七年级数学上册第一次月考测试卷-初中一年级数学试题练习、期中期末试卷-初中数学试卷
24-25七年级数学第一次月考卷【测试范围:有理数、有理数的运算】(湖南长沙专用(考试版A4)
2024-2025学年七年级数学上学期第一次月考卷(湖南长沙专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册(有理数、有理数的运算)。
5.难度系数:0.65。
一、选择题(本题共10小题,每小题3分,共30分)1.2024-的绝对值是( )A .12024-B .12024C .2024D .2024-2.卢塞尔体育场是卡塔尔世界杯的主体育场,由中国建造,是卡塔尔规模最大的体育场.世界杯之后,将有约170000个座位将捐赠给需要体育基础设施的国家,其中大部分来自世界杯决赛场地卢塞尔体育场,170000这个数用科学记数法表示为( )A .50.1710´B .61.710´C .41710´D .51.710´3.下列计算中正确的是( )A .431--=-B .()224--=C .()()3107170-´-¸-=-D .1155155æö-¸´-=ç÷èø4.如果温度上升10℃,记作10+℃,那么温度下降3℃记作( )A .2-℃B .2+℃C .3+℃D .3-℃5.下列说法正确的是( )A .正分数和负分数统称为分数B .正整数和负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是整数就是负数6.比较2(2)-和22-,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .22(2)2->-D .22(2)2-=-7.已知a ,b ,c 三个数在数轴上的位置如图所示,则下列结论正确的是( )A .c a <B .0a c +<C .0a c ->D .0abc >8.若|1||2|0ab -++=,则b a b +值为( )A .2B .23C .2-D .129.如图,将3,2,1,0,1,2,3,4,5---这九个数分别填入九宫格内,使每行、每列、每条对角线上的三数之和相等,若,,a b c 分别表示其中的一个数,则a b c +-的值为( )A .5-B .1-C .0D .510.乘方是特殊的乘法运算,乘方具有简洁之美,请观察下列等式:0123456731,33,39,327,381,3243,3729,32187,......========请思考: 02342024333333++++++L 的个位数字是( )A .0B .1C .3D .4二、填空题(本题共6小题,每小题3分,共18分)11.比较大小:23-__________12-(填“<”、“=”、“>”).12.某粮店出售的三种品牌的面粉袋上分别标有“质量为()250.1kg ±、()250.2kg ±、()250.3kg ±”的字样,从中任意拿出两袋,它们的质量最多能相差__________kg .13.有理数a ,b ,c 表示的点在数轴上的位置如图,化简a c c b +--=__________.14.在数轴上与表示3-的点距离4个单位长度的点表示的数是__________.15.小明与小刚规定了一种新运算“*”:若a ,b 是有理数,则*32a b a b =-,小明计算出2*54=-,请帮小刚计算()2*5-=__________.16.某数学老师在课外活动中做了一个有趣的游戏:黑板上写了1到10这10个数,每次任意擦去两个数,再写上一个新数(这两个数的和减去一),若干次后,黑板上只剩下一个数,这个数是__________.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.计算:(1)()()()364324-+-´-+-¸;(2)()()23112532⎡⎤--´-+-¸⎣⎦.18.把下列各数的序号填在相应的数集内:①1,②35-,③3.2+,④0,⑤13,⑥8.5-,⑦p ,⑧7-,⑨ 3.2-&.(1)负整数集合{____________________…};(2)正分数集合{____________________…};(3)有理数集合{____________________…}.19.已知3x =,2y =.(1)若x y <,求x y -的值;(2)若0xy >,求x y +的值.20.如图所示,在数轴上有三个点A ,B ,C ,回答下列问题:(注意:本题直接写出答案即可)(1)A ,C 两点间的距离是多少?(2)数轴上存在点D ,点D 到点A 的距离等于点D 到点C 的距离,问点D 对应的数是多少?(3)若点E 与点B 的距离是8,则E 点表示的数是什么?21.张叔叔到某大厦办事,若乘电梯向上一层记作1+层,向下一层记作1-层.张叔叔从1楼出发,电梯上下楼层依次记录如下(单位:层)6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明张叔叔最后是否回到出发层1楼;(2)该中心大楼每层高3米,电梯每向上或向下1米需要耗电0.2度,根据张叔叔上下楼的记录计算,他办事时电梯耗电多少度?22.已知a 、b 互为倒数,c 、d 互为相反数,3m =,n 是最大的负整数.求代数式()()202423 ab c d n m --+-+的值.23.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是______.(2)从中取出2张卡片,使这2张卡片数字相除商最小,最小值是______.(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:()32128324⎡⎤´--=´=⎣⎦),请另写出一种符合要求的运算式子.24.小雅对有理数a ,b 定义了一种新的运算,叫做“乘减法”,记作“a b Ä”.他写出了一些按照“乘减法”运算的算式:()()321+Ä+=+,()()1138+Ä-=-,()()253-Ä+=-,()()615-Ä-=+,()12133æö+Ä+=+ç÷èø,()()40.5 3.5-Ä+=-,()()880-Ä-=,()()2.4 2.40+Ä-=,()23023+Ä=+,77044æöÄ-=+ç÷èø.(1)请你根据以上算式将“乘减法”法则补充完整:绝对值不相等的两数相“乘减”,同号得 ,异号得 ,并用较大的绝对值 (填“加上”或“减去”) 较小的绝对值;绝对值相等的两数相“乘减”,都得0;一个数与0相“乘减”,或0与一个数相“乘减”,都得 .(填“这个数本身”或“这个数的绝对值”)(2)若括号的作用与它在有理数运算中的作用相同,①用“乘减法”计算:()()()3290+Ä-Ä-Ä⎡⎤⎡⎤⎣⎦⎣⎦;②小雅发现交换律在有理数的“乘减法”中仍然成立,即a b b a Ä=Ä.请你探究结合律在有理数的“乘减法”中是否成立?若成立,请说明理由;若不成立,请以2a =,3b =-,4c =为例说明()()a b c a b c ÄÄ=ÄÄ不成立.25.距离能够产生美.唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.”距离,也是数学、天文学、物理学中的热门话题.唯有对宇宙距离进行测量,人类才能掌握世界尺度.绝对值的定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值.例如:3是指数轴上表示3的点到原点的距离 ,6-是指数轴上表示6-的点到原点的距离.概念延伸①数轴上表示2和5的两点之间的距离是__________,25-=__________;②数轴上表示2-和5-的两点之间的距离是__________,()()25---=__________;③数轴上表示1和3-的两点之间的距离是__________,()13--=__________.归纳总结点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为|AB |,则AB =__________.拓展应用①数轴上表示数x 和1的两点A 和B 之间的距离为1AB x =-,则1x -的最小值是__________,此时x 的值为__________.②数轴上表示数x 和1-的两点A 和B 之间的距离为AB =__________,如果2AB =,那么x 的值为__________;③式子12x x ++-有最小值吗?若有,请求出它的最小值.。
北师大版2024-2025学年七年级数学上册第一次月考模拟测试卷(一)(原卷版)
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________. 15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面). 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.。
2023-2024学年(上)校际联盟第一学期第一次月考七年级数学试卷及答案
第 1 页 共 4 页2023-2024学年(上)校际联盟第一次月考七年级数学试题(满分:100分 时间:90分钟 )学校: 班级: 姓名: 座号 (友情提示:请将解答写在答题卷上) 一、选择题(每小题3分,共30分)1.若气温为零上20°C记作+20°C,则−3°C表示气温为( ) A .零上3°CB .零下3°CC .零上17°CD .零下17°C2.下列各选项中的图形,绕虚线旋转一周,所得的几何体是圆锥的是( )A .B .C .D .3.下列图形中,不是三棱柱的表面展开图是( )A .B .C .D .5.用一个平面去截一个几何体,截面可能是长方形的几何体是( )A .①③B .②③C .①②D .②④6.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ).A .文B .明C .典D .范第 2 页 共 4 页7.下列由4个大小相同的正方体搭成的几何体,从正面看到的形状图不同的是( )A .0是最小的数B .最大的负有理数数是-1C .任何有理数的绝对值都是正数D .如果两个数互为相反数,那么它们的绝对值相等.9.某社区的志愿者收到一批防疫物资,这批防疫物资用同样的正方体箱子包装,摆放的位置从上面和正面看到的都是,这批防疫物资最多有( )箱.A .4B .5C .6 D.710.表示有理数a ,b 的点在数轴上的位置如图所示,以下四个式子中正确的是( )A .a +b >0B .a −b >0C .a +1>0D .a −b <0二、填空题(每小题3分,共18分)11、直升机的螺旋桨转起来形成一个圆形的面,这说了 . 12、比较大小(用“>”或“<”表示):−45 −3413、如图,下列几何体,是柱体的有 (填序号)14.一个直棱柱有九个面,所有侧棱长的和为21cm,则每条侧棱的长是 cm 15.若|x +3|与|y +2|互为相反数,x - y = . 16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021= .第 3 页 共 4 页三、解答题(总共七题,共52分)17、.计算题(每小题4分,共16分,请写出计算过程,直接写结果不得分) (1)(−12)+17+(−18); (2) (−30)−8−|−2|(3)(−3.75)+2+(−114) (4)(−323)−(−234)−(−123)18.