2018_19学年九年级数学上学期期末复习检测试卷1
九年级上学期数学期末复习分式试题
分式单元复习 姓名一、填空1、x·_______=x 7;x 3·(-x)4.________=x 18;2、(-x)8÷(-x)5=________;(ab)7÷(-ab)2=________.3、(-a)6·a 3÷a 2=_________;(x-y)7÷(y -x)3·(y -x)3=______.4、与单项式-3a 2b 的积是6a 3b 2-2a 2b 2+9a 2b 的多项式是_______.5、一个矩形的面积是3(x 2-y 2) , 如果它的一边长为( x+ y) , 则它的周长是______. 6、已知3m =15,3n=6.则32m-n 的值是 .8、已知x=32m+2,y=5+9m ,请你用含x 的代数式表示y.则y= 。
9、下列各式32222211,,,,,2455x a b m ax y x x a +-+中,是分式的有 个。
10、将3a a b-中的a,b 都扩大到3倍,则分式值( ) A.不变 B.扩大3倍 C.扩大9倍 D.扩大6倍11、分式22,,4448436a b c a a a a a -+-+- 的最简公分母是_________.12、当x 时, 分式521-+x x 没有意义;当x________时, 1x x x-- 有意义. 当a=_______时,分式2232a a a -++ 的值为零; 当x 时,分式x x --23的值为负数.当x= 时,(x -4)x -2=113、不改变分式的值,把分式0.420.51x x +- 中分子、分母各项系数化成整数为________.14、小明参加打靶比赛,有a 次打了m 环,b 次打了n 环, 则此次打靶的平均成绩是________环.15、已知a+1a =6,求21a a ⎛⎫- ⎪⎝⎭的值________;已知:bab 2a b ab 3a ,2b 1a 1+++-=+则=_________.16、已知,32572=+-y x x y 且0≠y ,则y x的值为 ;17、化简131224a a a -⎛⎫-÷ ⎪--⎝⎭= ___________;若222222M xy y x y x y x y x y--=+--+ ,则M=___________.18、当分式44x x --=-1时,则x__________.当x=_______,2x-3 与543x + 的值互为倒数. 19.当k=_____时,分式方程0111x k x x x x +-=--+有增根. 20、用小数表示2.61×10-5=_______;用科学记数法表示0.0000695为______.保留两个有效数字 21、 1nm(纳米)=0.000000001m,则2.5纳米用科学记数法表示为 m.22、(3x-2)0=1成立的条件是_________.若则x+x -1=__________.23、计算(-3-2)3=______. (-2a -5)2=______.若x 2+x -2=5,则x 4+x -4的值为______.24、若关于x 的方程1a b ax b++=- 有惟一解,则a,b 应满足的条件是________. 25、某中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车走40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆, 已知汽车的速度是自行车速度的3倍,求汽车的速度.设汽车的速度是x 千米/小时,则汽车行驶时间为______, 自行车行驶时间为______.根据题意列方程________.解得汽车的速度为_______. 26、为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵?设原计划每天种植x 棵,根据题意得方程____________.27、某商店经销一种商品,由于进货价降低6.4%,使得利润率提高了8%,那么原来经销这种商品的利润率是_________. 二、计算题:1、54x 3÷(-9x 2)2、-21x 3y 4÷7xy 53、 (21-a 4x 4) ÷(17-a 3x 5)4、 (16x 3-8x 2+4x ) ÷(-2x )5、2×1012 ÷(5×103)6、2011)1)3-⎛⎫+-- ⎪⎝⎭7、10312( 3.14)(2)2π--⎛⎫--+--- ⎪⎝⎭8、x x --+242 9、()10232333--++-⨯)()(10、a a a a a a +-÷-+-2221112 11、 x x x -+-3632 12、⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121三、解分式方程: (1) 2121-=--x x x (2)32121---=-xxx (3) 132+=x x (4) 3132=+-x x(5) 01133=--+x x (6)326--=-x x x x (7) 2163524245--+=--x x x x (8) 1255522=-++x x x (9) 1213162+=-+-x x x (10) 1617222-=-++x x x x x四、 先化简,再求值 1、329632-÷--+m m m m ,其中2-=m2、1x 11x 2x )1x )(2x (1x 3x 22+++--+÷-+,其中132x -=3.已知3x-4y-z=0,2x+y-8z=0,求2222x y z xy yz zx++++ 的值.五、列方程解应用题:1、小明有一本280页的书,计划2周读完。
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2018_2019学年七年级数学上学期期末复习检测试卷 (6)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.24.(3分)三棱锥有()个面.A.3 B.4 C.5 D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A. B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3 B.4 C.5 D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断①正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断②正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断③错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断④正确.【解答】解:∵∠AOB=120°,∠COD=60°,∴∠AOC+∠BOD=∠AOB﹣∠COD=60°.①∵∠AOC=∠BOD,∠AOC+∠BOD=60°,∴∠AOC=∠BOD=30°,∴∠AOD=∠COB=90°,∴∠AOD+∠COB=180°,又∵∠AOB+∠COD=180°,∴图中有两对互补的角,故①正确;②设∠AOC=x,则∠BOD=60°﹣x,∴∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∵OE平分∠BOC,∴∠BOE=∠BOC=60°﹣x,∴∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=60°﹣x,∵OM平分∠AOC,∴∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∴∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∴∠DON=∠BON,∴ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∴∠AOP+∠BOQ=90°﹣x+30°+x=120°,∵∠COD=60°,∴=2,故④正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= 6 cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= 2 .【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10 小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为: =10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30 .【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∵x2﹣xy=﹣3,2xy﹣y2=﹣8,∴2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∴2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD= 16或4 cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∵线段AD的中点为M、线段BC的中点为N,∴点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积 1 分,胜一场积 2 分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知 2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∵M为AC中点,∴,①当D在线段BC上时,CD=n,MD=MC﹣CD==;②当D在l上且在点C的右侧时,CD=n,∴=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)∴甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∴若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧∵∠AOM=3∠A′OB∴设∠A′OB=x,∠AOM=3x∵OP⊥M∴∠AON=180°﹣3x∠AOP=90°﹣3x∴∵∠AOP=∠A′OP∴∠AOP=∠A′OP=∴OP⊥MN∴∴∴②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∵∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∴∠AOP=∠A′OP=∴OP⊥MN∴3x+=90∴x=24°∴(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∵∠AOP=∠A'OP∴∠AOP=45°∴∠BOP=60°+45°=105°②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∵∠AOP=∠A'OP∴∠AOP=75°∴∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP= 11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分①当A′在线段BC上,②当A′在l上且在C的右侧,进行讨论即可求解;(3)分①当8<x<12,此时,A′在C的左侧,②当x>12 此时,A′在C的右侧,③当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)①当A′在线段BC上,由题知PA=PA′,∵M为AC中点,∴MA′=MC,∴PM=PA′+A′M====12;②当A′在l上且在C的右侧,∵M为A′C中点,∴MA′=MC,∴PM=PA′﹣A′M====12,综上:PM=12;(3)①当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∵N为BP中点,∴,∵A′C=24﹣2x,∵M为A′C中点,∴,∴=;②当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∵M为A′C中点,∴,∴=;③当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∴.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。
广东省广州市番禺区2018-2019学年九年级上学期数学期末考试试卷
广东省广州市番禺区2018-2019学年九年级上学期数学期末考试试卷一、选择题(共10题;共20分)1.一元二次方程是的根的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.在⊙O中,弦AB的长为,圆心O到AB的距离为1cm,则⊙O的半径是()A. 2B. 3C.D.4.已知关于x的一元二次方程有两个不相等的实数根,则二次项系数a的取值范围是()A. B. C. 且 D. 且5.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A. (3,3)B. (4,3)C. (3,1)D. (4,1)6.某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元。
若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是()A. 12%B. 9%C. 6%D. 5%7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3,随机摸出一个小球不放回,再随机摸出一个小球,两次摸出的小球标号之和为5的概率是()A. B. C. D.8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数为()A. 60°B. 50°C. 40°D. 30°9.如图,在等边△ABC中,AB=6,点D是BC的中点,将△ABC绕点A逆时针旋转后得到△ACE,那么线段DE的长为()A. B. 6 C. D.10.如图,抛物线与x轴交于点A和B,线段AB的长为2,则k的值是()A. 3B. −3C. −4D. −5二、填空题(共6题;共6分)11.方程的解为________.12.点A(2,3)关于原点对称的坐标为________.13.用配方法将变形为,则m=________.14.将抛物线向右平移1个单位所得到抛物线的解析式是________.15.如图,要使△ABC∽△DBA,则只需要添加一个合适的条件是________.16.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC与∠ACB的平分线相较于点E,过点E作EF∥BC 交AC于点F,则EF的长为________.三、解答题(共9题;共100分)17.(1)解方程:;(2)用配方法解方程:18.如图,平面直角坐标系中,A、B、C坐标分别是(−2,4)、(0,−4)、(1,−1).将△ABC绕点O 逆时针方向旋转90°后得到△A′B′C′(1)①画出△A′B′C′,并写出A′、B′、C′的坐标;②画出△ABC关于原点O对称的△A1B1C1;(2)以O为圆心,OA为半径画圆,求扇形OA′A1.19.画出函数的图象,写出它的开口方向,对称轴和顶点,并说明当y随x的增大而增大时,x的取值范围.20.如图,D、E分别是⊙O两条半径OA、OB的中点,.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.21.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字−1,−2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M的坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.22.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=x mm,EF=y mm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.23.如图,已知,⊙O的半径,弦AB,CD交于点E,C为的中点,过D点的直线交AB 延长线与点F,且DF=EF.(1)如图1,试判断DF与⊙O的位置关系,并说明理由;(2)如图2,连接AC,若AC∥DF,BE= AE,求CE的长.24.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,以A为圆心,AD长为半径画弧,交边AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程的一个根吗?为什么?②若AD=EC,求的值.25.如图,已知,抛物线过点A(−2,5),过A点作x轴的平行线,交抛物线与另一点C,交y轴与点Q,点D(m,5)为线段QC上一动点(不与Q、C重合),作点Q关于直线OD的对称点P,连接PC,PD.(1)当点P落在抛物线的对称轴上时,求△OPD的面积;(2)若直线PD交x轴与点E.试探究四边形OECD能否为平行四边形?若能,求出m的值,若不能,请说明理由.(3)设点P(h,k).①求PC取最小值时k的值;②当0<m≤5时,试探究h与m之间的关系.答案解析部分一、选择题1.【答案】C【解析】【解答】解:x2+x=0x(x+1)=0x1=0,x2=-1故答案为:C.【分析】利用因式分解解一元二次方程即可得到答案。
