【初中数学】2018年中考数学总复习:精练试题(32份) 人教版18

合集下载

人教版初中数学中考复习试卷(含解析)

人教版初中数学中考复习试卷(含解析)

人教版初中数学中考总复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣5的绝对值是()A.B.C.+5D.﹣52.下列图形中是轴对称图形的是()A.B.C.D.3.对于函数,下列说法错误的是()A.这个函数的图象位于第二、第四象限B.当x>0时,y随x的增大而增大C.这个函数的图象既是轴对称图形又是中心对称图形D.当x<0时,y随x的增大而减小4.如图所示,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0B.a﹣b>0C.﹣a<b D.a+b<05.如图,△ABC内接于⊙O,A B为直径,CD为弦,连接AD,若∠ADC=55°,则∠CAB的度数为()A.25°B.35°C.36°D.40°6.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有()①了解学校口罩、洗手液、消毒片的储备情况;②了解全体师生在寒假期间的离校情况;③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况.A.1个B.2个C.3个D.47.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.平行四边形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形8.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的平均数、众数、中位数分别为()A.37、37、32B.33.8、37、35C.37、33.8、35D.33.8、37、329.运用你学习函数的经验,判断以下哪个函数的图象如图所示()A.y=B.y=C.y=D.y=10.已知M(b,m)和N(b+1,n)是二次函数y=x2﹣bx+c(其中b,c是常数)上不同的两点,则判断m和n 的大小关系正确的是()A.b>0时,m>n B.b<0时,m<n C.b>﹣1时,m<n D.b<1时,m>n二.填空题(共7小题,满分21分,每小题3分)11.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为个.13.在Rt△ABC中,∠C=90°,BC=6,AB=10,则cos A=.14.在等腰三角形ABC中,它的两边长分别为7cm和3cm,则它的周长为cm.15.已知△ABC中,D是BC上一点,添加一个条件使得△ABC∽△DAC,则添加的条件可以是.16.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,若四边形BCFE为菱形,则线段AF的长度为.17.在△ABC中,AB=AC=1,BC边上有2018个不同的点P1,P2,…P2018,记m i=AP i2+BP i•P∁i(i=1,2…2018),则m1+m2+…m2018=.三.解答题(共8小题,满分69分)18.(6分)计算:|﹣|+(π﹣3)0﹣+3tan30°.19.(4分)分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).20.(5分)解方程.(1)﹣3x2﹣4x+4=0;(2)x2﹣6x+9=(2x﹣1)2.21.(8分)如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE交于点D.(1)求证:D C是⊙O切线.(2)若AD=,AB=5,求DE的长.22.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(10分)甲乙两人分别驾车从A、B同时出发,沿同一条线路相向而行,甲从A地以速度52km/h匀速去B地,乙开始以速度v1km/h匀速行驶,中途速度改为v2km/h匀速行驶,到A恰好用时0.7h,两人距离A地的路程与各自离开出发地的时间之间的图象如图所示,求(1)A、B两地之间的路程为多少km及乙开始的速度v1;(2)当两人相距6km时,求t的值.24.(12分)(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系,位置关系;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.25.(14分)如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x 轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:|﹣5|=5.故选:C.2.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.解:A、∵k=﹣2<0,∴这个函数的图象位于第二、第四象限,故本选项正确;B、∵k=﹣2<0,∴当x>0时,y随x的增大而增大,故本选项正确;C、∵此函数是反比例函数,∴这个函数的图象既是轴对称图形又是中心对称图形,故本选项正确;D、∵k=﹣2<0,∴当x<0时,y随x的增大而增大,故本选项错误.故选:D.4.解:由数轴可得:a<0<b,|a|<|b|选项A:由于a,b异号,故不正确;选项B:由于a<b,则a﹣b<0,故不正确;选项C:﹣a<b,正确;选项D:异号两数相加,取绝对值较大的加数的符号为和的符号,而b的绝对值大,故不正确.综上,只有C正确.故选:C.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠B=∠ADC=55°,∴∠CAB=90°﹣∠B=90°﹣55°=35°;故选:B.6.解:①了解学校口罩、洗手液、消毒片的储备情况适合普查;②了解全体师生在寒假期间的离锡情况适合普查;③了解全体师生入校时的体温情况适合普查;④了解全体师生对“七步洗手法”的运用情况适合抽样调查.故选:C.7.解:A、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意;B、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意;C、平行四边形的对角线平分,原命题是假命题,不符合题意;D、顺次连接菱形各边中点所得的四边形是矩形,是真命题,符合题意;故选:D.8.解:平均数=(28+37+32+37+35)=33.8,∵该组数据中出现次数最多的数是37,∴该组数据的众数是37,将该组数据按从小到大依次排列为:28,32,35,37,37,处于中间位置的数为35,则中位数为35.故选:B.9.解:A.当x=﹣2时,y=﹣1,这与题中函数图象不符;B.当x=0时,y=无意义,这与题中函数图象不符;C.当自变量x取其相反数时,y==,且x=0时y=1,这与函数图象相符合;D.当x=﹣1时,函数y=无意义,这与题中函数图象不符;故选:C.10.解:∵M(b,m)和N(b+1,n)是二次函数y=x2﹣bx+c(其中b,c是常数)上不同的两点,∴m=b2﹣b2+c=c,n=(b+1)2﹣b(b+1)+c=b+1+c,当b+1>0时,则b+1+c>c,即b>﹣1时,n<m,当b+1=0时,则b+1+c=c,即b=﹣1时,n=m,当b+1<0时,则b+1+c<c,即b<﹣1时,n>m,故选:C.二.填空题(共7小题,满分21分,每小题3分)11.解:6810万=68100000=6.81×107.故选:6.81×107.12.解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,设黄球有x个,根据题意得出:∴=,解得:x=4.故答案为:4.13.解:如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,∴AC===8,∴cos A===,故答案为:.14.解:当7cm为腰,3cm为底,此时周长=7+7+3=17(cm);当7cm为底,3cm为腰,则3+3<7无法构成三角形,故舍去.故其周长是17cm.故答案为:17.15.解:添加∠B=∠DAC,又∵∠C=∠C,∴△ABC∽△DAC,故答案为:∠B=∠DAC(答案不唯一).16.解:分两种情况:①如图1所示:当点F在点D右侧时,在矩形ABCD中,AD=5,AB=4,∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=5,∴DF===3,∴AF=AD+DF=5+3=8;②如图2所示:当点F在点D左侧时,同①可得DF=3,∴AF=AD﹣DF=5﹣3=2.故答案为:2或8.17.解:如图所示:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD.在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP12=AD2+P1D2②①﹣②得:AB2﹣AP12=BD2﹣P1D2=(BD+P1D)(BD﹣P1D)=P1C•BP1,∴m1=AB2=AP12+BP1•P1C=1,同理:m2=AB2=AP22+BP2•P2C=1,m3=AB2=AP32+BP3•P3C…m1+m2+…+m2018=1×2018=2018,故答案为:2018.三.解答题(共8小题,满分69分)18.解:|﹣|+(π﹣3)0﹣+3tan30°=+1﹣+3×=1+.19.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).20.解:(1)∵a=﹣3,b=﹣4,c=4,∴b2﹣4ac=16﹣4×(﹣3)×4=64>0,∴x===,∴x1=﹣2,x2=;(2)x2﹣6x+9=(2x﹣1)2,x2﹣6x+9=4x2﹣4x+1,3x2+2x﹣8=0,(3x﹣4)(x+2)=0,解得x1=,x2=﹣2.21.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠DAB,∴∠DAC=∠CAO,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴OC⊥DC,∵OC为半径,∴DC为⊙O的切线;(2)解:连接CE,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠D,又∵∠OAC=∠OCA,∴△ADC∽△ACB,∴,即AC2=AD•AB,∵AD=,AB=5,∴AC=4,∴DC===,BC===3,∵∠DAC=∠CAO,∴=,∴CE=BC=3,∴DE===.22.解:(1)本次调查共抽取学生为:=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:×360°=108°;(3)8000×(40%+)=5600(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)由图象可得A、B两地之间的路程为26km,乙开始的速度v1:(26﹣16)÷0.2=50(km/h),(2)甲走完全程所用时间为:26÷52=0.5(h);如图,点A、B、C、D的坐标分别为:(0,26),(0.2,16),(0.7,0),(0.5,26),由甲从A地以速度52km/h匀速去B地,可知直线OD的解析式为:y1=52t(0≤t≤0.5);设直线AB的解析式为y2=kt+26,将(0.2,16)代入得:16=0.2k+26,解得:k=﹣50,∴y2=﹣50t+26(0≤t≤0.2),设直线BC的解析式为y3=mt+n,将(0.2,16),(0.7,0)代入得:,解得:,∴直线BC的解析式为y3=﹣32t+22.4(0.2<≤t≤0.7).①当0≤t≤0.2时,﹣50t+26﹣52t=6,解得:t=(h).②当0.2<≤t≤0.5时,52t﹣(﹣32t+22.4)=6,解得:t=(h),综上,当t=或(h)时,两人相距6km.24.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.25.解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.(2)设M(x,y),令y=x2﹣x﹣4=0,解得:x=﹣3或x=4,∴C(﹣3,0).①当BM⊥BC时,如答图2﹣1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x﹣4,∴∴(舍去),∴点M1的坐标(,﹣)②当BM与BC关于y轴对称时,如答图2﹣2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x﹣4,∴∴(舍去),∴点M2的坐标(5,),综上所述:点M的横坐标为:或5;(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.∴CE=CQ=(5﹣t).在Rt△PCE中,cosθ===,解得t=.②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.在Rt△CE Q中,cosθ===,解得t=.综上所述,当t=或或时,以C,D,P,Q为顶点的四边形为菱形.。