(6分)把下列各数序号..填入相应的大括号里:①-(+5),②−0.5,③13,④0, ⑤−98%,⑥|−3|整数集合:{____ ___…}; 非负数集合:{_____ ___…}; 分数集合:{____ ____…}.19.(6分)在数轴上表示3,−|−3.5|,113, −2这几个数,并比较它们的大小,将它们按从小到大的顺序用“<”连接.20.(6分)用若干个棱长为1厘米的小立方块搭一个几何体,从上面看到这个几何体的形状图如图所示.(1)请画出从正面看和从左面看到的这个几何体的形状图.从正面看2 23 31从左面看从上面看21.(6分)登山队员王叔叔以某营地为基准,向距该营地500米的顶峰冲击,由于天气骤变,攀岩过程中不得不几次下撤躲避强高空风记王叔叔向上爬升的海拔高度为正数,向下撤退时下降的海拔高度为负数,这次登山的行进过程记录如下:(单位:米)+260,﹣50,+90,﹣20,+80,﹣25,+105.(1)这次登山王叔叔有没有登上顶峰?若没有,最终距顶峰还有多少米?(2)这次登山过程中,每上升或下降1米,平均消耗8千卡的能量,求王叔叔这次登山过程中共消耗了多少能量?x−的几何意义是数轴上表示x的点与表示______的点之间的距离,(1)4第4 页共4 页2023-2024学年(上)校际联盟第一学期第一次月考七年级数学标准答案数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数.⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.B2.B3.D4.B 5.A6.B7.C8.D9.C10.D二.填空题(共6小题,满分18分,每小题3分)11.线动成面12. <13.①②⑥14. 3 15.-1 16. 2021三.解答题(共8小题,满分52分)17.(每小题各4分,共16分)①(-12)+17+(-18)② (-30)-8-|-2|= 5+(-18)-------2分=(-30)-8-2 -------1分= -13 ------- 4分= -38-2 -------2分= -40 -------4分③ -3.75+2+(−114)④(−323)−(−234)−(−123)= -3.75 +2+(-1.25) ------1分=(−323)+(234)+123------1分= -5+2 -------2分=(−323)+123+(234)-------2分= -3 -------4分= -2+(234)--- ----3分= 34-------4分数学试题参考答案及评分说明第 1 页共 3 页数学试题参考答案及评分说明 第 2 页 共 3 页18.(6分)解:整数集合:{①,④,⑥ …};----------------------2分 分数:{③,④,⑥…};----------------------4分 非负数:{②,③,⑤...}.----------------------6分 19解:如图所示:---------------------4分-|-3.5|< -2< 1<3-------------6分20.每图3分,解:如图所示:从正面看从左面看 21.解:(1)260﹣50+90﹣20+80﹣25+105=440(米).500﹣440=60(米).答:这次登山王叔叔没有登上顶峰,最终矩顶峰还有60米.------------------------3分 (2)|+260|+|﹣50|+|+90|+|﹣20|+|+80|+|﹣25|+|+105|=630(米),630×8=5040(千卡).答:所以王叔叔这次登山过程中共消耗5040千卡的能量.----------------------6分31-4 -3 -2 -1 0 1 2 3 4-|-3.5| -2 13 3122.解:(1)解:18-(-12)=30(辆)答:产量最多的一天比产量最少的一天多生产30辆;----------------------2分(3)解:+4-2-5+12-12+18-9=6,(1400+6)×60+6×15=84450(元).答:这一周工厂工人的工资总额是84450元.----------------------4分23.解(1)4 ;-1 ----------------------2分(2)-2或4 ----------------------4分(3)3050----------------------6分数学试题参考答案及评分说明第 3 页共 3 页。
24-25七年级数学第一次月考卷(考试版A4)【测试范围:北京版2024七年级上册第1章】(北京版)
2024-2025学年七年级数学上学期第一次月考卷(北京版2024)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:北京版2024七年级上册第1章。
5.难度系数:0.9。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如果a 与2互为相反数,那么a 等于( )A .2B .12-C .12D .2-2.习近平总书记指出“善于学习,就是善于进步”.“国家中小学智慧云平台”上线的某天,全国大约有5450000人在平台上学习,将5450000 )A .54510´B .0.54510´C .65.4510´D .854.510´3.下列说法正确的是( )A .2.9万精确到十分位B .42.910´精确十分位C .2.9精确十分位D .12950精确到万位4.下列说法正确的是( )A .0是最小的整数B .正整数和负整数统称为整数C .0的相反数、绝对值、倒数仍然都是0D .互为相反数的两个数的绝对值相等5.下列式子中正确的是( )A .﹣24=﹣16B .﹣24=16C .(﹣2)4=8D .(﹣2)4=﹣166.设a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于自身的有理数,则a -b +c 的值为( )A .0B .-2C .0或3D .0或-27.下面的说法中,正确的个数是( )①若a+b=0,则|a|=|b|②若a <0,则|a|=﹣a③若|a|=|b|,则a=b④若a 为有理数,则a 2=(﹣a )2A .1个B .2个C .3个D .4个8.已知有理数a ,b ,c 在数轴上的对应点的位置如图所示,且满足a c b <<,则下列各式:①b c a ->->-;②0ab ac ab ac-=;③a b +=a b +,其中正确的有( )A .0个B .1个C .2个D .3个第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
24-25七年级数学第一次月考卷(考试版A4)【测试范围:人教版2024七上第一章-第二章】北京专用
2024-2025学年七年级数学上学期第一次月考卷(北京专用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上第一章-第二章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2-的相反数是( )A .2B .12C .12-D .2-2.如果80m 表示向东走80m ,则表示( )A .向东走50mB .向北走50mC .向南走50mD .向西走50m3.2024年5月3日,我国嫦娥六号顺利发射飞向太空,随后历时五天抵达第四阶段,进行环月飞行任务.6月2号早上嫦娥六号在月球背面的南极﹣艾特肯盆地成功落月,月球距离地球约384000000千米,将384000000用科学记数法表示为( )A .738.410´B .83.8410´C .93.8410´D .90.38410´4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是( )A .B .C .D .5.如果230x y -++=, 那么x y -的值为( )A .1B .-1C .5D .-56.数轴上的三点A 、B 、C 所表示的数分别为a 、b 、c 且满足0a b +>,0a c ×<,则原点在( )A .点A 左侧B .点A 点B 之间(不含点A 点B )C .点B 点C 之间(不含点B 点C )D .点C 右侧7.若a ,b 为有理数,0a >,0b <,且a b <,那么a ,b ,a -,b -的大小关系是()A .b a b a <-<-<B .b b a a<-<-<C .b a a b <-<<-D .a b b a-<-<<8.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤2π-不仅是有理数,而且是分数;⑥带“-”号的数一定是负数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数;其中错误的说法的个数为( )A .3个B .4个C .5个D .6个第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
七年级上册数学人教版第一次月考测试卷(1-3章)(无答案)
七年级上册数学人教版第一次月考测试卷(1-3章)一、选择题(本大题共12 个小题,每小题3分,共36分)1.下列说法中不能表示代数式“5x”的意义的是 ( )A. x 的5倍B.5 和x 相乘C.5个x 相加D. x 个5相乘2.下列运算结果为正数的是 ( )A.(−3)²B. -3÷2C.0×( -2024)D.2-33.下列对代数式 1b −a 的描述,正确的是 ( )A. b 的相反数与a 的差B. b 与a 的差的倒数C. a 的相反数与b 的差的倒数D. b 的倒数与a 的差4.与 −(13−14)互为倒数的是 ( ) A.−13×4 B.3×4C.13×4D. -3×4m 个25.计算: 2×2×⋯×23+3+⋯+3的结果为 ( )一个3A.2m 3nB.2m 3nC.2m n 3D.m 23n 6.如图,在数轴上,点A 表示的数是6,将点A 沿数轴向左移动a(a>6)个单位长度得到点P ,则点P 表示的数可能是 ( )A.0B. -1C.0.5D.27.如果甲、乙是两个成反比例的量,那么当甲增加50%时,乙一定会 ( )A.增加50%B.减少50%C. 减 23D.减 138.已知光速为300000 km/s,光经过 ts(1≤t≤10)传播的距离用科学记数法表示为a×10" km,则n 可能为 ( )A.5B.6C.5 或6D.5或6或79.已知a=-2,b=1,c=-1,下列各式中最小的是 ( )A. a+b+cB. a+b-cC. a-b+cD. a-b-c10.点A,B在数轴上的位置如图,其对应的数分别是a和b.对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:|b|>0.其中正确的是 ( )A.甲、乙B.丙、丁C. 甲、丙D.乙、丁11.下列计算正确的是 ( )−20×(−37)=1507A.−30×37B.(−23+45)÷(−115)=−2C.(12−13)÷(13−14)×(14−15)=310÷(+45)×(−827)=0D.−4512.对于正整数x,我们可以用符号f(x)表示代数式,并规定:若x为奇数,则f(x)=3x+1;若x为偶数,则f(x)=1x.例如:f(1) =4,f(10) =5.