初中数学规律题应用汇总

合集下载

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

初中数学找规律题

初中数学找规律题

探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码〔又叫数字〕:0,1,2,3,4,5,6,7,8,9。

在电子数字电脑中用的是二进制,只要两个数码:0和1。

如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。

2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数〔即当最后一个奇数是19时〕,它们的和是 。

3、小王利用电脑设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…那么,当输入数据是8时,输出的数据是〔 〕 A 、618 B 、638 C 、658 D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。

6、如以下列图是用棋子摆成的“上”字:(1)(2)(3)第4题第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:〔1〕第四、第五个“上” 字分别需用 和 枚棋子;〔2〕第n 个“上”字需用 枚棋子。

7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据以下5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3n =4n =5……数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总

初中数学数列找规律题技巧汇总
数列找规律是初中数学中的重要知识点,也是高中数学的基础。

以下是数列找规律题的一些技巧汇总:
1. 找通项公式
在数列中,如果我们能找到通项公式,就能根据公式求出任意
一项或多项的值。

找通项公式的方法有很多,如通过递推公式、差
分法、倍差法、画图法等。

2. 找首项和公差
如果数列是等差数列,可以通过找到首项和公差,从而求得任
意一项的值。

一些数列也可以通过等比数列的特点来求解。

3. 运用数学方法
有些数列的规律需要用到数学方法才能找出来,如利用余数、
最大公约数、质因数分解等。

4. 找规律
在找规律题中,找规律也是很重要的一步。

可以先列出前几项,观察它们之间的关系,找出规律后再利用规律解题。

5. 多做练
数列找规律需要不断地练才能熟练掌握。

平时多做练,同时认
真培养自己的逻辑思维能力和观察能力,相信你一定能在数列找规
律这方面获得很好的成绩。

记住这些技巧,相信数列找规律题在你心中不再是难题!。

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。

(完整版)初中数学找规律题及其答案

(完整版)初中数学找规律题及其答案

整式的加减——专题训练与提升1、根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.2、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.3、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.4、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.5、观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.6、如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是,第n个“广”字中的棋子个数是.7、如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°,下图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后结果)8、观察下列图形(每幅图中最小的三角形都是全等的),请写出第n个图中最小的三角形的个数有个.9、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n = .(用含n的代数式表示)所剪次数正三角形个数10、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).11、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.12、根据下列图形的排列规律,第2008个图形是福娃(填写福娃名称即可).13、用火柴棒按照如图所示的方式摆图形,则第n个图形中,所需火柴棒的根数是.14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.15、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子把.16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n(n≥2个圆点时,图案的圆点数为S n.按此规律推断S n关于n的关系式为:S n= .17、如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)18、观察下列图形的构成规律,根据此规律,第8个图形中有个圆.19、观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 ....表二:表三:20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 个白色正六边形.1 3 5 7 ....2 5 8 11 ....3 7 11 15 .... ....................11 14 a11 13 17 b21、把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.22、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是(填名称).23、下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,按照图示的规律摆下去,则第n幅图中有个菱形.24、如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个.25、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请写出第七行有个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒根.29、观察下列图形,根据变化规律推测第100个与第个图形位置相同.30、如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要根火柴棒.(用含n的代数式表示)整式的加减——专题训练与提升参考答案1.n2-n+1 2.(2n-1)3.302 4.121 5.49 6.152n+5 7.360(n-2)8.4n-19.3n+1 10.2n+2 11.181 12.欢欢13.3n+1 14.88 15.2016.4n-4 17.2n(n+1)18.65 19.37 20.6n 21.15 22.正方形23.(2n-1) 24.136 26.3n+1 27.64 28.2n+1 29.1或4 30.6n+2。

初中数学规律题、数学24题、几何模型汇总(全部有解析)

初中数学规律题、数学24题、几何模型汇总(全部有解析)

初中数学规律题拓展研究“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中找规律题目知识汇总与题目检测(一)

初中找规律题目知识汇总与题目检测(一)

初中找规律题目知识汇总与题目检测(一)初中数学考试中,经常出现找规律题,本文《初中找规律题目知识汇总与题目检测(一)》列举一些基础题目对本类问题牛刀小试,以后的学习中会通过系统讲解,对本类题目的解题方法进行系统归纳。

题目1 我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。

在电子数字计算机中用的是二进制,只要两个数码:0和1。

如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。

题目2 从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。

题目3 如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。

题目 4 如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.题目5 观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。

