氧化锌插层蒙脱土纳米复合材料的制备及其光催化活性
纳米氧化锌的制备、表征和光催化性能分析

液) 的紫外 一 见吸 收光谱 图 , 5为纳 米 Z ( 存 在 下经 太 阳 可 图 n) 光2 h光 催化 降解 后 的甲基橙 溶液 紫外一 可见 吸收 光谱 图 。
2 4 光 致发 光 ( L) . P 光谱
为 了探 讨 纳米 Z O粒 子光 催化 的动 , n 分别 测量 了纳 米 氧化 锌 ( 、 N) 商品 Z (( 的激 发 光 谱 。图 6是 N 的 光敛 发 n )c) 光 ( I 谱 , 中 3个 主峰分 别 是 紫色 发光 峰 ( 9 . 6 m) 较 P ) 图 33 5n 、 强 的蓝 色可 见发光 峰 ( 4 . 5 m, 4 5 5 n 该主 峰 有一 个伴 峰 ) 一 个 、 次 强的绿 色 发光峰 ( 6 . 4 m, 主 峰两侧 有多 个伴 峰 ) 4 75 n 该 。前 两个 峰 属于带 边 自由激 子发 光 , 一个 峰 可能 为 束缚 激 子 发 第 -
W ANG il n Ju i g a
( Re l g f n h n Unv r i Ii nCol eo e Ya s a iest y,Qih a g a 6 0 4 n u n d o0 6 0 )
Ab ta t sr c Na o Z O y t e ie y t em e h d o n f r p e i i t n i i h p fs h r F smi ro e , n n s n h s d b h t o fu i m r c p t i s n s a e o p e e O i l n s z o a o a
关 键 词 纳米材料 氧化锌 制备技术 光催化剂 催化特性 中 图分 类号 : 4 . 063 3 文献标识码 : A
Pr pa a i n a e r to nd Cha a t r z t0 f Na o ZnO nd I s Ana y i r c e ia i n o n a t lss o o o c t l tc Pr pe te fPh t ’ a a y i o r i s
熔体插层制备硅橡胶/蒙脱土纳米复合材料的性能研究

1 实 验 部 分
1 1 主 要 原 材 料 .
硅橡 胶 :7 4 粘 均 分 子 量 约 6 ¥8 , 0万 , 国 G 美 E 公司 ; 钠基蒙脱土 : K一) —C, L ( J 北京 北清联 科 纳米 塑胶有限公 司 ; 硫化剂 I P 分析纯 , 都化学 试剂 X': 成
( 国工 程 物理 研 究院 化 工 材 料研 究 所 , 川 绵 阳 6 t0 ) 中 四 2 9 0
摘
要 : 过 熔 体 插 层 成 功 制 备 了硅 橡 胶 / 通 蒙脱 土纳 米复 合 材 料 , 通过 X D 和 S M 分 析 可 知 , 所 R E 在
选择 的 两 步 工 艺 务件 下 。 脱 土 被 硅 橡 胶 分 子 链 插 层 剥 离 。 得 剥 离 型 的 纳 米 复合 材 料 。 同时 , 试 了 蒙 获 测 其 力 学性 能 和 耐 热性 能 。 得 到 的 复 合 物 的 性 能 较 纯 硅 橡胶 有很 大 的提 高 , 与 气 相 法 白 炭 黑 填 充体 系 所 且
阻燃性 、 电性 和光学性 能 等 』 导 。
熔体 插层 是应 用传 统 的高 聚物 加工 工艺 制备
纳 米复 合材料 , 种方 法 不需 要任 何溶 剂 , 艺 简 这 工
单 , 于工业 化应 用 , 易 笔者 运用 相容 剂 改善 了蒙脱 土与高 聚物基 体 之 间 的相 容 性 , 熔 体 插 层 制 备 使
硅 橡胶 是 特 种 合 成 橡 胶 中最 重 要 的 品 种 之
一
,
是 侧基 为有 机基 的砘 氧烷的链 状 聚合物 , 以 可
厂 ; 法 白炭 黑 : 气相 A一2 0 沈 阳 化 工 股 份有 限公 0,
热塑性弹性体/蒙脱土纳米复合材料的制备及性能

能 大 大提高 材料 的性 能 l J 4 。目前 , 胶 与蒙 脱土 复合 体 系 已有 大 量 报道 , 对 于 热 塑性 弹 性 体纳 米 对橡 而
( R 1本 理学 ) C K X D, 3 , u a射 线 , 描速 度 6/ n J O I 1 透射 电子显 微 镜 ( E 1本 电子 ) 样 品 扫  ̄mi;E L O 1型 T M, 3 , 用超 薄切 片机切 成厚 度为几 十 纳米 的薄 片 , 后用 R O 染 色 ; S R N 1 2 然 u I T O 1 1型 电子 拉 伸试 验 机 ( 国 N 英 I S R N公 司 ) 拉伸 速度是 10 m / i , 2 二 NT O , 0 m m n 在 0 c 下测 试 , I 试样 宽度是 4 m 每个 试 样至 少 测试 5次 ; m,