设x1=6,x2=f(x1),x3=f(x2),⋯,依此规律进行下去,得到2一列数:x₁,x₂,x₃,…,xₙ((n为正整数),则x1−x2+x3−x4+⋯+x2023−x2024的值是( )A.16B.18C.20D.2024二、填空题(本大题共4个小题,每小题3分,共12分)而小于2的所有整数是 .13.大于−23414.已知γ=x-1,则((x−y)²+(y−x)+1的值为15.如图是一个计算程序,若输入的值为1,则输出的值应为 .16.如图是某种杆秤,在秤杆的点A 处固定提纽,点 B处挂秤盘,点C为O 刻度点. 当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点 C,秤杆处于平衡状态.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为γ毫米时秤杆处于平衡状态. 测得x与γ的几组对应数据如下表:x(克)0246810y(毫米101418222630)由表中数据的规律可知,当x =20 时,y=三、解答题(本大题共8个小题,共72分)17.(6分)某书店新进了一批图书,甲、乙两种书的进价分别为4 元/本、10 元/本. 现购进m本甲·种书和n本乙种书,共付款P元.(1)用含 m,n的代数式表示 P;(2)若共购进5×10⁴本甲种书及3×10³本乙种书,用科学记数法表示 P的值.18.(8分)如图,小林为“小鱼”设计了一个计算程序.输入x值,由上面的一条运算路线从左至右逐步进行运算得到m,由下面的一条运算路线从左至右逐步进行运算得到n.如输入x=1,得到m=1×(-3)+(-2)=-5,n=(1-4)÷(−2)=3.2(1)若输入x=2,试比较m与n的大小;(2)若得到 m=10,求输入的x值及相应n的值.19.(8分)有理数a,b在数轴上的对应点的位置如图所示.(1)比较大小: ab 0,b-1 0,a-b 0;(2)化简:|a|+|b|-|b-1|.20.(9分)老师设计了接力游戏,用合作的方式完成有理数运算,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图:(1)接力中,计算错误的学生是;(2)请给出正确的计算过程.21.(9分)某中学七年级一班有44人,一次数学活动中分为四个组,第一组有a人,第二组人数比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数;(用含 a的代数式表示,不用化简)(2)夕夕通过计算发现:“第一组不可能有12人.”你同意她的答案吗? 请说明理由.22.(10分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×( -15);+999×(−15)−999×1835.(2)999×1184523.(10分)【阅读理解】已知代数式x²+x+3的值为9,求代数式2x²+2x−3的值.嘉琪采用的方法如下:由题意,得x²+x+3=9,则有x²+x=6.所以2x²+2x−3=2(x²+x)−3=2×6−3=9.所以代数式2x²+2x−3的值为9.【方法运用】(1)若−x²=x+2,则x²+x+3=.(2)若代数式x²+x+1的值为15,求代数式−2x²−2x+3的值.【拓展应用】(3)若x²+2xy=−2,xy−y²=−4,求代数式4x²+7xy+y²的值.24.(12分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价为30元,乒乓球每盒定价为10 元.现两家商店搞促销活动,甲商店的优惠方案:每买一副乒乓球拍赠一盒乒乓球;乙商店的优惠方案:按定价的9折出售.某班需购买乒乓球拍6副,乒乓球若干盒(不少于6盒).(1)用代数式表示(所填式子需化简):当购买乒乓球拍6副,乒乓球x(x≥6,且x为整数)盒时,在甲商店购买共需付款元,在乙商店购买共需付款元.(2)当购买乒乓球拍6副,乒乓球15 盒时,到哪家商店购买比较省钱? 说出你的理由.(3)当购买乒乓球拍6副,乒乓球15 盒时,你能给出一种更省钱的购买方案吗? 试写出你的购买方案,并求出此时需付款多少元.。
人教版2022-2023学年七年级数学上册第一次月考测试题含答案
2022-2023学年七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在﹣(﹣8),﹣丨7丨,﹣丨0丨,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个2.(2分)最近“新型冠状病毒肺炎”在全球肆虐,截止到4月28日大约有3090000人感染病毒,将3090000用科学记数法可以表示为()A.3.09×106B.3.09×107C.30.9×105D.3.09×104 3.(2分)下列说法错误的是()A.柱体的上、下两个面形状是一样的B.圆柱、圆锥的底面都是圆C.棱柱的侧面不可能是三角形D.棱柱的棱长都相等4.(2分)空心六棱柱螺母按如图所示位置摆放,则它的左视图正确的图形是()A.B.C.D.5.(2分)|﹣2|的绝对值的相反数是()A.﹣2B.2C.﹣3D.36.(2分)数轴上的一个点向左移动3个单位长度,再向右移动7个单位长度,终点表示的数是﹣1,那么原来表示的数是()A.﹣6B.﹣5C.5D.67.(2分)如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A.4种B.5种C.6种D.7种8.(2分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33=62,13+23+33+43=102,…,计算13+23+33+…+103的结果是()A.2025B.2500C.3025D.36009.(2分)对于有理数a、b,如果ab<0,a+b>0.则下列各式成立的是()A.a<0,b<0B.a>0,b<0且|b|<aC.a<0,b>0且a<|b|D.a>0,b<0且|b|>a10.(2分)能使式子|5+x|=|5|+|x|成立的数x是()A.任意一个非正数B.任意一个正数C.任意一个非负数D.任意一个负数二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)一个棱柱有10个面,且所有侧棱的和为40cm,则每条侧棱长为cm.12.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).13.(3分)如图是由相同大小的小正方体搭成的几何体从不同方向看到的形状图,搭这个几何体共用了个小正方体.14.(3分)如图是一个正方体的平面展开图,相对面上的两个数之和均为5,求x+y+z =.15.(3分)如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数和为.16.(3分)一个整数816600…0用科学记数法表示为8.166×1010,则原数中“0”的个数为.17.(3分)已知|a|=6,|b|=3,且a<b,则式子ab﹣a=.18.(3分)已知|a+2019|=﹣|b﹣2020|,a+b=.三、计算题(本大题共1小题,每小题24分,共24分)19.(24分)请回答下列问题:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨;(3);(4)﹣(﹣1)+32÷(1﹣4)×2;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷();(6)﹣22×÷[4÷()2﹣1]+(﹣1)2.四、解答题(本大题共6小题,共52分)20.(10分)如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.21.(10分)把下列各数0,(﹣2)2,﹣|﹣4|,﹣,﹣(﹣1)在数轴上表示出来,并用“<”号把这些数连接起来.22.(10分)若x、y互为相反数,a、b互为倒数,c的绝对值是1,求的值.23.一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:m)如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地相对于商场出租车的位置在哪里?(2)这天上午出租车总共行驶了km.(3)已知出租车每行驶1m耗油0.08L,每升汽油的售价为6.5元.如果不计其它成本,出租车司机每m收费2.5元,那么这半天出租车盈利(或亏损)了多少元?24.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)25.(12分)点A,B在数轴上分别表示有理数4,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=丨a﹣b丨,利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是,数轴上表示﹣12和﹣6的两点之间的距离是.(2)数轴上表示x和﹣4的两点之间的距离表示为.(3)当丨x﹣2丨+丨x+4丨取最小值为时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和是.(4)若数轴上两点A,B对应的数分别是﹣1,3,现在点A,点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,点A所对应的数是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】先计算各个数,再根据非负数的定义得结论.【解答】解:∵﹣(﹣8)=8,﹣丨7丨=﹣7,﹣丨0丨=0,(﹣2)2,=4,﹣32=﹣9,∴非负数有:﹣(﹣8),﹣丨0丨,(﹣2)2.故选:B.【点评】本题考查了有理数,掌握有理数的分类,乘方运算及相反数、绝对值的意义是解决本题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3090000=3.09×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据棱柱和圆柱以及圆锥的底面以及棱柱的棱长关系进而得出即可.【解答】解:A、柱体的上、下两个面形状是一样的,此选项正确,不合题意;B、圆柱、圆锥的底面都是圆,此选项正确,不合题意;C、棱柱的侧面不可能是三角形,此选项正确,不合题意;D、棱柱的棱长不一定都相等,此选项错误,符合题意.故选:D.【点评】此题主要考查了认识立体图形,熟练掌握各图形的形状是解题关键.4.【分析】左视图是从物体左面看,所得到的图形.【解答】解:从左面看,是一列两个正方形,两个正方形的中间有一条横向的虚线,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】根据绝对值的性质求出|﹣2|,再根据相反数的定义解答.【解答】解:|﹣2|=2,所以,|﹣2|的绝对值的相反数是﹣2.故选:A.【点评】本题考查了绝对值的性质,相反数的定义,比较简单,熟记性质与概念是解题的关键.6.【分析】根据数轴上的点向左平移减、向右平移加,可得答案;【解答】解:设原来表示的数是x,x﹣3+7=﹣1解得:x=﹣5故选:B.【点评】本题考查了数轴,解决本题的关键是根据数轴上的点向左平移减、向右平移加.7.【分析】利用正方体的展开图即可解决问题,共四种.