湘教版九年级数学上册期末复习测试题(含答案)
湘教版九年级数学上学期期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A.3B.C.D.2.有两块木板,第一块长是宽的2倍,第二块的长是第一块宽的3倍,宽比第一块的长少,已知第二块木板的面积比第一块大,这两块木板的长和宽分别是( )A.第一块木板长,宽,第二块木板长,宽B.第一块木板长,宽,第二块木板长,宽C.第一块木板长,宽,第二块木板长,宽D.以上都不对 3.如图,,,延长交于,且,则的长为( )A B.C.D.4. 下列四个三角形,与左图中的三角形相似的是( )5.下列命题中,是真命题的是( )A.有两边和其中一边的对角对应相等的两个三角形全等B.等腰三角形既是轴对称图形,也是中心对称图形C.轴对称图形的对称轴是连接两个对称点之间的线段的垂直平分线D.任何数的零次幂都等于1 6.下列命题中,真命题是( ) A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形第4题图 A B C DA BE F CD第3题图C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形 7. 如图,在△中,22,53,则△的面积是( )A.221B.12C.14D.218.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出两点之间的距离为30米.假设她们的眼睛离头顶都为,则可计算出塔高约为(结果精确到,参考数据:2,3) ( )A.36.21米B.37.71米C.40.98米D.42.48米9.如图,梯子(长度不变)跟地面所成的锐角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是( ) A.的值越大,梯子越陡 B.的值越大,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的三角函数值无关10.如果∠A 是锐角,且,那么∠A =( ) A.30°B.45°C.60°D.90°11.从分别写有数字4-、3-、2-、1-、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .2312.一只盒子中有红球个,白球个,黑球个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么与的关系是( ) A., B. C.D.A CB第7题图二、填空题(每小题3分,共24分) 13.从这5个数中任取一个数,作为关于的一元二次方程20x x k -+=的值,则所得的方程中有两个不相等的实数根的概率是 . 14.三角形的每条边的长都是方程的根,则三角形的周长是_______________.15.小张的三位朋友甲、乙、丙想破译他在电脑中设置的登录密码.但是他们只知道这个密码共有五位数字.他们根据小张平时开电脑时输入密码的手势,分别猜测密码是“51932”、“85778”或“74906”.实际上他们每个人都只猜对了密码中对应位置不相邻的两个数字.由此你知道小张设置的密码是________.16.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).17.如图,在△中,∠°,,,在斜边上取一点,使,过作交于,则_______.18.菱形OABC 在平面直角坐标系中的位置如图所示,∠,则点B 的坐标为_____________.19.若等腰三角形的腰长为4,面积是4,则这个等腰三角形顶角的 度数为_______.20.有一箱规格相同的红、黄两种颜色的小塑料球共个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为,据此可以估计红球的个数约为 .xyO C B A第18题图三、解答题(共60分) 21.(8分)计算下列各题: (1)55sin 35sin 12145sin 222+++-;(2)12︒-30tan 3+121-⎪⎭⎫ ⎝⎛-. 22.(5分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到万只.求该地区年到年高效节能灯年销售量的平均增长率. 23.(10分)已知线段,为的中点,为上一点,连接交于点.(1)如图①,当且为的中点时,求PCAP的值; (2)如图②,当,AO AD =41时,求tan ∠.24.(8分) 如图,在梯形中,∥,过对角线的中点作,分别交边于点E F ,,连接.(1)求证:四边形AECF 是菱形; (2)若4EF =,,求四边形AECF 的面积.第23题图②ODA PBC ①ODAPBC第24题图M CDNAB25.(6分)如图,防洪大堤的横断面是梯形,背水坡的坡比(指坡面的铅直高度与水平宽度的比),且.身高为的小明站在大堤点,测得高压电线杆端点的仰角为.已知地面宽,求高压电线杆的高度(结果保留三个有效数字,3≈1.732).26.(8分)如图,在一次夏令营活动中,小明从营地出发,沿北偏东60°方向走了m到达点,然后再沿北偏西方向走了到达目的地点.求:(1)两地之间的距离;(2)确定目的地C在营地的什么方向.27.(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.28.(9分)已知:如图所示的一张矩形纸片,将纸片折叠一次,使点与重合,再展开,折痕交边于,交边于,分别连接和.(1)求证:四边形是菱形.(2)若,△的面积为,求△的周长.(3)在线段上是否存在一点,使得?若存在,请说明点的位置,并予以证明;若不存在,请说明理由.参考答案1.B 解析:方法1:∵∴,∴∴ 这个直角三角形的斜边长是3,故选B.方法2:设1x 和2x 是方程22870x x -+=的两个根,由一元二次方程根与系数的关系可得:∴ 22221212127()24292x x x x x x +=+-=-⨯=,∴ 这个直角三角形的斜边长是3,故选B.2.B 解析:设第一块木板的宽是,则长是,第二块木板的长是,宽是.根据题意,得3(22)2108x x x x --⋅=.整理,得223540x x --=,因式分解,得(6)(29)0x x -+=,解得1296,2x x ==-. ∵ 292x =-不合题意,舍去.∴ 6x =.∴ 第一块木板长,宽,第二块木板长,宽. 3.B 解析:过作的平行线交于,则△∽△. ∵ 是的中点,∴,,∴∴.故选B . 4.B 解析:图中的三角形的三边长分别为A 项中的三角形的三边长分别为B 项中的三角形的三边长分别为C 项中的三角形的三边长分别为D 项中的三角形的三边长分别为只有B 项中的三角形的三边长与题图中的三角形的三边长对应成比例,所以选B.5.C 解析:A 不符合全等三角形的判定定理,错误;B.等腰三角形是轴对称图形,但不一定是中心对称图形,故选项B 错误;C.经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,正确;D.0的0次幂无意义,故选项D 错误.故选C .6.C 解析:A.两条对角线相等且互相平分的四边形为矩形,故本选项错误;B.对角线互相垂直平分的四边形是菱形,故本选项错误;C.对角线互相平分的四边形是平行四边形,故本选项正确;D.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;故选C.ABEF CD第3题答图G7.A 解析:如图,作因为22,所以.由勾股定理得.又53,所以所以所以所以8.D 解析:如图,米,米,∠,∠,∠.设米,在Rt △中,tan ∠=DGDF,即tan 30°=33=x DF ,∴.在Rt △中,∵∠90°,∠45°,∴.根据题意,得,解得3031-.∴(米).9.A 解析:根据锐角三角函数的变化规律,知的值越大,越大,梯子越陡.10.B 解析:因为,,所以,所以,所以. 11.B 解析:绝对值小于的卡片有三张,故所求概率为3193=. 12.D 解析:由题意知,所以13.(或0.6) 解析:由根的判别式得所以符合条件的是所以14.6或10或12 解析:解方程2680x x -+=,得14x =,22x =.∴ 三角形的每条边的长可以为2、2、2或2、4、4或4、4、4(2、2、4不能构成三角形,故舍去),∴ 三角形的周长是6或10或12.15.55976或75972 解析:因为3个人中,每人猜对两个,所以猜对6位,又因为密码A CB第7题答图D只有5位,所以必定有一位密码有两人猜对,从给出的猜测可以知道,甲和丙都猜对了第三位数字9.因为他们猜对了不相邻的两个数,所以甲和丙猜对的另一个数字必定是第一和第五位的数字,所以乙猜对的数字必定是第二和第四位数字.如果甲猜对第一位和第三位,那么丙就猜对第五位和第三位;如果甲猜对的是第五位和第三位,那么丙猜对的就是第一位和第三位.所以小张的密码是:55976或75972. 16. 解析:因为 ,,所以.17.3 解析:∵ ,∠为△和△的公共角,∴ △∽△,∴, 在Rt △中,由勾股定理得,即. 又∵ ,,,∴ ,∴.18.解析:过点作则,所以点B 的坐标为.19.解析:∵ 等腰三角形的腰长为4,面积是4,∴ 腰上的高为2. ①当三角形是锐角三角形时,其顶角为;②当三角形是钝角三角形时,其顶角的外角为,则顶角为.故顶角的度数为.20.600 解析:由多次重复上述过程后,发现摸到红球的频率约为,知摸到红球的概率约为所以红球的个数约为21.解:(1) 55sin 35sin 12145sin 222+++-2222(21)sin 35cos 352⨯--++22.(2)12︒-30tan 3+121-⎪⎭⎫ ⎝⎛-2133332-+⨯-= 13-=. 22.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴.∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴.答:该地区年到年高效节能灯年销售量的平均增长率为23.解:(1)过作∥交于,则△∽△.又为的中点,所以所以2121.再由∥可证得△∽△,所以2==CEADPC AP . (2)过作∥交于,设,则,,由△∽△,得2123.再由△∽△得32==CE AD PE PD . 由勾股定理可知,25,则32=-PD DE PD ,可得,则∠∠∠,所以tan ∠tan ∠21=AO CO . 24.(1)证明:AB DC ∥,∴ ACF CAE =∠∠.在CFO △和AEO △中,∴ CFO AEO △≌△,∴ OF OE =. 又OA OC =,∴ 四边形AECF 是平行四边形. EF AC ⊥,∴ 四边形AECF 是菱形.(2)解:四边形AECF 是菱形 ,4EF =,∴ 114222OE EF ==⨯=.在Rt AEO △中,2tan 5OE OAE OA ==∠,∴5OA =, ∴22510AC AO ==⨯=.∴25.解:设大堤的高度为以及点到点的水平距离为. ∵ 33i =,∴ 坡与水平的角度为30°,∴h AB=,即2AB ,a AB,即得32,∴.∵ 测得高压电线杆顶端点的仰角为30°, ∴DNMN,解得,∴.答:高压电线杆的高度约为.26.解:(1)如图,过点作∥,∴∠∠.∵,∴∠,即△为直角三角形.由已知可得:,,由勾股定理可得:,∴.(2)在Rt△ABC中,∵,,∴∠.∵∠,∴∠,即点在点的北偏东方向上.27.解:树状图为:或列表为:红红黄蓝红(红,红)(红,红)(红,黄)(红,蓝)红(红,红)(红,红)(红,黄)(红,蓝)黄(黄,红)(黄,红)(黄,黄)(黄,蓝)蓝(蓝,红)(蓝,红)(蓝,黄)(蓝,蓝)由上述树状图或表格知:所有可能出现的结果共有16种,∴63168=,105168=. 第2次第1次开始红红黄蓝红红黄蓝红红黄蓝红红黄蓝红红黄蓝第27题答图- 11 - ∴ 此游戏对双方不公平,小亮赢的可能性大.28.(1)证明:由题意可知∵ ∥∴ ∠∠,∠=∠ ∴ △≌△ ∵,又∥∴四边形是平行四边形. ∵,∴ 平行四边形是菱形.(2)解:∵ 四边形是菱形,∴. 设,∵ △的面积为24,△的周长为. (3)解:存在,过点作的垂线,交于点,点就是符合条件的点. 证明如下: ∵∠∠90°,∠∠ ∴△∽△,∴ AE AO AP AE ,∴ . ∵ 四边形是菱形,∴∴∴。
2018-2019学年山西省太原市九年级(上)期中数学试卷
2018-2019学年山西省太原市九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若ab =cd=2(b+d≠0),则a+cb+d的值为()A. 1B. 2C. 12D. 42.将方程(x+1)(2x-3)=1化成“ax2+bx+c=0”的形式,当a=2时,则b,c的值分别为()A. b=−1,c=−3B. b=−5,c=−3C. b=−1,c=−4D. b=5,c=−43.矩形、菱形、正方形都具有的性质是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线平分对角4.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A. ABBC =DEEFB. ABAC =DEDFC. EFBC =DEABD. OEEF =EBFC5.一元二次方程x2+6x+9=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数偎C. 只有一个实数根D. 没有实数根6.小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为()A. 16B. 14C. 13D. 127.用配方法解方程x2-8x+5=0,将其化为(x+a)2=b的形式,正确的是()A. (x+4)2=11B. (x+4)2=21C. (x−8)2=11D. (x−4)2=118.如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A. CP平分∠ACBB. CP⊥ABC. CP是AB边上的中线D. CP=AP9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A. 90%×(2+x)(1+x)=2×1B. 90%×(2+2x)(1+2x)=2×1C. 90%×(2−2x)(1−2x)=2×1D. (2+2x)(1+2x)=2×1×90%10.如图,在矩形ABCD内有一点F,FB与FC分别平分∠ABC和∠BCD,点E为矩形ABCD外一点,连接BE,CE.现添加下列条件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四边形BECF是正方形的共有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共10.0分)11.一元二次方程x2+3x=0的解是______.12.