(A)张纸.A.a+78a B.a-18aC.a+18a D.a+783.已知x2+2xy=3,y2=2,则代数式2x2+4xy+y2的值为(A)A.8B.9C.11D.124.先列出式子,再求结果:一个代数式加上5x2+4x-1得6x-8x2+2,求这个代数式.解:6x-8x2+2-(5x2+4x-1)=6x-8x2+2-5x2-4x+1=-13x2+2x+3答案:(x2+1)等6.如图:用代数式表示阴影部分的面积.答案:12(a-b)h7.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度按0.60元收费.(1)若某住户四月份的用电量是a度(a≤140),这个用户四月份应交多少电费?(2)若该住户五月份的用电量是a度(a>140),则他五月份应交多少电费?(3)若该住户六月份的用电量是200度,那么他六月份应交多少电费?答案:(1)当a≤140度时,应交电费0.45a元;(2)当a>140度时,应交电费为(0.6a-21)元;(3)140×0.45+(200-140)×0.60=99(元).8.同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为a(7<a≤23),分别用代数式表示同一时刻的巴黎时间和东京时间.(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻的巴黎时间、东京时间分别为几时?答案:(1)巴黎:a-7;东京:a+1(2)巴黎:15:08;东京:23:08【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?布置作业:教材“复习题”中第2、8、12、14、15、16题.能达到我们所制定的目标:在教学的过程中我着重精讲例题,在解题过程中实现三个目标,化解重点难点,使学生了解、理解、掌握并应用!注重基础重在实效:题目面对大众,不搞偏难怪.在解题的过程中强化书写格式.从学生的做题情况,对于发现问题作出及时处理以达到规范.同时也存在几个缺点:①有的知识点没有顾及到;②有的学生没有自觉地解决问题;③与学生互动不激烈.在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用.第3课时球赛积分表问题【知识与技能】通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度,借助学生身边熟悉的例子认识数学的应用价值.【教学重点】1.让学生知道球赛积分的算法.2.把生活中的实际问题抽象成数学问题.【教学难点】弄清题意,分析实际问题中的数量关系,找出解决问题的等量关系.一、情境导入,初步认识上一课时我们探究了有关销售中的盈亏问题,通过学习学生应初步掌握了有关一元一次方程实际问题的解决办法.本课时我们继续探讨有关球赛积分表的问题,先来看一个问题:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?二、思考探究,获取新知探究球赛积分表问题(教材第103~104页探究2)设问1:通过观察积分榜,你能选择出其中哪一行最能说明负一场积几分吗?进而你能得到胜一场积几分吗?【教学说明】教师让学生观察教材或课件中的积分表进行思考.观察积分榜,从最下面一行数据可以看出:负一场积1分;设胜一场积x分,从表中其他任何一行可以列方程,求出x的值,如可以从第一行列方程10x+4=24.由此得x=2.即:负一场积1分,胜一场积2分.设问2:你能用式子表示总积分与胜、负场数之间的数量关系吗?教师引导学生分析:如果一个队胜m场,则负(14-m)场,胜场积分2m分,负场积分(14-m)分,总积分为2m+(14-m)=m+14.设问3:某队的胜场总积分能等于它的负场总积分吗?教师引导学生分析:设一个队胜了x场,则负了(14-x)场.如果这个队的胜场总积分等于负场总积分,则得方程2x-(14-x)=0.由此得x=14/3.由于x的值必须是整数,所以x=143不符合实际,因此没有哪个队的胜场总积分等于负场总积分.【教学说明】以上探究中,教师通过逐层提出问题,根据具体情况放手让学生充分发表自己的见解,探索解题思路,最终达到解决问题的思路,这样能培养学生的独立思考问题的习惯.另外,探究解决问题的方法,体验解决问题的思维方式,渗透特殊值法、分类讨论思想,有利于提高学生的数学建模能力.三、运用新知,深化理解一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?【教学说明】本题要注意其结果是否符合实际,这题可让学生板演后再讲解.【答案】一个学生得90分,他选对23题;若有500名学生参加考试,不可能有得83分的同学.四、师生互动,课堂小结教师通过以下问题引导学生小结:(1)由学生谈谈本节课学到了哪些知识?学后有何感受?(2)由学生说说在积分问题中有哪些基本等量关系?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.积分问题的解题思路告诉我们:表格数据能够给我们提供重要的解题信息,而利用方程解决这类问题不仅可求得具体数值,而且还可以进行推理判断.另外,用方程解决实际问题时要注意让学生进行检验.由于本课时的学习有了上一课时作为基础,所以教学时教师应注意让学生进行独立思考并合作交流,而教师仅起引导作用.。