【解答】解:如图所示:共四种.故选:A.【点评】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.【分析】根据13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,可得从1开始的连续自然数的立方和等于它们的和的平方,据此求出计算13+23+33+…+103的结果是多少即可.【解答】解:∵13=12,13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,∴13+23+33+…+103=(1+2+3+…+10)2=552=3025.故选:C.【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是注意总结出规律,并能应用总结出的规律解决实际问题.9.【分析】根据异号得负判断出a、b异号,再根据有理数的加法运算法则判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴a>0,b<0且|b|<a.故选:B.【点评】本题考查了有理数的乘法,有理数的加法,熟记运算法则是解题的关键.10.【分析】根据题意利用特殊值的方法,即可判断出答案.【解答】解:当x=2时,|5+x|=|5+2|=7,而|5|+|x|=5+2=7,故A、D错误;当x=0时,|5+x|=|5+0|=5,而|5|+|x|=5+0=5,当x=﹣2时,|5+x|=|5+(﹣2)|=3,而|5|+|x|=5+2=7,故B错误,C正确;故选:C.【点评】此题主要考查了绝对值,关键是根据题意选择符合条件的数.二、填空题(本大题共8小题,每小题3分,共24分)11.【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为40cm,即可得出答案.【解答】解:∵这个棱柱有10个面,∴这个棱柱是8棱柱,有8条侧棱,∵所有侧棱的和为40cm,∴每条侧棱长为40÷8=5(cm);故答案为5.【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.【点评】本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.13.【分析】根据俯视图得出最底层的个数,根据主视图和左视图得出第二层的个数,然后相加即可得出答案.【解答】解:由俯视图易得最底层有3个小正方体,第二层有1个小正方体,那么搭这个几何体共用了3+1=4个.故答案为:4.【点评】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再求出x、y、z,然后相加计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“﹣2”与“y”是相对面,“3”与“z”是相对面,“x”与“10”是相对面,∵相对面上的两个数之和为5,∴x=﹣5,y=7,z=2,∴x+y+z=﹣5+7+2=4.故答案为:4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.【分析】由数轴可知被污染的部分是﹣1.3至2.9.【解答】解:由数轴可知:设被污染的部分的数为x,∴﹣1.3≤x≤2.9∴x=﹣1或0或1或2,∴被污染的部分内含有的整数和:﹣1+0+1+2=2故答案为:2【点评】本题考查数轴,涉及有理数的加法.16.【分析】把8.166×1010写成不用科学记数法表示的原数的形式即可得.【解答】解:∵8.166×1010表示的原数为81660000000,∴原数中“0”的个数为7,故答案是:7.【点评】本题考查了把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向后移几位.17.【分析】根据绝对值和a<b可得a和b的值,进而可得式子ab﹣a的值.【解答】解:因为|a|=6,|b|=3,所以a=±6,b=±3,因为a<b,所以a=﹣6,b=±3,所以ab﹣a=±18﹣(﹣6)=﹣12或24.故答案为:﹣12或24.【点评】本题考查了有理数的混合运算、绝对值,解决本题的关键是掌握有理数的乘法和绝对值.18.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.三、计算题(本大题共1小题,每小题24分,共24分)19.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先去括号、化简绝对值,再根据有理数加法法则计算即可;(3)利用乘法分配律计算即可;(4)先算乘方与括号内的运算,再算乘除,最后算加减,同级运算,应按从左到右的顺序进行计算;(5)先算乘方与绝对值,再算除法,最后算加减即可;(6)先算乘方与括号内的运算,再算乘除,最后算加减即可.【解答】解:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7=﹣19;(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨=2﹣3﹣﹣7=﹣8;(3)=×(﹣12)+×(﹣12)﹣×(﹣12)﹣×(﹣12)=﹣6﹣8+9+10=5;(4)﹣(﹣1)+32÷(1﹣4)×2=1+9÷(﹣3)×2=1﹣6=﹣5;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷()=﹣1﹣|2﹣9|×(﹣2)=﹣1﹣7×(﹣2)=﹣1+14=13;(6)﹣22×÷[4÷()2﹣1]+(﹣1)2=﹣4×÷(4×﹣1)+1=﹣4×÷(9﹣1)+1=﹣4×÷8+1=﹣+1=.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、解答题(本大题共6小题,共52分)20.【分析】在一个大正方体的上面的一个角上挖出一个棱长2cm的小正方体,那么它的表面积没有发生变化;用原大正方体的体积减去小正方体的体积就得到余下部分的体积.据此解答即可.【解答】解:余下部分的体积:10×10×10﹣2×2×2=1000﹣8=992(cm3);表面积:10×10×6=600(cm2);答:余下部分的体积是992cm3,表面积是600cm2.【点评】此题主要考查了几何体的表面积与体积求法,解答此题的关键是根据挖出立方体后的表面积不变,以及减少的体积;再利用长方体和正方体的表面积和体积公式即可解答.21.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣|﹣4|<﹣<0<﹣(﹣1)<(﹣2)2.【点评】本题考查了数轴和有理数的大小比较的应用,能熟记有理数大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.22.【分析】利用相反数,绝对值,以及倒数的性质求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:x+y=0,ab=1,c=±1,即c2=1,则原式=0﹣1+2=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.【分析】(1)根据有理数的加法运算,看其结果的正负即可判断其位置;(2)根据绝对值的定义列式计算即可;(3)根据题意列式计算即可.【解答】解:(1)+9+(﹣3)+(﹣5)+(+4)+(﹣8)+(+6)+(﹣3)+(﹣6)+(﹣4)+(+10)=0,所以将最后一名乘客送到目的地,出租车回到了商场处,答:将最后一名乘客送到目的地回到了商场处.(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=58.答:这天上午出租车总共行驶了58km.(3)58×2.5﹣58×0.08×6.5=114.84(元),答:那么这半天出租车盈利了114.86元.【点评】本题主要考查了有理数的加减乘除混合运算,注意正负数的意义,熟练掌握运算法则是解题的关键.24.【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.【点评】此题考查了简单几何体的三视图及几何体的表面积的计算,解答本题的关键是掌握三视图的观察方法,在计算表面积时容易出错,要一个面一个面的进行查找,避免遗漏,有一定难度.25.【分析】(1)由两点之间的距离公式可得答案;(2)由两点之间的距离公式可得答案;(3)当丨x﹣2丨+丨x+4丨取最小值时,x的范围是﹣4≤x≤2;(4)设运动时间是t秒,可得|﹣1+2t﹣(3+0.5t)|=3,即可解得A表示的数是或.【解答】解:(1)数轴上表示1和3两点之间的距离是|1﹣3|=2,数轴上表示﹣12和﹣6的两点之间的距离是|﹣12﹣(﹣6)|=6,故答案为:2,6;(2)数轴上表示x和﹣4的两点之间的距离表示为|x﹣(﹣4)|=|x+4|,故答案为:|x+4|;(3)当丨x﹣2丨+丨x+4丨取最小值为|2﹣(﹣4)|=6时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和2+1+0+(﹣1)+(﹣2)+(﹣3)+(﹣4)=﹣7,故答案为:6,﹣7;(4)设运动时间是t秒,则运动后A表示的数是﹣1+2t,B运动后表示的数是3+0.5t,根据题意得|﹣1+2t﹣(3+0.5t)|=3,即1.5t﹣4=3或1.5t﹣4=﹣3,解得t=或t=,∴﹣1+2t=﹣1+2×=或﹣1+2t=﹣1+2×=,∴A表示的数是或.【点评】本题考查数轴上两点间的距离,解题的关键是读懂题意,能求出数轴上任意两点间的距离.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
七年级数学上学期第一次月考试题-初中一年级数学试题练习、期中期末试卷-初中数学试卷
七年级数学上学期第一次月考试题-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载七年级数学上学期第一次月考试题亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一.选择题(每小题3分,共30分)1.零是A正有理数B正数C非正数D有理数2.下列说法不正确的是A0小于所有正数B0大于所有负数C0既不是正数也不是负数D0没有绝对值3.数轴上,原点及原点右边的点所表示的数是A正数B负数C非正数D非负数4.下列说法正确的是A正数和负数互为相反;B a的相反数是负数C相反数等于它本身的数只有0D 的相反数是正数5若两个数的和为正数,则这两个数A 至少有一个为正数B只有一个是正数C有一个必为0D都是正数6.若,则的值A是正数B是负数C是非正数D是非负数7.一个有理数的平方一定是A是正数B是负数C是非正数D是非负数8.下列说法正确的是A0.720有两个有效数字B 3.6万精确到个位C 5.078精确到千分位D3000有一个有效数字9.下列各组数中,数值相等的是A32和23; B -23和(-2)3C-32和(-3)2;D —(3×2)2和-3×2210.据不完全统计,2004年F1上海分站赛给上海带来的经济收入将达到美元,用科学记数法可表示为A、B、C、D、二.填空题(每小题2分,共20分)11.某蓄水池的标准水位记为0m,如果水面高于标水位0.23m表示为+0.23m,那么,水面低于标准水位0.1m表示为;12.写出3 个小于-1000并且大于-1003的数。
