1.3.2球体的体积和表面积
1.3.2 球的体积和表面积 公开课一等奖课件
,设球的半径为R,
1.(2012·广东高考)某几何体的三视图如图所示,
它的体积为( C )
A.72π B.48π
C.30π
D.24π
【解析】选C. 由三视图可知几何体是由一个半球和 一个倒立的圆锥组成的组合体.
1 1 4 V= π × 32× 4+ × π × 33 = 30π. 3 2 3
2.长方体的一个顶点上三条棱长分别是3,4,5,且它
4 3 π (3R) 2 S V 3 4π(3R) 表 = = 27. = = 9, 所以 4 3 V S表 4πR2 πR 3
答案:9
27
4.已知过球面上三点 A, B, C 的截面和球心的距离为球 半径的一半,且 AB = BC = CA = 2 ,求球的表面积.
【解析】设截面圆心为 O ,连接 OA ,
所以, S球 = S 圆柱侧.
4p R 2 ,
【变式练习】 设三棱柱的侧棱垂直于底面,所有棱的长都为a, 顶点都在一个球面上,则该球的表面积为( B ) A.π C. a2
11 π a2 3
7 B. π a2 3
D.5π a2
【解题提示】这是一个组合体问题,解答此题只需
画出三棱柱的直观图,弄清球心位置求出球的半径
熟练掌握球的体积、表面积公式:
4 3 V = R 3 S = 4R 2
不能忍受批评,就无法尝试新事物。
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
空间几何的有关计算公式
空间几何的有关计算公式空间几何是数学中一个重要的分支,它研究的是三维空间中的图形和其性质。
在空间几何中,有很多重要的计算公式,这些公式可以帮助我们计算各种空间图形的性质,比如体积、表面积、角度等。
本文将介绍一些常见的空间几何计算公式,并且探讨它们的应用。
1. 空间图形的体积和表面积计算公式。
在空间几何中,我们经常需要计算各种图形的体积和表面积。
下面是一些常见图形的体积和表面积计算公式:1.1 立方体的体积和表面积计算公式。
立方体是空间几何中最简单的图形之一,它的体积和表面积计算公式如下:体积 V = 边长a ×边长b ×边长c。
表面积 S = 2 × (边长a ×边长b + 边长b ×边长c + 边长c ×边长a)。
1.2 圆柱体的体积和表面积计算公式。
圆柱体是另一个常见的空间图形,它的体积和表面积计算公式如下:体积 V = π×半径r²×高h。
表面积 S = 2 ×π×半径r² + 2 ×π×半径r ×高h。
1.3 球体的体积和表面积计算公式。
球体是空间几何中最简单的曲面图形,它的体积和表面积计算公式如下:体积 V = (4/3) ×π×半径r³。
表面积 S = 4 ×π×半径r²。
2. 空间图形的角度计算公式。
在空间几何中,我们也经常需要计算各种角度。
下面是一些常见角度的计算公式:2.1 直线的夹角计算公式。
如果有两条直线l1和l2,它们的方向向量分别为a和b,那么它们的夹角θ可以通过以下公式计算:cosθ = (a·b) / (|a| × |b|)。
其中,a·b表示a和b的点积,|a|和|b|分别表示a和b的模长。
2.2 平面的夹角计算公式。
如果有两个平面α和β,它们的法向量分别为n1和n2,那么它们的夹角θ可以通过以下公式计算:cosθ = |n1·n2| / (|n1| × |n2|)。
《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)
(3)若两球表面积之比为1:2,则其体积之比是 1: 2 2 .
(4)若两球体积之比是1:2,则其表面积之比是 1: 3 4 .
2、若一个圆锥的底面半径和一个半球的半径相等,体积也相等,则它们的高度之比为( A )
(A)2:1 (B) 2:3 (C) 2:
(D) 2:5
随堂练习
立体图形的内切和外接问题 例4:求球与它的外切圆柱、外切等边圆锥的体积之比。
初态温度T1=(273+27) K=300 K
由 p1V1 p2V2
T1
T2
V2 =
p1T2 p2T1
V1
6.25 m3
课堂训练
3.如图所示,粗细均匀一端封闭一端开口的U形玻
璃管,当t1=31 ℃,大气压强p0=76 cmHg时,
两管水银面相平,这时左管被封闭的气柱长L1=8
10.9150 1635(朵)
答:装饰这个花柱大约需要1635朵鲜花.
新知探究
例3、如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的 2 ; 3
(2)球的表面积等于圆柱的侧面积.
RO
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
(2)若球半径变为原来的2倍,则表面积变为原来的 4 倍.
