应城市三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载

应县第三中学2018-2019学年上学期高二数学12月月考试题含解析

应县第三中学2018-2019学年上学期高二数学12月月考试题含解析

应县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.下列函数中哪个与函数y=x相等()A.y=()2B.y=C.y=D.y=2.下列命题中的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=﹣1”是“x2+5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1>0”D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题3.过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.B.C. D.4.已知集合A={4,5,6,8},B={3,5,7,8},则集合A∪B=()A.{5,8} B.{4,5,6,7,8} C.{3,4,5,6,7,8} D.{4,5,6,7,8}5.下列函数在其定义域内既是奇函数又是增函数的是()A. B. C. D.6.已知幂函数y=f(x)的图象过点(,),则f(2)的值为()A.B.﹣C.2 D.﹣27.在△ABC中,已知a=2,b=6,A=30°,则B=()A.60°B.120°C.120°或60°D.45°8.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中正确命题的个数是()A.0 B.1 C.2 D.3 9.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()A.10个B.15个C.16个D.18个10.已知,,那么夹角的余弦值()A .B .C .﹣2D .﹣11.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能二、填空题13.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 15.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.16.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .17.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]18.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .三、解答题19.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.20.设函数f (x )=x+ax 2+blnx ,曲线y=f (x )过P (1,0),且在P 点处的切线斜率为2 (1)求a ,b 的值;(2)设函数g (x )=f (x )﹣2x+2,求g (x )在其定义域上的最值.21.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于点D ,过B 作O 的切线交AD 的延长线于点E . (Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.22.已知抛物线C :x 2=2py (p >0),抛物线上一点Q (m ,)到焦点的距离为1. (Ⅰ)求抛物线C 的方程(Ⅱ)设过点M (0,2)的直线l 与抛物线C 交于A ,B 两点,且A 点的横坐标为n (n ∈N *)(ⅰ)记△AOB 的面积为f (n ),求f (n )的表达式(ⅱ)探究是否存在不同的点A ,使对应不同的△AOB 的面积相等?若存在,求点A 点的坐标;若不存在,请说明理由.23.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?24.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.应县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.C.函数的定义域为R,y=|x|,对应关系不一致.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选B.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.2.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.3.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,4.【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8}.故选C5.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B6.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.7.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.8.【答案】B试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.考点:几何体的结构特征.9.【答案】B【解析】解:a※b=12,a、b∈N*,若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B10.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.11.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.12.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.二、填空题13.【答案】 ﹣1或0 .【解析】解:满足约束条件的可行域如下图阴影部分所示:kx ﹣y+1≥0表示地(0,1)点的直线kx ﹣y+1=0下方的所有点(包括直线上的点)由关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx ﹣y+1=0与y 轴垂直,此时k=0或直线kx ﹣y+1=0与y=x 垂直,此时k=﹣1 综上k=﹣1或0 故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx ﹣y+1=0与y 轴垂直或与y=x 垂直,是解答的关键.14.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件; 当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立, 则满足,即,∴解得﹣4<a <0,综上:a 的取值范围是(﹣4,0]. 故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.15.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和. 16.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.17.【答案】[]1,1- 【解析】考点:函数的定义域.18.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆1362722=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()()()4340153401522222=++---+-=a ,故2=a ,5492=-=b ,故所求双曲线的标准方程为15422=-x y .故答案为:15422=-x y . 考点:双曲线的简单性质;椭圆的简单性质.三、解答题19.【答案】(1)6B π=;(2)b =【解析】1111](2)根据余弦定理,得2222cos 2725457b a c ac B =+-=+-=,所以b =考点:正弦定理与余弦定理. 20.【答案】【解析】解:(1)f (x )=x+ax 2+blnx 的导数f ′(x )=1+2a+(x >0),由题意可得f (1)=1+a=0,f ′(1)=1+2a+b=2,得;(2)证明:f (x )=x ﹣x 2+3lnx ,g (x )=f (x )﹣2x+2=3lnx ﹣x 2﹣x+2(x >0),g ′(x )=﹣2x ﹣1=﹣,可得g (x )max =g (1)=﹣1﹣1+2=0,无最小值.21.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分(Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠, BDE ∆∽ABE ∆,所以ABBD AE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠, 所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCD AB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分 22.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q +=+=1,解得p=1,∴抛物线C 的方程为x 2=2y ;(Ⅱ)(ⅰ)∵直线l 与抛物线C 交于A 、B 两点,∴直线l 的斜率存在,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为:y=kx+2,联立方程组,化简得:x 2﹣2kx ﹣4=0, 此时△=(﹣2k )2﹣4×1×(﹣4)=4(k 2+4)>0,由韦达定理,得:x 1+x 2=2k ,x 1x 2=﹣4,∴S △AOB =|OM|•|x 1﹣x 2|=×2==2 (*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.23.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.24.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.。