脱 土纳米 复合 材料 , 研究 了蒙 脱土 的有 机改 性对 材料 性 能 的影 响 , 比较 了不 同橡 塑 比下 体系 的力 学性 能 x射线衍射 ( R ) X D 和透射电镜( E 表明通过有 机改性 , 动态硫化 的方法 可制备插 层型结 构 的聚烯 烃纳 T M) 用 米复合材料 ( P O T V MMT 。在 m( P M)m( P 7 :0条 件下 ,P O MT纳米 复合材 料的拉伸强度 比未改 ) E D : P )= 03 TV M 性的提高 3 % , 3 比未加入蒙脱 土的热塑性 弹性 体 ( P 提高 5 % 。T V M T V) 5 P O MT在 一 0℃ 的贮 能模 量 比 , V 8 I ' P 增大 3 % , 5 其橡胶相 的玻璃化转变温度则 比 T V提高约 8℃ ,P O T的复合粘度 比 T v明显下降。此外 . P T V MM P 随橡塑 比的增加 , 加入蒙脱 土的体系拉伸强度增大。
蒙脱土纳米复合材料

聚合物/蒙脱土纳米复合材料蒙脱土纳米复合材料:蒙脱土纳米复合材料是目前研究最多,工业化应用前景好的一种聚合物基纳米复合材料。
纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于95%。
具有层状结构的蒙脱土是制备成纳米复合材料的理想天然矿物。
蒙脱土是一种层状硅酸盐,结构片层由硅氧四面体亚层和铝氧八面体构成,厚0.66nm左右,片层之间通过NA+、Ca2+等金属阳离子形成的微弱静电作用结合在一起,一个片层与一个阳离子层构成MMT的结构单元,厚度为1.25纳米(阳离子为钠离子)左右。
结构:蒙脱土的化学式为:Mn+x/n[Al4.0-xMgx](Si8.0)O20(OH)4·yH2O,属于2:1型层状硅酸盐,即每个单位晶胞由2个硅氧四面体晶片间夹带一个铝氧八面体晶片构成三明治状结构[3],二者之间靠共用氧原子连接,每层厚度约为1 nm。
性能:聚合物/蒙脱土纳米复合材料是目前新兴的一种聚合物基无机纳米复合材料。
与常规复合材料相比,具有以下特点:只需很少的填料April 质量分数),即可使复合材料具有相当高的强度、弹性模量、韧性及阻隔性能;具有优良的热稳定性及尺寸稳定性;其力学性能有优于纤维增强聚合物系,因为层状硅酸盐可以在二维方向上起增强作用;由于硅酸盐呈片层平面取向,因此膜材有很高的阻隔性;层状硅酸盐蒙脱土天然存在有丰富的资源且价格低廉。
故聚合物/蒙脱土纳米复合材料成为近年来新材料和功能材料领域中研究的热点之一。
纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于95%。
具有良好的分散性能,可以广泛应用高分子材料行业作为纳米聚合物高分子材料的添加剂,提高抗冲击、抗疲劳、尺寸稳定性及气体阻隔性能等,从而起到增强聚合物综合物理性能的作用,同时改善物料加工性能。
纳米ZnO材料的合成及其光催化应用

纳米ZnO材料的合成及其光催化应用郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【摘要】纳米氧化锌(ZnO)作为一种半导体金属氧化物功能材料,它的诸多特性如荧光性、光催化活性、紫外激光发射、紫外线吸收、光电及压电性等被人们陆续发现并广泛应用于荧光体、高效催化剂、紫外线遮蔽材料、气体传感器、图像记录材料及压电材料等多个领域.ZnO由于其绿色、环保和高效等优点,近年来在环境污染控制方面受到人们的广泛关注.通过合成技术和条件控制纳米ZnO材料的粒径、表面态和形貌等参数可以提高光催化材料的光催化活性和量子产率.本文综述了本课题组对纳米ZnO材料的合成技术及其在光催化领域的应用研究,主要探讨了影响纳米ZnO材料光催化性能的相关参数.【期刊名称】《吉林师范大学学报(自然科学版)》【年(卷),期】2018(039)001【总页数】7页(P30-36)【关键词】纳米氧化锌;合成方法;光催化活性;应用【作者】郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【作者单位】吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000【正文语种】中文【中图分类】O614.2;O643.30 引言近年来,半导体金属氧化物由于其绿色、环保、高效等优点,在环境污染控制方面得到了广泛关注,可以说是目前重要的光催化剂之一[1-3].随着纳米科技的高速发展,人们对材料的性质有了更深入的认识,为纳米光催化技术的应用提供了极好的机遇.控制纳米材料的粒径、表面态、形貌等技术手段日趋成熟,通过材料设计,提高光催化材料的光催化活性和量子产率成为可能[4-5].