题目5 某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....的是( ) …………①1=12; ②1+3=22; ③1+3+5=32④ ; ⑤ ;题目4A B C D扩展延伸 如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( )题目6 用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴ 第4个图案中有白色地面砖 块;⑵ 第n 个图案中有白色地面砖 块。

初中规律题知识点总结

初中规律题知识点总结

初中规律题知识点总结一、规律题的定义规律题是指根据一定的规律,找出其中的规则,然后根据这个规则来求解题目。

规律题往往涉及到数列、图形、代数式等内容,需要学生具有一定的观察、总结和推理能力。

二、常见的规律题类型1. 数列规律题数列规律题是指根据一定的规律来找出数列中的某一个数或某几个数,也可以是求下一个数或某一项的值。

2. 图形规律题图形规律题是指从一系列的图形中找出其中的规律,然后根据这个规律找出下一个图形或者填入所缺少的图形。

3. 代数式规律题代数式规律题是指根据一定的规律,找出代数式中的未知数的值,或者根据已知的值来确定代数式的规律。

三、解题方法1. 观察法观察法是解决规律题的基本方法,学生首先要对题目进行仔细的观察,找出其中的规律,然后根据这个规律来求解题目。

2. 推理法推理法是指根据已有的规律,推断出其他的可能的规律来求解题目。

学生可以利用已有的规律来推断未知的规律,从而解决问题。

3. 数学方法数学方法是指利用数学知识来解决规律题,例如利用数列的通项公式、代数式的运算法则等来求解问题。

四、常见的规律题题型及解题技巧1. 数列规律题1)等差数列的规律等差数列是指数列中相邻两项的差都相等,例如1,4,7,10,13……解题技巧:观察相邻两项的差是否相等,找出公差,然后根据公差来求解问题。

2)等比数列的规律等比数列是指数列中相邻两项的比都相等,例如1,2,4,8,16……解题技巧:观察相邻两项的比是否相等,找出公比,然后根据公比来求解问题。

3)斐波那契数列的规律斐波那契数列是指数列中每一项都是前两项之和,例如1,1,2,3,5……解题技巧:利用前两项的和来求解后面的项,找出规律。

2. 图形规律题1)图形的旋转、移动和变换规律解题技巧:观察图形的旋转、移动和变换规律,找出其中的规律,然后根据规律来求解问题。

2)图形的填充规律解题技巧:观察图形中的填充规律,找出其中的规律,然后根据规律来填充所缺少的图形。

初中数学规律题汇总

初中数学规律题汇总

初中数学规律题汇总
以下是一些初中数学常见的规律题目汇总:
1. 题目:已知一条边长为a的正方形中,内接一个圆,求这个圆的直径和面积。

解答:
正方形的对角线就是圆的直径,所以圆的直径为a。

圆的面积公式为S=πr²,其中r为半径,所以圆的面积为
S=π(a/2)²=πa²/4。

2. 题目:已知一个等边三角形,求它的边长和高。

解答:
等边三角形的三条边长相等,所以它的边长为a。

等边三角形的高是从顶点到底边中点的垂线,因此高等于边长的一半,即高为h=a/2。

3. 题目:已知一个等腰三角形,已知底边长为a,求它的高和面积。

解答:
等腰三角形的两条底边相等,所以它的底边长为a。

等腰三角形的高是从顶点到底边上的垂线,所以高和底边中点以及顶点形成一个直角三角形,高等于勾股定理中的直角边之一,即高为h=sqrt(a²-(a/2)²)。

等腰三角形的面积公式为S=(底边长*a)/2,所以面积为
S=(a*a)/4。

4. 题目:已知一个矩形,已知其长为a,宽为b,求它的周长
和面积。

解答:
矩形的周长公式为P=2(a+b),所以周长为P=2a+2b。

矩形的面积公式为S=a*b,所以面积为S=ab。

5. 题目:已知一个梯形,已知上底为a,下底为b,高为h,求它的面积。

解答:
梯形的面积公式为S=(上底+下底)*高/2,所以面积为
S=(a+b)*h/2。

初一找规律经典题型(含部分问题详解)

初一找规律经典题型(含部分问题详解)

图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。

然后再简化代数式a+(n-1)b 。

例:4、10、16、22、28……,求第n 位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一n =3 n =4 n =5 ……种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

初中数学找规律题目知识汇总与题目检测二

初中数学找规律题目知识汇总与题目检测二

初中找规律题目知识汇总与题目检测(二)█ 数字推理基本类型 (按数字之间的关系,可将数字推理题分为以下几种类型)1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