城区三中2018-2019学年上学期高二数学12月月考试题含解析(1)

城区三中2018-2019学年上学期高二数学12月月考试题含解析(1)

城区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题1.在等差数列{a n}中,a3=5,a4+a8=22,则{}的前20项和为()A.B.C.D.2.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.3.执行如图所示的程序,若输入的3x ,则输出的所有x的值的和为()A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力. 4. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12- 5. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定6. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④7. 如果执行如图所示的程序框图,那么输出的a=( )A .2B .C .﹣1D .以上都不正确8. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 9. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|10.下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 11.已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.612.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)二、填空题13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 14.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 17.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 .18.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .三、解答题19.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)求二面角D FG E --的大小的余弦值.20.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.21.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.23.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个”组号分组回答正确的回答正确的人数(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.24.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ= 时,求点P 距地面的高度PQ ;(2)试确定θ 的值,使得∠MPN 取得最大值.城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .2. 【答案】D【解析】解:根据函数与导数的关系:可知,当f ′(x )≥0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减结合函数y=f (x )的图象可知,当x <0时,函数f (x )单调递减,则f ′(x )<0,排除选项A ,C当x >0时,函数f (x )先单调递增,则f ′(x )≥0,排除选项B 故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题3. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D . 4. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.5. 【答案】B【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,∴asin α+bcos β=﹣1,故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.6.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.7.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.8.【答案】D【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.9.【答案】B【解析】解:∵a>b,令a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1,=﹣,显然A不正确.a3=﹣1,b3=﹣6,显然B正确.a2 =1,b2=4,显然C不正确.a=﹣1,|b|=2,显然D 不正确.故选B.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.10.【答案】D111]【解析】考点:相等函数的概念.11.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.12.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.二、填空题13.【答案】201614.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d . 考点:数列与不等式综合. 15.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 16.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.17.【答案】.【解析】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.18.【答案】﹣5.【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣5三、解答题19.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.∵GH∈平面AGH,∴平面AGH⊥平面EFG.……………………………5分20.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.21.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.22.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.23.【答案】【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知n=,∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,;(Ⅱ)因为第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是:.【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.24.【答案】【解析】解:(1)由题意得PQ=50﹣50cosθ,从而当时,PQ=50﹣50cos=75.即点P距地面的高度为75米.(2)由题意得,AQ=50sinθ,从而MQ=60﹣50sinθ,NQ=300﹣50sinθ.又PQ=50﹣50cosθ,所以tan,tan.从而tan∠MPN=tan(∠NPQ﹣∠MPQ)==.令g(θ)=.θ∈(0,π)则,θ∈(0,π).由g′(θ)=0,得sinθ+cosθ﹣1=0,解得.当时,g′(θ)>0,g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.从而当g(θ)=tan∠MNP取得最大值时,∠MPN取得最大值.即当时,∠MPN取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.。