七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算课件新版新人教版

七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算课件新版新人教版
解: 因为∠BOC=∠AOB-∠AOC=170°-90°=80°,所以 ∠COD=∠BOD-∠BOC=90°-80°=10°.
解析:由题意,得∠AOC=13∠AOB=13×60°=20°.
6.如图,已知∠AOB=120°,OM平分∠AOB,ON平分∠MOB,则 ∠AON= 90°.
解析:因为 OM 平分∠AOB, 所以∠BOM=12∠AOB=12×120°=60°. 又因为 ON 平分∠MOB, 所以∠BON=12∠BOM=12×60°=30°. 所以∠AON=∠AOB-∠BON =120°-30°=90°.
解析:因为射线OC平分∠AOD, 所以∠AOC=∠COD. 因为射线OD平分∠COB, 所以∠COD=∠BOD, 所以∠AOC=∠COD=∠DOB. 所以A,B,C正确,D错误.
4.
如图,∠AOC= ∠AOB+ ∠BOC= ∠AOD- ∠COD; ∠AOD-∠AOB= ∠BOD= ∠BOC+ ∠COD. 5.如图,∠AOB=60°,OC是∠AOB的一条三等分线,则 ∠AOC= 20° .
分析:根据“叠合法”判断角的大小. 解:∠AOB,∠AOC,∠AOM,∠AOD,∠AOE,∠AOF的大小关系是 ∠AOB<∠AOC<∠AOM<∠AOD<∠AOE<∠AOF.
2.角平分线的有关计算 【例2】 如图,已知OB平分∠AOC,OD平分 ∠COE,∠AOC=80°,∠DOE=30°.求: (1)∠AOB的度数;(2)∠COD的度数; (3)∠BOD的度数.
解:(1)因为 OB 平分∠AOC,所以∠AOB=∠BOC. 所以∠AOB=∠BOC=12∠AOC=12×80°=40°. (2)因为 OD 平分∠COE,所以∠COD=∠DOE. 所以∠COD=∠DOE=30°. (3)∠BOD=∠COD+∠BOC=30°+40°=70°.

人教版七年级数学上册第四章 几何图形初步 余角和补角

人教版七年级数学上册第四章 几何图形初步 余角和补角

1
2
3
= ∠2=180°–∠1
∠3=180°–∠1
结论:同角 (等角) 的补角相等.
类似地,可以得到: 同角 (等角) 的余角相等.
探究新知
素养考点 余角和补角的识别
例 如图,点A,O,B在同一直线上,射线 OD 和 D 射线 OE 分别平分∠AOC 和∠BOC,
图中哪些角互为余角?
解:因为点A,O,B在同一直线上, 所以∠AOC和∠BOC 互为补角.
(2)OE是∠BOC的平分线吗?请说明理由.
解:OE平分∠BOC,理由如下: 因为∠DOE=90°,所以∠AOD+∠BOE=90°,
D
所以∠COD+∠COE=90°,
所以∠AOD+∠BOE=∠COD+∠COE,
因为OD平分∠AOC,所以∠AOD=∠COD,
AO
所以∠COE=∠BOE,所以OE平分∠BOC.
x + ( 3x+30 ) = 90. 解得 x=15.
故 ∠B 的度数为15°.
探究新知
素养考点 2 余角、补角、角平分线相结合的题目
例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON
分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与
∠AOB的度数.
M C
B
N
DO
C E
B
巩固练习
如图,已知∠AOB=90°, ∠AOC= ∠BOD,则与∠AOC 互余的角有_______∠__B_O__C__和__∠__A. OD
AC
D
O
B
探究新知
E 西
C F
知识点 3 方位角
北 D

2018-2019学年七年级数学上册 第四章 几何图形初步 4.3 角同步课件 (新版)新人教版

2018-2019学年七年级数学上册 第四章 几何图形初步 4.3 角同步课件 (新版)新人教版
3、用希腊字母表示,并在靠近顶点处画上弧线,写 上希腊字母;
4、用一个数字表示,在靠近顶点处画上弧线,写上数 字.
角的定义(1)
角也可以看做一条射线 绕端点旋转所形成的图 形。
平角
B
B
O
A
如果一个角的终边继续旋转,旋转到与始边成一条 直线时,所成的角叫做 平角 .
周角
O
A(B)
当终边旋转到与始边重合时,所成的角叫做周角 .
叠合法比较∠ABC 和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合,
一边EF和BC重合,另一边ED和BA落在BC的同旁。
A
D
两 “
重 ”
B( )
C( ) E

F
“ 同
” ED落在∠ABC的外部,则∠DEF > ∠ABC。
比较∠ABC 和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合, 一边EF和BC重合,另一边ED和BA落在BC的同旁。
西45°)方向上又分别发 现了客轮B,货轮C和海 岛D.仿照表示灯塔方 位的方法,画出表示客 轮B,货轮C和海岛D方 向的射线.