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为______.13.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为______.14.如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为______.15.如图,在菱形ABCD中,AB=4,AE⊥BC于点E,点F,G分别是AB,AD的中点,连接EF,FG,若∠EFG=90°,则FG的长为______.三、计算题(本大题共2小题,共14.0分)16.解下列方程:(1)x2-6x+3=0;(2)3x(x-2)=2(x-2).17.如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.四、解答题(本大题共6小题,共46.0分)18.已知,如图,矩形ABCD中,AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.19.太原是一座具有4700多年历史、2500年建城史的历史古都,系有“锦绣太原城”的美誉,在“我可爱的家乡”主题班会中,主持人准备了“晋祠园林”、“崇山大佛”、“龙山石窟”、“凌霄双塔”这四处景点的照片各一张,并将它们背面朝上放置(照片背面完全相同),甲同学从中随机抽取一张,不放回,乙再从剩下的照片中随机抽取一张,若要根据抽取的照片作相关景点介绍,求甲、乙两人中恰好有一人介绍“晋祠园林”的概率.(提示:可用照片序号列表或画树状图)20.“早黑宝”是我省农科院研制的优质新品种,在我省被广泛种植.清徐县某葡萄种植基地2016年种植“早黑宝”100亩,到2018年“早黑宝”的种植面积达到225亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1800元,则售价应降低多少元?21.如图,在△ABC中,点D,E,F分别在AB,AC,BC边上,若四边形DEFB为菱形,且AB=8,BC=12,求菱形DEFB的边长.22.已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择______题.A题:当点E是AB的中点时,矩形EFGH的面积是______.B题:当BE=______时,矩形EFGH的面积是8√3.23.综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD 沿AF所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择______题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN 上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.答案和解析1.【答案】B【解析】解:∵若==2(b+d≠0),∴=2(等比性质),故选:B.利用等比的性质即可解决问题;本题考查比例线段、等比的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.【答案】C【解析】解:(x+1)(2x-3)=1,整理得2x2-x-4=0,则a=2,b=-1,c=-4,故选:C.把原方程根据整式的乘法运算法则化简,整理为一般形式,即可解答.本题考查的是一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】B【解析】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.利用特殊四边形的性质进而得出符合题意的答案.此题主要考查了多边形,正确掌握多边形的性质是解题关键.4.【答案】D【解析】解:A、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;B、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;C、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;D、∵直线b∥直线c,∴△OEB∽△OFC,∴=,错误,故本选项符合题意;故选:D.根据平行线分线段成比例定理逐个判断即可.本题考查了平行线分线段成比例定理,能灵活运用定理进行推理是解此题的关键.5.【答案】A【解析】解:∵△=62-4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.故选:A.根据方程的系数结合根的判别式,可得出△=0,进而即可得出原方程有两个相等的实数根.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.【答案】C【解析】解:根据题意列表如下:白蓝红红(红,白)(红,蓝)(红,红)蓝(蓝,白)(蓝,蓝)(蓝,红)上面等可能出现的6种结果中,有2种情况可能得到紫色,故配成紫色的概率是=,故选:C.根据题意先列表,得出所有可能出现的情况数和配成紫色的情况数,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7.【答案】D【解析】解:x2-8x+5=0,x2-8x=-5,x2-8x+16=-5+16,(x-4)2=11.故选:D.把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.8.【答案】A【解析】解:∵四边形CDPE是菱形,∴∠DCP=∠ECP,∴CP平分∠ACB,故选:A.根据菱形的性质解答即可.此题考查菱形的性质,关键是根据菱形的性质解答.9.【答案】B【解析】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据矩形的面积公式结合图案面积占整幅宣传版面面积的90%,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,∵FB与FC分别平分∠ABC和∠BCD,∴∠FCB=DCB=45°,∠FBC=ABC=45°,∴∠FCB=∠FBC=45°,∴CF=BF,∠F=180°-45°-45°=90°,①∵EB∥CF,CE∥BF,∴四边形BFCE是平行四边形,∵CF=BF,∠F=90°,∴四边形BFCE是正方形,故①正确;∵BE=CE,BF=BE,CF=BF,∴BF=CF=CE=BE,∴四边形BFCE是菱形,∵∠F=90°,∴四边形BFCE是正方形,故②正确;∵BE∥CF,CE⊥BE,∴CF⊥CE,∴∠FCE=∠E=∠F=90°,∴四边形BFCE是矩形,∵BF=CF,∴四边形BFCE是正方形,故③正确;∵CE∥BF,∠FBC=∠FCB=45°,∴∠ECB=∠FBC=45°,∠EBC=∠FCB=45°,∵∠F=90°,∴∠FCE=∠FBE=∠F=90°,∵BF=CF,∴四边形BFCE是正方形,故④正确;即正确的个数是4个,故选:D.求出∠F=90°,FB=FC,再根据正方形的判定方法逐个判断即可.本题考查了矩形的判定、平行四边形的判定、菱形的判定、正方形的判定等知识点,能灵活运用判定定理进行推理是解此题的关键.11.【答案】0,-3【解析】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.提公因式后直接解答即可.本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12.【答案】29【解析】解:画树状图为:共有9种等可能的结果数,其中恰好有一人直行,另一人左拐的结果数为2,所以恰好有一人直行,另一人左拐的概率=.故答案为.画树状图展示所有9种等可能的结果数,再找出恰好有一人直行,另一人左拐的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A 或B的概率.13.【答案】√22【解析】解:设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2,故答案为:.设BG=x,根据正方形的性质知BE=BC=x,由正方形FBGE与正方形ABCD的相似比=BG:BC可得答案.本题主要考查相似多边形的性质,解题的关键是掌握正方形的性质和相似多边形的性质.14.【答案】√6-√2【解析】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,∴OB=CO=BO′=O′C′═OD=,设DC′=x,在Rt△BDO′中,∵BD2=BO′2+O′D2,∴(2)2=()2+(+x)2,∴x=-,故答案为-.设DC′=x,在Rt△BDO′中,根据BD2=BO′2+O′D2,构建方程即可解决问题;本题考查旋转变换、全等三角形的判定和性质、正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】2√3【解析】解:如图,连接BD交AC于点O.∵四边形ABCD是菱形,∴AC⊥BD,∵AF=FB,AG=GD,∴FG∥BD,∵∠EFG=90°,∴GF⊥EF,∴BD⊥EF,∵AC⊥BD,∴EF∥AC,∵AF=BF,∴BE=EC,∵AE⊥BC,∴AB=AC=BC,∴△ABC是等边三角形,∵AB=4,∴OB=2,∴BD=2OB=4,∵FG=BD,∴FG=2,故答案为2.如图,连接BD交AC于点O.首先证明△ABC是等边三角形,求出OB,BD,再利用三角形的中位线定理即可解决问题;本题考查菱形的性质、三角形的中位线定理、平行线分线段成比例定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:(1)x2-6x+3=0,x2-6x=-3,x2-6x+9=-3+9,(x-3)2=6,x-3=±√6,x1=3+√6,x2=3-√6;(2)3x(x-2)=2(x-2),3x(x-2)-2(x-2)=0,(x-2)(3x-2)=0,x-2=0,3x-2=0,x1=2,x2=23.【解析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.17.【答案】解:∵矩形ABFE∽矩形DEFC,且相似比为1:2,∴AB DE =AEDC=12,∵四边形ABCD为矩形,∴CD=AB=4∴4 DE =AE4=12,∴DE=8,AE=2,∴AD=AE+DE=2+8=10.【解析】利用相似多边形的性质得到==,而根据矩形的性质得到CD=AB=4,从而利用比例性质得到DE=8,AE=2,然后计算AE+DE即可.本题考查了相似多边形的性质:对应角相等;对应边的比相等.也考查了矩形的性质.18.【答案】证明:矩形对角线互相平分且相等,∴OB=OC,在△BOE和△COF中∵{∠BEO=∠CFO ∠EOB=∠FOC BO=CO∴△BOE≌△COF(AAS),∴BE =CF .【解析】长方形对角线相等且互相平分,即可证明OC=OB ,进而证明△BOE ≌△COF ,即可得:BE=CF .本题考查了矩形对角线相等且互相平分的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,本题中求证△BOE ≌△COF 是解题的关键. 19.【答案】解:画树状图为:共有12种等可能的结果数,其中甲、乙两人中恰好有一人介绍“晋祠园林”的情况有6种,所以甲、乙两人中恰好有一人介绍“晋祠园林”的概率为612=12.【解析】利用树状图展示12种等可能的结果数,从中找到甲、乙两人中恰好有一人介绍“晋祠园林”的结果数,根据概率公式计算可得.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了勾股数.20.【答案】解:(1)设该基地这两年“早黑宝”种植面积的平均增长率为x , 根据题意得:100(1+x )2=225,解得:x 1=0.5=50%,x 2=-2.5(不合题意,舍去).答:该基地这两年“早黑宝”种植面积的平均增长率为50%.(2)设售价应降低y 元,则每天可售出(200+50y )千克,根据题意得:(20-12-y )(200+50y )=1800,整理得:y 2-4y +4=0,解得:y 1=y 2=2.答:售价应降价2元.【解析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据该基地2016年及2018年种植“早黑宝”的面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设售价应降低y 元,则每天可售出(200+50y )千克,根据总利润=每千克的利润×销售数量,即可得出关于y 的一元二次方程,解之即可得出结论. 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:设菱形DEFB 的边长为x ,∵四边形DEFB 是菱形,∴BD =DE =BF =x ,DE ∥BF ,∴△ADE ∽△ABC , ∴DE BC =AD AB ,∵AB =8,BC =12, ∴x 12=8−x8,解得:x =245,即菱形DEFB 的边长为245.【解析】设菱形DEFB 的边长为x ,根据菱形的性质得出BD=DE=BF=x ,DE ∥BF ,根据相似三角形的判定得出△ADE ∽△ABC ,得出比例式=,代入求出即可.本题考查了菱形的性质和相似三角形的性质和判定,能求出△ADE ∽△ABC 是解此题的关键.22.【答案】A 或B 9√3 2或4【解析】 (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB=BC=CD=AD ,∴∠A+∠B=180°, ∵BE=BF=DH=DG ,∴AE=AH=CF=CG ,∴∠AEH=∠AHE=(180°-∠A ),∠BEF=∠BFE=(180°-∠B ), ∴∠AEH+∠BEF=(180°-∠A )+(180°-∠B )=90°, 同法可证:∠EFG=∠EHG=90°,∴四边形EFGH 是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6-x,EF=x,EH=(6-x),由题意:x•(6-x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.(1)根据三个角是直角的四边形是矩形即可解决问题;(2)A题:求出EF,EH即可解决问题;B题:设BE=x,则AE=6-x,EF=x,EH=(6-x),构建方程即可解决问题;本题考查菱形的判定和性质,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】A或B【解析】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4-4,∴GH=AE=8-4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,∴∠AD′M+∠6=∠CB′N+∠1,即∠HD′M=∠GB′N,∴B′G∥D′H.②连接GH,则四边形AECH是平行四边形,∴AE=GH,在Rt△CNB′中,CB′=4,CN=2,∴NB′=2,∴MB′=4-2,设BE=EB′=y,在R△EMB′Z中,则有y2=(2-y)2+(4-2)2,∴y=8-4,∴AE=AB-BE=4-4.(1)根据四边相等的四边形是菱形即可判断;(2)A题:①结论:B′G=D′H,B′G∥D′H.只要证明△BCE≌△ADF(SAS)即可解决问题;②连接GH,则四边形AEGH是平行四边形,推出AE=GH,设BE=EB′=m,则AE=m,构建方程求出m即可解决问题;B题:①结论:B′G=D′H,B′G∥D′H.想办法证明△BCE≌△ADF(SAS),∠HD′M=∠GB′N,即可解决问题;②连接GH,则四边形AECH是平行四边形,推出AE=GH,在Rt△CNB′中,CB′=4,CN=2,推出NB′=2,推出MB′=4-2,设BE=EB′=y,在R△EMB′Z中,则有y2=(2-y)2+(4-2)2,求出y即可解决问题;本题是四边形综合题,考查翻折变换、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、平行线的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
上海市青浦区2018-2019学年第一学期初三期末质量检测(一模)数学试卷(解..