13.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是。
14.相反数等于它本身的数是。
15. -3.5的倒数是。
16.绝对值等于10的数是。
17.式子-62的计算结果是。
18.数轴上,如果点A表示-,点B表示-,那么离原点较近的点是。
人教版(五四学制)2022-2023学年七年级数学上册第一次月考测试题(附答案)
2022-2023学年七年级数学上册第一次月考测试题(附答案)一、选择题(共30分)1.下列方程中,一元一次方程的是()A.3y+1=6B.x+3>7C.=3x D.3a﹣42.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1C.ax=﹣ay D.3﹣ax=3﹣ay 3.下列方程变形中,正确的是()A.方程﹣=1化成3x=6B.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2C.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1D.方程t=,未知数系数化为1,得t=14.已知x=﹣3是方程k(x+4)﹣x=5的解,则k的值是()A.﹣2B.2C.3D.55.若代数式x﹣的值是2,则x的值是()A.0.75B.1.75C.1.5D.3.56.在一张日历表中,任意圈出一个竖列上相邻的三个数,它们的和不可能是()A.60B.39C.40D.577.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必须答对的题数是()A.6B.7C.8D.98.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.22+x=2×26B.22+x=2(26﹣x)C.2(22+x)=26﹣x D.22=2(26﹣x)9.一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数小9,则原两位数是()A.45B.27C.72D.5410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元二、填空题(共计30分)11.已知x5m﹣4+=2是关于x的一元一次方程,那么m=.12.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.13.x与5的和的2倍等于x的3倍”,用方程表示数量关系为.14.x=时,式子与互为相反数.15.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为.17.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.甲车速度120千米/时,乙车速度为105千米/时,经过小时两车相遇.18.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(﹣3x)=29,则x 值为.19.有一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,⋯.其中某三个相邻数的和是﹣567,这三个数中的第一个数是.20.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船6h,已知船在静水中的速度是16km/h,水流速度是4km/h,若A、C两地距离为4km,则A、B两地间的距离是km.三、解答题(共计60分)21.解方程:(1)3x+7=32﹣2x;(2)4x﹣3(20﹣x)+4=0;(3);(4)=2﹣.22.当m等于多少时,代数式的值比代数式的值大5.23.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?24.如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么原正方形的面积是多少?25.某商场在“十一”黄金周投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)为了促销,该商场将甲种矿泉水打九折,乙种矿泉水打八五折出售.这样,500箱矿泉水在“十一”黄金周结束时全部售完,该商场可获得利润多少元?26.定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).如a =13个位数字与十位数字对调后的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现是否正确?如果正确,说明理由;如果不正确,举出反例.27.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:规格(升/桶)价格(元/桶)大桶装18225小桶装590小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?参考答案一、选择题(共30分)1.解:A.方程3y+1=6是一元一次方程,故本选项符合题意;B.x+3>7是不等式,不是方程,不是一元一次方程,故本选项不符合题意;C.方程=3x是分式方程,不是整式方程,不是一元一次方程,故本选项不符合题意;D.3a﹣4不是方程,不是一元一次方程,故本选项不符合题意;故选:A.2.解:A、如果ax=ay,当a≠0时,x=y,故此选项不合题意;B、如果ax=ay,ax+1=ay+1,故此选项不合题意;C、如果ax=ay,则ax≠﹣ay,故此选项不合题意;D、如果ax=ay,则3﹣ax=3﹣ay,故此选项符合题意;故选:D.3.解:A:方程﹣=1化成3x=6,故本选项符合题意;B:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项不符合题意;C:方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项不符合题意;D:方程t=,未知数系数化为1,得t=,故本选项不符合题意.故选:A.4.解:把x=﹣3代入k(x+4)﹣x=5,得:k×(﹣3+4)+3=5,解得:k=2.故选:B.5.解:∵代数式x﹣的值等于2,∴x﹣=2,∴3x﹣1﹣x=6,∴x=3.5.故选:D.6.解:设一个竖列上中间数为x,在上面一个为(x﹣7),下面一个为x+7,由题意得:x+7+x+x﹣7=3x,因此所得和一定是3的倍数,四个选项中只有C不是3的倍数,故选:C.7.解;设答对的题数为x道,则不答或答错的有(10﹣x)道故:5x﹣3(10﹣x)=34解得:x=8.故选:C.8.解:设抽调x人,则调后一组有(22+x)人,由题意得:(22+x)=2(26﹣x),故选:B.9.解:设原数的个位数字是x,则十位数字是9﹣x.根据题意得:10x+(9﹣x)=10(9﹣x)+x+9,解得:x=5,9﹣x=4,则原数为54.故选:D.10.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.二、填空题(共计30分)11.解:由一元一次方程的特点得5m﹣4=1,解得:m=1.故填:1.12.解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.13.解:根据题意得,2(x+5)=3x,故答案为:2(x+5)=3x.14.解:∵式子与互为相反数,∴+=0,解得x=.故答案为:.15.解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5),解得:x=20,即乙现在的年龄是20岁.故答案为:20岁.16.解:∵4x+3=7解得:x=1将x=1代入:3x﹣7=2x+a得:a=﹣6.故答案为:﹣6.17.解:设经过x小时相遇,根据题意得,(120+105)x=450,解得x=2,故答案为:2.18.解:由题意得2(5x﹣3)﹣3(﹣3x)=29,10x﹣6+9x=29,10x+9x=29+619x=35,x=,故答案为:.19.解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.20.解:①C地在A地上游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=42.5,②C地在A地下游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=47.5,故答案为:42.5或47.5.三、解答题(共计60分)21.解:(1)3x+7=32﹣2x,3x+2x=32﹣7,5x=25,x=5;(2)4x﹣3(20﹣x)+4=0,4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8;(3)去分母得:3(3x+5)=2(2x﹣1),9x+15=4x﹣2,9x﹣4x=﹣2﹣15,5x=﹣17,x=﹣3.4;(4)去分母得:4(5y+4)+3(y﹣1)=24﹣(5y﹣3),20y+16+3y﹣3=24﹣5y+3,20y+3y+5y=24+3﹣16+3,28y=14,y=.22.解:由题意得﹣=5,去分母,得3(3m+5)﹣7(m﹣8)=5×21,去括号,得9m+15﹣7m+56=105,移项,得9m﹣7m=105﹣56﹣15,合并同类项,得2m=34,系数化为1,得m=17,∴当m等于17时,代数式的值比代数式的值大5.23.解:设分配x名工人生产螺钉,y名工人生产螺母,根据题意,得:,解之得.答:分配10名工人生产螺钉,12名工人生产螺母.解法二:设分配x名工人生产螺钉,(22﹣x)名工人生产螺母,根据题意,得:2400x=2000(22﹣x),解得x=10,22﹣10=12,答:分配10名工人生产螺钉,12名工人生产螺母.24.解:设正方形的边长为xcm,由题意可知:5(x﹣4)=4x,解得x=20,∴该正方形的面积为:202=400(cm2),答:原正方形的面积是400cm2.25.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)由题意可得:(36×0.9﹣24)×300+(48×0.85﹣33)×200=4080(元).答:该商场可获得利润4080元.26.解:(1)S(43)=(43+34)÷11=7,故答案为:7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得:k=4,∴2(k﹣1)=6,∴相异数y是46;(3)正确;理由如下:设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=55,即:a+b=5,因此,判断正确.27.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.。
七年级初一数学上册第一次月考试卷3套(含答案)
A.1.5×103B.15×103C.1.5×104D.15×104
4下列各式运算正确的是()
A. B. C. D.
卷Ⅱ(时量:20分钟总分:20分)
1.(2分)比较大小: (用“>、<或者=”填空)
2.(2分)如果a,b,c,d均不为零,则 .