而纳米半导体金属氧化物,如TiO2、ZnO纳米材料,促进了光催化学科与纳米半导体材料学科的交叉融合,使纳米半导体金属氧化物这类光催化材料的制备及其光催化性能研究成为近年来科学领域关注的热点[6-11].氧化锌(ZnO)是一种宽带隙半导体金属氧化物功能材料,具有直接带隙、高电子迁移率等诸多优点.最近研究结果表明,与TiO2相比,ZnO在处理废水中某些难降解的有机污染物时具有更好的光催化效果[12-17].Juan Xie等[18]采用水热法合成了ZnO花状和片状结构,并对不同形貌的ZnO材料进行光催化降解甲基橙研究.研究表明,在紫外灯的照射下,由于两种材料带隙的不同导致片状ZnO比花状ZnO具有更优异的光催化活性.Jagriti Gupta等[19]通过软化学法改变OH-离子浓度合成了不同形貌的ZnO纳米材料,在OH-离子浓度较低时合成了直径为8 nm球状纳米颗粒,在OH-离子浓度较高时合成了长度为30~40 nm的ZnO纳米棒.研究结果表明,材料的缺陷对其光催化活性有很大的影响.在紫外灯照射下降解甲基蓝的催化结果表明,由于球状ZnO纳米颗粒具有较多的氧空位,因此其光催化活性最佳.Manoj Pudukudy等[20]采用简单的共沉淀法合成了准球形和胶囊形ZnO纳米材料,研究了反应温度对材料光催化活性的影响.研究结果表明,在低温下准球形ZnO纳米材料形成,而高温下胶囊形ZnO纳米材料形成.在紫外灯下对染料甲基蓝的催化降解表明,退火温度的提高有利于提高材料的光催化降解率.尽管这些ZnO纳米材料具有较高的光催化活性,但是其禁带宽度的限制极大制约了ZnO对太阳光辐射的利用率和实际生活中的广泛应用.此外,ZnO光催化剂中的光生电子-空穴复合率高,导致光量子利用率低,易发生光化学腐蚀等问题,从而降低其光催化效率.因此,有必要采用各种手段提高该类催化剂的光催化活性和化学稳定性.纳米ZnO材料作为一种重要的半导体金属氧化物功能材料具有广泛的应用前景,特别是在环境有机污水处理方面引起人们极大的关注.因此,人们研发了不同的纳米ZnO材料的合成方法,主要方法见图1所示.图1 纳米ZnO材料的合成方法Fig.1 The synthesis method of ZnO nanomaterials基于此,本课题组做了一些相关研究工作,采用了不同的合成方法来制备纳米ZnO材料,如:化学溶液沉积法、水热法、两步化学合成法、化学刻蚀法、模板法等,并对影响材料光催化活性的相关参数进行了研究和分析.1 纳米ZnO材料的水热法合成及其光催化性能研究水热法是利用水热反应得到纳米ZnO材料的一种方法.水热反应是在高温高压条件下进行的一种化学反应[21].依据反应类型的不同,水热反应可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等.相比较其他制备方法而言,该方法具有很多优点,如:晶粒发育完整、分散性好、纯度高、晶形好且生产成本较低.图2 六方纳米盘状ZnO(A)、“汉堡包”状ZnO(B)的FE-SEM图及其光催化降解曲线(C) [22]Fig.2 FE-SEM image of (A) ZnO hexagonal platforms and (B) hamburger-like ZnO nanostructures,and (C) their curves of degradation efficiency versus reaction time[22]课题组Yang等[22]采用水热法成功合成出六角纳米盘状和“汉堡包”状的ZnO催化剂,并将合成的催化剂对RhB染料进行紫外灯下光催化降解(图2).研究表明:与“汉堡包”状的ZnO催化剂相比,六角纳米盘状的ZnO催化剂具有更好的光催化活性,认为与裸露的极性面和表面缺陷氧空位有关.在此研究基础上,同样采用水热法通过改变不同表面活性剂合成了不同形貌的纳米ZnO材料,如纳米盘、纳米颗粒,同样在紫外灯照射下对催化剂的光催化活性进行了研究(图3)[23].研究表明:催化剂的尺寸和表面氧空位的数量对催化剂的光催化活性有很大的影响,其中尺寸较小的催化剂拥有较大的BET表面积和较多的表面氧空位,因此具有较强的光催化活性.由此可知,影响纳米ZnO材料的光催化活性的因素有:裸露的极性面、表面缺陷氧空位、形貌、尺寸大小.此外,Wang等[24]同样采用该方法合成了具有磁性可分离与重复利用的Fe3O4@ZnO纳米核壳结构.研究结果表明:与纯ZnO纳米粒子相比,由于Fe3O4@ZnO 核壳纳米粒子的表面氧空位浓度更高且核壳结构中的Fe3+离子有利于提高材料的光催化性能,因此合成的Fe3O4@ZnO纳米核壳结构具有更为优异的光催化性能且循环性较好.另外,由于核壳结构中的Fe3O4使该核壳结构具有较好的稳定性和可重用性.