青浦区2018学年第一学期九年级期终学业质量调研测试数学试卷2019.1(完成时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每小题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列图形中,一定相似的是( )A. 两个正方形;B. 两个菱形;C. 两个直角三角形;D. 两个等腰三角形. 2.如图,已知AB //CD //EF ,它们依次交直线1l 、2l 于点A 、D 、F和点B 、C 、E ,如果AD ∶DF =3∶1,BE =10,那么CE 等于( ) A .103; B .203;C .52;D .152.3.在Rt △ABC 中,∠C =90º,如果∠A =α,BC =a ,那么AC 等于( )A. tan α⋅a ;B. cot α⋅a ;C.sin α⋅a ;D.cos α⋅a . 4.下列判断错误的是( )A.0=0a ; B. 如果+2= abc ,3-= a b c ,其中0≠ c ,那么 a ∥b ;C. 设e 为单位向量,那么||1= e ; D. 如果||2||=a b ,那么2= a b 或2=-a b . 5.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠B ; B .∠BDE +∠C =180°;C .⋅=⋅AD BC AC DE ; D .⋅=⋅AD AB AE AC .6.已知二次函数2=++y ax bx c A .0>ac ; B .0>b ; C .0+<a c ; D .+=0a b c +.l 2l 1FED C BAD CBA E (第2题图)(第6题图)(第5题图)二、填空题:(本大题共12题,每小题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.如果 ,那么 ▲. 8.计算:3(2)2(3)a b a b ---= ▲ .9. 如果两个相似三角形的相似比为1∶3,那么它们的周长比为 ▲.10.二次函数 的图像的顶点坐标是 ▲ .11.抛物线 的对称轴是直线1=x ,那么m = ▲ . 12.抛物线 在y 轴右侧的部分是 ▲ .(填“上升”或“下降”)13.如果α是锐角,且sin α=cos 20°,那么α= ▲ 度.14.如图,某水库大坝的橫断面是梯形ABCD ,坝高为15米,迎水坡CD 的坡度为1:2.4,那么该水库迎水坡CD 的长度为 ▲ 米. 15.如图,在边长相同的小正方形组成的网格中,点A 、B 、C都在这些小正方形的顶点上,则tan ∠ABC 的值为 ▲ . 16.在△ABC 中, AB =AC ,高AH 与中线BD 相交于点E ,如果BC=2,BD=3,那么AE= ▲.17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D , 点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲. 18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ .ABCCAA BCD241y x x =--23y x mx m =-+-22y x =-(第15题图)(第17题图)25=+xx y x y =(第18题图)(第14题图)三、解答题(本大题共7题,满分78分) [请将解题过程填入答题纸的相应位置] 19.(本题满分10分)计算:()121sin 301cot 3030cos 45-︒︒︒︒+--.20.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在平行四边形ABCD 中,点E 在边BC 上,CE=2BE , AC 、DE 相交于点F .(1)求DF ∶EF 的值;(2)如果CB a = ,CD b =,试用 a 、b 表示向量EF .21.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,2=⋅AE AD AB ,∠ABE =∠ACB .(1)求证:DE ∥BC ; (2)如果 ADE S ∶DBCE S =四边形1∶8,求 ADE S ∶BDE S 的值.22.(本题满分10分)如图,在港口A 的南偏东37°方向的海面上,有一巡逻艇B ,A 、B 相距20海里,这时在巡逻艇的正北方向及港口A 的北偏东67°方向上,有一渔船C 发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈1213,cos67°≈513,tan67°≈125)23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .ED CBA北EABCDFABDEF(第21题图)(第20题图)24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CDCAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.NHG FEDC AB (第24题图)(备用图)(第25题图)青浦区2018学年第一学期期终学业质量调研 九年级数学试卷参考答案及评分说明2019.1一、选择题:1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.D . 二、填空题:7.23; 8. a ; 9.1:3; 10.(2,-5); 11.2; 12.上升;13.70; 14.39; 15.12; 16. 17.12;18.4. 三、解答题:19.解:原式=1211122-⎛⎫+ ⎪⎝⎭⎛ ⎝⎭. ··············································· (4分)=21+12-. ·············································································· (4分)= ································································································· (2分)20.解:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD//BC ,·············································································· (2分)∴=DF ADEF EC. ··················································································· (1分) ∵CE=2BE ,∴32=BC EC ,······································································ (1分) ∴32=DF EF . ······················································································· (1分) (2)∵CE=2BE ,∴23=CE CB , ∴2233== CE CB a .····························· (1分)∵=- ED CD CE ,∴23=- ED b a .················································· (1分)∵32=DF EF ,∴25=EF ED , ····························································· (1分)∴25= EF ED , ···················································································· (1分)222453515⎛⎫=-=- ⎪⎝⎭b a b a . ··································································· (1分) 21.证明:(1)∵2=⋅AE AD AB ,∴=AE ABAD AE. ················································ (1分) 又∵∠EAD =∠BAE ,∴△AED ∽△ABE , ··············································· (1分) ∴∠AED =∠ABE . ··············································································· (1分) ∵∠ABE =∠ACB ,∴∠AED =∠ACB . ···················································· (1分) ∴DE ∥BC .························································································· (1分) (2)∵DE ∥BC ,∴△ADE ∽△ABC ,∴2⎛⎫= ⎪⎝⎭ADE ABC S AD S AB .············································ (1分) ∵18四边形= ADE DBCES S ,∴19= ADE ABC S S . ··················································· (1分) ∴219⎛⎫= ⎪⎝⎭AD AB , ················································································ (1分) ∴13=AD AB ,······················································································ (1分) ∴12=AD DB ,∴12= ADE BDE S S . ···························································· (1分) 22.解:过点A 作AH ⊥BC ,垂足为点H .由题意,得∠ACH =67°,∠B =37°,AB =20. 在Rt △ABH 中,∵sin ∠=AHB AB ,∴sin 20sin 3712=⋅∠=⨯︒≈AH AB B . ···················· (3分) ∵cos ∠=BHB AB,∴cos 20cos3716=⋅∠=⨯︒≈BH AB B .···················· (3分)在Rt △ACH 中, ∵tan ∠=AH ACH CH ,∴12=5tan tan 67=≈∠︒AH CH ACH . ······················· (3分) ∵BC =BH +CH ,∴BC ≈16 +5=21. ∵212125125÷=<, 所以,巡逻艇能在1小时内到达渔船C 处.················································· (1分)23.证明:(1)∵AD=AF ,∴∠ADF =∠F . ································································· (1分)∵AE CE DE EF ⋅=⋅,∴=AE EFDE CE. ·············································· (1分) 又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ·············································································· (2分) ∴∠F =∠C . ······················································································· (1分) ∴∠ADF =∠C . ·················································································· (1分) 又∵∠DAE =∠CAD ,∴△ADE ∽△ACD .············································································ (1分)(2)∵AE BD EF AF ⋅=⋅,∴AE EFAF BD=.················································ (1分) ∵AD=AF ,∴AE EFAD BD=.·································································· (1分) ∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB . ··············································································· (1分) ∴△AEF ∽△ADB . ············································································ (1分) ∴∠F =∠B ,∴∠C =∠B ,∴AB=AC . ·························································································· (1分)24.解:(1)设平移后的抛物线的解析式为2+=-+y x bx c . ·································· (1分)将A (-1,0)、B (4,0),代入得101640.,--+=⎧⎨-++=⎩b c b c ··············································································· (1分) 解得:34.,=⎧⎨=⎩b c所以,2+34=-+y x x .····································································· (1分)(2)∵2+34=-+y x x ,∴点C 的坐标为(0,4) ··············································· (1分).设直线BC 的解析式为y =kx +4,将B (4,0),代入得kx +4=0,解得k =-1, ∴y =-x +4. 设点D 的坐标为(m ,4- m ).∵CD22=2m ,解得=1m 或=1-m (舍去),∴点D 的坐标为(1,3). ············································································ (1分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N . ∵1122⋅=⋅AC BN AB OC54=⨯BN,∴=BN . (1分) ∵DM ∥BN ,∴=DM CD BN CB,∴=DM BN17=DM . ··············· (1分)∴sin =17221∠==DM CAD AD .············································ (1分) (3)设点Q 的坐标为(n ,2+34-+n n ).如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ =PC ,点P 的坐标为(n ,4-+n ). ∵22+3444=-++-=-PQ n n n n n,=PC ,······································ (2分)∴24-n n,解得=4n =0n (舍). ············································· (1分) ∴点Q的坐标为(42). ·························································· (1分)25.解:(1)∵AD//BC ,∴=AD DE BG EB ,=AD DFCH FC. ······························································ (2分) ∵DB =DC =15,DE =DF =5, ∴12==DE DF EB FC ,∴=AD ADBG CH. ···················································· (1分) ∴BG =CH .·························································································· (1分)(2)过点D 作DP ⊥BC ,过点N 作NQ ⊥AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP = CP =9,DP =12.········································· (1分)∵12==AD DE BG EB ,∴BG = CH =2x ,∴BH =18+2x . ································· (1分) ∵AD ∥BC ,∴=A D D N B H N B ,∴182=+x DN x NB ,∴182+15==++x DN DNx x NB DN , ∴56=+xDN x . ·················································································· (1分)∵AD ∥BC ,∴∠ADN =∠DBC ,∴sin ∠ADN =sin ∠DBC , ∴=NQ PD DN BD ,∴46=+xNQ x . ························································· (1分) ∴()21142092266=⋅=⋅=<≤++x x y AD NQ x x x x .····························· (2分)(3)∵AD ∥BC ,∴∠DAN =∠FHG .(i )当∠ADN =∠FGH 时,∵∠ADN =∠DBC ,∴∠DBC =∠FGH ,∴BD ∥FG , ·························································································· (1分) ∴=BG DF BC DC ,∴51815=BG ,∴BG =6,∴AD =3. ······························· (1分) (ii )当∠ADN =∠GFH 时, ∵∠ADN =∠DBC=∠DCB , 又∵∠AND =∠FGH ,∴△ADN ∽△FCG . ············································································· (1分) ∴=AD FC DN CG ,∴()5182106⋅-=⋅+xx x x ,整理得23290--=x x ,解得 2=x ,或32-=x (舍去).······································· (1分)综上所述,当△HFG 与△ADN 相似时,AD 的长为3或2.。
北师大版九年级上学期期末学业教学质量监测数学试题(含答案)
第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。
2018-2019学年湖北省武汉市九年级(上)期末数学试卷(解析版)
2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1 D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0 B.1 C.2 D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△PAD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B 两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1 ∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时FA=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠PAD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△PAD中,S△PAD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。