应城市二中2018-2019学年上学期高二数学12月月考试题含解析

应城市二中2018-2019学年上学期高二数学12月月考试题含解析

应城市二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰D .直角2. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .33. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,54. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .85. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}6. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞B 、)0,2012(-C 、)2016,(--∞D 、)0,2016(-7. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .8. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假9. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .10.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4C .3D .211.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]12.设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13二、填空题13.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .14.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .15.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 16.幂函数1222)33)(+-+-=m m x m m x f (在区间()+∞,0上是增函数,则=m .17.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .18.已知数列{a n}中,2a n,a n+1是方程x2﹣3x+b n=0的两根,a1=2,则b5=.三、解答题19.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.20.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

城区三中2018-2019学年上学期高二数学12月月考试题含解析

城区三中2018-2019学年上学期高二数学12月月考试题含解析

城区三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 2. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 3. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .04. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°5. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .6. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤7. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是( )A .(0,)B .(0,]C .(,]D .[,1)8. 若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或9. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .210.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .11.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .12.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,则f(x)g(x)>0的解集为()A.(﹣,﹣a2)∪(a2,)B.(﹣,a2)∪(﹣a2,)C.(﹣,﹣a2)∪(a2,b)D.(﹣b,﹣a2)∪(a2,)二、填空题13.设双曲线﹣=1,F1,F2是其两个焦点,点M在双曲线上.若∠F1MF2=90°,则△F1MF2的面积是.14.已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为.15.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)=.16.已知双曲线的一条渐近线方程为y=x,则实数m等于.17.在区间[﹣2,3]上任取一个数a,则函数f(x)=x3﹣ax2+(a+2)x有极值的概率为.18.在(2x+)6的二项式中,常数项等于(结果用数值表示).三、解答题19.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.20.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .21.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .22.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.23.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.24.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.2. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .3. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 4. 【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.5. 【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A6.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.7.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.8. 【答案】D【解析】解:当椭圆+=1的焦点在x 轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y 轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x 轴和y 轴进行分类讨论.9. 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得 这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C10.【答案】D【解析】解:双曲线(a >0,b >0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.11.【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 12.【答案】A【解析】解:∵f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,∴f (x )<0的解集为(﹣b ,﹣a 2),g (x )<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x <或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.二、填空题13.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c2=a2+b2=13,又||MF|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,1在△F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|﹣|MF2|)2+2|MF1||MF2|,即4c2=4a2+2|MF1||MF2|,可得|MF1||MF2|=2b2=18,即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.14.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).16.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.17.【答案】.【解析】解:在区间[﹣2,3]上任取一个数a,则﹣2≤a≤3,对应的区间长度为3﹣(﹣2)=5,若f(x)=x3﹣ax2+(a+2)x有极值,则f'(x)=x2﹣2ax+(a+2)=0有两个不同的根,即判别式△=4a2﹣4(a+2)>0,解得a>2或a<﹣1,∴﹣2≤a<﹣1或2<a≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键.18.【答案】240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.三、解答题19.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.20.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA﹣sinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;…(Ⅱ)因为三角形△ABC 的面积为,a=b 、c=,所以S=absinC=a 2sinC=,则,①由余弦定理得, =,②由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,又0<C <π,则C+<,即C+=,解得C= ….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.21.【答案】(1)12-=n a n ,nn b 21=;(2)n nn T 2323+-=. 【解析】试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,求出d ,然后求解n b ;(2)写出n n n T 212...232321321-++++=利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n又1log 22--=n n b a ∴n b n -=2log ,即n n b 21=(6分)考点:数列的求和.22.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k 的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.23.【答案】【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f (x )=cos (2x+).令2x+=k π,求得x=﹣,可得对称轴方程为 x=﹣,k ∈Z .令2k π﹣π≤2x+≤2k π,求得 k π﹣≤x ≤k π﹣,可得函数的增区间为,k ∈Z .(2)当2x+=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.当2x+=2k π+π,即x=k π+,k ∈Z 时,f (x )取得最小值为﹣1.∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};f (x )取最小值时相应的x 集合为{x|x=k π+,k ∈Z}.24.【答案】【解析】解:(Ⅰ)∵对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.∴集合P 3,P 5中的元素个数分别为9,23,∵集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω,∴P 3不具有性质Ω.…..证明:(Ⅱ)假设存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .其中E 15={1,2,3,…,15}. 因为1∈E 15,所以1∈A ∪B ,不妨设1∈A .因为1+3=22,所以3∉A ,3∈B .同理6∈A ,10∈B ,15∈A .因为1+15=42,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .…..解:(Ⅲ)因为当n ≥15时,E 15⊆P n ,由(Ⅱ)知,不存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B . 若n=14,当b=1时,,取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.。