3.(8分)计算与化简:
(1) (2)
(3) (4)化简:
4.(3分)2020加上它的 得到一个数,再加上所得的数 的又得到一个数,再加上这次得数的 又得到一个数,...,以此类推,一直加到上一次得数的 .最后得到的数是多少?
A. B. C. D.
10.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()
A. A B. B C. C D. D
第9题图第10题图
二、填空题(共8小题,每题3分)
11.比较大小: (填“>”或“<”)
负有理数数集合:{...};
正分数集合:{...};
自然数集合:{...};
非正整数集合:{...};
20.(15分)计算:
(1) (2)
(3) (4)
(5)
21.(6分)已知ab互为倒数,c能够使得 有最小值, ,且 ,求 的值。
22.(8分)121路公交车沿东西方向行驶,如果把车站的起点记为原点0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表
数学初一上册第一次月考试卷
数学初一上册第一次月考试卷一、选择题(每题3分,共30分)1. -5的相反数是()A. 5B. -5C. (1)/(5)D. -(1)/(5)2. 下列各数中,是正数的是()A. 0B. -1C. (1)/(2)D. -(1)/(3)3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 - 3D. 6或 - 6。
4. 计算:(-2)+3的结果是()A. -1B. 1C. -5D. 5.5. 把(-2)-(+3)-(-5)+(-4)写成省略括号的和的形式是()A. -2 - 3 + 5 - 4B. -2 + 3 + 5 - 4.C. -2 - 3 - 5 - 4D. -2 + 3 - 5 + 4.6. 计算-3×2的结果是()A. -6B. 6C. -5D. 5.7. 一个数的倒数是它本身,这个数是()A. 1B. -1C. 1或 - 1D. 0。
8. 比较大小:-2___-3()A. >B. <C. =D. 无法确定。
9. 若a = 5,则a的值是()A. 5B. -5C. 5或 - 5D. 0。
10. 下列计算正确的是()A. 2^3=6B. -4^2=16C. (-1)^5=-1D. (-2)^4=-16二、填空题(每题3分,共15分)1. 如果向东走5米记作+5米,那么向西走3米记作___米。
2. 绝对值最小的数是___。
3. 计算:(-1)+(-2)+(-3)=___。
4. 某天的最高气温是5℃,最低气温是 - 3℃,这天的温差是___℃。
5. 一个数与 - 2的乘积是10,则这个数是___。
三、解答题(共55分)1. (8分)计算:(-5)+(-8)6 - (-3)2. (8分)计算:(-4)×(-3)8÷(-2)3. (9分)计算:(-2)+3 - 5+44. (10分)某冷库的温度是 - 16℃,下降5℃后,又下降3℃,求两次变化后的冷库温度。
七年级数学(上)第一次月考试卷-初中一年级数学试题练习、期中期末试卷-初中数学试卷
七年级数学(上)第一次月考试卷-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载七年级数学(上)第一次月考试卷班级姓名座号成绩一.填空题(每空2分,共26分)1、五棱柱是由个面围成的,侧面是_______形,上、下底面是形状相同的______边形。
2、用平面去截一个正方体,其截面的边数最多为_______边形.。
3、如图1-11所示,左面三个平面图形中的______是右面这个物体的主视图.4、将等腰三角形、直角三角形、长方形、梯形这四个图形经过旋转,能形成圆锥的是__________。
5、-的相反数是。
6、如果—300表示支出300元,那么+200元表示。
7、在数轴上大于-2且小于2的整数有。
8,数轴上一点到原点距离为5,那么这点所表示的数是。
9、某天早晨的气温是-5℃,中午上升了9℃,半夜后下降了8℃,则半夜的气温是_________。
10、用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要个立方块。
二、选择题(每题3分,共21分)1,下列语句:①,一个数的绝对值一定是正数;②,—a一定是一个负数;③,没有绝对值为—3的数;④,若=a,则a是一个正数;⑤,离原点左边越远的数就越小。
正确的有()个。
A、0B、3C、2D、42、两个有理数的和是负数,那么这两个数一定是()A、都是负数B、一个是正数一个是负数C、有一个是零D、其中绝对值较大的数是负数3、把写成省略加号的和式,正确的是()A、B、C、D、4.底面半径为2,高为3的圆柱体,它的表面积为()(结果保留π)A.12πB.20πC.24πD.28π5.把棱长为a的正方体摆成图1-18所示的形状,从上向下数,第一层1个,第二层3个,…按这种规律摆放,第五层的正方体的个数是()A.10B.12C.15D.206、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱7、下列平面图形中不能围成正方体的是()A、B、C、D、三、解答题:(共53分)1、计算:(每题4分,共24分)①、()+()②、3-(-9)+(-1)③、④、⑤、22.54+(-4.4)+(-12.54)+4.4⑥、2、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
七年级数学第一学期第一次月考试卷-初中一年级数学试题练习、期中期末试卷-初中数学试卷_1
七年级数学第一学期第一次月考试卷-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载七年级数学第一学期第一次月考试卷初一数学一、判断题(每题2分,共10分)1. 正数的绝对值大于负数的绝对值.()2. 负有理数的奇数次方一定是负有理数.()3. 若一个数的倒数等于它本身,则这个数一定是1.()4. .()5. 如果,则.()二、填空题(每题3分,共42分)6. 的倒数是,相反数是;7. 如果从大润发向正东走100,记为+100,那么小张、小李、小王分别从广润发出发,走了、、,则小张在小李的(填“正东”或“正西”)方向上,小张和小王之间的距离是;8. 有理数a、b,规定运算:=,则2=;9. 已知a、b互为相反数,c、d互为倒数,那么;10. 单项式的系数是,次数是;11. 如果,那么;12. 与的大小关系是:;13. 已知数轴上点A表示的数是,若点B到A的距离为3,则点B表示的数为;14. 用科学记数法表示:地球的表面积约是510 000 000=;15. 绝对值大于且小于5的所有整数的和是;16. 如图所示是计算机程序计算,若开始输入,则最后输出的结果是;17. 用我们学过的运算将3,4,,10凑成24,算式为;18. 北京与纽约的时差为(负号表示同一时刻纽约时间比北京晚),如果现在是北京时间15:00,那么纽约时间是;19.下图是由若干个花盆组成的形如三角形的图案,每条边(包括顶点)有n(n1)盆花,每个图案花盆总数为s,按此规律推断n=2,s=3n=3,s=6n=4,s=10则s与n的关系式为。
三、选择题(每小题3分,共30分)题号20212223242526272829答案20. 零是()A. 最大的非正有理数B. 最小的整数C. 最小的非正有理数D. 最小的有理数21. 同号两数相加时,和的符号()A. 取“+”号B. 取“-”号C. 取与加数相同的符号D.以上都不对22. 下列各式错误的是()A.B.C. D.23. 为有理数,下列式子中一定大于0的数是()A. B.C.D.24. 大于-3.9而小于3.9的整数有()A. 5个B. 6个C. 7个D. 6个25. ,,的大小顺序是()A.B.C. D.26. 在数,,,,中非负数有()A. 3个B. 2个C. 1个D. 0个27. 根据图中提供的信息,可知一个杯子的价格是()A. 51元B. 35元C. 8元D. 7.5元28. 将一圆形纸对折后再对折,得到如图所示的图形,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()(A)(B)(C)(D)29.将正整数1,2,3,4……按以下方式排列14→58→912→……↓↑↓↑↓↑2→36→710→11根据排列规律,从2006到2008的箭头依次为()A. ↓ →B. → ↑C. ↑ →D. → ↓四、解答题(30题共36分,31题8分)30. 计算:(每小题6分,共36分)(1)(2)(3)(4)(用简便方法计算)(5)(6)31. 已知:,求的值;五、探索研究(32题10分,33题14分)32. 观察下图:(1)图中的点被线段隔开分成了四层,则第1层有1个点,第2层有3个点,第三层有点,第4层有点。
七年级(上)第一次月考数学试卷(部分附答案)共3份
初一上学期数学试题一、选择题(每题3分,共36分)把答案填在表格里写在别处无效若今天的气温上升3℃记作+3℃,那么气温下降5℃记作( )A 、 5B 、 -5C 、 5℃D 、 -5℃有理数 31- 的相反数是( ) A 、31B 、 3 C 、-3 D 、31-有理数 -2 的倒数是( )A 、21B 、21-C 、 2 D 、-24、6的绝对值是( )A 、6B 、﹣6C 、D 、﹣5、下列各图中是数轴的是( )6、7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )与 加法交换律 B .加法结合律C .分配律D .加法的交换律与结合律7、计算13--结果正确的是( )A.4B.2C.-2D.-48、计算:=÷÷-251515( )A.—1B.1C. —25D. —6259、 下来各数–2,+3.5,0,32-,–0.7,-21-中.负分数有( )A 、l 个B 、2个C 、3个D 、4个10、下列说法不正确的是( )A 、0既不是正数,也不是负数B 、0的绝对值是0C 、一个有理数不是整数就是分数D 、1是绝对值最小的正数11、若|x|=4,且x+y=0,那么y 的值是( )A .4B .﹣4C .±4D .