3、从微观上说:分子间以及分子和器壁间,除碰撞外无其他作用力,分子本身没有体积,即它 所占据的空间认为都是可以被压缩的空间。
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
2020版人教A数学必修2:1.3.2 球的体积和表面积
(2)如图为某几何体的三视图,则该几何体的体积为
.
解析:(2)由三视图可知该几何体是一个组合体,上半部分是半径为 1 的球的
(D)3 倍
解析:设小球半径为 1,则大球的表面积 S 大=36π,S 小+S 中=20π, 36π = 9 . 20π 5
解得 R= 6 ;所以外接球的体积为 V = 外接球 4π ×( 6 )3=8 6 π.故选 B
答案:(1)B
3
(2)(2018·广东靖远县高一期末)在三棱锥 S-ABC 中,SA=BC= 41 ,SB=AC=5,
SC=AB= 34 ,则三棱锥 S-ABC 外接球的表面积为
.
解析:(2)将三棱锥补成一个长、宽、高分别为a,b,c的长方体,
以AB,BD和CD为棱,把三棱锥A-BCD补充为长方体, 则该长方体的外接球即为三棱锥的外接球,且长方体的对角线是外接球 的直径; 所以(2R)2=AB2+BD2+CD2=1+2+1=4,所以外接球O的表面积为4πR2=4π. 故选D. 答案:(1)D
(2)(2018·安徽六安高一期末)球内切于正方体的六个面,正方体的棱长为
(A) 9 π +12 2
(C)9π +42
(B) 9 π +18 2
(D)36π +18
解析:(1)由三视图可得这个几何体是由上面一个直径为 3 的球,下面一个底 面为正方形且边长为 3,高为 2 的长方体所构成的几何体,则其体积为:
【数学】球体的体积和表面积()
【课前一猜想】 底面半径和高都是R的圆锥和圆柱的体积分 别是什么?根据这些你猜想半球的体积是什么?
1 圆锥的体积V= 3 πR3,
圆柱的体积V=πR3,
2 猜想半球的体积V= 3 πR3.
【科普一知识】 打篮球是当代青少年最热爱的一项运动, 同学们知道一个标准的篮球的直径是多少?它 的体积有多大?其表面积又是多少?
小结:
一.用分割的方法求球的体积公式的步骤: 1.分割 2.近似求和 3.取极限,求定值 二:一个半径为R的球的体积:V=猜想 4 半球的体积V= πR3.
3
例题1:一个钢球的直径为5厘米,求它的体积。
变式1:两个球的半径之比为2:3,球它们的体积之比。
探究二:一个半径为R的球体的表面积公式
Si
我来告诉你,一个标 准的篮球直径24.62cm,体 积约为7800cm3,表面积 约为1900cm2,那么这些 数据又是怎样得到的,我 们是否也有公式计算?
探究一:已知球的半径为R,用R表示球的体积. A A
O
O
C2
B2
1.分割
A
ri
O R O
2.近似求和
3.取极限,求定值
4 3 定理:半径是 R的球的体积为: V R 3
略解: RtB1 D1 D中 : ( 2 R ) a ( 2a ) , 得
2 2 2
D A D1 A1 B
C
O
C1 B1
3 R a 2 S 4R 2 3a 2
D
A D1 A1 B1 O B
C
C1
课堂小结
了解球的体积、表面积推导的基本思路: 分割→求近似和→化为标准和的方法,是 一种重要的数学思想方法—极限思想,它 是今后要学习的微积分部分“定积分”内 容的一个应用; 熟练掌握球的体积、表面积公式:
1.3.2球的体积和表面积
1 1 1 1 V S1h1 S 2 h2 S 3 h3 S n hn 3 3 3 3
球的表面积
S i
Vi
第 三 步: 化 为 准 确 和
O
hi
如果网格分的越细,则: “小 锥体”就越接近小棱锥
hi 的值就趋向于球的半径 R
1 Vi = S i R 3 1 1 1 1 V = S i R S 2 R S 3 R S n R 3 3 3 3
D 6л
A●
解:设四面体为ABCD,O1 为其外接 球心。球半径为R,O为A在平面BCD上 的射影,M为CD的中点。 连结B O1
2 2 3 6 BO = BM = ( BC ) = . 3 3 2 3 2 2 2 所以AO = AB BO = , 3
B●
R ● O1
● ●
O
·
M
●
D
在RtBOO1中,由O1B2 = BO2 OO2得 1
2
分析:正方体内接于球,则由球和正方体都是中心对称图形可 知,它们中心重合,则正方体对角线与球的直径相等。
D A D1 A1 B1 O B
C A C1
D B D1 O
C
略解:
RtB1 D1 D中 : B1 D = 2 R,B1 D = 2a
C1 B1
A1
(2 R) 2 = a 2 ( 2a) 2 , 得:R =
定理:半径是R的球的体积
4 3 V = R 3
例1.钢球直径是5cm,求它的体积.