应县三中2018-2019学年上学期高二数学12月月考试题含解析

应县三中2018-2019学年上学期高二数学12月月考试题含解析

应县三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________一、选择题1. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1 B .2C .3D .42. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .3. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 4. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内 5. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=6. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .277. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣58. 已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=9. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .10.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或211.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 12f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .5二、填空题13.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .14.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.15.已知函数f (x )=,若f (f (0))=4a ,则实数a= .16.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 17.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .18.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .三、解答题19.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.20.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.21.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.22.已知函数f (x )=sin (ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P (0,1)(Ⅰ)求函数f (x )的解析式;(Ⅱ)设函数 g (x )=f (x )+cos2x ﹣1,将函数 g (x )图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m )内是单调函数,求实数m 的最大值.23.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.24.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.应县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.2.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.3.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.4.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.5.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.6.【答案】C【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.7. 【答案】C【解析】解:∵f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2 =(((((x ﹣5)x+6)x+0)x+2)x+0.3)x+2, ∴v 0=a 6=1,v 1=v 0x+a 5=1×(﹣2)﹣5=﹣7, 故选C .8. 【答案】B 【解析】考点:抛物线的定义及性质.【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.9.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

应城市高级中学2018-2019学年高二上学期第二次月考试卷数学

应城市高级中学2018-2019学年高二上学期第二次月考试卷数学

应城市高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 求值: =( )A .tan 38°B .C .D .﹣2. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .3. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12-4. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)5. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 6. “a >b ,c >0”是“ac >bc ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4 8. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π9. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 10.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 11.给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .412.“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件二、填空题13.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 . 14.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .15.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .16.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 17.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 .18.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .三、解答题19.设极坐标与直角坐标系xOy 有相同的长度单位,原点O 为极点,x 轴坐标轴为极轴,曲线C 1的极坐标方程为ρ2cos2θ+3=0,曲线C 2的参数方程为(t 是参数,m 是常数).(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;(Ⅱ)若C 1与C 2有两个不同的公共点,求m 的取值范围.20.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.21.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.22.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.23.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.24.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.应城市高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解: =tan (49°+11°)=tan60°=,故选:C .【点评】本题主要考查两角和的正切公式的应用,属于基础题.2. 【答案】B【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x ,再向右平移个单位得到y=cos[(x )],由(x )=k π,得x =2k π,即+2k π,k ∈Z ,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.3. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.4. 【答案】C【解析】解:令F (x )=,(x >0),则F ′(x )=,∵f (x )>xf ′(x ),∴F ′(x )<0, ∴F (x )为定义域上的减函数,由不等式x 2f ()﹣f (x )>0,得:>,∴<x ,∴x >1, 故选:C .5. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.6. 【答案】A【解析】解:由“a >b ,c >0”能推出“ac >bc ”,是充分条件,由“ac >bc ”推不出“a >b ,c >0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac >bc ,但是a <b ,c <0, 故选:A .【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题7. 【答案】D【解析】解:抛物线y 2=4x 焦点(1,0),准线为 l :x=﹣1, 设AB 的中点为E ,过 A 、E 、B 分别作准线的垂线, 垂足分别为 C 、G 、D ,EF 交纵轴于点H ,如图所示:则由EG 为直角梯形的中位线知,EG====5,∴EH=EG ﹣1=4, 则AB 的中点到y 轴的距离等于4.故选D .【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.8. 