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

【精品】全国各地2018年中考数学真题汇编 整式(31题)【含答案】

【精品】全国各地2018年中考数学真题汇编 整式(31题)【含答案】

2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B.② C. ③D. ④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。

A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B . 2 C.3 D.4【答案】B7.下列运算正确的是()A. B.C. D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()A. B.C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。

A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。

其中做对的一道题的序号是()A. ①B.② C. ③D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。

最新-2018年全国各地中考题(七年级部分)数学试题(人教版) 精品

最新-2018年全国各地中考题(七年级部分)数学试题(人教版) 精品

圆柱体A C第2题2018年全国各地中考题(七年级部分)数学试题(人教版)(二)一、选择题:1.若x=2,则381x的值是()A.21B.1 C.4 D.823.若2与a互为倒数,则下列结论正确的是()。

A、21=a B、2-=a C、21-=a D、2=a4.9的平方根是()A. 3- B.3 C.±3 D.815.某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是()A. 1月1日B. 1月2日C. 1月3日D. 1月4日6.今年5月18日.英美科学家公布了人类第一号染色体的基因测序图,这个染色体是人类“生命之书”中最长也是最后被破解的一章.据报道,第一号染色体中共有2.23亿个碱基对,2.23亿这个数用科学记数法可表示为()A 2.23×118 B. 2.23×118 C.2.23×118 D.2.23×1187.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A. 同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等8、点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是( )A.(1.4)B.(1.0) C.(-l,2) D.(3,2)9.在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)10.某商店的老板销售一种商品,他要以不低于进价120%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价(),商店老板才能出售.A.80元B.100元C.120元D.160元11.不等式组⎩⎨⎧≤≥+4235x x 的解是( ) A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 12.下图能说明∠1>∠2的是( )A B C D13.大家知道5是一个无理数,那么5-1在哪两个整数之间A .1与2B .2与3C .3与4D .4与514.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为表一A .20、29、30B .18、30、26C .18、20、26D .18、30、2815.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a-3b 的值为( )(A)4 (B)6 (C)-6 (D)-416.下列不等式组的解集,在数轴上表示为如图2所示的是A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩17.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数A.至多6人 B.至少6人 C.至多5人 D.至少5人 18. 在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,那么下面平移中正确的是( )A. 先向下移动1格,再向左移动1格;B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格;D. 先向下移动2格,再向左移动2格表二表三表四二、填空题1.-2的绝对值等于____________.2.某水井水位最低时低于水平面5米,记为-5米,最高时低于水平面1米,则水井水位h 米中h 的取值范围是___________________. 3.若x-y=3,则2x-2y= . 4. 如图,在△ABC 中,∠ABC=90°,∠A=50°,BD ∥AC ,则∠CBD 的度数是 °.5.写出一个有理数和无理数,使它们都是大于2-的负数: .6.如图,已知AB ∥CD ,直线EF 分别交 AB 、CD 于点 E ,F ,EG 平分∠BEF 交CD 于点G ,如果∠1=50°,那么∠2的度数是 度.6题图 7题图 7. 如图,已知AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠1=60°,则∠2=______度。

2018年最新人教版中考数学总复习专题资料(全册 共26个专题 122页)

2018年最新人教版中考数学总复习专题资料(全册 共26个专题 122页)