4 3 4 5 3 125 3 V = R = ( ) = cm 3 3 2 6
变式1.一种空心钢球的质量是142g,外径 是5cm,求它的内径.(钢的密度是7.9g/cm2)
1.3.2_球的体积
三、公式的应用
例1)把半径为3cm钢球放入一个正方体的有盖 纸盒中,至少要用多少纸制作纸盒? 分析:用料最省时,球与正方体有什么位置关系 球与正方体有什么位置关系? 分析:用料最省时 球与正方体有什么位置关系 球内切于正方体
两个几何体相切:一个几何体的各个面与 两个几何体相切 一个几何体的各个面与 另一个几何体的各面相切. 另一个几何体的各面相切
4 3 R的球的体积为: V 定理: 定理 : 半径是 的球的体积为 : = πR 3
球的体积
在球的体积公式的推导过程中, 在球的体积公式的推导过程中,使用了 “分割、求近似值、再将近似值转化为球的体 分割、求近似值、 的方法: 积”的方法: 即先将半径 n 等分;再求出每一部分体积 等分; 的近似值,并将这些近似值相加, 的近似值,并将这些近似值相加,得出半球的 近似体积; 无限变大时, 近似体积;当 n 无限变大时,就可得到半球的 体积. 体积.
等高处截面面积相等, 等高处截面面积相等,则两几何体的体积相等
R
l
r
R
l
l
R
S圆=πr2=π(R2 –l2)
1 V球 2
S圆环=πR2–πl2=π(R2 –l2)
2
根据祖暅原理,这两个几何体的体积相等, 根据祖暅原理,这两个几何体的体积相等,即 祖暅原理
=
即
2 3 1 2 π R ⋅ R − π R ⋅ R = πR 3 3
球的体积和表面积
因探索而精彩 因应用而美丽
球
生活中常见的球体: 生活中常见的球体:
实际问题
如果用油漆去涂一个乒乓球和一个篮球, 如果用油漆去涂一个乒乓球和一个篮球,且 涂的油漆厚度相同,问哪一个球所用的油漆多? 涂的油漆厚度相同,问哪一个球所用的油漆多? 为什么? 为什么?
人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.
1.3.2 球的体积和表面积
A.72π
B.48π
C.30π
D.24π
2.某几何体的三视图如图所示,则其表面积为
.
【解题探究】1.典例1中的三视图表示什么几何体? 提示:典例1中几何体是半球与一个圆锥的组合体. 2.典例2中的几何体表示什么? 提示:该几何体为一个半球.
【解析】1.选C.由三视图可知该几何体是半个球体和一个倒立圆锥体 的组合体,球的半径为3,圆锥的底面半径为3、高为4,那么根据体积公 式可得组合体的体积为30π. 2.由三视图得该几何体为半径为1的半球,则表面积为半球面+底面圆, 代入数据计算为S= 1 ×4π×12+π×12=3π.
【变式训练】球的大圆面积扩大到原来的4倍,那么球的表面积扩大到 ( A.16倍 B.2倍 C.4倍 D. 4 倍
3
)
【解析】选C.球的大圆面积扩大到原来的4倍,则半径成为原来的2倍, 所以球的表面积也变为原来的4倍.
类型二
由三视图求球的体积与表面积
【典例】1.(2015·济宁高一检测)某几何体的三视图如图所示,它的 体积为 ( )
答案:12π
【补偿训练】一个几何体的三视图如图所示(单位:m),则该几何体的 体积为 m 3.
【解析】组合体的上面是一个长、宽、高分别为6,3,1的长方体,下面 是两个半径为
3 的相切的球体,所以所求的体积是:V=2V球+V长方体=2× 2
4 3 π × ( )3 +6×3×1=9π +18. 3 2
【方法技巧】求球的表面积与体积的一个关键和两个结论 (1)关键:把握住球的表面积公式S球=4π R2,球的体积公式V球=
4 π R3 3
是计算球的表面积和体积的关键,半径与球心是确定球的条件.把握住 公式,球的体积与表面积计算的相关题目也就迎刃而解了. (2)两个结论:①两个球的表面积之比等于这两个球的半径之比的平方; ②两个球的体积之比等于这两个球的半径之比的立方.