【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm ;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4π故选:C .9. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 10.【答案】15 【解析】11.【答案】 A【解析】解:①在区间(0,+∞)上,函数y=x ﹣1,是减函数.函数y=为增函数.函数y=(x ﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x 3是增函数.∴有两个是增函数,命题①是假命题;②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;③若函数f(x)是奇函数,则其图象关于点(0,0)对称,∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.12.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.二、填空题13.【答案】6.【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x ﹣y+m=0得m=6.即m 的最大值为6. 故答案为:6【点评】本题主要考查线性规划的应用,利用m 的几何意义结合数形结合,即可求出m 的最大值.根据向量平行的坐标公式是解决本题的关键.14.【答案】 【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y xR αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 15.【答案】[1,)+∞【解析】解析:不等式,1,x y a x y +≥⎧⎨-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处取得最大值,综上所述,1a ≥.16.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:417.【答案】 n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2 .【解析】解:观察下列等式 1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …等号右边是12,32,52,72…第n 个应该是(2n ﹣1)2 左边的式子的项数与右边的底数一致, 每一行都是从这一个行数的数字开始相加的,照此规律,第n 个等式为n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2, 故答案为:n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.18.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆1362722=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()()()4340153401522222=++---+-=a ,故2=a ,5492=-=b ,故所求双曲线的标准方程为15422=-x y .故答案为:15422=-x y . 考点:双曲线的简单性质;椭圆的简单性质.三、解答题19.【答案】【解析】解:(I )曲线C 1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos 2θ﹣sin 2θ)+3=0,可得直角坐标方程:x 2﹣y 2+3=0.曲线C 2的参数方程为(t 是参数,m 是常数),消去参数t 可得普通方程:x ﹣2y ﹣m=0.(II )把x=2y+m 代入双曲线方程可得:3y 2+4my+m 2+3=0,由于C 1与C 2有两个不同的公共点, ∴△=16m 2﹣12(m 2+3)>0,解得m <﹣3或m >3,∴m <﹣3或m >3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)由题意知椭圆的焦点在x 轴上,设椭圆的标准方程是∵椭圆经过点D (2,0),左焦点为,∴a=2,,可得b==1 因此,椭圆的标准方程为.(2)设点P 的坐标是(x 0,y 0),线段PA 的中点为M (x ,y ),由根据中点坐标公式,可得,整理得,∵点P (x 0,y 0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;22.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.23.【答案】①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③.【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.。

城区三中2018-2019学年上学期高二数学12月月考试题含解析(2)

城区三中2018-2019学年上学期高二数学12月月考试题含解析(2)

城区三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________一、选择题1. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)2. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)3. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 4. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣15. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x6. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .37. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或 8. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9. 数列{a n }满足a 1=, =﹣1(n ∈N *),则a 10=( )A .B .C .D .10.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°11.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .12.设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]二、填空题13.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .14.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .17.设函数f (x )=,则f (f (﹣2))的值为 . 18.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤三、解答题19.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.20.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.21.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.22.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.23.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.24.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin φ=,即sin φ=,由于|φ|<,解得:φ=,即有:f (x )=2sin (2x+).由2x+=k π,k ∈Z 可解得:x=,k ∈Z ,故f (x )的图象的对称中心是:(,0),k ∈Z当k=0时,f (x )的图象的对称中心是:(,0),故选:B .【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.2. 【答案】C【解析】解:f (x )=e x+x ﹣4, f (﹣1)=e ﹣1﹣1﹣4<0, f (0)=e 0+0﹣4<0, f (1)=e 1+1﹣4<0, f (2)=e 2+2﹣4>0, f (3)=e 3+3﹣4>0, ∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2). 故选:C .3. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.4. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1. 故选:B .5. 【答案】A【解析】解:∵点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,∴,①又∵双曲线C 的焦距为12,∴12=2,即a 2+b 2=36,②联立①、②,可得a 2=16,b 2=20,∴渐近线方程为:y=±x=±x ,故选:A .【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.6. 【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .7. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

应城市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

应城市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

应城市第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣2,0)∪(2,+∞)D.(﹣2,0)∪(0,2)2.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥113.定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=()A.2 B.﹣2 C.﹣D.4.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。