无法确定12、已知,0=+bb a a 有以下结论: ①b a ,一定互为相反数;②;0<ab ③;0<+b a④,1-=abab 其中正确的是( ) A 、1个 B 、2个 C 、3个 D 、4个二、填空题(13和20每题3分,14――19每题2分共18分)13、用“>”、“<”、“=”号填空:共43___54 (2)14.3___722-- (3)][)75.0(___)43(-+---14、绝对值不大于4.5的所有整数的积为________15、计算(-6)51÷×72)67(⨯-= ________ 16、已知a ,b 互为相反数,c 与d 互为倒数,则a ﹣cd+b=________17、 如图a 、b 是数轴上的两个数,比较a 、-a 、b 、-b 的大小是18、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是_________19、用简便方法计算:=-⨯)(525249920、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第673个图案中的基础图形个数为 个三、解答题(共46分)21、(5分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3, 212,-l.5,622、把下列各数分别填入相应的(每空2分共8分)3121121112.07223.114.302∏---•,,,,,,(1)正数集合: { …};共 负数集合: { …};共 整数集合: { …};(4)有理数集合:{ …}.23、计算 :(每小题2分共8分)(1) (-9)-(-9) (2) (-9)-9(3) )(41855.2-⨯÷-(4)24、计算: (每个小题3分共15分) (1)()⎪⎭⎫ ⎝⎛++--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3175.03110437(2)763676337634⨯--⨯--⨯)()((3) )()()(21143216127-÷⨯-⨯-(4))()(3611814192-÷+-(5) )()(4.03119145-+⨯-25、(4分)计算:13125231282313213129---26、(6分)请先阅读下列一组内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯ )()()()(10191...41313121211-++-+-+-= 10191...41313121211-++-+-+-= 1911010=-= 问题:计算: ①202120201...431321211⨯++⨯+⨯+⨯② 11111335574951+++⋯+⨯⨯⨯⨯答案七年级(上)第一次月考数学试卷(附答案)一.选择题(10x2=20分)1.(3分)下列平面图形不能够围成正方体的是()A.B.C.D.2.(3分)用一个平面去截一个几何体,截面是圆,则原几何体可能是()A.正方体B.圆柱C.棱台D.五棱柱3.(3分)有理数﹣3,0,20,﹣1.25,1.75,﹣|﹣12|,﹣(﹣5)中,负数有()A.1个B.2个C.3个D.4个4.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg5.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.(3分)比较的大小,结果正确的是()A.B.C.D.7.(3分)如图,是由一些相同的小正方形构成的几何体的三视图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.无法确定8.(3分)若x<0,y>0时,x,x+y,y,x﹣y中,最大的是()A.x B.x+y C.x﹣y D.y9.(3分)已知|a|=5.|b|=2,且a、b异号,则a+b的值为()A.3B.3或﹣3C.±3,±7D.7或﹣7 10.(3分)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q二、填空题(3x6=18分)11.(3分)假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了.12.(3分)吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.13.(3分)点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.14.(3分)如果a、b互为倒数,c、d互为相反数,且m=﹣1,则式子2ab﹣(c+d)+|m|=.15.(3分)若表示运算x+z﹣(y+w),则的结果是.16.(3分)若|a﹣3|=4,则a=.三、计算题(5x6=30分)17.(30分)(1)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12);(3)(﹣3)+(+)+(﹣0.5)++3;(4)简便运算:(﹣301)+125+301+(﹣75);(5)27﹣18+(﹣7)﹣32;(6)15﹣(+5)﹣(+3)+(﹣2)﹣(+6).四、解答题(4×8=32分)18.(8分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你而出它从正面和从左面看到的形状图.(1)请画出它从正面看,左面看的形状图;(2)若小立方体边长为1.则它的表面积为.19.(8分)出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?20.(8分)某个体儿童服装店老板以每件30元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以46元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:售出件数763545售价/元+3+2+10﹣1﹣2问服装店老板在售完这30件连衣裙后,赚了多少钱?21.(8分)在数轴上有三个点A,B,C,回答下列问题:(1)若将B点向右移动10个单位后到点D,点A、C、D三个点所表示的数中,最小的数是为;(2)在数轴上找一点E,使E点到B、C两点的距离相等,则E点表示的数为;(3)在数轴上找一点F,使点F到点A的距离是到点B的距离的2倍,则F点表示的数为.2020-2021学年辽宁省沈阳市皇姑区虹桥中学七年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(10x2=20分)1.(3分)下列平面图形不能够围成正方体的是()A.B.C.D.【分析】直接利用正方体的表面展开图特点判断即可.【解答】解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.2.(3分)用一个平面去截一个几何体,截面是圆,则原几何体可能是()A.正方体B.圆柱C.棱台D.五棱柱【分析】根据正方体、圆柱、棱台、五棱锥的形状特点判断即可.【解答】解:∵用一个平面去截一个几何体,截面形状有圆,∴这个几何体可能是圆柱.故选:B.3.(3分)有理数﹣3,0,20,﹣1.25,1.75,﹣|﹣12|,﹣(﹣5)中,负数有()A.1个B.2个C.3个D.4个【分析】把各式化简得,﹣3,0,20,﹣1.25,1.75,﹣|﹣12|=﹣12,﹣(﹣5)=5;所以负数共有3个.【解答】解:负数有﹣3,﹣1.25,﹣|﹣12|=﹣12;共3个.故选:C.4.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【分析】根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.5.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.6.(3分)比较的大小,结果正确的是()A.B.C.D.【分析】根据有理数大小比较的方法即可求解.【解答】解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选:A.7.(3分)如图,是由一些相同的小正方形构成的几何体的三视图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.无法确定【分析】综合三视图,几何体的底层应该有2+1=3个小正方体,第二层应该有1个小正方体,因此小正方体的个数有4个【解答】解:根据三视图的知识,几何体的底面有3个小正方体,该几何体有两层,第二层有1个小正方体,共有4个,故选:A.8.(3分)若x<0,y>0时,x,x+y,y,x﹣y中,最大的是()A.x B.x+y C.x﹣y D.y【分析】根据x<0,y>0,可得x﹣y<x<x+y<y,据此求解.【解答】解:∵x<0,y>0,∴x﹣y<x<x+y<y,最大的数为y.故选:D.9.(3分)已知|a|=5.|b|=2,且a、b异号,则a+b的值为()A.3B.3或﹣3C.±3,±7D.7或﹣7【分析】先根据绝对值的性质求出a、b的值,再根据a、b异号讨论a、b的值,代入代数式进行计算.【解答】解:∵|a|=5,|b|=2,∴a=±5,b=±2,∵a、b异号,∴当a=5时,b=﹣2,此时原式=5﹣2=3,当a=﹣5时,b=2,此时原式=﹣5+2=﹣3,故选:B.10.(3分)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选:C.二、填空题(3x6=18分)11.(3分)假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了点动成线.【分析】根据点动成线解答.【解答】解:笔尖在纸上移动时,就能画出线,说明了点动成线.故答案为:点动成线.12.(3分)吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高2055m.【分析】根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.【解答】解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米;∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米).13.(3分)点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为﹣9.【分析】根据数轴上点的运动规律“左减右加”解答此题.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.14.(3分)如果a、b互为倒数,c、d互为相反数,且m=﹣1,则式子2ab﹣(c+d)+|m|=3.【分析】根据倒数和相反数的定义得到ab=1,c+d=0,然后利用整体代入的方法和绝对值的意义求代数式的值.【解答】解:根据题意得ab=1,c+d=0,而m=﹣1,所以原式=2×1﹣0+|﹣1|=2+1=3.故答案为3.15.(3分)若表示运算x+z﹣(y+w),则的结果是9.【分析】由题意列出代数式可得3+(﹣1)﹣(﹣5﹣2),即可求解.【解答】解:原式=3+(﹣1)﹣(﹣5﹣2)=2+7=9,故答案为:9.16.(3分)若|a﹣3|=4,则a=7或﹣1.【分析】根据互为相反的绝对值相等列式,然后求解即可.【解答】解:∵|a﹣3|=4,∴a﹣3=4或a﹣3=﹣4,解得a=7或a=﹣1.故答案为:7或﹣1.