图3 不同形貌纳米ZnO材料的SEM图(A—E)及其光催化降解曲线(F—H) [23]Fig.3 (A—E) SEM images and (F—G) photocatalytic degradation curves of all the ZnO nanomaterials[23]2 纳米ZnO材料的CBD法合成及其光催化性能研究化学溶液沉积法(CBD)是湿化学方法的一种,主要指在常温常压条件下,通过较为温和的化学反应来合成材料的方法.这种方法具有操作简单、溶液控制、成本低廉、环保、反应条件温和、耗能低及实验条件简单等优点.课题组先后采用了该方法合成了不同形貌的纳米ZnO材料,如纳米棒、纳米花、纳米带等.其中,Li等[25-26]采用CBD法在衬底上合成了不同尺寸的纳米ZnO棒状结构,并研究了材料的光催化性能.如图4所示,研究表明,尺寸对材料的光催化性能有很大的影响.另外,其他参数如取向度、形貌等对材料的光催化活性也有一定的影响.但在其他参数一定条件下,材料的尺寸越小,其光催化活性越高.其中,当纳米棒的尺寸为70 nm时,在紫外灯照射下其降解甲基橙180 min,其降解率可达98.6%.课题组Yang等[27]同样采用该方法在硅片上合成了ZnO薄膜,并研究了不同溶剂对材料光催化性能的影响规律(图5—图6).研究表明,采用水、乙醇和丙醇三种溶剂所制备样品的形貌、尺寸和缺陷都有所不同.采用水、乙醇和丙醇三种溶剂在硅衬底上形成材料的形貌分别为纳米棒、微米椭圆和微米盘,其中以水为溶剂所制备的ZnO薄膜的光催化性能最佳,在紫外灯照射下对罗丹明B(RhB)进行光催化降解,5 h后降解率可达95.4%.图4 不同尺寸的纳米ZnO纳米棒的SEM图及其光催化降解图 [25]Fig.4 SEM image of ZnO nanorods with different sizes and their diagrams of degradation efficiency[25]图5 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的SEM(A1—C1)和TEM(A—F)图[27]Fig.5 (A1—C1)SEM and (A—F)TEM images of ZnO nanomaterials with different solvents[27]图6 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的光催化降解曲线[27]Fig.6 The curves of degradation efficiency versus reaction time of ZnO nanomaterials[27]3 纳米ZnO材料的化学沉淀法合成及其光催化性能研究化学沉淀法是将不同化学成分的物质溶液按比例混合,并在其中加入适当的沉淀剂制备出沉淀物前躯体,然后再将生成的沉淀物前躯体在一定条件下进行干燥或锻烧处理,最终得到粉体颗粒,其包括直接沉淀法和均匀沉淀法[21].该方法具有制备成本较低、纯度较高、产量较大等优点.课题组[28]采用化学沉淀法合成了稀土Ce掺杂的ZnO纳米颗粒,并在紫外灯照射下用于降解染料甲基橙(图7).图7 不同稀土Ce掺杂浓度(0%、0.5%、1%、1.5%、2%)ZnO纳米颗粒的TEM(A—E)、PL(F)和光催化降解图(G—H) [28]Fig.7 (A—E)TEM,(F)PL and (G—H)photocatalytic degradation drawing of ZnO nanoparticles with different Ce doping concentrations[28]如图7所示,研究结果表明,稀土Ce离子的掺杂有利于提高ZnO纳米颗粒的光催化活性.稀土Ce离子有俘获电子的能力,可以减少光生电子-空穴复合的几率,从而提高材料的光催化活性.另外,随着Ce掺杂浓度的增加,ZnO主体材料中的缺陷浓度随之增加,这也有利于光催化性能得提高.同时,Ce的掺杂也略改变了ZnO的带隙.课题组Wang等[29]采用该方法合成了Fe3O4@SiO@ZnO,并对进行了负载Ag.研究结果表明,在紫外灯照射下降解RhB染料时Fe3O4@SiO@ZnO-Ag比Fe3O4@SiO@ZnO具有更佳优异的光催化活性,且该新型核壳结构具有很好的化学稳定性、可重复和可回收性.可见,对材料的适当修饰和改性(离子掺杂、负载等)可以提高材料的光催化性能,拓宽材料的光催化应用.4 结论本文简述了课题组合成纳米ZnO材料的一些实验方法,并对其光催化性能进行了总结和分析.实验得出了影响纳米ZnO材料光催化性能的相关参数,如纳米材料的尺寸、材料的缺陷、形貌、取向性等,同时也采取了掺杂和负载等技术手段来提高材料的光催化应用.