12,20,30,42,( 56 ) 127,112,97,82,( 67 ) 3,4,7,12,( 19 ),28(2)移动求和或差。

从第三项起,每一项都是前两项之和或差。

1,2,3,5,( 8 ),130,1,1,2,4,7,13,( 24)注意第二个数列为前三项之和等于下一项。

一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。

再如5,3,2,1,1,(0 ),前两项相减得到第三项。

2.乘除关系。

又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。

8,12,18,27,(40.5) 后项与前项之比为1.5。

6,6,9,18,45,(135) 后项与前项之比为等差数列,分别为1,1.5,2,2.5,3 (2)移动求积或商关系。

2,5,10,50,(500)100,50,2,25,(2/25) 从第三项起,每一项都是前两项之积或商。

3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以2 1,7,8,57,(457)第三项为前两项之积加 1 3.平方关系1,4,9,16,25,(36),49 为位置数的平方。

66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加2 4.立方关系1,8,27,(81),125 位置数的立方。

3,10,29,(83),127 位置数的立方加 2 0,1,2,9,(730) 后项为前项的立方加1 5.分数数列关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案21 34 49 516 625 (736)分子为等比即位置数的平方,分母为等差数列,则第n 项代数式为:21+n n2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 …….可知下一个为2/9,如果求第n 项代数式即:22+n ,分解后得:21+-n n 6.质数数列2,3,5,(7),11 质数数列初中数学考试中,经常出现找规律题,本文《初中找规律题目知识汇总与题目检测(二)》继续系统讲解初中找规律题目。

初中数学应用题归类

初中数学应用题归类

类型01 日历表格等数字规律排列的问题1.如图1是一个数表,用一个矩形在数表中任意框出4个数,如图所示,•若所框出四个数和为56,则这四个数为______,______,______,_______.图14.如图是2011年8月的月历,现用一长方形在月历中任意框出4个代表日期的数,请用一个等式表示a,b,c,d之间的关系:。

3.探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和,(2)若将十字框上下左右移动,可框住五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。