三、计算题(5x6=30分)17.(30分)(1)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12);(3)(﹣3)+(+)+(﹣0.5)++3;(4)简便运算:(﹣301)+125+301+(﹣75);(5)27﹣18+(﹣7)﹣32;(6)15﹣(+5)﹣(+3)+(﹣2)﹣(+6).【分析】根据有理数加减混合运算的方法解答.【解答】解:(1)==4.5;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣8﹣9+15+12=10;(3)===;(4)(﹣301)+125+301+(﹣75)=﹣301+301+125﹣75=50;(5)27﹣18+(﹣7)﹣32=27﹣7﹣18﹣32=20﹣50=﹣30;(6)==15﹣8﹣10=﹣3.四、解答题(4×8=32分)18.(8分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你而出它从正面和从左面看到的形状图.(1)请画出它从正面看,左面看的形状图;(2)若小立方体边长为1.则它的表面积为44.【分析】(1)根据俯视图以及俯视图中每个位置所摆放的小立方体的个数,看画出其主视图和左视图;(2)根据三视图的面积以及被挡住的面继续计算即可.【解答】解:(1)由俯视图,可以得出以下主视图、左视图:(2)(8+6+7)×2+2=44,故答案为:44.19.(8分)出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?【分析】(1)根据有理数的加法运算,可得距出发点多远:(2)根据行车路程×单位耗油量,可得总耗油量.【解答】解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.20.(8分)某个体儿童服装店老板以每件30元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以46元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:售出件数763545售价/元+3+2+10﹣1﹣2问服装店老板在售完这30件连衣裙后,赚了多少钱?【分析】由题意列出代数式可求解.【解答】解:由题意可得:7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)+(46﹣30)×30=22+480=502(元),答:服装店老板在售完这30件连衣裙后,赚了502元.21.(8分)在数轴上有三个点A,B,C,回答下列问题:(1)若将B点向右移动10个单位后到点D,点A、C、D三个点所表示的数中,最小的数是为﹣1;(2)在数轴上找一点E,使E点到B、C两点的距离相等,则E点表示的数为﹣1.5;(3)在数轴上找一点F,使点F到点A的距离是到点B的距离的2倍,则F点表示的数为﹣或﹣9.【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点E是线段BC的中点;(3)分两种情况讨论,由两点距离公式可求解.【解答】解:(1)点D表示的数为﹣5+10=5,∵﹣1<2<5,∴三个点所表示的数最小的数是﹣1;(2)点E表示的数为(﹣5+2)÷2=﹣3÷2=﹣1.5;(3)设点F表示的数为x,当点F在A、B之间时,由题意可得:﹣1﹣x=2(x+5),∴x=﹣,当点F在点B左侧时,由题意可得:﹣1﹣x=2(﹣5﹣x)∴x=﹣9,∴点F表示的数为:﹣或﹣9,故答案为:﹣1,﹣1.5,﹣或﹣9.2020-2021学年度第一学期第一次阶段性测试七年级数学(无答案)一、选择题1.2-的相反数是( )A .2-B .2C .12D .12- 2.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是( )℃A .14-B .2-C .4D .10 3.在13-,120, 3.14-,0,2-,235中,整数有( ) A .1个B .2个C .3个D .4个 4.把()()()()14362--+--+-++写成省路加号的和的形式,正确的是( )A .14362----+B .14362-++-+C .14362--+-+D .14362---++5.在2,2-,3-这三个数中,任意两效之和的最大值是( )A .0B .1-C .5D .5-6.一种面粉的质量标识为“250.25±千克”,则下列面粉中合格的有( )A .25.51千克B .25.30千克C .24.80千克D .24.70千克7.若8a =,5b =,且a b >,则a b +的值是( )A .13或3B .13C .3D .13,3,13-,3-8.有理数a 、b 在数轴上的表示如图所示,那么( )A .b a ->B .a b -<C .b a >D .a b >9.下列各对数中,相等的是( )A .34⎛⎫- ⎪⎝⎭和0.75-B .()0.2+-和15⎛⎫-+ ⎪⎝⎭C .1100⎛⎫-+ ⎪⎝⎭和()0.01--D .135⎛⎫-- ⎪⎝⎭和165⎛⎫-+ ⎪⎝⎭10.有理数m ,n 在数轴上对应点的位置如图所示,则m ,m -,n ,n -,0的大小关系是( )A .0n n m m <-<<-<B .0n m n m <-<<-<-C . 0n m m n <-<<<-D .0n m m n <<-<<-二.填空题(每题3分,共18分)1.绝对值等于5的效是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册第一次月考测试卷-初中一年级数学试题练习、期中期末试卷、测验题、复
习资料-初中数学试卷-试卷下载
七年级数学上册第一次月考测试卷
一、选择题(每小题3分,共36分)注意:请将你认为正确的结论前的字母填在表格中
题号
1
2
3
4
5
6
7
8
9
10
11
12
结论
1.3的相反数是()
A.-3
B.+3C.0.3
D.
2.下列四个数中,在-2到0之间的数是()
A.-1
B.1
C.-3D.3
3.在下列数-,+1,6.7,-14,0,,-5 ,25% 中,属于整数的有()
A.2个B.3个C.4个D.5个
4.下列说法不正确的是()
A.0既不是正数,也不是负数
B.1是绝对值最小的数
C.一个有理数不是整数就是分数D.0的绝对值是0
5.据联合国近期公布的数字,我国内地吸引外来直接投资已居世界第四,1980-2002年期间,吸引外资累计为4880亿美元,用科学记数法表示正确的是________亿美元。
A.B.
C.
D.
6.一个数的相反数比它的本身大,则这个数是()
A.正数
B.负数
C.0
D.负数和0
7.下列结论正确的是(
)
A.两数之和为正,这两数同为正
B.两数之差为负,这两数为异号
C.几个数相乘,积的符号由负因数的个数决定
D.正数的任何次幂都是正数,负数的偶次幂是正数
8.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()
A. c>a>0>b;
B. a>b>0>c ;
C. b>0>a >c;
D. b>0>c>a
9.下列比较大小正确的是()
A.
B.
C.
D.
10.若,则有理数为()
A、正数
B、负数
C、非负数
D、负数和零
11.若x是有理数,则下列各数中一定是正数的是()
A.
B.C.D.
12.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京。
根据以上规定,扬州开往北京的某一直快列车的车次号可能是()
A、20
B、119
C、120
D、319
二、填空题(每题4分共32分)
13.-5的倒数是。
14.把(+4)-(-6)-(+8)+(-9)写成省略加号的和的形式为。
15.用科学记数法表示:630000=。
16.绝对值小于10的所有整数的和为。
17.如果正午记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为__。
18.规定a﹡b=5a+2b-1,则(-4)﹡6的值为。
19.现有黑色三角形“▲”和“▲”共200个,按照一定规律排列如下:
▲▲▲▲▲▲▲▲▲▲▲▲▲……。
则黑色三角形有个。
20.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点处,第二次从点跳动到O的中点处,第三次从点跳动到O的中点处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为。
三、解答题
21.在数轴上把下列各数表示出来,并用“<”连接各数。
(共6分)
,,,,,,
22.计算题(每题6分,共36分)
(1)
(2)
(3)(4)
(5)(6)—99×36(用简便方法计算)
23.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个)。
若经过4小时,100个这样的细菌可分裂成多少个?
(8分)
24.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶纪录如下(单位:千米)(8分)
+10,-9,+7,-15,+6,-14,+4,-2
1)A在岗亭何方?距岗亭多远?
2)若摩托车行驶1千米耗油0.5升,这一天共耗油多少升?
25.气象统计资料表明浙西南地区,当高度每增加100米,气温就降低大约0.6▲。
小明和小林为考证“校本”教材中有关浙南第一高峰白云尖(位于泰顺县乌岩岭国家保护区)的海拔高度。
国庆期间他俩进行实地测量,小明在山下一个海拔高度为11米的小山坡上测得气温为24▲,小林在“白云尖”最高位置测得气温为14.4▲,那么你知道“白云尖”的海拔高度是多少米吗?请列式计算。
(8分)
26.观察下面的点阵图和相应的等式,探究其中的规律:(6分)
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)根据上面算式的规律,请计算:1+3+5 (99)。
27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。
它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。
如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(共10分)
B
C
D
(1)A→C(,),B→C(,),
C→
(+1,);(6分)
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(2分)
(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置。
(2分)
A
欢迎下载使用,分享让人快乐。