高中数学必修二1.3.2《球的体积和表面积》课件
函数即S=4πR2.
3.求球的表面积和体积关键是求出球的半径,为此常考虑
球的轴截面.
一个球内有相距9 cm 的两个平行截面,它们的面 积分别为49π cm2和400π cm2,求球的表面积和体积. [提示] 因为题中并没有说明两个平行截面是在球心的 两侧,还是同侧,因此解题时应分类讨论.
[解] (1)当截面在球心的同侧时,如图所 示为球的轴截面.由球的截面性质,知
AO1∥BO2,且O1、O2分别为两截 面圆的圆心,则OO1⊥AO1, OO2⊥BO2. 设球的半径为R. ∵π·O2B2=49π,∴O2B=7. 同理,π·O1A2=400π,∴O1A=20.
设 OO1=x,则 OO2=x+9. 在 Rt△OO1A 中,R2=x2+202, 在 Rt△OO2B 中,R2=(x+9)2+72, ∴x2+202=72+(x+9)2.解得 x=15.
设球O的半径为5,一个内接圆台的两底 面半径分别是3和4,求圆台的体积.
[错解] 如图,由球的截面的性质知, 球心到圆台的上、下底面的距离分别为 d1= 52-32=4,d2= 52-42=3. ∴圆台的高为 d1-d2=h=4-3=1. ∴圆台的体积为 V=13πh(r21+r22+r1r2) =13×π×1×(32+42+3×4)=337π.
答案:D
探究点三 球的表面积和体积的实际应用
球是非常常见的空间几何体,应用比较广泛, 特别在实际生活中,应用球的表面积和体积公式解 决问题的例子更是普遍.
如图所示,一个圆锥形的空杯 子上放着一个直径为8 cm的半球形的 冰淇淋,请你设计一种这样的圆锥形 杯子(杯口直径等于半球形的冰淇淋的 直径,杯子壁厚忽略不计),使冰淇淋 融化后不会溢出杯子,怎样设计最省 材料? [提示] 应使半球的体积小于或等于圆锥的体积.可 先设出圆锥的高,再求其侧面积.
新授课:1.3.2《球的体积和表面积》
x
3
5 3 142 3 ( ) 11.3 2 7.9 4
由计算器算得:
x 2.24
2 x 4 .5
答:空心钢球的内径约为4.5cm.
例题讲解 (变式2)把钢球放入一个正方体的有盖纸盒中, 至少要用多少纸?
思考5:经过球心的截面圆面积是什么? 它与球的表面积有什么关系? 球的表面积等于球的大圆面积的4倍
理解新知
• 1球的体积公式推导:分割→近似求和→精确求和 • 2球的表面积公式推导:分割→近似求和→精确求 和 • 3球的表面积等于球的大圆面积的4倍 • 4球的体积是球体所占空间大小的度量,球的表面 积是对球的表面大小的度量,由球的几何结构特 征可知它们都是由球半径惟一确定,都是球半径 的函数,根据和可以发现,确定球半径大小是求 解球的体积和表面积的关键所在.
例题讲解
例1.钢球直径是5cm,求它的体积.
4 4 5 3 125 3 V R ( ) cm 3 3 3 2 6
(变式1)一种空心钢球的质量是142g,外径是5cm,求它 的内径.(钢的密度是7.9g/cm2)
例题讲解
(变式1)一种空心钢球的质量是142g,外径是5cm,求它 的内径.(钢的密度是7.9g/cm2) 解:设空心钢球的内径为2xcm,则钢球的质量是
教学目标
重点难点
球的体积
球表面积
退出
例题讲解
课堂练习
课堂小结
布置作业 封底
教学目标
掌握球的体积、表面积公式.
掌握球的表面积公式、体积公式的推导过程及主要思 想进一步理解分割→近似求和→精确求和的思想方法.