2018年最新人教版中考数学总复习专题资料(全册共26个专题 122页)专题检测1 实数(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.某品牌的面粉袋上标有重量为(25±0.25)kg的字样,下列4袋面粉中重量合格的是(B)A.24.70 kgB.24.80 kgC.25.30 kgD.25.51 kg2.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是(C)3.下列说法正确的是(B)A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数4.有理数-2 018的相反数是(A)A.2 018B.-2 018C.D.-5.的负倒数是(D)A. B.- C.3 D.-36.若|x-3|=4,则x的值为(C)A.x=7B.x=-1C.x=7或x=-1D.以上都不对7.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为(B)A.0.387×109B.3.87×108C.38.7×107D.387×1068.下列说法正确的是(B)A.-3是-9的平方根B.3是(-3)2的算术平方根C.(-2)2的平方根是2D.8的立方根是±29.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是(B)①b<0<a;②|b|<|a|;③ab>0;④a-b>a+b.A.①②B.①④C.②③D.③④10.设a=20,b=(-3)2,c=,d=,则a,b,c,d按由小到大的顺序排列正确的是(A)A.c<a<d<bB.b<d<a<cC.a<c<d<bD.b<c<a<d11.设a是实数,则|a|-a的值(B)A.可以是负数B.不可能是负数C.必是正数D.可以是正数也可以是负数12.商场为了促销,推出两种促销方式:方式①:所有商品打8折销售.方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案:方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买;方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买;方案四:120元和280元的商品均按促销方式②购买.你给杨奶奶提出的最省钱的购买方案是(D)A.方案一B.方案二C.方案三D.方案四二、填空题(每小题3分,共24分)13.近似数7.55万精确到百位.14.世界上最小的开花结果植物是无根萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是7.6×10-8克.15.已知|x|=2,|y|=5,且x>y,则x+y=-3或-7.16.1-的相反数是-1,的绝对值是3,的倒数是-.17.已知a-8与2a-1是某正数的两个平方根,则a的值是3.18.已知5+的小数部分为a,5-的小数部分为b,则(a+b)2 017=1.19.比较大小:<.20.观察下列各式:=2,=3,=4…请你将猜想到的规律用自然数n的代数式表示出来:=(n+1).三、解答题(共40分)21.(8分)下面是王老师在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:-,0,0.,,18,,,1.,3.141 59,1.21,,,0.808 008 000 8…,-.(1)有理数集合:;(2)无理数集合:;(3)非负整数集合: .王老师讲评的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.=,则将1.化为分数,1.= (填分数).解(1)有理数集合:0,0.,,18,,1.,3.141 59,1.21,;(2)无理数集合:-,,,0.808 008 000 8…,-;(3)非负整数集合:0,18,.1.=.22.(每小题4分,共8分)(1)-14-×+(-2)3÷|-32+1|;(2)+-2cos 60°+(2-π)0.解(1)原式=-1+×-8÷|-9+1|=1-8÷8=0.(2)原式=2+2-1+1=4.23.(8分)符号“f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算的规律写出f(n)= (n为正整数);(2)计算f(1)·f(2)·f(3)·…·f(100)的值.解(1)1+(2)f(1)·f(2)·f(3)·…·f(100)=·…·=××××…×==5 151.24.(8分)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A,B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5两点之间的距离是 ,数轴上表示1和-3两点之间的距离是 ;(2)数轴上表示x和-1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)请你找出所有符合条件的整数x,使代数式|x+1|+|x-2|=3成立,这样的整数是.解(1)3 3 4 (2)|x+1| -3或1(3)-1,0,1,225.(8分)为了求1+2+22+23+…+22 018的值,可令S=1+2+22+23+…+22 018,则2S=2+22+23+24+…+22 019,因此2S-S=22 019-1,所以1+2+22+23+…+22 018=22 019-1.仿照以上推理,计算1+5+52+53+…+52 019的值.解令S=1+5+52+53+…+52 019,则5S=5+52+53+…+52 020,5S-S=52 020-1,4S=52 020-1,则S=.专题检测2 整式(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为(D)A.(1+40%)×30%xB.(1+40%)(1-30%)xC.D.-2.若3x m+2y3与-2x3y2n-1是同类项,则m,n的值分别是(A)A.m=1,n=2B.m=0,n=2C.m=2,n=1D.m=1,n=13.下列运算正确的是(C)A.a3+a2=2a5B.a6÷a2=a3C.a4·a3=a7D.(ab2)3=a2b54.计算-×的结果是(A)A.-B.-C.D.-2 0165.如果(x-2)(x+1)=x2+mx+n,那么m+n的值为(C)A.-1B.1C.-3D.36.下列运算中,错误的运算有(D)①(2x+y)2=4x2+y2,②(a-3b)2=a2-9b2,③(-x-y)2=x2-2xy+y2,④-=x2-2x+.A.1个B.2个C.3个D.4个7.添加一项,能使多项式9x2+1构成完全平方式的是(D)A.9xB.-9xC.9x2D.-6x8.多项式x2-1与多项式x2-2x+1的公因式是(A)A.x-1B.x+1C.x2-1D.(x-1)29.下列分解因式正确的是(C)A.9m2-4n2=(9m+4n)(9m-4n)B.a2-4=(a-2)2C.9-6a+a2=(a-3)2D.x2-3x+1=x(x-3)+110.已知x-y=5,(x+y)2=49,则x2+y2的值等于(A)A.37B.27C.25D.4411.若(x+2)(2x-n)=2x2+mx-2,则(A)A.m=3,n=1B.m=5,n=1C.m=3,n=-1D.m=5,n=-112.定义三角表示3abc,方框表示xz+wy,则×的结果为(B)A.72m2n-45mn2B.72m2n+45mn2C.24m2n-15mn2D.24m2n+15mn2二、填空题(每小题3分,共24分)13.二次三项式3x2-4x+6的值为9,则x2-x+5的值为6.14.单项式-蟺的系数是-蟺,次数是3;多项式-2xy2+1的次数是4.15.在计算A-(5x2-3x-6)时,小明同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x2+3x-4,则多项式A=-7x2+6x+2.16.已知2x=3,2y=5,则22x-y-1的值是.17.若x2-y2=12,x+y=4,则x-y=3.18.分解因式:-3x3+12x2-12x=-3x(x-2)2.19.若a2-3a+1=0,则a2+=7.20.设x,y为任意实数,定义运算:x*y=(x+1)(y+1)-1,得到下列五个命题:①x*y=y*x;②x*(y+z)=x*y+x*z;③(x+1)*(x-1)=(x*x)-1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1.其中正确的命题的序号是①③.三、解答题(共40分)21.(每小题5分,共10分)先化简,后求值:(1)已知[(x-2y)2-2y(2y-x)]÷2x,其中x=1,y=2.(2)已知(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-.原式=[(x-2y)2+2y(x-2y)]÷2x=--=x-y,将x=1,y=2代入,原式=-.(2)原式=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-时,原式=(-)2-5=3-5=-2.22.(6分)在日常生活中,如取款、上网都需要密码,可以用一种因式分解法产生密码,例如x4-y4=(x-y)(x+y)(x2+y2),当x=9,y=9时,x-y=0,x+y=18,x2+y2=162,则密码可以是018162.对于多项式4x3-xy2,取x=10,y=10,用上述方法产生的密码是什么?=x(4x2-y2)=x(2x+y)(2x-y),当x=10,y=10时,x=10,2x+y=30,2x-y=10,故密码为103010或101030或301010.23.(7分)在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分制成一个梯形,请回答下列问题:(1)这个拼图验证了一个乘法公式是.(2)请利用这个公式计算:··…·.2-b2=(a+b)(a-b)(2)原式=··…·=××××××…××=×=.24.