上海初三九年级2018届金山区中考数学一模试卷及参考答案
18. 如图 4,在矩形 ABCD 中, E 是 AD 上一点,把 V ABE 沿直 线 BE 翻折,点 A 正好落在 BC 边上的点 F 处,如果四边形 CDEF 和矩形 ABCD 相似,那么四边形 CDEF 和矩形 ABCD 面积比是
的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是
()
A. 30 厘米、45 厘米
B. 40 厘米、80 厘米
C. 80 厘米、120 厘米
D. 90 厘米、120 厘米
6. 在 RtV ABC 中, ÐACB = 90o, AC = 12, BC = 9 , D 是 AB 的中点, G 是 V ABC 的重心,
14. 点 (- 1, a), (- 2, b) 是 抛 物 线 y = x2 + 2x - 3 上 的 两 个 点 , 那 么 a 和 b 的 大 小 关 系 是 a
________ b (填“>”或“<”或“=”). 15. 如图 3, AB 是 e O 的弦, ÐOAB = 30o,OC ^ OA ,交 AB 于点 C ,若 OC = 6 ,则 AB 的
2018 年上海市金山区九年级第一学期期末考试数学试题
一、选择题(每小题 4 分,共 24 分)
1. 已知 a 、 b 是不等于 0 的实数, 2a = 3b ,那么下列等式中正确的是( )
A. a = 2 b3
B. a = 3 b2
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷
新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
2018-2019学年九年级数学上《第二十一章一元二次方程》单元测试题(含答案)
2019年春九年级上册数学《第二十一章一元二次方程》单元测试题含答案一.选择题(共10小题)1.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>12.一元二次方程x2+5=﹣4x的一次项的系数是()A.4 B.﹣4 C.1 D.53.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.±1 D.04.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根5.方程x2+2x+1=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根6.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=7.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或39.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4 C.k<﹣1 D.k<410.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182二.填空题(共8小题)11.已知x=﹣1是方程x2+ax+3﹣a=0的一个根,则a的值是.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是.13.已知关于x的一元二次方程mx2+x+1=0有实数根,则m的取值范围是.14.将一元二次方程x2﹣6x+10=0化成(x﹣a)2=b的形式,则b的值为.15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为.17.已知x1,x2是方程x2﹣3x+1=0的两个实数根,则=.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?24.某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?2019年春九年级上册数学《第二十一章一元二次方程》单元测试题参考答案与试题解析一.选择题(共10小题)1.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>1【分析】根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m﹣1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m﹣1≠0,即m≠1,故选:B.【点评】此题考查一元二次方程,一元二次方程必须满足三个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.(3)整式方程.要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.2.一元二次方程x2+5=﹣4x的一次项的系数是()A.4 B.﹣4 C.1 D.5【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:x2+4x+5=0,则一次项系数为4.故选:A.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c =0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.±1 D.0【分析】把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值.【解答】解:把x=0代入方程(a+1)x2+x+a2﹣1=0得a2﹣1=0,解得a1=1,a2=﹣1,而a+1≠0,所以a=1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4.方程(x+1)2=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根【分析】根据一元二次方程的解法即可求出答案.【解答】解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.方程x2+2x+1=0的根是()A.x1=x2=1 B.x1=x2=﹣1 C.x1=﹣1,x2=1 D.无实根【分析】由原方程得出(x+1)2=0,开方即可得.【解答】解:∵x2+2x+1=0,∴(x+1)2=0,则x+1=0,解得:x1=x2=﹣1,故选:B.【点评】本题主要考查解一元二次方程,解题的关键是熟练掌握完全平方公式及配方法解一元二次方程.6.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.7.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或3【分析】在本题中有两个未知数,且通过观察最后结果,可采用换元法,把x+2y当成一个整体进行考虑.【解答】解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.【点评】此题主要是把x+2y当成一个整体,把求代数式的值的问题转化为解关于这个整体的方程,利用求根公式求解.9.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4 C.k<﹣1 D.k<4【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182【分析】设该厂八、九月份平均每月生产零件的增长率均为x,根据该机械厂七月份及整个第三季度生产零件的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共8小题)11.已知x=﹣1是方程x2+ax+3﹣a=0的一个根,则a的值是 2 .【分析】把x=﹣1代入方程x2+ax+3﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=﹣1代入方程x2+ax+3﹣a=0得:1﹣a+3﹣a=0,解得:a=2,故答案为:2.【点评】本题考查了一元二次方程的解,正确掌握代入法是解题的关键.12.如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是.【分析】直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.【解答】解:由题意得:,∴m=1,原方程变为:﹣x2+2=0,x=,故答案为:.【点评】此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键.13.已知关于x的一元二次方程mx2+x+1=0有实数根,则m的取值范围是m≤且m ≠0 .【分析】由于关于x的一元二次方程有实数根,计算根的判别式,得关于m的不等式,求解即可.【解答】解:∵关于x的一元二次方程mx2+x+1=0有实数根,则△=1﹣4m≥0,且m≠0.解得m≤且m≠0.故答案为:m≤且m≠0.【点评】本题考查了根的判别式、一次不等式的解法及一元二次方程的定义.题目难度不大,解题过程中容易忽略m≠0条件而出错.14.将一元二次方程x2﹣6x+10=0化成(x﹣a)2=b的形式,则b的值为﹣1 .【分析】利用配方法得到(x﹣3)2=﹣1,从而得到b的值.【解答】解:x2﹣6x+10=0,x2﹣6x=﹣10,x2﹣6x+9=﹣1,(x﹣3)2=﹣1,所以b的值为﹣1.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为x(x﹣1)=110 .【分析】设这个小组有x人,要求他们之间互送贺卡,即除自己外,每个人都要求送其他的人一张贺卡,即每个人要送x﹣1张贺卡,所以全组共送x(x﹣1)张,又知全组共送贺卡110张,由送贺卡数相等为等量关系,列出方程即可.【解答】解:设这个小组有x人,则每人应送出x﹣1张贺卡,由题意得:x(x﹣1)=110,故答案为:x(x﹣1)=110.【点评】本题考查由实际问题抽象出一元二次方程的知识,关键在于找出等量关系,列出方程.16.我市计划用三年时间对全市学校的设施和设备进行全面改造,2015年市政府已投资5亿元人民币,若每年投资的增长率相同,2017年投资7.2亿元人民币,那么每年投资的增长率为20% .【分析】设每年投资的增长率为x,根据2015年及2017年市政府投资的钱数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每年投资的增长率为x,根据题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.已知x1,x2是方程x2﹣3x+1=0的两个实数根,则= 3 .【分析】首先根据根与系数的关系求出x1+x2=3,x1x2=1,然后将变形,再将x+x2=3,x1x2=1代入即可.1【解答】解:∵x1,x2是方程x2﹣3x+1=0的两个实数根,根据根与系数的关系有:x1+x2=3,x1x2=1,所以==3.故答案为:3.【点评】本题主要考查根与系数的关系,关键是熟练运用.18.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是x=3 .【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得a的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=2是一元二次方程x2+mx+6=0的一个根,∴2a=6,解得a=3,即方程的另一个根是x=3,故答案为:x=3.【点评】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.三.解答题(共7小题)19.解方程:(1)2(x﹣3)=3x(x﹣3)(2)2x2﹣x﹣3=0.【分析】(1)先移项得到2(x﹣3)﹣3x(x﹣3)=0,然后利用因式分解法解方程;(2)利用因式分解法解方程.【解答】解:(1)2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,所以x1=3,x2=;(2)(2x﹣3)(x+1)=0,2x﹣3=0或x+1=0,所以x1=,x2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.20.是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.【分析】设两方程的公共根为a,然后将两方程相减,消去二次项,求出公共根和m的值.【解答】解:假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则①﹣②,得a(m﹣2)+(2﹣m)=0(m﹣2)(a﹣1)=0∴m=2 或a=1.当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;当a=1时,代入②得m=﹣3,把m=﹣3代入已知方程,求出公共根为x=1.故实数m=﹣3,两方程的公共根为x=1.【点评】本题考查的是两个一元二次方程的公共根的问题,一般情况是将两方程相减求出公共根,再求出其中的字母系数.21.关于x的方程(m+1)x|m﹣1|+mx﹣1=0是一元二次方程,求m的值.【分析】根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,据此即可求解.【解答】解:根据题意得,|m﹣1|=2,且m+1≠0,解得:m=3,答:m的值为3.【点评】本题主要考查一元二次方程的定义,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.22.已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.【分析】(1)根据方程的系数结合根的判别式可得出△=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用因式分解法解一元二次方程可得出x的值,结合方程有一个根小于0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】(1)证明:∵△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根;(2)解:∵x2﹣(k+3)x+2k+2=0,即(x﹣2)[x﹣(k+1)]=0,∴x1=2,x2=k+1.∵方程有一个根小于0,∴k+1<0,∴k<﹣1.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法求出一元二次方程的根.23.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)求平均年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?【分析】(1)设平均年增长率为x,根据题意列出方程,求出方程的解即可得到结果;(2)由求出的年增长率确定出所求即可.【解答】解:(1)设平均年增长率为x,根据题意得:1500(1+x)2=2160,整理得:(1+x)2=1.44,开方得:1+x=±1.2,解得:x=0.2=20%或x=﹣2.2(舍去),则平均年增长率为20%;(2)根据题意得:2160×(1+20%)=2592(万元),则2018年盈利2592万元.【点评】此题考查了一元二次方程的应用,弄清题意是解本题的关键.24.某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?【分析】(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据该镇2016年及2018年投入的资金金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入资金金额=2018年投入资金金额×(1+增长率),即可求出结论.【解答】解:(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据题意得:1000(1+x)2=1210,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:该镇投入资金从2016年至2018年的年平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:该镇2019年预计投入资金1331万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.25.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【分析】根据题意先判断出参加的人数在30人以上,设共有x名同学参加了研学游活动,再根据等量关系:(100﹣在30人基础上降低的人数×2)×参加人数=3150,列出方程,然后求解即可得出答案.【解答】解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设共有x名同学参加了研学游活动,由题意得:x[100﹣2(x﹣30)]=3150,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意;当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:共有35名同学参加了研学游活动.【点评】此题考查一元二次方程的应用;得到人均付费是解决本题的易错点,得到总费用的等量关系是解决本题的关键.。
上册 期末复习强化训练卷1(一元二次方程)-2020-2021学年苏科版九年级数学上学期(机构)
期末复习强化训练卷1(一元二次方程)-苏科版九年级数学一、选择题1、方程||(2)4310m m x x m ++++=是关于的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x-3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .20194、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±25、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .78、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .59、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( ) A .x 1=﹣2,x 2=1 B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±115、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .17、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 .20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为_____.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 . 23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_____. 24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?期末复习强化训练卷1(一元二次方程)-苏科版九年级数学(答案)一、选择题1、方程||(2)4310m m x x m ++++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠± 【答案】解:由题意得:|m |=2且m +2≠0,由解得得m =±2且m ≠﹣2,∴m =2.故选:B .2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x -3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( A )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .2019【答案】解:∵m 是方程x 2﹣2x ﹣1=0的一个根,∴m 2﹣2m ﹣1=0,∴m 2﹣2m =1,∴2m 2﹣4m +2019=2(m 2﹣2m )+2019=2×1+2019=2021. 故选:B .4、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±2解:把x =0代入一元二次方程(a +3)x 2﹣x +a 2﹣9=0得a 2﹣9=0,解得a 1=﹣3,a 2=3,而a +3≠0,所以a 的值为3.