高中数学二 1.3.2 球的表面积与体积 教案
1。
3。
2球的体积和表面积一、 教学目标知识目标:1、掌握球的体积公式343V R π=、表面积公式24S R π=。
2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力.3、能解决与球的截面有关的计算问题及球的“内接”与“外切”的几何体问题.能力目标:通过类比、归纳、猜想等合情推理培养学生勇于探索的精神. 提高学生分析、综合、抽象概括等逻辑推理能力情感目标:通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性”的辩证唯物主义思想教育。
二、 教学重点、难点重点:球的体积和表面积的计算公式的应用。
难点:解决与球相关的“内接”与“外切"的几何体问题三、教学过程2球的表面积:(以后讲)11221(3)i i V h S h S h S ≈⋅∆+⋅∆++⋅∆+又∵i h R≈,且S =12i S S S ∆+∆+++∆∴可得13V R S ≈⋅,又∵343V R π=,∴13R S ⋅343R π=,∴24S R π=即为球的表面积公式小结:球的体积公式343V R π=、表面积公式24S R π=都是以R 为自变量的函数。
教师讲解,学生感悟分割、近似、极限等思想渗透微积分思想.应 用 举 练习1:如果球的体积是36πcm 3,那么它的半径是 .3练习2: 若两个球的体积之比为8:27,那么两个球的表面积之比为( C )(A )8:27 (B )2:3 (C )4:9 (D )2:9例1 如图,圆柱的底面直径与高都等于球的直径,,求证: (1)球的体积等于圆柱体积的23(2)球的表面积等于圆柱的侧面积。
教师引导学生共同完成让学生巩固例证明:(1)设球的半径为R ,则圆柱的 底面半径为R ,高为2R 。
则有V球=334R , V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32。
(2)因为S 球=4πR 2,S 圆柱侧=2πR ·2R=4πR 2,所以S 球=S 圆柱侧.变式1:把上一题的圆柱改为正方体,且正方体的棱长为a, 球的半径为多少?变式2:若把球吹大到内切于正方体的棱,且正方体的棱长为a,此时球的半径又为多少?变式3:若球接着吹大到刚好包围整个正方体即球各个顶点都在球面上,且正方体的棱长为a ,此时球的半径又为多少?加深所学内容并灵活运用。
湖北省恩施州巴东一中高中数学(人教A版)必修二教案:§1.3.2 球的体积和表面积
§1.3.2 球的体积和表面积一、教材分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.二、教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式.(不要求记忆公式) (2)熟悉台体与柱体和锥体之间体积的转换关系. (3)培养学生空间想象能力和思维能力. 2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系.(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算. 3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识.三、重点难点教学重点:球的表面积和体积公式的应用. 教学难点:关于球的组合体的计算.四、课时安排约1课时五、教学设计(一)导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.(二)推进新课、新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S=4πR 2,V=334R .注意:球的体积和表面积公式的证明以后证明.(三)应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形. 证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R. 则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.(2)因为S 球=4πR 2,S 圆柱侧=2πR·2R=4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=a 2,又∵4πR 2=324π,∴R=9. ∴AC=28''22=-CC AC .∴a=8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g/cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm,则钢球质量为7.9·[3334)25(34x ππ-•]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x≈2.24,∴直径2x≈4.5.答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积. 解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2), 半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=R R330tan =︒,圆锥母线l=2r=R 32,圆锥高为h=r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-,球取出后,水形成一个圆台,下底面半径r=R 3,设上底面半径为r′, 则高h′=(r -r′)tan60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r′2+rr′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -,解得r′=6331634R R =, ∴h′=(3123-)R.答:容器中水的高度为(3123-)R.思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形.分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R=233,则该球的表面积为S=4πR 2=27π.答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π分析:由V=Sh ,得S=4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R=642221222=++,所以球的表面积为S=4πR 2=24π. 答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V=3242a π. 答案:3242a π3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π.答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度. 解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x=0.6( cm ). 答:杯里的水下降了0.6 cm.点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g/cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g/cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没. 