(8分)观察下列关于自然数的等式:2×4-12+1=83×5-22+1=124×6-32+1=165×7-42+1=20…利用等式的规律,解答下列问题:(1)若等式8×10-a2+1=b(a,b都为自然数)具有以上规律,则a=,a+b=.(2)写出第n个等式(用含n的代数式表示),并验证它的正确性.39(2)第n个等式为(n+1)(n+3)-n2+1=4(n+1).由左边=n2+3n+n+3-n2+1=4n+4=4(n+1)=右边,可证等式成立.25.(9分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2-4a+4=0,则a=,b=.(2)已知x2+2y2-2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC 的周长.(2)∵x2+2y2-2xy+6y+9=0,∴x2+y2-2xy+y2+6y+9=0,即(x-y)2+(y+3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,由三角形三边关系可知,三角形三边分别为1,3,3,则△ABC的周长为1+3+3=7.专题检测3 分式(时间60分钟满分100分) 一、选择题(每小题3分,共36分)1.下列各式,,--,中,分式有(C)A.1个B.2个C.3个D.4个2.要使分式-有意义,则x的取值范围是(D)A.x=B.x>C.x<D.x≠3.分式-的值为零,则x的值为(D)A.-1B.0C.±1D.14.下列等式从左到右变形正确的是(D)A.=B.=C.=D.=5.使分式-的值为正的条件是(B)A.x<B.x>C.x<0D.x>06.化简的结果是(C)A. B.-C.--D.-7.化简-÷--的结果是(A)A. B.aC.-D.-8.当a=时,代数式---2的值为(B)A.0B.1C.-1D.29.已知两个分式:A=-,B=+,其中x≠±2,则A与B的关系是(C)A.相等B.互为倒数C.互为相反数D.A大于B10.若=9,则-的值为(A)A.5B.7C.9D.1111.若分式-=2,则分式---的值等于(B)A.-B.C.-D.12.如图,设k=(a>b>0),则有(B)A.k>2B.1<k<2C.<k<1D.0<k<二、填空题(每小题3分,共24分)13.在分式,-,-,,---中,最简分式有-.14.分式-与-的最简公分母是x(x+2)(x-2).15.化简---的结果是-.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于-3.17.化简:--·-=x+9.18.若代数式的值为整数,则满足条件的整数x有-4,-2,0,2.19.如果x是不等式组-的整数解,那么代数式÷-的值为.20.有一个计算程序,每次运算这种运算的过程如下:输入x y1=y2=y3=则第n次运算的结果y n=-.(用含有x和n的式子表示)三、解答题(共40分)21.(每小题5分,共10分)计算:(1)---;(2)-÷-.原式=---=--=.(2)原式=-·-=--·-=-.22.(6分)先化简,再求值:-÷--,其中a,b满足式子|a-2|+(b-)2=0.--=-÷-=-·-=-.∵|a-2|+(b-)2=0,∴a-2=0,b-=0,解得a=2,b=,所以原式==2+.23.(7分)A玉米试验田是边长为a m的正方形减去一个边长为1 m的正方形蓄水池后余下部分,B玉米试验田是边长为(a-1)m的正方形,两块试验田的玉米都收获了500 kg.(1)哪种玉米试验田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?玉米试验田面积是(a2-1)m2,单位面积产量是-kg/m2;B玉米试验田面积是(a-1)2m2,单位面积产量是-kg/m2.∵a2-1-(a-1)2=2(a-1),a-1>0,∴0<(a-1)2<a2-1,∴-<-,即B玉米试验田的单位面积产量高.(2)-÷-=-×-=--=-.即高的单位面积产量是低的单位面积产量的-倍.24.(8分)例:∵=-,∴脳脳+脳脳+脳脳+…+=脳-脳+脳-脳+…+-=脳-=.认真领悟上例的解法原理,并根据原理求下列式子的值.(1)脳脳+脳脳+脳脳+脳脳;(2)脳脳+脳脳+脳脳+…+(n为正奇数).解(1)脳脳+脳脳+脳脳+脳脳=×-脳+脳-脳+脳-脳+脳-=×-=.(2)脳脳+脳脳+脳脳+…+=×脳-脳+脳-脳+…+-=×-=.25.(9分)阅读下面材料,并解答问题.材料:将分式---拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b,则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b),根据对应任意x,上述等式均成立,∴-∴a=2,b=1,∴---=--=--+-=x2+2+-.这样,分式---被拆分成了一个整式x2+2与一个分式-的和.解答:(1)将分式---拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当-1<x<1时,试说明---的最小值为8.由分母为-x2+1,可设-x4-6x2+8=(-x2+1)·(x2+a)+b,则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b).根据对应任意x,上述等式均成立,∴-∴a=7,b=1,∴---=--=--+-=x2+7+-.这样,分式---被拆分成了一个整式x2+7与一个分式-的和.(2)由---=x2+7+-知,对于x2+7与-,当x=0时,这两个式子的和有最小值,最小值为8,即---的最小值为8.专题检测4 二次根式(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.下列各式一定是二次根式的是(B)A.-B.-C.-D.中,自变量x的取值范围是(C)2.在函数y=-A.x≥3B.x≥-3C.x>3D.x>-33.下列二次根式是最简二次根式的是(A)A.2B.C. D.4.若-=1-2a,则(B)A.a<B.a≤C.a>D.a≥5.下列计算正确的是(C)A.+=B.-=C.×=D.=46.下列二次根式与是同类二次根式的是(D)A. B. C. D.7.若是整数,则正整数n的最小值是(B)A.2B.3C.4D.58.如果·-=-,那么(C)A.x≥0B.0≤x≤3C.x≥3D.x为任意实数9.化简(a-1)的结果是(D)A. B.-C.--D.-10.计算×+×的结果估计在(B)A.6至7之间B.7至8之间C.8至9之间D.9至10之间11.若(a+)2与|b+1|互为相反数,则的值为(B)-A. B.+1C.-1D.1-12.(+2)2 018(-2)2 019的值等于(C)A.2B.-2C.-2D.2-二、填空题(每小题3分,共24分)13.比较大小:3>2,->-.14.若-+-=0,则=.15.不等式x+>(x+1)的解集为x<-1.16.在实数范围内分解因式:2x2-6=2(x+)(x-).17.若三角形的三边长分别为 cm, cm, cm,则这个三角形的周长为5+2cm.18.已知的小数部分为a,则a(a+2)=2.19.若a=3+2,b=3-2,则a2b-ab2的值为4.20.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的花瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用-表示.通过计算求出斐波那契数列中的第1个数为1,第2个数为1.斐波那契三、解答题(共40分)21.(每小题5分,共10分)计算:(1)(+)(-)×+()-1;(2)(-3)0-+|1-|+.原式=(3-2)×+=+=.(2)原式=1-3+-1+-=-2.22.(6分)已知a,b,c在数轴上如图所示,化简:-|a+b|+-+|b+c|.a<b<0<c,且|b|>|c|,∴a+b<0,c-a>0,b+c<0,∴-|a+b|+-+|b+c|=-a+a+b+c-a-b-c=-a.,其中x=.23.(7分)先化简,再求值:-·--=·=,若x+1>0,则原式=,若x+1<0,则原式=-;当x=时,x+1>0,故原式==.24.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形ABC,AC=BC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.ABC中,AC=BC,点D是边AB的中点,∴CD⊥AB,AD=BD=.在Rt△ACD中,∵AD=,CD=2,∴AC==3,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.25.(9分)观察下列等式.=-1;①=--=-;②=--=-;③=--……回答下列问题:(1)化简:=;(2)利用上面的规律计算:+++…+.-;(2)原式=+++…+=-1+-+-+…+-=-1=10-1=9.专题检测5 一次方程(组)及其应用(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.下列说法不正确的是(D)A.若x=y,则x+a=y+aB.若x=y,则x-b=y-bC.若x=y,则ax=ayD.若x=y,则=2.已知m是方程2x-1=5的解,则代数式3m-2的值为(D)A.-11B.-8C.4D.73.在①+y=1;②3x-2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有(B)A.1个B.2个C.3个D.4个4.解方程--=1去分母正确的是(D)A.3(x+1)-2x-3=6B.3(x+1)-2x-3=1C.3(x+1)-(2x-3)=12D.3(x+1)-(2x-3)=65.二元一次方程2x+3y=15都是正整数解的组数是(B)A.1B.2C.3D.46.解方程组的最好解法是(C)A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②消去y7.方程组的解为则被遮盖的两个数分别为(C)A.2,1B.2,3C.5,1D.2,48.若y=kx+b中,当x=-1时,y=1;当x=2时,y=-2,则k与b为(B)A. B.C. D.9.已知关于x,y的方程组的解是则关于x,y的方程组-的解是(D)-A. B.。