参考文献【相关文献】[1]XIE Y P,LIU G,YIN L C,et al.Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J].J Mater Chem,2012,22(14):6746-6751.[2]MAURO A D,FRAGALM E,PRIVITERA V,et al.ZnO for application in photocatalysis:From thin films to nanostructures[J].Mat Sci Semicon Proc,2017,69:44-51.[3]WANG D D,YANG J H,LI X Y,et al.Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solarirradiation[J].Mater Res Bull,2017,94:38-44.[4]BORA T,LAKSHMAN K K,SARKAR S,et al.Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin[J].Beilstein J Nanotechnol,2013,4:714-725.[5]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnOnanoparticles[J].Ceram Int,2016,42:14175-14181.[6]EISENBERG D,AHN H S,BARD A J.Enhanced photoelectrochemical water oxidationon bismuth vanadate by electrodeposition of amorphous titanium dioxide[J].J Am Chem Soc,2014,136(40):14011-14014.[7]YU Z B,YIN L C,XIE Y P,et al.Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity[J].J Colloid Interface Sci,2013,400:18-23.[8]LIU G,YIN L C,WANG J Q,et al.A red anatase TiO2 photocatalyst for solar energy conversion[J].Energy Environ Sci,2012,5(11):9603-9610.[9]LIU G,PAN J,YIN L C,et al.Heteroatom-modulated switching of photodatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J].Adv Funct Mater,2012,22(15):3233-3238.[10]ELAMIN N,ELSANOUSI A.Synthesis of ZnO nanostructures and their photocatalytic activity[J].Journal of Applied and Industrial Sciences,2013,1(1):32-35.[11]BANSAL K S,SINGHA S,Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursormethod[J].Physica B,2013,416:33-38.[12]PALOMINOS R A,MONDACA M A,GIRALDO A,et al.Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J].Catal Today,2009,144:100-105.[13]TIAN C,ZHANG Q,WU A,et al.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J].Chem Comm,2012,48:2858-2860.[14]DUAN X W,WANG G Z,WANG H Q,et al.Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity[J].CrystEngComm,2010,12:2821-2825.[15]CAO X L,ZENG H B,WANG M,et rge scale fabrication of quasi-aligned ZnO stacking nanoplates[J].J Phys Chem C,2008,112:5267-5270.