解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g)>m 钢. ∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g)>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22 cm 的正方形,所以注水高为(1+22) cm.故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π(四)知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.59倍 D.47倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+rr r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A.32π B.3π C.32πD.322π 分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a=1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π.答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g/cm 3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ). 解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g), 街心花园中钢球的质量为145 000 g,而145 000<516 792,所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-•]=145 000, 解得x 3≈11 240.98,x≈22.4,2x≈45(cm).答:钢球是空心的,其内径约为45 cm.5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC=r 2,则球的体积与三棱锥体积之比是( )A.πB.2πC.3πD.4π分析:由题意得SO=r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r×r=r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.(五)拓展提升问题:如图6,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A —BEFD 与三棱锥A —EFC 的表面积分别是S 1,S 2,则必有( )图6A.S 1<S 2B.S 1>S 2C.S 1=S 2D.S 1,S 2的大小关系不能确定探究:如图7,连OA 、OB 、OC 、OD ,则V A —BEFD =V O —ABD +V O —ABE +V O —BEFD +V O —ADF ,V A —EFC =V O —AFC+V O —AEC +V O —EFC ,又V A —BEFD =V A —EFC ,而每个小三棱锥的高都是原四面体的内切球的半径,故S △ABD +S △ABE +S BEFD +S △ADF =S △AFC +S △AEC +S △EFC ,又面AEF 是公共面,故选C.图7答案:C(五)课堂小结本节课学习了: 1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高; 锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.(六)作业课本本节练习1、2、3.。
1.3.2--球的体积与表面积
1、柱,锥,台体的面积公式整合:
S圆柱侧 cl 2 rl
S圆柱表 2r r l
S圆锥侧
1 2
cl
rl
S圆锥表 r r l
S圆台侧
1 2
(c'
c)l
l
r' r
S圆台表 r'2 r2 r'l rl
▪ S多面体表面积=各个面的面积之和
2、柱,锥,台体的体积公式整合:
RO
1:64
例题2.若球的半径为R,求这个球的内接
正方体的全面积。
8R2
AC为正方体的体对角线;
AB为正方体的面对角线; C
设正方体的棱长为a,则
AC= 3a AB= 2a
B A
练习.若一个球的外切正方体的全面积
等于6,求球的体积。
1
6
A
O1
C
B
O
16
P
D A
C B
思考练习:左图是一个奖杯的三视图(单位:cm), 画出它的直观图,并计算这个奖杯的表面积 和体积(精确到1cm)。
4
20
8
4
10
8 16
20
2
z’
y’
o'
x'
答、表面积和体积分别是:1193cm2,1067cm3
小结:
S球= 4R2
V球=
4 R3
3
V柱体= sh
V锥体=
1 3
sh
1
V台体= 3 h (S SS' S ')
作业布置: P29 B组T1
书35页:A组
V锥体= 3 sh
1
V台体= 3 h (S SS' S ')
高中数学人教版必修二:1.3.2《球的体积与表面积》课件
D1
C1
A1
B1
表面积为 4 ( 3 a) 2 3 a 2 2
典例展示
由三视图求几何体的体积和表面积 2r
例5.(2015年新课标I)圆柱被一 个平面截去一部分后与半球(半 径为r)组成一个几何体,该几何 体三视图中的正视图和俯视图如 r 图所示。若该几何体的表面积为 16 + 20 ,则r=( ) ( A) 1 ( B) 2 ( C) 4 ( D) 8
正视图
侧视图
1 ( A) 8 1 ( C) 6
1 (B) 7 1 ( D) 5
俯视图
【解析】由三视图得,在正方体 ABCD A1B1C1D1 中,截去四面体 A A1B1D1,如图所示, 设正方体棱长为 a 则 VA A B D
1 1 1
D1
C1
A1
B1
【答案】D
1 所以截去部分体积与剩余部分体积的比值为 5
2 V球 = V柱 3
与球组合的组合体的表面积和体积
两个几何体相切: 一个几何体的各个面与另一个几何体的各面相切.
典例展示
例3.求棱长为
a 的正方体的内切球的体积和表面积.
D1 A1 C1
分析:正方体的中心为球的球心, 正方体的棱长为球的直径。
【解析】正方体的内切球的直径为
4 3 所以球的体积为 a . 3
1 3 5 3 故剩余几何体体积为 a a a 6 6
3
1 1 3 1 3 a a 3 2 6
一、基本知识
柱体、锥体、台体、球的表 面积 展开图
圆柱 S 2r (r l ) 圆台S (r2 r 2 rl rl )
圆锥 S r (r l )
1.3.2 球的体积和表面积2
【自主解答】1.选C.由三视图可知该组合体由一个半球和一个 倒立的圆锥组成.
1 1 4 V 32 4 33 30. 3 2 3
2.由题知半径为r的实心铁球的体积和水上升的体积相等,即
4 3 R 2 r R 2 r,所以 . 3 r 3
答案:2∶ 3
4 3 R1 2 2 3 S 4 R R R V R R1 3 2 3 1 1 1 1 1 1 提示: ( ) , ( ). 2 2 3 S2 4R 2 R 2 R 2 V2 4 R 3 R 2 R2 2 3
【探究总结】对球的体积及表面积公式的两点说明 (1)球的体积和表面积公式都是关于半径R的函数,因此求体积 和表面积时,只需求出半径即可. (2)确定一个球的条件是球心和球的半径,已知球的半径可以利 用公式求它的表面积和体积;反过来已知体积或表面积也可以 求其半径.
【解题指南】1.长方体的体对角线等于其外接球的直径. 2.结合截面图形,构造直角三角形,利用勾股定理列出关于球半 径的方程,求出球半径,再利用V= πR3求出球的体积.