18年中考数学真题汇编 (初中数学全套通用)

18年中考数学真题汇编 (初中数学全套通用)

2018年中考数学真题汇编(初中数学全套通用)中考数学真题汇编:二次函数一、选择题 1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是A. ①③ B. ③④C. ②④ D. ②③【答案】B 2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是2 A. B.C. D. 【答案】B 3.关于二次函数 A. 图像与轴的交点坐标为,下列说法正确的是B. 图像的对称轴在轴的右侧C. 当【答案】D 4.二次函数的图像如图所示,下列结论正确是() 时,的值随值的增大而减小D. 的最小值为-3 A. D.【答案】C 5.若抛物线 B.C.有两个不相等的实数根与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线 A. ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()B. C. D. 【答案】B6.若抛物线y=x+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对2称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 A. B.C. D. 【答案】B 7.已知学校航模组设计制作的火箭的升空高度h与飞行时间t满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是A. 点火后9s和点火后13s的升空高度相同 B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m 【答案】D 8.如图,若二次函数y=ax2+bx+c图象的对称轴为x=1,与y 轴交于点C,与x轴交于点A、点B,则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是A. 1 B. 2 C. 3 D. 4 【答案】B 9.如图是二次函数和之间,对称轴是图象的一部分,与轴的交点在点;②;③;④;⑤当,其中正确的是 A. ①②④ B.①②⑤ C. ②③④D. ③④⑤【答案】A 10.如图,二次函数y=ax+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函2数y=x+b的图象大致是【答案】D 11.四位同学在研究函数是方程时,甲发现当的一个根;丙发现函数的最小值为3;丁发现当时,函数有最小值;乙发现时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是A. 甲 B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为 A.14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版2

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版2

课时3 整式与因式分解(时间:30分钟 分值:50分)评分标准:选择填空每题3分.基础过关1.(2017济宁)单项式9x m y 3与单项式4x 2y n是同类项,则m +n 的值是( ) A .2 B .3 C .4D .52.(2017黄冈)下列计算正确的是( ) A .2x +3y =5xy B .(m +3)2=m 2+9 C .(xy 2)3=xy 6D .a 10÷a 5=a 53.(2017威海)下列运算正确的是( ) A .3x 2+4x 2=7x 4B .2x 3·3x 3=6x 3C .a ÷a -2=a 3D .⎝ ⎛⎭⎪⎫-12a 2b 3=-a 6b 3 4.某果园2015年水果产量为a 吨,2016年因干旱影响产量下降15%,2017年新增滴灌系统,预计产量能在2016年基础上上升20%,估计2017年该果园水果产量为( )A .(1-15%)(1+20%)a 吨B .(1-15%)20%a 吨C .(1+15%)(1-20%)a 吨D .(1+20%)15%a 吨5.下列计算中,正确的个数有( )①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个D .4个6.如图1,每个图形都由同样大小的“△”按照一定的规律组成,其中第1个图形有4个“△”,第2个图形有7个“△”,第3个图形有10个“△”,…,则第8个图形中“△”的个数为( )图1A .20B .24C .25D .267.计算:(-2a 2b 3)3=__________.8.(2017怀化)因式分解:m 2-m =____________. 9.(2017岳阳)因式分解:x 2-6x +9=____________.10.若a+b=3,ab=2,则a2+b2=__________.11.(5分)(2017常州)先化简,再求值:(x+2)(x-2)-x(x-1),其中x=-2.12.(6分)先化简,再求值:(m-1)2-m(n-2)-(m-1)(m+1),其中mn=10.拓展提升1.将下列多项式因式分解,结果中不含有因式(x-2)的是( )A.x2-4 B.x3-4x2-12xC.x2-2x D.(x-3)2+2(x-3)+12.华华是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a,b,a-b,x -y,x+y,a+b分别对应江、如、西、山、画、美,现将abx2-aby2因式分解,结果呈现的密码信息可能是( )A.江山如画B.如画江西C.江西美画D.美如江西3.(2017黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图2,观察下面的杨辉三角:图2按照前面的规律,则(a+b)5=________________________________.课时3 整式与因式分解基础过关 1.D 2.D 3.C 4.A 5.B 6.C 7.-8a6b98.m(m-1) 9.(x-3)210.511.解:原式=x2-4-x2+x=x-4.当x=-2时,原式=-2-4=-6.12.解:原式=m2-2m+1-mn+2m-m2+1=2-mn.当mn=10时,原式=2-10=-8. 拓展提升 1.B 2.A3.a5+5a4b+10a3b2+10a2b3+5ab4+b5。

2018年中考数学专题《有理数》复习试卷含答案解析

2018年中考数学专题《有理数》复习试卷含答案解析

3.【答案】 D 【解析】 A、|-2|=2 ,故 A 不符合题意;
B、 -|-2|=-2 ,故 B 不符合题意;
C、 -( -2) =2,|-2|=2 ,因此﹣(﹣ 2) =| ﹣ 2| ,故 C 不符合题意; D、﹣ |2|=-2 , |-2|=2 ,因此﹣ |2| ≠﹣|2| ,故 D 符合题意;、 故答案为: D【分析】根据绝对值的性质及相反数的意义,对各选项逐一判断即可。
| π|= π, = , | - 2|=2 ,
|- |= . ∵
2< π,所以绝对值最小的数是 - .
12.【答案】 A
【解析】 根据相反数的概念,得一个数的相反数小于它本身,则这个数是正数.
故答案为: A.
【分析】正数的相反数是负数,负数小于正数
.
二、填空题
13.【答案】 1 【解析】 | ﹣2+3|=1 . 故答案为: 1. 【分析】根据有理数的加法法则算出绝对值符号里面的加法,再根据绝对值的意义得出结果。 14.【答案】 77.5
【解析】 ∵
=1,
∴- 的倒数是-

故答案为: D. 【分析】根据乘积为 1 的两个数,叫做互为倒数,即可得出答案。 11.【答案】 D
【解析】 :| π|= π,| |= ,| - 2|=2 ,| ﹣ |=
< < 2< π,∴各数中,绝对值最小的数是
- .故答案为: D.【分析】先求出各数的绝对值,在比较大小即可。
8.【答案】 C 【解析】 499.5 亿 =49950000000=4.995×1010.
故答案为: C.
【分析】任何一个绝对值大于或等于 1 的数都可以表示成 a
的形式 .即 499.5 亿
=49950000000=4.995 × .