类型02 分段讨论的问题(难点)1.甲,乙两班学生到集市上购买苹果,苹果价格如下表所示:购苹果数不超过30kg 30kg以上但不超过500kg 50kg以下价格/元/kg 3 元 2.5元2元甲班分两次共购买苹果70kg(第二次多于第一次),共付189元,•而乙班则一次购买苹果70kg.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?2.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:某人住院治疗得到保险公司报销金额是1100•元,•那么此人住院的医疗费是______元.3.为了加强公民的节水意识,合理利用水资源,•某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.注:水费按月结算.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_______元;(2)若该户居民3,4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?4.芜湖供电公司分时电价执行时段分为平,谷两个时段,•平段为:8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支出电费多少元?类型03 两种模型综合的问题(难点)1.农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷,•在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,•但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家收购价是1.6元/千克.(1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理,•土质和面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷的收益相同?(2)去年小王在土质,面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克.Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?2.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?类型04 行程问题和可以化为行程问题的问题(热点)1.陈老师在晚会上为学生们讲数学故事,•他发现故事开始时时钟的时针和分针的恰好成90°角,这时是七点多,故事结束时间两针也是恰好成90°,•这时是八点多,他还发现,讲故事当中,两针成90°角的有趣图形还出现过一次,那么,陈老师讲故事所用时间是多少小时?2.敌我两军相距14千米,敌军于1小时前以4千米/时的速度逃跑,现我军以7千米/时的速度追击,几小时后可追上敌军?若设x小时后可追上敌军,则可列方程为__________________.3. A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇. 若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是????? (?? )4.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计)5、小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船静水速度为26千米/小时,水速为2千米/时,则A港和B港相距______千米.类型05 增长率模型或者比率模型的问题1.甲,乙两厂去年分别完成生产任务的112%和110%,共生产机床4000台,•比原来两厂之和超产400台.问甲厂原来的生产任务是多少台?•设甲厂原生产x•台,•得方程_____,解得x=_____台.2.磁悬浮列车是一种科技含量很高的新型交通工具,它具有速度快,爬坡能力强,能耗低的特点,它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之一,•是汽车每个座位的平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的()A.37B.73C.1021D.21103.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x的值.4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.5.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.类型06积分问题1.一张试卷上只有20道选择题,做对一道题得4分,做借一道题倒扣1分,•某学生做了全部试卷共得70分,他做对了_______道.2.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.•一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?3.某队在一次比赛中,22投14中,得28分,•除了3•个3•分球全中外,•他还投中了_____个2分球和______个罚球.4.小明在一场篮球比赛中,他一人得25分,如果他投2分球比3分球多5个,那么他投2分球个数为______.5.中国足球甲级联赛规定:每队胜一场得3分,平一场得1分,负一场得0分.•武汉黄鹤楼队前14场保持不败,共得34分,该队共平了()A.3场B.4场C.5场D.6场6.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?类型07盈余或不足的模型1.(过程探究题)今有其买鸡,人出九,盈十一;人出六,不足十六,问人数、•鸡价各几?意思是:有几个人共同出钱买鸡,每人出钱9,则多了钱11,每人出钱6,则少了钱16,那么有几人共同买鸡?鸡的价钱是多少?解答:设有x人共同买鸡,则共用钱可用二个式子表示,一个是9x-11,•另一个是______,则得方程9x-11=6x+______.解得x=______,9x-11=_______.答:_______.类型08商品销售问题(重点)1.某商店有一种商品.(1)成本为100元,提价20%,则售价为_____元.(2)成本为x元,提价25%,则售价为_____元.2.一种国产电器,由于质量好,销量大,厂家决定降低原售价的10%销售,•现价是270元,设原售价是x元.(1)降低后的售价用含x式子表示为_____元,(2)得方程_____.3.(教材变式题)某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解答:设此商品按x折销售,则实际售价为______元,利润为____元,利润用含x的式子表示为______,得方程______.x=______.4.(经典题)某商店有两个进价不同的计算器都卖64元,其中一个赢利60%,•另一个亏本20%,则这次买卖中,这家商店是赚还是亏呢?解答:设其中一种计算器进价为x元,赢利60%,由方程64-x=x·60%,解得x=_____(元).另一个计算器进价y元,亏本20%得方程:y-64=______,解得y=_______(元).所以:2×64-(x+y)=______=_____答:商店是_____了_______元.5.(1)某商品原每件售价是a元,现在每件降20%,降价后每件售价是______元.(2)某种品牌手机降价10%以后,每台售价为m元,则手机原价是_______元.6.500元的八折价是______,x折的价是______元.7.一商品把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,•则彩电的标价为_______元.8.(过程探究题)有一位经销商以1050元购进某商品,按进价的150%标价,若他打算获得此商品的利润率不低于20%,那么他最低可以打几折,请你帮他设计一下,小明解答过程:解答:设打算获得此商品的利润率不低于20%,最低可以以原价的x折卖出,•依题意,得1050×150%×10x -1050=_______.方程两边约去1050,得0.15x -1=0.2,∴x=_____.答:最低打______折销售.完成上述填空.9.某商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B•型节能冰箱每台售价虽比A 型冰箱高出10%,但是每日耗电量却为0.55度,现将A 型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365•天,•每度电费按0.40元计算)10.某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•其学生第一次购书付款72元,第二次又去购书享受了八折优惠.他查看了所买书的定价,•发现两次共节省了34元钱.则该学生第二次购书实际付款多少元?11.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了( )A .31.25B .60C .125D .10012.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是( )A .3 200元B .3 429元C .2 667元D .3 168元13.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a 元,则这种药品在2003年涨价前的价格为( )A .10039a 元B .39100a 元C .a (1-40%)元D .140%a 元 14.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)15.商场出售的A 型冰箱每台售价2 190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A 型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?16.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.类型09 优秀方案选择问题1.小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009•千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,•已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);(2)小刚想在这两种灯中选购一盏:①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,•使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.2.某企业生产一种收音机,其成本24元,直接由厂家门市部销售,每台售价32元,门市部的销售需消耗费用每月2400元,如果委托商店销售,出厂价每台28元,销售多少台时两种销售方式所获得的利润相等?若销售量达每月2000台,问采用哪种销售方式,取得的利润较多?3.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?4.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?类型10配套问题1.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是().A.12x=18(28-x) B.12x=2×18(28-x)C.2×18x=18(28-x) D.2×12x=18(28-x)2.某车间每天能生产甲种零件180个或乙种零件120个,若甲、乙两种零件分别取3个、2个配成一套,那么要在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数?3.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张白铁皮制盒身、多少张白铁皮制盒底可以正好制成成套罐头盒而无余料?4.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?类型11工程问题1.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路___________米;(2)求原计划每小时抢修道路多少米?2.整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作,假设每个人的工作效率相同,那么先安排整理的人员有多少?3.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本方法——看增幅
(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有
通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是 1002?1 ,第n个数是 n2?1。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。

1。

相关文档
最新文档