故选:A .5、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=,(5)(26)0x x ∴--=,则50x -=或260x -=,解得5x =或3x =,故选:D .6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】解:△=(k ﹣3)2﹣4(1﹣k )=k 2﹣6k +9﹣4+4k =k 2﹣2k +5=(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为()A .3B .4C .3或4D .7【答案】解:当3为腰长时,将x =3代入x 2﹣4x +k =0,得:32﹣4×3+k =0,解得:k =3,当k =3时,原方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,∵1+3=4,4>3,∴k =3符合题意;当3为底边长时,关于x 的方程x 2﹣4x +k =0有两个相等的实数根,∴△=(﹣4)2﹣4×1×k =0,解得:k =4,当k =4时,原方程为x 2﹣4x +4=0,解得:x 1=x 2=2,∵2+2=4,4>3,∴k =4符合题意.∴k 的值为3或4.故选:C .8、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .5【答案】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故选:C .9、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个 解:直线y x a =+不经过第二象限,∴a ≤0,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-, 当0a <时,关于x 的方程2210ax x ++=是二次方程,△2240a =->,∴方程有两个不相等的实数根.故选:D .10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯,依题意,得:(40)(60010)10000x x +-=,故选:A .11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是(B )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( )A .x 1=﹣2,x 2=1B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2解:∵方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,∴方程a (x +m +2)2+b =0的两个解是x 3=﹣2﹣2=﹣4,x 4=1﹣2=﹣1,故选:B .二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .【答案】解:∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为:﹣1.14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±1【答案】解:由题意,得m 2﹣3m +2=0且m ﹣1≠0,解得m =2,故选:C .15、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .解:根据题意知,x =2满足关于x 的方程x 2+6x +k =0,则22+6×2+k =0,解得k =﹣16. 故答案是:﹣16.16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .解:设2x 2+3=t ,且t ≥3,∴原方程化为:t 2+2t ﹣15=0,∴t =3或t =﹣5(舍去),∴2x 2+3=3,故答案为:317、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 解:根据题意得:△=b 2﹣4ac =1+4(k ﹣1)=4k ﹣3>0,且k ﹣1≠0,解得:k >且k ≠1.故答案为:k >且k ≠1.18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .解:周长为40的矩形的长和宽的和为40÷2=20,∵矩形的长和宽是一元二次方程x 2﹣mx +9=0的两个实数根,∴m =20.故答案为:20.19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根,210m m ∴+-=,即21m m +=,221m m n mn m n mn ∴++-=+-+,m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=. 故答案为:1.20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为__3___.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .解:210210x x -+=,(3)(7)0x x --=,30x -=或70x -=,所以13x =,27x =,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_3或-7____.24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.解:设小路的宽度为x 米,则小正方形的边长为4x 米,依题意得:(304244)80x x x +++=整理得:2427400x x +-=解得18x =-(舍去),254x =. 故答案为:54.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)【答案】解:(1)方程变形得:(x ﹣1)2=9,开方得:x ﹣1=3或x ﹣1=﹣3,解得:x 1=4,x 2=﹣2;(2)方程变形得:x 2﹣x =﹣,配方得:x 2﹣x +=(x ﹣)2=, 开方得:x ﹣=±, 则x 1=,x 2=; (3)方程整理得:x 2﹣x ﹣6=0,这里a =1,b =﹣1,c =﹣6,∵△=1+24=25,∴x =, 则x 1=3,x 2=﹣2;(4)分解因式得:(x +1)(2﹣x )=0,解得:x 1=﹣1,x 2=2.(5)2x 2﹣5x ﹣4=0,变形得:x 2x =2, 配方得:x 2x ,即(x )2,开方得:x ±,则x 1,x 2;(6)3(x ﹣2)+x 2﹣2x =0,变形得:3(x ﹣2)+x (x ﹣2)=0,即(x ﹣2)(x +3)=0,可得x ﹣2=0或x +3=0,解得:x 1=2,x 2=﹣3.26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.【答案】(1)证明:△=(﹣2)2﹣4×[﹣m (m +2)]=4m 2+8m +4=4(m +1)2,∵4(m +1)2≥0,∴△≥0,∴无论m 为何实数,方程总有实数根;(2)解:x ==1±(m +1),所以x 1=m +2,x 2=﹣m ,根据题意得m +2>0且﹣m >0,所以﹣2<m <0,所以整数m 为﹣1.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.解:∵m ,n 是方程x 2﹣3x ﹣10=0,∴根据一元二次方程根与系数的关系得:m +n =3,mn =﹣10.(1)(m ﹣1)x (n ﹣1)=mn ﹣(m +n )+1=﹣10﹣3+1=﹣12;(2)由m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,得m 2﹣3m ﹣5=0,则m 2﹣3m =5.故m 2+3n ﹣5=m 2﹣3m +3(m +n )﹣5=5+3×3﹣5=9;28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.【答案】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k +8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:=24,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?解:(1)设呼吸机产量的月平均增长率为x,根据题意,得80+80(1+x)+80(1+x)2=560,解得x1=﹣4(舍去),x2=1=100%,答:呼吸机产量的月平均增长率为100%.(2)80×(1+1)4=1120(台).答:五月份产量为为1120台.31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.【答案】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150x x-+=,因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?【答案】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?【答案】解:(1)设经过x 秒,点P ,Q 之间的距离为cm ,则AP =x (cm ),QB =2x (cm ),∵AB =6cm ,BC =8cm ∴PB =(6﹣x )(cm ),∵在△ABC 中,∠B =90°,∴由勾股定理得:(6﹣x )2+(2x )2=6化简得:5x 2﹣12x +30=0∵△=(﹣12)2﹣4×5×30=144﹣600<0∴点P ,Q 之间的距离不可能为cm .(2)设经过x 秒,使△PBQ 的面积等于8cm 2,由题意得:21(6﹣x )•2x =8 解得:x 1=2,x 2=4, 检验发现x 1,x 2均符合题意∴经过2秒或4秒,△PBQ 的面积等于8cm 2.(3)①点P 在线段AB 上,点Q 在线段CB 上设经过m 秒,0<m ≤4,依题意有21(6﹣m )(8﹣2m )=1,∴m 2﹣10m +23=0 解得;m 1=5(舍),m 2=5, ∴m =5符合题意; ②点P 在线段AB 上,点Q 在射线CB 上设经过n 秒,4<n ≤6,依题意有21(6﹣n )(2n ﹣8)=1,∴n 2﹣10n +25=0 解得n 1=n 2=5, ∴n =5符合题意;③点P 在射线AB 上,点Q 在射线CB 上设经过k 秒,k >6,依题意有21(k ﹣6)(2k ﹣8)=1 解得k 1=5,k 2=5(舍), ∴k =5符合题意; ∴经过(5)秒,5秒,(5)秒后,△PBQ 的面积为1cm 2.。
2025届山西省(晋城地区)九年级数学第一学期期末调研试题含解析
2025届山西省(晋城地区)九年级数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=2.在同一直角坐标系中,函数y=kx﹣k与y=kx(k≠0)的图象大致是()A.B.C.D.3.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.54.反比例函数y =(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n 等于( )A .﹣8B .﹣4C .﹣D .﹣25.如图,在⊙O ,点A 、B 、C 在⊙O 上,若∠OAB =54°,则∠C ( )A .54°B .27°C .36°D .46°6.下列图形中是中心对称图形又是轴对称图形的是( )A .B .C .D .7.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣18.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .7000(1+x 2)=23170B .7000+7000(1+x )+7000(1+x )2=23170C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=23179.一元二次方程2310x x -+=的两根之和为( )A .13B .2C .3-D .310.如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是AC 上一点,BD 交AC 于点E ,若BC=4,AD=45,则AE 的长是( )A .1B .1.2C .2D .311.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC '的位置,此时露在水面上的鱼线B ′C ′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°12.如图,四边形ABCD 内接于O ,延长AO 交O 于点B ,连接BE .若100C ∠=︒,50DAE ∠=︒,则E ∠的度数为( )A .50︒B .60︒C .70︒D .80︒二、填空题(每题4分,共24分)13.如图,直线y =k 1x +b 与双曲线2k y=x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是 ▲ .14.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.15.如图,圆心都在x 轴正半轴上的半圆O 1,半圆O 2,…,半圆O n 与直线l 相切.设半圆O 1,半圆O 2,…,半圆O n 的半径分别是r 1,r 2,…,r n ,则当直线l 与x 轴所成锐角为30°,且r 1=1时,r 2018=________.16.如图,已知A (12,y 1),B (2,y 2)为反比例函数y =1x 图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_____.17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为__________.18.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.三、解答题(共78分)19.(8分)某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵树的产量就会减少2个,但多种的桃树不能超过100棵,如果要使产量增加15.2%,那么应多种多少棵桃树?20.(8分)计算:|1﹣3|+()2160tan 30cos --︒-︒0327(253)+-+. 21.(8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm ,请求出球的半径.22.(10分)若关于x 的一元二次方程2(1)22m x mx m --+=有实数根, (1)求m 的取值范围:(2)如果m 是符合条件的最小整数,且一元二次方程2(1)30k x x k +++-=与方程2(1)22m x mx m --+=有一个相同的根,求此时k 的值.23.(10分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y 随时间x (min )变化的函数图象如图所示(y 越大表示注意力越集中).当010x ≤≤时,图象是抛物线的一部分,当1020x ≤≤和2040x ≤≤时,图象是线段.(1)当010x ≤≤时,求注意力指标数y 与时间x 的函数关系式.(2)一道数学综合题,需要讲解24min ,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.24.(10分)如图,ABO 与CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .25.(12分)有5张不透明的卡片,除正面上的图案不同外,其它均相同.将这5张卡片背面向上洗匀后放在桌面上.若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.26.已知,如图,有一块含有30°的直角三角形OAB 的直角边BO 的长恰与另一块等腰直角三角形ODC 的斜边OC 的长相等.把该套三角板放置在平面直角坐标系中,且3AB =(1)若某开口向下的抛物线的顶点恰好为点A ,请写出一个满足条件的抛物线的解析式.(2)若把含30°的直角三角形绕点O 按顺时针方向旋转后,斜边OA 恰好与轴重叠,点A 落在点'A ,试求图中阴影部分的面积(结果保留π)参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A .当∠ABP=∠C 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;B .当∠APB=∠ABC 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误;C .当AP AB AB AC=时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误; D .无法得到△ABP ∽△ACB ,故此选项正确.故选D .考点:相似三角形的判定.2、B【分析】根据k 的取值范围,分别讨论k >0和k <0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【详解】解:①当k >0时,一次函数y =kx ﹣k 经过一、三、四象限, 反比例函数的(0)k y k x=≠的图象经过一、三象限, 故B 选项的图象符合要求,②当k <0时,一次函数y =kx ﹣k 经过一、二、四象限, 反比例函数的(0)k y k x=≠的图象经过二、四象限, 没有符合条件的选项.故选:B .【点睛】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k 值相同,则两个函数图象必有交点;一次函数与y 轴的交点与一次函数的常数项相关.3、B【分析】根据二次函数y =ax 2+bx +c 的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a <0;∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a >0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,∴抛物线与x 轴的另一个交点坐标是(﹣1,0),∴x =﹣2时,y <0,∴4a ﹣2b +c <0,所以③错误;∵抛物线与x 轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x <3时,y >0,所以④正确;∵x =﹣1时,y =0,∴a ﹣b +c =0,而b =﹣2a ,∴c =﹣3a ,∴b ﹣c =﹣2a +3a =a <0,即b <c ,所以⑤正确.故选B .【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.4、D【解析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n 的方程即可.【详解】∵点(1,-4)和点(4,n )在反比例函数y=的图象上,∴4n=1×(-4), ∴n=-1.故选D .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .5、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.6、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可.【详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A .【点睛】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键.7、D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .8、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x ,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x ,则2020年的投入为7000(1+x )2=23170由题意,得7000(1+x )2=23170.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.9、D【分析】直接利用根与系数的关系求得两根之和即可.【详解】设x 1,x 2是方程x 2-1x-1=0的两根,则x 1+x 2=1.故选:D .【点睛】此题考查根与系数的关系,解题关键在于掌握运算公式 .10、A【解析】利用圆周角性质和等腰三角形性质,确定AB 为圆的直径,利用相似三角形的判定及性质,确定△ADE 和△BCE 边长之间的关系,利用相似比求出线段AE 的长度即可.【详解】解:∵等腰Rt △ABC ,BC=4,∴AB 为⊙O 的直径,AC=4,,∴∠D=90°,在Rt △ABD 中,AD=45,, ∴BD=285, ∵∠D=∠C ,∠DAC=∠CBE ,∴△ADE ∽△BCE ,∵AD :BC=45:4=1:5, ∴相似比为1:5,设AE=x ,∴BE=5x ,∴DE=285-5x , ∴CE=28-25x ,∵AC=4,∴x+28-25x=4,解得:x=1.故选A .【点睛】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.11、C【解析】试题解析:∵sin ∠CAB=62BC AC == ∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.12、B【分析】根据圆内接四边形的性质得到∠DAB ,进而求出∠EAB ,根据圆周角定理得到∠EBA =90°,根据直角三角形两锐角互余即可得出结论.