(完整word版)2018年中考数学试题分类汇编:全套考点专题汇编(Word版,含答案)

(完整word版)2018年中考数学试题分类汇编:全套考点专题汇编(Word版,含答案)

2018中考数学试题分类汇编:考点1 有理数一.选择题(共28小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是( )A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C. D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是( )A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是( )A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6。

【初中数学】河北省2018年中考数学总复习:精讲试题(91份) 人教版32

【初中数学】河北省2018年中考数学总复习:精讲试题(91份) 人教版32

阶段测评(三) 函数及其图像(时间:45分钟 总分:100分)一、选择题(每小题4分,共32分)1.如图,在同一平面直角坐标系中,直线y =k 1x(k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A的坐标为(1,2),则点B 的坐标为( A )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2)2.当k <0时,一次函数y =kx -k 的图像不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限3.若一次函数y =(a +1)x +a 的图像过第一、三、四象限,则二次函数y =ax 2-ax( B )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a 44.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx (x <0)的图像经过顶点B ,则k 的值为( C )A .-12B .-27C .-32D .-36(第4题图)(第5题图)5.已知二次函数y =-(x -a)2-b 的图像如图所示,则反比例函数y =ab x与一次函数y =ax +b 的图像可能是( B ),A ) ,B ) ,C ) ,D )6.如图,将函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新函数的图像,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图像的函数表达式是( D )A .y =12(x -2)2-2B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+47.如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a+b +c >0;③2a-b =0;④c-a =3. 其中正确的有( B )A .1个B .2个C .3个D .4个(第7题图)(第8题图)8.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(km )与行驶时间x(h )的函数关系的图像,下列说法错误的是( D )A .乙先出发的时间为0.5 hB .甲的速度是80 km /hC .甲出发0.5 h 后两车相遇D .甲到B 地比乙到A 地早112小时二、填空题(每小题4分,共24分)9.已知反比例函数y =3k -1x 的图像经过点(1,2),则k 的值为__1__.10.已知反比例函数y =6x,当x >3时,y 的取值范围是__0<y <2__.11.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =2x的图像上,且x 1<x 2<0,则y 1__>__y 2.12.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =__2(x +2)2-2__.13.如图,有一种动画程序,屏幕上正方形ABCD 是灰色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y =-2x +b 发射信号,当信号遇到灰色区域时,区域便由灰变白,则能够使灰色区域变白的b 的取值范围为__3≤b≤6__.(第13题图)(第14题图)14.如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A(2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得PA +PB 的值最小,则点P 的坐标为__⎝ ⎛⎭⎪⎫23,0__. 三、解答题(共44分)15.(10分)如图,在平面直角坐标系xOy 中,双曲线y =mx 与直线y =-2x +2交于点A(-1,a).求:(1)a ,m 的值;(2)该双曲线与直线y =-2x +2另一个交点B 的坐标.解:(1)∵点A 在直线y =-2x +2上, ∴a =-2×(-1)+2=4,∴点A 的坐标是(-1,4),代入反比例函数y =m x,∴m =-4;(2)解方程组⎩⎪⎨⎪⎧y =-2x +2,y =-4x ,解得⎩⎪⎨⎪⎧x =-1,y =4或⎩⎪⎨⎪⎧x =2,y =-2, ∴该双曲线与直线y =-2x +2另一个交点B 的坐标为(2,-2).16.(10分)如图①,在△ABC 中,∠A =30°,点P 从点A 出发以2 cm /s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a(cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s ),△APQ 的面积为y(cm 2),y 关于x 的函数图像由C 1,C 2两段组成,如图②所示.(1)求a 的值;(2)求图②中图像C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.解:(1)如答图①,作PD⊥AB 于D.∵∠A=30°,AP =2x ,∴PD =12AP =x ,∴y =12AQ·PD=12ax 2,由图像可知,当x =1时,y =12,∴12×a×12=12,解得a =1;(2)如答图②,作PD⊥AB 于 D.由图像可知,PB =5×2-2x =10-2x ,PD =PB·sin B =(10-2x)·sin B ,∴y =12×AQ×PD=12x×(10-2x)·sin B.∵当x =4时,y =43,∴12×4×(10-2×4)·sin B =43,解得sin B =13,∴y =12x×(10-2x)×13,即y =-13x 2+53x ; (3)12x 2=-13x 2+53x ,解得x 1=0(舍去),x 2=2,由图像可知,当x =2时,y =12x 2有最大值,最大值是12×22=2,-13x 2+53x =2,解得x 1=3,x 2=2,∴当2<x <3时,点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积.17.(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(kg )与销售价x(元/kg )有如下关系:y =-2x +80.设这种产品每天的销售利润为W 元.(1)求W 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?解:(1)W 与x 的函数关系式W =(x -20)y =(x -20)(-2x +80)=-2x 2+120x -1 600;(2)W =-2x 2+120x -1 600=-2(x -30)2+200.∵-2<0,∴当x =30时,W 有最大值.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;(3)由题意,得W =-2(x -30)2+200=150. 解得x 1=25,x 2=35(舍去).答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.18.(12分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/h )指单位时间内通过道路指定断面的车辆数;速度v(km /h )指通过道路指定断面的车辆速度,密度k(辆/km )指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q 与速度v 之间关系的部分数据如表:(1)根据表中信息,下列三个函数关系式中,刻画q ,v 关系最准确的是________.(只填上正确答案的序号) ①q =90v +100;②q=32 000v;③q=-2v 2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少? (3)已知q ,v ,k 满足q =vk ,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k 在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(m )均相等,求流量q 最大时d 的值. 解:(1)③;(2)∵q=-2v 2+120v =-2(v -30)2+1 800,∵-2<0,∴v =30时,q 达到最大值,q 的最大值为1 800; (3)①当v =12时,q =1 152,此时k =96,当v =18时,q =1 512,此时k =84,∴84<k≤96;②当v =30时,q =1 800,此时k =60,∵在理想状态下,假设前后两车车头之间的距离d(m )均相等,流量q 最大时d 的值为60.。