4 3
【自主解答】1.选B.由长方体的长、宽、高分别为2a,a,a,则 长方体的体对角线为 (2a)2 a 2 a 2 6a, 与外接球的直径相等, 故2R= 6 a,S球=4πR2=6πa2. 2.选A.设球的半径为Rcm,由勾股定理可知,R2=(R-2)2+42,解得 R=5,所以球的体积 V 4 R 3 4 53 500 cm3 .
(3)具体解题流程
【拓展延伸】与球有关的组合体中的数量关系 (1)长方体内接于球: 2R a 2 b2 c2 (R为球的半径,a,b,c为 长方体的长、宽、高). (2)正方体内接于球:2R= 3 a(R为球的半径,a为正方体的棱长). (3)球内切于正方体:2R=a(R为球的半径,a为正方体的棱长). (4)球与正方体的每条棱都相切:2R= 2 a(R为球的半径,a为正方 体的棱长).
1.3.2 球的体积和表面积
(2)由已知可得,该几何体是四分之三个球,其表面积是四
分之三个球的表面积和两个半径与球的半径相等的半圆的面
积之和.因为 R=1,所以 S=34×4×π×12+2×12×π×12=4π. [答案] (1)D (2)4π
首页
上一页
下一页
末页
结束
求球的体积与表面积的方法
(1)要求球的体积或表面积,必须知道半径 R 或者通过条件能 求出半径 R,然后代入体积或表面积公式求解.
[答案] A
首页
上一页
下一页
末页
结束
球的截面问题的解题技巧 (1)有关球的截面问题,常画出过球心的截面圆,将问题 转化为平面中圆的问题. (2)解题时要注意借助球半径 R,截面圆半径 r,球心到 截面的距离 d 构成的直角三角形,即 R2=d2+r2.
首页
上一页
下一页
末页
结束
[活学活用] 一平面截一球得到直径为 2 5 cm 的圆面,球心到这个平面的
首页
上一页
下一页
末页
结束
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个球的半径之比为 1∶3,则其表面积之比为 1∶9 ( √ )
(2)经过球心的平面截得的圆的半径等于球的半径
(√)
首页
上一页
下一页
末页
结束
2.将直径为 2 的半圆面绕直径所在的直线旋转半周而形成的
(2)半径和球心是球的最关键要素,把握住了这两点,计算球 的表面积或体积的相关题目也就易如反掌了.
(3)由三视图计算球或球与其他几何体的组合体的表面积或 体积,最重要的是还原组合体,并弄清组合体的结构特征和三视 图中数据的含义.根据球与球的组合体的结构特征及数据计算其 表面积或体积.此时要特别注意球的三种视图都是直径相同的圆.
人教版必修二:1.3.2球体的体积和表面积 课件
(
R
2
)
n
r3
R2
(
2R
2
)
n
1.分割
A
ri
O
h R (i 1)
n
R
O
第i层的“小圆片”的半径ri:
ri
R2
[
R
(i
2
1)] i
1.2.3....n
n
2.近似求和
ri
R2
[
R
2
(i1)] i
1.2.3....n
n
V
i
ri2 •
R n
R3 [1
n
(
i1)2]i n
Vi
如果网格分的越细,则: “小锥 体”就越接近小棱锥
hi的值就趋近于半径R的值
化 为 准 确 和O
V
i
1 3
Si
R
Si
R
即V
1 3
( S1
S
2
S3 ....... S n)
•
R
Vi
而球的表面积S S1 S 2 S3 ....... S n
学科延伸:排液法测小球的体积
放入小球前
h
课堂练习
1.若球的表面积变为原来的2倍,则半径变为原来的__2_倍.
2.若球半径变为原来的2倍,则表面积变为原来的__4_倍.
3.若两球表面积之比为1:2,则其体积之比是__1_: 2___2. 4.若两球体积之比是1:2,则其表面积之比是__1_:_3__4.