【详解】∵四边形ABCD 内接于⊙O ,∴∠DAB =180°﹣∠C =180°﹣100°=80°.∵∠DAE =50°,∴∠EAB =∠DAB -∠DAE =80°-50°=30°.∵AE 是⊙O 的直径,∴∠EBA =90°,∴∠E =90°﹣∠EAB =90°-30°=60°.故选:B .【点睛】本题考查了圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(每题4分,共24分)13、-2<x <-1或x >1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k 1x <2k x +b 的解集即k 1x -b <2k x的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2k y=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x 图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2k y=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x 图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 14、3或1【分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB ,∴FB=FD=12cm ,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.15、1【解析】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆O n与直线L相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2018=1.故答案为1.点睛:找规律题需要记忆常见数列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……2n1,4,9,16,25……2n2,6,12,20……n(n+1)一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.16、5,0 2⎛⎫ ⎪⎝⎭【解析】试题解析:∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12).在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:122122a ba b ⎧+⎪⎪⎨⎪+⎪⎩==,解得:152ab-⎧⎪⎨⎪⎩==,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P (52,0); 故答案为(52,0). 17、14【分析】连接OD ,作OE ⊥CD 于E ,由垂径定理得出CE=DE ,证明△OEM 是等腰直角三角形,由勾股定理得出OE=22OM=22,在Rt △ODE 中,由勾股定理求出DE=142,得出CD=2DE=14即可. 【详解】连接OD ,作OE ⊥CD 于E ,如图所示:则CE=DE ,∵AB 是⊙O 的直径,AB=4,点M 是OA 的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°, ∴△OEM 是等腰直角三角形,∴OE=22OM=22, 在Rt △ODE 中,由勾股定理得:2222()2142, ∴1414【点睛】 本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE 是解决问题的关键.18、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.三、解答题(共78分)19、20【分析】每多种一棵桃树,每棵桃树的产量就会减少2个,所以多种x 棵树每棵桃树的产量就会减少2x 个(即是平均产10002x -个),桃树的总共有100x +棵,所以总产量是(100)(10002)x x +-个.要使产量增加15.2%,达到1001000(115.2%)⨯⨯+个.【详解】解:设应多种x 棵桃树,根据题意,得()()()100100021000100115.2%x x +-=⨯⨯+整理方程,得240076000x x -+=解得,1220,380x x ==,∵多种的桃树不能超过100棵,∴2380x =(舍去)∴20x答:应多种20棵桃树。
杨浦区2018学年第一学期九年级质量调研考试数学试卷
第 1 页 共 4页 杨浦区2018学年度第一学期期末质量调研初 三 数 学 试 卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.下列四组线段中,成比例的是(A )1,1,2,3;(B )1,2,3,4; (C )2,2,3,3; (D )2,3,4,5. 2.如果:3:2a b =,且b 是a 、c 的比例中项,那么:b c 等于 (A )4:3; (B )3:4; (C )2:3; (D )3:2.3.如果△ABC中,∠C =90°,1sin 2A =,那么下列等式不正确的是 (A)cos A = (B )cot A =; (C)sin B = (D )tan B 4.下列关于向量的运算中,正确的是(A )a b b a -=-;(B )2()22a b a b --=-+; (C )()0a a +-=;(D )0a a +=. 5.如果二次函数中函数值y 与自变量x 之间的部分对应值如下表所示:那么这个二次函数的图像的对称轴是直线(A )0x =; (B )12x =; (C )34x =; (D )1x =.6.如果以a 、b 、c 为三边的三角形和以4、5、6为三边的三角形相似,那么a 与b 的比值不可能为(A )23; (B )34; (C )45; (D )56. 二、填空题:(本大题共12题,每题4分,满分48分) 7.如果53x x y =-,那么x y= ▲ .。
人教版九年级数学上学期第二十一章 一元二次方程期末复习题
人教版九年级数学上学期第二十一章 一元二次方程期末复习题一、单选题1.(2022·四川遂宁·九年级期末)下列方程中,一元二次方程有( )①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+= A .2个 B .3个 C .4个 D .5个2.(2022·四川成都·九年级期末)一元二次方程x 2﹣2x ﹣4=0的二次项系数、一次项系数和常数项分别为( )A .1,﹣2,﹣4B .1,2,4C .1,2,﹣4D .1,﹣2,43.(2022·四川资阳·九年级期末)若0x =是关于x 的一元二次方程22(1)210m x x m -++-=的解,则m 的值为( ) A .1m =± B .0m = C .1m = D .1m =-4.(2022·四川乐山·九年级期末)m 是方程220x x +-=的根,则代数式2222022m m +-的值是( )A .-2018B .2018C .-2026D .20265.(2022·四川成都·九年级期末)用配方法解方程x 2+4x ﹣5=0,配方后正确的是( )A .(x +2)2=9B .(x +2)2=5C .(x ﹣2)2=1D .(x +4)2=216.(2022·四川眉山·九年级期末)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( )A .14a ≤且2a ≠-B .14a ≤C .14a <且2a ≠-D .14a < 7.(2022·四川宜宾·九年级期末)以下关于一元二次方程20(0)ax bx c a ++=≠的根的说法中,不正确的是( ) A .若c =0,则方程20ax bx c ++=一定有一根为0;B .若0b =,则方程20ax bx c ++=一定有两个实数根;C .若0a b c -+=,则方程20ax bx c ++=必有一根为-1;D .若0ac <,则方程20ax bx c ++=必有两个不相等的实数根.8.(2022·四川巴中·九年级期末)若一元二次方程x 2﹣5x ﹣7=0有两实数根x 1和x 2,下列选项正确的是( )A .x 1+x 2=﹣5B .x 1x 2=7C .x 1=x 2D .x 1x 2﹣x 1﹣x 2=﹣129.(2022·四川乐山·九年级期末)新冠肺炎病毒传染性很强,一个人感染新冠肺炎病毒后会感染一批人,我们称为第一轮传播,如果不加控制,这个人与第一批感染的人一起再感染下一批人,我们称为第二轮传播.某地一人感染后经过两轮传播,被感染的总人数达到121人,设每轮传播中平均一个人会感染x 个人,则下列方程正确的是( ) A .12121x +=B .21121x +=C .21(1)121x x +++=D .1(1)121x x x +++=10.(2022·四川广元·九年级期末)某药品经过两次降价,每瓶零售价由112元降为63元.已知两次降价的百分率相同.要求每次降价的百分率,若设每次降价的百分率为x ,则得到的方程为( )二、填空题11.(2022·四川德阳·九年级期末)已知方程230x mx +-=的一个根是1,则m 的值为________.12.(2022·四川广元·九年级期末)若(m -2)22m x --mx +1=0是一元二次方程,则m 的值为______. 13.(2022·四川成都·九年级期末)一元二次方程2x +px -2=0的一个根为2,则p 的值________.14.(2022·四川宜宾·九年级期末)已知α、β是方程220x x +-=的两个实数根,则代数式223ααβ的值是________.15.(2022·四川资阳·九年级期末)若α、β是关于x 的一元二次方程210x x +-=的两个实数根,则代数式22αβαβ+的值是_________.16.(2022·四川乐山·九年级期末)如果α、β是一元二次方程2320x x +-=的两个根,则242021ααβ+++的值是______.17.(2022·四川巴中·九年级期末)《算法宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云周一百二十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,且周长为120步,问它的长比宽多了多少步?则这块矩形田地的长比宽多了______步.18.(2022·四川达州·九年级期末)如图,有一块长21,m 宽10m 的矩形空地,计划在这块空地上修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相同的人行通道,两块绿地的面积和为290m .设人行通道的宽度为xm ,根据题意可列方程:_______________________.三、解答题19.(2022·四川广元·九年级期末)解方程:(1)2410x x -=+(2)2(21)3(21)x x +=+20.(2022·四川成都·九年级期末)(1)计算:(13)-1﹣(﹣1)2022+(1﹣π)0 (2)解方程:(x +1)2=3(x +1).(1)230x x -=(2)2x ﹣4x+4=022.(2022·四川资阳·九年级期末)用适当的方法解下列方程.(1)234x x =(2)225x x +=23.(2022·四川达州·九年级期末)解方程:(1)(21)3(21)x x x +=+;(2)2320x x -+=.24.(2022·四川眉山·九年级期末)解方程:()()11?x x x -+= 25.(2022·四川遂宁·九年级期末)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,若该商品每件降价x 元.(1)该商品每星期可卖出 件(用含x 的代数式表示);(2)销售该商品要想每星期盈利6120元,每件商品应降价多少元?26.(2022·四川广元·九年级期末)某花卉中心销售一批兰花,每盆进价 100 元,售价 140 元,平均每天售出 20 盆.春节来临之际,为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价 1 元,每天可多售出 2 盆.要使得每天利润达到 1200元,则每盆兰花售价应定为多少元?27.(2022·四川宜宾·九年级期末)若整数m 使关于x 的方程(m +1)x 2-(2m -1)x +m =0有实数根,且使关于x 的分式方程144x m x x+=---有正分数解,求所有满足条件的整数m 的值. 28.(2022·四川成都·九年级期末)某商场将进价为30元的台灯以40元售出,平均每月能售出600个.经调查发现,这种台灯的售价x 每上涨1元,其销售量y 就将减少10个(40≤x ≤60).(1)求每月销售量y (用含x 的代数式表示).(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应购进台灯多少个?29.(2022·四川乐山·九年级期末)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?参考答案:1.B【解析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:①符合一元二次方程定义,正确;①方程含有两个未知数,错误;①不是整式方程,错误;①符合一元二次方程定义,正确;①符合一元二次方程定义,正确.故选B.判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.A【解析】根据一元二次方程的一般形式确定出所求即可.解:方程x2-2x-4=0的二次项系数、一次项系数、常数项分别为1、-2、-4.故选:A.此题考查了一元二次方程的一般形式及一元二次方程二次项系数、一次项系数、常数项概念,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0),注意:系数要包括项的符号.3.D【解析】根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m 的值.解:把x=0代入方程(m﹣1)x2+2x+m2﹣1=0,得m2﹣1=0,解得:m=±1,①m﹣1≠0,①m≠1,m=﹣1,故选:D.本题考查了一元二次方程的解的定义、一元二次方程的定义,解题的关键是运用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣1≠0.4.A【解析】把x m =代入220x x +-=得到22m m +=,进而得到2224m m +=,代入2222022m m +-进行计算即可求解.解:①m 是方程220x x +-=的根,①220m m +-=①22m m +=,①2224m m +=,①2222022m m +-42022=-2018=-.故选:A .本题考查了一元二次方程的解的定义.本题采用了“整体代入”数学思想解题.5.A【解析】先把常数项移到右边,然后两边同时加上一次项系数的一半的平方,然后把方程左边写成完全平方的相似即可.解:x 2+4x -5=0,x 2+4x =5,x 2+4x +4=9,(x +2)2=9.故选A .本题考查了解一元二次方程—配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.6.A【解析】根据一元二次方程的定义和判别式的意义得到a +2≠0且①≥0,然后求出两不等式的公共部分即可.解:①关于x 的一元二次方程()22310a x x +-+=有实数根,①①≥0且a +2≠0,①(-3)2-4(a +2)×1≥0且a +2≠0,解得:a ≤14且a ≠-2, 故选:A .本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与①=b 2-4ac 有如下关系:当①>0时,方程有两个不相等的两个实数根;当①=0时,方程有两个相等的两个实数根;当①<0时,方程无实数根.7.B【解析】根据解一元二次方程的方法,判别式的意义,一元二次方程的解的定义逐项判断即可. 解:A 、若c =0,则方程为20ax bx +=,即()0x ax b +=,①方程20ax bx c ++=一定有一根为0,正确,不符合题意;B 、若0b =,则方程为20ax c +=,①244b ac ac ∆=-=-,①只有当ac ≤0时,即0∆≥,方程20ax bx c ++=有两个实数根,故原说法错误,符合题意;C 、将x =-1代入方程20(0)ax bx c a ++=≠可得:0a b c -+=,①若0a b c -+=,则方程20ax bx c ++=必有一根为-1,正确,不符合题意;D 、①ac <0,①Δ=b 2−4ac >0,①方程ax 2+bx +c =0必有两个不相等的实数根,正确,不符合题意;故选:B .此题主要考查了解一元二次方程,一元二次方程的解,一元二次方程根的情况与判别式△的关系:Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根,Δ<0⇔方程没有实数根.8.D【解析】根据根与系数的关系和根的判别式进行计算. 解:一元二次方程2570x x --=有两实数根1x 和2x ,125x x ∴+=,127x x =-.121212x x x x ∴--=-. 又△2(5)41(7)530=--⨯⨯-=≠.12x x ∴≠.观察选项,只有选项D 符合题意.故选:D .本题主要考查了根与系数的关系,根的判别式.一元二次方程20(0)ax bx c a ++=≠的根与系数的关系为:12b x x a+=-,12c x x a ⋅=. 9.D【解析】设一个人平均感染x 人,再分别表示每轮感染后被感染的人数,根据经过了两轮的传播后被感染的总人数将达到121人,即可得出关于x 的一元二次方程.解:设一个人平均感染x 人,则第一轮感染后共有()1x +人被感染,第二轮感染后共有11x x x 人被感染,①1+x +(1+x )x =121,故选:D .本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.A【解析】根据题意可得等量关系:原零售价×(1-百分比)(1-百分比)=降价后的售价,然后根据等量关系列出方程即可.设每次降价的百分率为x ,由题意得:112(1−x)2=63,故答案选:A.本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是熟练的掌握由实际问题抽象出一元二次方程.11.2【解析】根据一元二次方程根的定义,即可求解.解:将1x =代入得:130m +-=,解得2m =.故答案是:2.本题主要考查一元二次方程的根,掌握一元二次方程根的定义,是解题的关键.12.﹣2【解析】一元二次方程是指:只含有一个未知数,且未知数最高次数为2次的整式方程,据此即可得答案.根据定义可得:22220m m ⎧-=⎨-≠⎩, 解得:m =-2.13.-1把x=2代入方程x 2+px ﹣2=0得4+2p ﹣2=0,解得p=﹣1.故答案为﹣1.14.3【解析】根据α、β是方程220x x +-=的两个实数根,可得220,1αααβ+-=+=-,从而得到2224αα+=,再代入,即可求解.解:①α、β是方程220x x +-=的两个实数根,①220,1αααβ+-=+=-,①22αα+=,①2224αα+=,①222322413ααβαααβ.故答案为:3.本题主要考查了一元二次方程的根及根与系数的关系,熟练掌握若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两个实数根,则12b x x a+=-,12c x x a ⋅=是解题的关键. 15.1【解析】根据一元二次方程的根与系数的关系1αβ+=-,1αβ=-,再将(22αβαβ+)因式分解并代入计算即可.解:①根据一元二次方程的根与系数的关系, 可知111b a αβ+=-=-=-,111c a αβ-===-, ①22()(1)(1)1αβαβαβαβ=+=⨯-+-=.故答案为:1.本题主要考查了一元二次方程的根与系数关系,是一元二次方程的重点知识,解题关键是熟练掌握一元二次方程的根与系数的关系公式.16.2020【解析】先根据一元二次方程根的定义、根与系数的关系可得232,3αααβ+=+=-,再代入计算即可得. 解:α、β是一元二次方程2320x x +-=的两个根,2320,3αααβ∴+-=+=-,232αα∴+=,()224202132021ααβαααβ∴+++=++++()232021=+-+2020=,故答案为:2020.本题考查了一元二次方程的根、以及根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题的关键.17.12【解析】设长为x 步,宽为(60)x -步,根据“一块矩形田地的面积为864平方步”可以列出相应的一元二次方程,从而可以解答本题.解:设长为x 步,宽为(60)x -步,根据题意,得(60)864x x -=,解得136x =,224x =(舍去).∴当36x =时,6024x -=,∴长比宽多:362412-=(步),故答案为:12.本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,注意长比宽要长.18.()()21310290x x --=【解析】根据矩形的性质求解即可;根据题意可知:宽为()102x m -,长为()213x m -,①()()21310290x x --=;故答案是()()21310290x x --=.