●D
●B
45°40°
O
西


60°
C ●
10° 南
●A
所以:射线OA的方向就是南偏东60°,即灯塔A所在的方 向。 射线OB的方向就是北偏东40°,即客轮B所在的方向。
教学课件
数学 七年级上册 人教版
第四章 几何图形初步
4.3 角
观察下面实物,你发现这些实物中有什么相同图形吗?
角的定义(1) 角是由有公共端点的两条射线组成的图形。
射边线

七年级数学上册第四章几何图形初步4.3角4.3.1角课件新人教版

七年级数学上册第四章几何图形初步4.3角4.3.1角课件新人教版

知识拓展
角的分类 角按度数可分为五类:其中,大于0°而小于90°的角叫做锐角,如图(1);等于90°的角叫做直角,如图(2);大于90°而小于180°的角叫做 钝角,如图(3);等于180°的角叫做平角,如图(4);等于360°的角叫做周角,如图(5).
精选教育课件
2
例1 下列说法正确的有 ( ) ①两条射线组成的图形是角;②角的大小与边的长短有关;③角的两边 可以画得一样长,也可以一长一短;④角的两边是两条射线;⑤因为平角 的两边成一条直线,所以一条直线可以看成一个平角;⑥周角是一条射 线. A.2个 B.3个 C.4个 D.5个
精选教育课件
6
知识点二 角的度量与换算
角的 度量 单位
把一个周角360等分,每一份就是1度的角,记作1°; 把1度的角60等分,每一份叫做1分的角,记作1'; 把1'的角60等分,每一份叫做1秒的角,记作1″
角的 换算
1°=60',1'=60″; 1周角=360°,1周角=2平角=4直角; 1平角=180°,1平角=2直角
解析 (1)因为钟表的表面有12个大格,每个大格对应的夹角均为360°÷
12=30°,7时整,时针和分针之间相差5个大格,
所以7时整,时针与分针的夹角是5×30°=150°.
(2)时针12个小时转一圈,360°÷12=30°,
所以它转动的速度是每小时30°.
条边
经过的平面部分是角的内部,未经过的部分是角的外部
重要提示
(1)我们平时画角时,只画角的一部分来研究角,而角的定义中边是两条射线,也就是说这两条边可以无限延伸. (2)角的大小只与构成角的两条射线张开的幅度大小有关. (3)角的符号是“∠”,而不能写成“<”. (4)没有特殊说明时,所说的角都是指小于180°的角. (5)因为平角的两条边在同一条直线上,周角的两条边互相重合,所以容易误认为平角是一条直线,周角是一条射线

七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件2(新版)新人教版

七年级数学上册第四章几何图形初步4.3角4.3.2角的比较与运算教学课件2(新版)新人教版
D
A
B( )
C( )
E
F
ED落在∠ABC的外部,则∠DEF > ∠ABC。
例:比较∠ABC 和 ∠DEF的大小
把∠DEF移动,使它的顶点E和∠ABC的顶点B 重合,一边EF和BC重合,另一边ED和BA落在 BC的同旁。
A D
B( )
C( )
E
F
ED落在∠ABC的内部,则∠DEF < ∠ABC
角的和差
解:∵∠AOB是平角,
A
O
B
∠AOB=∠AOC+∠BOC
∴∠BOC=∠AOB-∠AOC =180°-53°17′ =126°43′
C
D
1、根据左图完成(1)(2)
( 1 ) ∠DAB = ∠DAC+∠ CAB
( 2 ) ∠ACB =∠DCB – ∠DCA
A
B
A
D
根据右图完成(3)(4)
( 3 )∠ABC = ∠ABD + ∠CBD B
答:每份中的角应该是 51°26′
通过这堂课的学习,你有什么收获?
1、比较两个角大小的方法
2、角的和、差、倍、分关系 3、角平分线
计算: (1)48°35′+17°45′ =66°20′
(2)15°20′×5 =76°40′
(3)48°18′-17°45′ =30°33′ (4)360°÷11
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档