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版18

【初中数学】浙江省2018年中考数学总复习试题(112套) 人教版18

课后练习2 整式及其运算A组1.(2017·金华)在下列的计算中,正确的是( )A.m3+m2=m5 B.m5÷m2=m3 C.(2m)3=6m3 D.(m+1)2=m2+12.(2017·无锡)若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1 C.5 D.-53.(2015·海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元4.(2016·怀化)下列计算正确的是( )A.(x+y)2=x2+y2B.(x-y)2=x2-2xy-y2C.(x+1)(x-1)=x2-1D.(x-1)2=x2-15.(2016·巴中)下列计算正确的是( )A.(a2b)2=a2b2 B.a6÷a2=a3C.(3xy2)2=6x2y4 D.(-m)7÷(-m)2=-m56.(2015·佛山)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2 C.-1 D.27.如图,淇淇和嘉嘉做数学游戏:第7题图假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A .2 B .3 C .6 D .x +3 8.已知x -1x =3,则4-12x 2+32x 的值为( )A .1 B.32 C.52 D.729.(1)(2016·邵阳)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.(2)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x(x +1),其中x =- 2.B 组10.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )第10题图A .2a -3bB .4a -8bC .2a -4bD .4a -10b11.(2016·西宁)已知x 2+x -5=0,则代数式(x -1)2-x(x -3)+(x +2)(x -2)的值为____________________.12.按如图所示的程序计算.若输入x 的值为3,则输出的值为 .第12题图13.(2015·牡丹江)一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为____________________.14.(2015·莆田模拟)若a x=2,a y=3,则a2x +y=____________________.15.(1)(2015·莆田模拟)先化简,再求值:(a +b)2-2a(b +1)-a 2b ÷b ,其中a =12,b =-2.(2)已知x 2-4x -1=0,求代数式(2x -3)2-(x +y)(x -y)-y 2的值.(3)先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy,其中x =-1,y =33.(4)(2015·随州)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.16.(2015·茂名)设y =ax ,若代数式(x +y)(x -2y)+3y(x +y)化简的结果为x 2,请你求出满足条件的a 值.C 组17.阅读材料:求1+2+22+23+24+…+22017的值.解:设S =1+2+22+23+24+…+22016+22017,将等式两边同时乘以2得:2S =2+22+23+24+25+…+22017+22018,将下式减去上式得2S -S =22018-1,即S =22018-1,即1+2+22+23+24+…+22017=22018-1.请你仿照此法计算:(1)1+2+22+23+24+…+210;(2)1+3+32+33+34+ (3)(其中n 为正整数).参考答案课后练习2 整式及其运算A 组1.B 2.B 3.A 4.C 5.D 6.C 7.B 8.D 9.(1)原式=n 2=2 (2)原式=x 2+3=5B 组10.B 11.2 12.-3 13.-13x 814.1215.(1)b 2-2a ,3. (2)12 (3)-x 2+3y 2,0. (4)4-2ab ,5. 16.原式=(a +1)2x 2=x 2,a =0或a =-2.C 组17.(1)设S =1+2+22+23+24+…+210,2S =2+22+23+24+…+210+211,2S -S =211-1,即S =211-1,则1+2+22+23+24+…+210=211-1;(2)设S =1+3+32+33+34+…+3n ,3S =3+32+33+34+…+3n +3n +1,3S -S =3n +1-1,即S =3n +1-12,则1+3+32+33+34+ (3)=3n +1-12。

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版25

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版25

课时15 三角形及其性质(时间:30分钟分值:51分)评分标准:选择填空每题3分.基础过关1.△ABC中,若AB=15,AC=10,则BC的长度不可能是( )A.5 B.10C.15 D.202.在下列选项中,正确画出AC边上的高的图形是( )3.(2017河池)三角形的下列线段中能将三角形的面积分成相等两部分的是( ) A.中线B.角平分线C.高D.中位线4.(2017黔东南州)如图1,∠ACD=120°,∠B=20°,则∠A的度数是( )图1A.120°B.90°C.100°D.30°5.(2017株洲)如图2,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=( )图2A.145°B.150°C.155°D.160°6.如图3,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为( )图3A.1 B.2C.3 D.47.如图4,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC 等于( )图4A.78°B.90°C.88°D.92°8.(2017宜昌)如图5,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30 m,BC=40 m,DE=24 m,则AB=( )图5A.50 m B.48 mC.45 m D.35 m9.△ABC中,下列说法正确的有__________.(填序号)①三条角平分线的交点到三边的距离相等;②三条中线的交点到三边的距离相等;③三边的垂直平分线的交点到三顶点的距离相等;④三边的高的交点一定在三角形的内部.10.三条线段中a=5,b=3,c的值为整数,则由a,b,c为边可组成三角形的个数为__________.11.将一副三角板按如图6所示的方式叠放,则∠α=__________.图612.如图7,在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=__________.图713.如图8,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,若AC=4 cm,△ABC的周长为12 cm,那么△DBE的周长为__________.图814.如图9,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3 cm2,则S△ABC=__________.图915.如图10,在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N.若AB=12,AC=18,则MD的长为__________.图10拓展提升1.如图11,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3,4,5,7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )图11A.6 B.7C.8 D.92.如图12,在△ABC中,∠A=β度,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线交于点A2,得∠A2;…∠A2 016BC与∠A2 016CD的平分线交于点A2 017,得∠A2 017.则∠A2 017=__________度.图12课时15 三角形及其性质基础过关 1.A 2.C 3.A 4.C 5.B 6.D 7.C 8.B9.①③10.5 11.75°12.115°13.4 cm 14.12 cm215.3拓展提升 1.D 2.β22 017。

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版3

【初中数学】江西省2018年中考数学总复习第1部分基础过关作业(30套) 人教版3

课时4 分 式(时间:35分钟 分值:55分)评分标准:选择填空每题3分.基础过关1.(2017北京)若代数式xx -4有意义,则实数x 的取值范围是( )A .x =0B .x =4C .x ≠0D .x ≠42.(2017新疆)已知分式x -1x +1的值是零,那么x 的值是( ) A .-1 B .0 C .1D .±13.下列分式是最简分式的是( ) A .1-x x -1 B .x -1x 2-1C .2xx 2+1D .42x4.若x ,y 的值均扩大为原来的2倍,下列分式的值保持不变的是( ) A .xx -yB .2x y2C .x 2yD .3x 32y2 5.下列运算正确的是( ) A .(-3x 3)2=-9x 6B .2mn 3·(-m 3n )=-2m 3n 3C .a -1a +2+3a +2=a -2a +2D .a 2-4a 2+2a ·1a -2=1a6.计算:4x x 2-4-xx -2=____________. 7.(2017黄冈)化简:⎝⎛⎭⎪⎫x x -3+23-x ·x -3x -2=____________.8.(6分)(2017泸州)化简:x -2x +1·⎝ ⎛⎭⎪⎫1+2x +5x 2-4.9.(6分)计算:⎝ ⎛⎭⎪⎫1x -y +1x +y ÷2x x 2+2xy +y 2.10.(6分)先化简,再求值:⎝⎛⎭⎪⎫x +1x-2÷⎝ ⎛⎭⎪⎫1-1x ,其中x =3+1.11.(7分)先化简,再求值:x 2x +3·x 2-9x 2-2x +xx -2,在-3,2,-2三个数中选一个合适的,代入求值.拓展提升1.(9分)我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式;反之,称为假分式.任何一个假分式都可以化成整式与真分式的和的形式,如:x +1x -1=x -1+2x -1=x -1x -1+2x -1=1+2x -1;2x -3x +1=2x +2-5x +1=2x +2x +1+-5x +1=2+⎝ ⎛⎭⎪⎫-5x -1. (1)下列分式中,属于真分式的是:________(填序号);①a -2a +1 ②x 2x +1 ③2b b 2+3 ④a 2+3a 2-1(2)将假分式 4a +32a -1化成整式与真分式的和的形式:4a +32a -1=________+________;(3)将假分式 a 2+3a -1化成整式与真分式的和的形式:a 2+3a -1=__________________.课时4 分 式基础过关 1.D 2.C 3.C 4.A 5.D 6.-xx +27.18.解:原式=x -2x +1· x +1 2x +2 x -2 =x +1x +2.9.解:原式=x +y +x -y x +y x -y · x +y 22x =x +yx -y .10.解:原式=x 2-2x +1x ·x x -1= x -1 2x ·xx -1=x -1.当x =3+1时,原式=3+1-1= 3.11.解:原式=x 2x +3· x +3 x -3 x x -2 +x x -2=x x -3 x -2+x x -2=x 2-3x +xx -2=x x -2x -2=x .∵x ≠-3,2,∴x =-2. 当x =-2时,原式=-2. 拓展提升 1.(1)③;(2)2,52a -1;(3)a +1+4a -1.。