A3B4C5D65. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( ) A .a=3 B .a=﹣3C .a=±3D .a=5或a=±36. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .07. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i8. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .9. 如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75° D .135°10.已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.11.函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,212.P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c二、填空题13.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .14.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)15.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .16.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .17.多面体的三视图如图所示,则该多面体体积为(单位cm ) .18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .三、解答题19.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)在椭圆内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.21.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?22.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.23.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?24.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.应城市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.2.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.3.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).4.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 5.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.6.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.7. 【答案】B【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],整理得a 2+b 2=2a+2(b ﹣1)i .则,解得.所以z=1+i . 故选B .【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.8. 【答案】B【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.9. 【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.10.【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .11.【答案】B 【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m 需从开始,要取得最大值为,由图可知m 的右端点为,故m 的取值范围是[]2,4.考点:二次函数图象与性质. 12.【答案】A【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.二、填空题13.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.14.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.15.【答案】25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.16.【答案】.【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.17.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.18.【答案】2:1.【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为:=πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:1三、解答题19.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).20.【答案】【解析】21.【答案】【解析】解:(1)男、女同学各2名的选法有C42×C52=6×10=60种;(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故选人种数为C41×C53+C42×C52+C43×C51=40+60+20=120.男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41×C31+C42=21,故有120﹣21=99.22.【答案】【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.24.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.。

应城市民族中学2018-2019学年上学期高二数学12月月考试题含解析

应城市民族中学2018-2019学年上学期高二数学12月月考试题含解析

应城市民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .2. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .3. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.44. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .136. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 7. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)8. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件9. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .10.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .11.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .12.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80B .40C .60D .20二、填空题13.曲线y=x+e x 在点A (0,1)处的切线方程是 .14.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .15.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .16.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).17.设函数 则______;若,,则的大小关系是______.18.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .三、解答题19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.20.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.21.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则 (1)求f (0); (2)证明:f (x )为奇函数;(3)若f (k •3x )+f (3x ﹣9x﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围.22.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.23.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(Ⅰ)求底面积并用含x的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?24.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.应城市民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:A 项定义域为[﹣2,0],D 项值域不是[0,2],C 项对任一x 都有两个y 与之对应,都不符.故选B .【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.2. 【答案】B【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c )=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B ∈(0,π),∴B=,故选:B .【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.3. 【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.4. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .5. 【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10. 故选:C .6. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1 7. 【答案】A【解析】解:集合A={x|y=ln (x ﹣1)}=(1,+∞),集合B={y|y=2x }=(0,+∞) 则A ∪B=(0,+∞) 故选:A .【点评】本题考查了集合的化简与运算问题,是基础题目.8. 【答案】A【解析】解:由x 2+x+m=0知,⇔.(或由△≥0得1﹣4m ≥0,∴.),反之“一元二次方程x 2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x 2+x+m=0有实数解”的充分非必要条件.故选A .【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.9. 【答案】 D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.10.【答案】A【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A.11.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.12.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.二、填空题13.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.14.【答案】63.【解析】解:∵第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23…第n圈长为:n+(2n﹣1)+2n+2n+n=8n﹣1故n=8时,第8圈的长为63,故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.15.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.16.【答案】180【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.17.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。