本题主要考查了一元二次方程的应用,准确分析列方程是解题的关键.19.(1)125x =-225x =-(2)11x =,212x =-【解析】(1)先把方程左边化为完全平方式的形式,再用直接开方法求解即可;(2)先提取公因式,再求出x 的值即可.(1)2410x x -=+解:241x x +=24414x x ++=+()225x +=25x +=12x =-22x =-(2)2(21)3(21)x x +=+解:移项得(2x +1)2-3(2x +1)=0,2(2x +1)(x -1)=0,2x +1=0或x -1=0,解得x 1=-12,x 2=1.本题考查的是用配方法及因式分解法解一元二次方程,先把方程化为两因式积的形式是解答此题的关键.20.(1)0;(2)x 1=-1,x 2=2【解析】(1)先计算负整数指数幂、零指数幂、乘方及算术平方根,再计算加减即可;(2)先移项,再将左边利用提公因式法因式分解,继而可得两个关于x 的一元一次方程,分别求解即可得出答案.解:(1)原式=3-1+1-3=0;(2)①(x +1)2=3(x +1),①(x +1)2-3(x +1)=0,则(x +1)(x -2)=0,①x +1=0或x -2=0,解得x 1=-1,x 2=2.本题主要考查实数运算和解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)120,3x x ==(2)122x x ==【解析】(1)把方程的左边分解因式,再利用因式分解的方法解方程即可;(2)利用完全平方公式把方程的左边分解因式,再解方程即可.(1)解:230x x -=①()30x x -=①0x =或 30x -=解得:120,3x x ==(2)2x ﹣4x+4=0①()220x -=解得:122x x ==本题考查的是利用因式分解的方法解一元二次方程,掌握“利用因式分解的方法解一元二次方程的步骤”是解本题的关键.22.(1)1240,3x x ==; (2)1216,16x x =-=-【解析】(1)先移项,再利用因式分解法计算,即可求解;(2)利用配方法解答,即可求解.(1)解:234x x =移项得:2340x x -=,①()340x x -=,①0,340x x =-=, 解得:1240,3x x ==; (2)解:225x x +=,①2216x x ++=,①()216x +=, ①16x +=± 解得:1216,16x x =-=-本题主要考查了解一元二次方程,熟练掌握解一元二次方程的方法,并灵活选用合适的方法解答是解题的关键.23.(1)121,32x x =-=; (2)121,2x x ==【解析】(1)利用因式分解法求解;(2)利用因式分解法求解.(1)解:(21)3(21)x x x +=+x (2x +1)-3(2x +1)=0(2x +1)(x -3)=02x +1=0或x -3=0 ①121,32x x =-=; (2)解:2320x x -+=(x -1)(x -2)=0①121,2x x ==.此题考查解一元二次方程,掌握解方程的方法:直接开平方法、公式法、配方法、因式分解法,根据每个一元二次方程的特点选用恰当的解法是解题的关键.24.1x =,2x =【解析】直接利用一元二次方程的求根公式代入计算即可.解:整理方程,得:210x x --=① ①()14115=-⨯⨯-=①x =① 1x =2x =本题考查了公式法解一元二次方程,熟记一元二次方程的求根公式是解题的关键.25.(1)()30020+x(2)每件商品应降价2元或3元【解析】(1)找到变量之间的关系列出代数式即可;(2)(售价-进价)×数量=利润,根据此关系列出一元二次方程即可解答.(1)根据题意,该商品每件降价x 元,每降价1元,每星期可多卖出20件可得:每个星期可卖出()30020+x 件, 故答案为:()30020+x ;(2)根据题意可列方程为:()()6040300206120x x --+=,解得:12x =,23x =,①每件商品应降价2元或3元;本题主要考查一元二次方程的应用,根据题意列出正确的一元二次方程是解题的关键.26.每盆兰花售价为120元.试题分析:利用兰花平均每天售出的数量×每盆盈利=每天销售这种兰花利润列出方程解答即可. 试题解析:设每盆兰花售价定为x 元,可以达到1200元的利润,则据题意得, (x -100)[20+2(140-x)]=1200,解得x=120或x=130,因为为扩大销量,增加利润,所以x=130舍去答:要使刚刚利润达到1200元,每盆兰花售价为120元.27.-3、-1【解析】根据解分式方程及一元二次方程根的判别式进行求解即可.解:关于x 的分式方程的解为42m x +=, ①当m +1=0时,m =-1,①方程(m +1)x 2-(2m -1)x +m =0解为x =13, ①分式方程的解为x =32,符合题意, ①当m +1≠0时,Δ=-8m +1≥0,解得m 18≤, ①分式方程的解为402m x +=>, ①解得4m >-, 故148m -<≤且m ≠-1,①整数m =-3或-2或0,又①42m +为正分数, ①m =-3.综上,满足条件的实数m 的值为-3、-1.本题考查了分式方程的解法,一元二次方程根的判别式,熟练掌握知识点并运用分类讨论的思想是解题的关键.28.(1)()1010004060y x x =-+(2)这种台灯的售价应定为50元;这时应购进台灯500个【解析】(1)直接根据题意用x 表示y 即可;(2)根据销售利润=销售量×单个的利润=10000,列出方程,解方程即可.(1)解:①以40元售出,平均每月能售出600个,售价x 每上涨1元,其销售量y 就将减少10个, ①每月销量y 与售价x 的函数关系式为:()6001040101000y x x =--=-+;即()1010004060y x x =-+≤≤.(2)根据题意得:()()3010100010000x x --+=,解得:150x =,280x =,①4060x ≤≤,①280x =舍去,①这种台灯的售价应定为50元;这时应购进台灯:10501000500-⨯+=(个).本题主要考查了一元二次方程的应用,正确找出等量关系,列出方程是解题的关键.29.(1)四、五这两个月的月平均增长百分率为25%(2)当商品降价5元时,商场六月份可获利4250元【解析】(1)利用平均增长率的等量关系:()21a x b +=,列式计算即可;(2)利用总利润=单件利润×销售数量,列方程求解即可.(1)解:设平均增长率为x ,由题意得:()22561400x ⨯+=, 解得:0.25x =或 2.25x =-(舍);①四、五这两个月的月平均增长百分率为25%;(2)解:设降价y 元,由题意得:()()402540054250y y --+=,整理得:2653500y y +-=,解得:5y =或70y =-(舍);①当商品降价5元时,商场六月份可获利4250元.本题考查一元二次方程的实际应用.根据题意正确的列出一元二次方程是解题的关键.。
2018-2019学年九年级上学期期中考试数学试题(含答案)
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
数学九年级上期末复习
第5题图CααBAO 第16题图DCFP E BA 九年级上学期期末数学试卷一、选择题1、二次函数2)1(2+-=x y 的最小值是 ( )A 、2B 、-2C 、-1D 、12.如图,点A 、B 、C 在⊙O 上,已知∠AOB =∠ACB =错误!未找到引用源。
.则错误!未找到引用源。
的值为( )A .135°B .120°C .110°D .100° 3圆锥的底面半径为2,母线长为4,则它的侧面积为( )4如图,已知PA 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B .C 两点,PB =2㎝,BC =8㎝,则PA 的长等于A.4㎝B .16㎝ C.20㎝ D .52㎝4题图 5题图 10题图11题图5如图,BD 为⊙O 的直径,30A =∠,则C B D ∠的度数为( )A.30B.45C.60D.806三角形两边的长是2和5,第三边的长是方程错误!未找到引用源。
的根,三角形的周长为( )A .14 B .12 C .12或14 D .以上都不对 二、填空题7、函数c bx x y -+=2二、填空题的图象经过点(1,2),则b-c 的值为 .8九年级某班共有x 名学生,毕业前夕,每人将自己的照片与其他每一位同学互赠,作为珍贵的纪念,全班共互赠照片2450张.根据上述条件,这个班有多少名同学?则可列出方程为 . 9在平面内直角坐标系错误!未找到引用源。
中,直线错误!未找到引用源。
绕点O 顺时针旋转90°得到直线错误!未找到引用源。
,直线错误!未找到引用源。
与反比例函数错误!未找到引用源。
的图像的一个交点为A (错误!未找到引用源。
,3),则反比例函数的解析式是 .10在⊙O 中,弦AB=2cm,∠ACB=30°,则⊙O 的直径为 cm . 11.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是 12 、如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线.若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 .12题图13在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中14次摸到黑球,则估计盒子中大约有白球 三、解答题15解下列方程 0142=+-x x x x 4)1(2=+0)3(2)3(2=-+-x x16如图,已知O 为坐标原点,∠AOB=30°,∠ABO=90°,且点A 的坐标为(2,0). (1)求点B 的坐标; (2)若二次函数y=ax+bx+c 的图象经过A 、B 、O 三点,求此二次函数的解析式;17下图是输水管的切面,阴影部分是有水部分,其中水面AB 宽16㎝,水最深 4㎝,求这个圆形切面的半径.18如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?19已知:三角形ABC内接于⊙O,过点A作直线EF.(1)如图1,AB为直径,要使得EF 是⊙O的切线,只需要保证∠CAE=∠,并证明之;(2)如图2,AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由.20如图,AB为⊙O的直径,PQ切⊙O于点T,AC⊥PQ于点C,交⊙O于点D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年九年级数学上学期期末复习检测试卷学校:___________姓名:___________班级:___________考号:___________一.选择题(共12小题)1.关于x的方程ax2﹣3x+1=2x2是一元二次方程,则a的取值范围为()A.a≠0 B.a>0 C.a≠2 D.a>22.关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是()A.2,﹣3 B.2,3 C.﹣3,2 D.3,53.若0是关于x的方程(m﹣2)x2+3x+m2﹣4=0的解,则m的值是()A.±2 B.﹣2 C.2 D.04.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+15.二次函数y=x2+1的图象大致是()A.B.C.D.6.若抛物线y=x2﹣bx+9的顶点在x轴的负半轴上,则b的值为()A.±3 B.6 C.﹣6 D.±67.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2 B.3 C.4 D.58.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.9.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧10.用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b11.下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a=b,则a2=b2C.一只不透明的袋子共装有3个小球,它们的标号分别为12、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上12.下列事件中,是随机事件的是()A.通常温度降到0℃以下,纯净水结冰B.随意翻到一本书的某页,这页的页码是偶数C.我们班里有46个人,必有两个人是同月生的D.一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大二.填空题(共6小题)13.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是.14.方程x2﹣3x+2=0的二次项系数是.15.若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是.16.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.17.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.18.“早上的太阳从东方升起”是事件.(填“确定”或“不确定”)三.解答题(共6小题)19.请写出一个你喜欢的,仅含有二次项、一次项的一元二次方程,并求出它的解.20.已知x=0是一元二次方程﹣2=0的一个根,求m的值.21.使用五点法画出二次函数y=x2﹣2x﹣3的图象.22.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)23.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD=BC.24.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)a2+b2=﹣1(其中a、b都是实数);(3)水往低处流;(4)三个人性别各不相同;(5)一元二次方程x2+2x+3=0无实数解;(6)经过有信号灯的十字路口,遇见红灯.参考答案一.选择题(共12小题)1.关于x的方程ax2﹣3x+1=2x2是一元二次方程,则a的取值范围为()A.a≠0 B.a>0 C.a≠2 D.a>2【解答】解:ax2﹣3x+1=2x2,(a﹣2)x2﹣3x+1=0,∵关于x的方程ax2﹣3x+1=2x2是一元二次方程,∴a﹣2≠0,即a≠2,故选:C.2.关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是()A.2,﹣3 B.2,3 C.﹣3,2 D.3,5【解答】解:关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是2,﹣3.故选:A.3.若0是关于x的方程(m﹣2)x2+3x+m2﹣4=0的解,则m的值是()A.±2 B.﹣2 C.2 D.0【解答】解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,所以m=±2.故选:A.4.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+1【解答】解:A、该函数中自变量x的次数是1,属于一次函数,故本选项错误;B、该函数是反比例函数,故本选项错误;C、由已知函数关系式得到:y=﹣2x+1,属于一次函数,故本选项错误;D、该函数符合二次函数定义,故本选项正确.故选:D.5.二次函数y=x2+1的图象大致是()A.B.C.D.【解答】解:二次函数y=x2+1中,a=1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B.故选:B.6.若抛物线y=x2﹣bx+9的顶点在x轴的负半轴上,则b的值为()A.±3 B.6 C.﹣6 D.±6【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴的负半轴上,∴顶点的横坐标小于0,纵坐标为零,即x=﹣<0,y===0,解得b=﹣6,故选:C.7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2 B.3 C.4 D.5【解答】解:∵在方格纸中,使与图中阴影部分构成轴对称图形的有②④⑤,故选:B.8.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.9.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【解答】解:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选:B.10.用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.11.下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a=b,则a2=b2C.一只不透明的袋子共装有3个小球,它们的标号分别为12、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上【解答】解:A、任意画一个四边形,它的内角和是360°是必然事件,故A不符合题意;B、若a=b,则a2=b2是必然事件,故B不符合题意;C、一只不透明的袋子共装有3个小球,它们的标号分别为12、3,从中摸出一个小球,标号是“5”是不可能事件,故C符合题意;D、掷一枚质地均匀的硬币,落地时正面朝上是随机事件,故D不符合题意;故选:C.12.下列事件中,是随机事件的是()A.通常温度降到0℃以下,纯净水结冰B.随意翻到一本书的某页,这页的页码是偶数C.我们班里有46个人,必有两个人是同月生的D.一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大【解答】解:A、通常温度降到0℃以下,纯净水结冰是必然事件;B、随意翻到一本书的某页,这页的页码是偶数是随机事件;C、我们班里有46个人,必有两个人是同月生的是必然事件;D、一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大是不可能事件;故选:B.二.填空题(共6小题)13.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是m≠﹣1 .【解答】解:关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,∴m+1≠0,∴m≠﹣1.故答案为:m≠﹣1.14.方程x2﹣3x+2=0的二次项系数是 1 .【解答】解:方程x2﹣3x+2=0的二次项系数是:1.故答案为:1.15.若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是a≠2 .【解答】解:∵函数y=(2﹣a)x2﹣x是二次函数,∴2﹣a≠0,即a≠2,故答案为:a≠2.16.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 3 种.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.17.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是2cm.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.18.“早上的太阳从东方升起”是确定事件.(填“确定”或“不确定”)【解答】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.三.解答题(共6小题)19.请写出一个你喜欢的,仅含有二次项、一次项的一元二次方程,并求出它的解.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,解得:x1=0,x2=3.20.已知x=0是一元二次方程﹣2=0的一个根,求m的值.【解答】解:当x=0时,m2﹣2=0,解得m1=,m2=﹣.∵m﹣≠0,∴m=﹣.21.使用五点法画出二次函数y=x2﹣2x﹣3的图象.【解答】解:列表如下:描点、连线即可画出函数图象,如图所示.22.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)【解答】解:如图所示.23.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD=BC.【解答】解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵AC=BD,∴OC=OD,在△OCB和△ODA中,∴△OCB≌△ODA(SAS),∴AD=BC.24.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)a2+b2=﹣1(其中a、b都是实数);(3)水往低处流;(4)三个人性别各不相同;(5)一元二次方程x2+2x+3=0无实数解;(6)经过有信号灯的十字路口,遇见红灯.【解答】解:(1)太阳从西边落山、(3)水往低处流、(5)一元二次方程x2+2x+3=0无实数解是必然事件;(2)a2+b2=﹣1、(4)三个人性别各不相同是不可能事件,(6)经过有信号灯的十字路口,遇见红灯是随机事件.。