[16]XU L P,HU Y L,PELLIGRA C,et al.ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity[J].Chem Mater,2009,21:2875-2885.[17]ZHANG L Y,YIN L W,WANG C X,et al.Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity[J].ACS Appl Mater Interface,2010,2:1769-1773.[18]XIE J,WANG H,DUAN M,et al.Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J].Appl Surf Sci,2011,257:6358-6363.[19]GUPTA J,BARICK K C,BAHADUR D.Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures[J].J Alloy Compd,2011,509:6725-6730.[20]PUDUKUDY M,HETIEQA A,YAAKOB Z.Synthesis,characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J].Appl Surf Sci,2014,319:221-229.[21]杨景海,徐松松,郎集会,等.稀土掺杂 ZnO 纳米材料的合成方法研究进展[J].吉林师范大学学报(自然科学版),2015,35(2):10-13.[22]YANG J H,WANG J,Li X Y,et al.Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties[J].J Alloy Compd,2012,528:28-33. [23]WANG J,YANG J H,LI X Y,et al.Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B[J].Powder Technology 2015,286:269-275.[24]WANG J,YANG J H,LI X Y,et al.Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles[J].Physica E,2016,75:66-71.[25]LI X Y,WANG J,YANG J H,et parison of photocatalytic activity of ZnO rod arrays with various diameter sizes and orientation[J].J Alloy Compd,2013,580:205-210.[26]LI X Y,WANG J,YANG J H,et al.Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance[J].Mater Chem Phys,2013,141:929-935. [27]YANG J H,WEI B,LI X Y,et al.Synthesis of ZnO flms in dierent solvents and theirphotocatalytic activities[J].Cryst Res Technol,2015,50(11):840-845.[28]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles[J].Ceram Int,2016,42:14175-14181.。
蒙脱土插层纳米复合材料改性涂料研究

摘
要 :采用双子季铵盐 (e ii G mn C6 )表 面活性 剂和十六烷基 三甲基溴化铵 (T B C A )表 面活
性 剂 分 别与 钠 基 蒙脱 土 ( a MMT 进 行 阳 离子 交换 后 ,制 备 了新 的有 机 蒙脱 土 (e ii 『 N— ) G mn C MMT和 C AB MMT ,通过 x 线衍 射 ( D 、透射 电镜 (E T — ) 射 XR ) T M) 等 对有 机 蒙脱 土进 行表 征 并 对其 分 散 性做 了测试 。 又用 蒙脱 土插 层 纳 米 复合 材 料 改性 水性 涂 料 ,并进 行 了性 能 测试 表征 ,
层 剂异 丙醇 ,恒 定 温度反 应 3 后 可得 到分 散 均匀 h
的蒙脱 土插层 改性 纳米浆 料 。