2018初三中考数学复习数与式专项复习训练含答案(K12教育文档)

2018初三中考数学复习数与式专项复习训练含答案(K12教育文档)

2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改)的全部内容。

2018 初三中考数学复习数与式专项复习训练1.小亮用天平称得一个罐头的质量为2。

026 kg,用四舍五入法将2。

026精确到0.01的近似值为( B )A.2 B.2.0 C.2。

02 D.2。

032.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( D )A.a>-2 B.a<-3 C.a>-b D.a<-b3.下列四个数中:-3,-3,-π,-1,其中最小的数是( A )A.-π B.-3 C.-1 D.-34.若2x-1+错误!+1在实数范围内有意义,则x满足的条件是( C ) A.x≥错误! B.x≤错误! C.x=错误! D.x≠错误!5.化简(1a+错误!)÷(错误!-错误!)·ab,其结果是( B )A.错误! B。

错误! C。

错误! D. 错误!6.作为“一带一路"倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著,近年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为( B )A.1.85×109 B.1。

85×1010 C.1。

85×1011 D.1。

85×1012 7.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A )A.(9.9~10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九讲 解直角三角形
1.在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD ,如图,已知李明距假山的水平距离BD 为12 m ,他的眼睛距地面的高度为1.6 m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( A )
A .(43+1.6)m
B .(123+1.6)m
C .(42+1.6)m
D .4 3 m
,(第1题图))
,(第2题图))
2.如图,△ABC 的顶点是正方形网格的格点,则sin A 的值为( B )
A .12
B .
55 C .1010 D .255
3.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D )
A .2
B .
255 C .55 D .12
,(第3题图)) ,(第4题图))
4.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( C )
A .sin
B =AD AB B .sin B =A
C BC
C .sin B =A
D AC
D .sin B =CD AC
5.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1 m ,则旗杆PA 的高度为( A )
A .11-sin α
B .11+sin α
C .
11-cos α
D .
11+cos α
6.计算sin 2
45°+cos 30°·tan 60°,其结果是( A )
A .2
B .1
C .52
D .54
7.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE∶EB=4∶1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( C )
A .
33 B .233 C .533
D . 3
,(第7题图)) ,(第8题图))
8.在寻找马航MH 370航班过程中,某搜寻飞机在空中A 处发现海面上一块疑似漂浮目标B ,此时从飞机上看目标B 的俯角为α,已知飞行高度AC =1 500 m ,tan α=
3
5
,则飞机距疑似目标B 的水平距离BC 为( D ) A .2 400 5 m B .2 400 3 m C .2 500 5 m D .2 500 3 m
9.在Rt △ABC 中,∠C =90°,sin A =3
5
,BC =6,则AB =__10__.
10.规定:sin (-x)=-sin x ,cos (-x)=cos x ,sin (x +y)=sin x ·cos y +cos x ·sin y.据此判断下列等式成立的是__②③④__.(写出所有正确的序号)
①cos (-60°)=-12;②sin 75°=6+2
4
;③sin 2x =2sin x ·cos x ;④sin (x -y)=sin x ·cos y -
cos x ·sin y.
11.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上一点(不与A ,B 重合),则cos C 的值为__4
5
__.
,(第11题图)) ,(第12题图))
12.如图,在四边形ABCD 中,AD =AB =BC ,连结AC ,且∠ACD=30°,tan ∠BAC =23
3
,CD =3,则AC =

13.计算:(1)tan 45°+2sin 45°-2cos 60°; 解:原式=1+2×22-2×12
=1+2-1 =2;
(2)sin 2
1°+sin 2
2°+sin 2
3°+…+sin 2
89°.
解:设S =sin 2
1°+sin 2
2°+sin 2
3°+…+sin 2
89°①, ∴S =cos 2
89°+cos 2
88°+cos 2
87°+…+cos 2
2°+cos 2
1° ∴S =cos 2
1°+cos 2
2°+cos 2
3°+…+cos 2
88°+cos 2
89°②,
①+②得2S =89, S =892
.
14.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M(点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点,如果MC =n ,∠CMN =α,那么P 点与B 点的距离为__m -n·tan α
tan α
__.
15.如图,“中海海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B ,C 两地相距150海里.
(1)求出此时点A 到岛礁C 的距离;
(2)若“中海海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A′时,测得点B 在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)
解:(1)如图所示:延长BA ,过点C 作CD⊥B A 延长线与点D.由题意可得:∠CBD=30°,BC =150海里,则DC =75海里,
∴cos 30°=DC AC =75AC =3
2,
解得AC =50 3.
答:点A 到岛礁C 的距离为503海里;
(2)如图所示:过点A′作A′N⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=∠ABA′=15°,即A′B 平分∠CBA.
∴A ′E =AN.
又∵A′E ⊥BA ,A ′N ⊥BC , 设AA′=x ,则A′E=A′N=32
x , ∴CA ′=2A′N=2×3
2
x =3x. ∵3x +x =503, 解得x =75-253,
答:此时“中国海监50”的航行距离为(75-253)海里.
16.(2017潍坊中考)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5 m ;上面五层居住,每层高度相等.测角仪支架离地1.5 m ,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14 m .求居民楼的高度.(结果精确到0.1 m ,参考数据:3≈1.73)
解:设每层高为x m .
由题意得MC′=MC -CC′=2.5-1.5=1, 则DC′=5x +1,EC ′=4x +1. 在Rt △DC ′A ′中,∠DA ′C ′=60°. ∴C ′A ′=
DC ′tan 60°=3
3
(5x +1).
在Rt △EC ′B ′中,∠EB ′C ′=30°. ∴C ′B ′=
EC ′
tan 30°
=3(4x +1).
∵A ′B ′=C′B′-C′A′=AB , ∴3(4x +1)-
33(5x +1)=14.解得x =23-27
. ∴居民楼高为:5×(23-2
7
)+2.5≈18.4(m ).
17.AE ,CF 是锐角三角形ABC 的两条高,如果AE∶CF=3∶2,则sin ∠BAC ∶sin ∠ACB 等于( B )
A .3∶2
B .2∶3
C .9∶4
D .4∶9。

相关文档
最新文档