3
R3
定理:半径是R的球的体积为:V 4 R3
球的体积和表面积
《1.3.2球的体积和表面积》教案科目 高中数学 授课题目 人教版必修2第一章第1.3.2节球的体积和表面积授课课时 1课时授课类型新授课一、教材分析本节课是新课标高中数学必修2中第一章第1.3.2节,即球的体积与表面积。
其中体积公式在之前的学习中可能接触过,但证明过程比较繁琐,学习起来比较困难。
掌握空间几何体球体的表面积与体积计算方法,对于学生解决生活中的实际问题极为重要,是计算复杂几何体表面积与体积的基础。
具有非常高的实用价值。
二、学情分析 1、有利因素学生初中已经学习了正方体与长方体的表面积与体积的计算方法,并且上一节课刚刚学习了柱体、锥体、台体的表面积与体积,这对于本节课的学习会有很大的帮助。
2、不利因素本节课中的两个公式的证明过程比较繁琐,学生理解上会有一定的困难。
三、教学目标 1.知识与技能(1)了解球的体积公式和球的表面积公式的推导过程,体会其基本思想方法; (2)能运用球的表面积和体积公式灵活解决实际问题; (3)培养学生的空间思维能力和空间想象能力。
2.过程与方法通过球的体积和表面积公式的推导,从而得到一种推导球体积公式343V R π=和面积公式24S R π=的方法,即“分割求近似值,再由近似和转化为球的体积和表面积”的方法,体现了极限思想。
3.情感态度与价值观通过学习,使我们对球的体积和表面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
四、教学重点、难点重点:球的体积公式和表面积公式以及它们的运用。
难点:对球体体积公式推导过程的理解及推导体积和面积公式中空间想象能力的形成,在公式的应用过程中有关球体的计算。
五、教学方法启发式的教学方法 六、教学用具多媒体七、教学过程 (一)导入新课1、教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。
学生回答:我们知道柱体的体积和表面积依赖于它的底面半径和母线长度,台体的体积和表面积依赖于它的上下底面半径和母线长度,所以球体的体积和表面积一定用一个变量进行表示,我想这个变量是球体的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.3.2 球的体积和表面积
【教学目标】
(1)能运用球的面积和体积公式灵活解决实际问题。
(2)培养学生的空间思维能力和空间想象能力。
【教学重难点】
重点:球的体积和面积公式的实际应用
难点:应用体积和面积公式中空间想象能力的形成。
【教学过程】
一、教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,它是由半圆围绕直径旋转而成的旋转体,那么球的表面积与体积与半圆的哪个量有关呢?引导学生进行思考。
教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积? 球的体积和面积公式:半径是R的球的体积33
4
R π=
球V,表面积S=4πR 2 二、典例
例1.一种空心钢球的质量是732πg ,外径是5cm ,求它的内径. (钢密度9g/cm 3) 求空心钢球的体积 。
解析:利用“体积=质量/密度”及球的体积公式
33
4
R π=
球V 解:设球的内径为r,由已知得球的体积V=732π/9(cm 3) 由V=(4/3) π(53
-r 3
)得r=4(cm)
点评:初步应用球的体积公式
变式:正方体的棱长为2,顶点都在同一球面上,则球的体积为____________(π34) 例2 在球心同侧有相距9的两个平行截面,它们的面积分别为49π和400π,求球的表面积。
(答案:2500π)
解析:利用轴截面解决
解:设球的半径为R,球心到较大截面的距离为x 则R 2
=x 2
+202
,R 2
=(x+9)2
+72
解得x=15,R=25所以球的表面积S=2500π 点评:数形结合解决实际问题
变式:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上, 则这个球的表面积是 。
(答案50π)
【板书设计】
一、球的面积和体积公式 二、例题 例1 变式1 例2 变式2
【作业布置】P30 1、2
1.3.2 球的体积和表面积
课前预习学案
一. 预习目标:记忆球的体积、表面积公式
二. 预习内容:1.3.2课本内容思考:球的大小是与球的半径有关,如何用球半径来 表示球的体积和面积
三.提出疑惑
课内探究学案
一.学习目标:应用球的体积与表面积公式的解决实际问题 学习重点:球的体积和面积公式的实际应用
学习难点:应用体积和面积公式中空间想象能力的形成。
二.学习过程:教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,它是由半圆围绕直径旋转而成的旋转体,那么球的表面积与体积与半圆的哪个量有关呢?引导学生进行思考。
教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积? 球的体积和面积公式:半径是R的球的体积
33
4
R π=
球V,表面积S=4πR 2 例1.一种空心钢球的质量是732πg ,外径是5cm ,求它的内径. (钢密度9g/cm 3) 求空心钢球的体积 。
变式:正方体的棱长为2,顶点都在同一球面上,则球的体积为____________
例2 在球心同侧有相距9的两个平行截面,它们的面积分别为49π和400π,求球的表面积。
变式:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。
课后练习与提高
一.选择题
1.将气球的半径扩大1倍,它的体积增大到原来的()倍
A2 B4 C8 D16
2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()
A.16π
B.20π
C.24π
D.32π 3.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )
A.1倍
B.2倍
C.59倍
D.4
7倍. 二.填空题
4.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.
5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________..
三.解答题
6. 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?
图5。