耐磨性等) 、阻隔性 、耐热性 、阻燃 等多方面的
性 能都 得到 显著提 高 本 研 究 用 一 种 新 型 的 双 子 季 铵 盐 ( e ii G mn
c) 。和十六烷基三甲基溴化铵( T B 分别与钠基 CA )
土 可分 离 成 片 层 ,径/ 比一 般 为 20 厚 5 ,最 大可 达 10 ,因此 具 有极 高 的 比表 面积 ,从 而 赋 予 复合 00 材料 优异 的增强性 能 。 蒙脱 土 由于有 大 的 比表 面 积 、很 强 的 阳离 子
收稿 日期:0 1 2 8 2 1— —
蒙脱土的亲水性是 由于其层问有水化的无机 离子【 为了确保在制备纳米复合材料 中聚合物 7 l 。 和蒙脱土有良好的相容性 ,将蒙脱土有机化改性
公 司 的 S TQ 0 型 热重 分 析 仪 ,扫 描 温 度 范 围 D 60 3 — 0 ̄ 0 50C,升温速 率 1 ̄/ i,在氮气 氛 中进行 。 0Cr n a
纳米氧化锌的制备与光催化性能的研究

摘 要: 氧化锌是一种高效、无毒性、价格低廉的重要光催
化剂。以乙酸锌和草酸为原料,采用溶胶-凝胶法制备纳米
ZnO。采用 XRD、SEM 对纳米 ZnO 的结构和形貌进行了分
析,结果表明,不 同 焙 烧 温 度 下 得 到 的 纳 米 氧 化 锌 均 为 六
方晶系的纤锌矿结构,平均粒径大小在 10 ~ 55nm。样品颗
图 2 350℃样品 SEM 扫描图
图 3 450℃样品 SEM 扫描图
从图 2 和图 3 可以看出,样品颗粒形状基本
78
北京印刷学院学报
2012 年
上为球形,颗粒大小比较均匀,在空间上颗粒之间 有序分布。 2. 3 焙烧温度对纳米 ZnO 光催化性能的影响
以浓度为 20mg / L 的甲基橙溶液为模拟污染 物,改 变 焙 烧 温 度 ( 温 度 分 别 为 350℃ 、450℃ 、 550℃ 、650℃ 、750℃ ) 制备的纳米 ZnO,考察在光照 40min 时,焙烧温度对纳米氧化锌光催化降解甲基 橙效果的影响。如图 4 所示。
第 20 卷 第 2 期 Vol. 20 No. 2
北京印刷学院学报 Journal of Beijing Institute of Graphic Communication
2012 年 4 月 Apr. 2012
纳米氧化锌的制备与光催化性能的研究
姚 超,李福芸,龙辰宇,杨丽珍
( 北京印刷学院,北京 102600)
D = ( A1 - At) / A1 式中,D 为降解率; A1 为甲基橙溶液初始浓度 对应的吸光值; At 代表 t 时刻甲基橙溶液浓度对应 的吸光值。
图 1 纳米氧化锌进行焙烧处理的 X 射线衍射
表 1 焙烧温度与样品颗粒粒径
纳米片层蒙脱土复合材料的制备及性能表征

0引言在21世纪,纳米复合材料迅速发展为最先进的复合材料之一。
由于蒙脱土本身具有纳米尺度的层状结构,世界蒙脱土资源极为丰富,分布甚广,所以被应用到许多领域。
蒙脱土是一种层状硅酸盐,层状硅酸盐的晶体片层间距1nm 左右,片层表面主要为氢键和电荷作用,在外界物质作用下,该片层很容易扩大或者剥离。
片层容易扩大这个特性为制备纳米复合材料提供天然的微反应器,片层容易剥离使其更广泛的被应用于纳米复合材料的制备。
利用层状硅酸盐制备纳米复合材料,是我国当前材料科学研究领域的研究热点。
1蒙脱土的改性及SA/MMT 纺丝原液的配制蒙托土的改性及其纺丝溶液的配制总共分成了四步:第一步:将蒙脱土元土和氯化钠[m(MMT)/m(H2O)=1:5,氯化钠的用量按蒙脱土离子交换容量计算的理论用量的150%],60度下磁力搅拌6h,然后抽滤,洗去多余的氯化钠,真空干燥得到Na-MMT;蒙脱土片层通常吸附Na+、K+、Ca2+、Mg2+等水合阳离子,从而使层间距发生变化。
蒙脱土具有较大的初始层间距以及可交换的层间阳离子,这些结构特征使得利用离子交换的方式可以将蒙脱土层间距扩大到能够允许聚合物分子链插入[1]。
第二步:将Na-MMT 与去离子水以1:1000的比例混合,使蒙脱土充分溶胀5天[2]。
第三部:将第二步中的溶液超声30mins,当作溶剂配制2%的海藻酸钠溶液。
配小浓度的便于颗粒的均匀分散,但是浓度也不能太小,这样会使没有足够的大分子进入片层之间,从而使片层打开。
配小浓度的便于颗粒的均匀分散,但是浓度也不能太小,这样会使没有足够的大分子进入片层之间,从而使片层打开[3]。
第四步:将配好的稀溶液再进行粉碎超声1h,随后再加入海藻酸钠粉末继续配制所需的溶液。
1.1MMT 的海藻酸钠溶液偏光图片为了表征蒙脱土在溶液中的存在形式,我们使用了偏光显微镜。
有文献记载说,蒙脱土如果在水中以单片层的形式存在,则溶液中会看到蝶状的片层,厚度约为1nm,直径约为30nm,呈蝶状[4]。