应县高中2018-2019学年上学期高二数学12月月考试题含解析

应县高中2018-2019学年上学期高二数学12月月考试题含解析

应县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)2. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④3. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .4. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .45. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( )A .4B .6C .8D .106. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.8.如图,在△ABC中,AB=6,AC=4,A=45°,O为△ABC的外心,则•等于()A.﹣2B.﹣1C.1D.29.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y 2.534 4.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35B.=0.7x+1C.=0.7x+2.05D.=0.7x+0.4510.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.数列{a n}的通项公式为a n=﹣n+p,数列{b n}的通项公式为b n=2n﹣5,设c n=,若在数列{c n}中c8>c n(n∈N*,n≠8),则实数p的取值范围是()A.(11,25)B.(12,16]C.(12,17)D.[16,17)12.下列函数中,为奇函数的是()A.y=x+1B.y=x2C.y=2x D.y=x|x|二、填空题13.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 .14.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .15.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 .16.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则 .a =17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________18.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 . 三、解答题19.已知p :,q :x 2﹣(a 2+1)x+a 2<0,若p 是q 的必要不充分条件,求实数a 的取值范围.20.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.21.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.22.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.23.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.24.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.(Ⅰ)求数列{a n}通项公式;(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.应县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.2.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础. 3.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.4.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a ,所以a=3,故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解. 5. 【答案】【解析】解析:选D.双曲线C 的方程为-=1,其焦点为(±2,0),由题意得=2,x 22y 22p 2∴p =4,即拋物线方程为y 2=8x ,双曲线C 的渐近线方程为y =±x ,由,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.{y 2=8x y =±x)6. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

应城市高中2018-2019学年高二上学期数学期末模拟试卷含解析

应城市高中2018-2019学年高二上学期数学期末模拟试卷含解析

应城市高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( )A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}2. 复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.3. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)4. 设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5. 在极坐标系中,圆的圆心的极坐标系是( )。

AB C D6. 下列各组函数中,表示同一函数的是( )A .y=1,y=x 0B .y=•,y=C .y=x ,y=D .y=|x|,t=()27. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为()A .3,6,9,12,15,18B .4,8,12,16,20,24C .2,7,12,17,22,27D .6,10,14,18,22,268. 函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象()A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到D .向左右平移个单位得到9. 已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且)0,0(12222>>=-b a by a x 21F F 、2F Q P ,,若,,则双曲线离心率的取值范围为( ).1PF PQ ⊥||||1PF PQ λ=34125≤≤λe A. B. C. D. ]210,1(]537,1(210,537[),210[+∞第Ⅱ卷(非选择题,共100分)10.数列中,,对所有的,都有,则等于( ){}n a 11a =2n ≥2123n a a a a n =A A 35a a +A .B .C .D .25925166116311511.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A. B .483C.D .16320312.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >4二、填空题13.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .14.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 . 15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为. 16.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .17.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .18.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .三、解答题19.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).(Ⅰ)求点A 的坐标;(Ⅱ)若向量=(sin2x ,2cos θ),=(3sin θ,2cos2x ),求函数f (x )=•,x ∈[0,]的值域.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈(1)当时,求的单调区间;1m =()f x (2)令,区间,为自然对数的底数。

应城市一中2018-2019学年上学期高二数学12月月考试题含解析

应城市一中2018-2019学年上学期高二数学12月月考试题含解析

应城市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )A .B .C .D .2. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .43. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥4. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .25. 有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④6.在△ABC中,,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角 D.等腰或直角三角形7.A={x|x<1},B={x|x<﹣2或x>0},则A∩B=()A.(0,1)B.(﹣∞,﹣2)C.(﹣2,0)D.(﹣∞,﹣2)∪(0,1)8.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.下列函数中,既是奇函数又是减函数的为()A.y=x+1 B.y=﹣x2C.D.y=﹣x|x|10.已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是()A.﹣1 B.0 C.1 D.211.直线2x+y+7=0的倾斜角为()A.锐角 B.直角 C.钝角 D.不存在12.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()(A)150种(B )180 种(C)240 种(D)540 种二、填空题13.在△ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是.14.设函数,若用表示不超过实数m的最大整数,则函数的值域为.15.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是.16.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .17.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.18.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .三、解答题19.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.20.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.21.已知函数f (x )=sin2x+(1﹣2sin 2x ).(Ⅰ)求f (x )的单调减区间;(Ⅱ)当x ∈[﹣,]时,求f (x )的值域.22.已知复数z 的共轭复数是,且复数z 满足:|z ﹣1|=1,z ≠0,且z 在复平面上对应的点在直线y=x 上.求z 及z 的值.23.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.24.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.应城市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f (x )的图象,再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f (x )的图象,再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.2. 【答案】A【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,得:(a 3+2)2=(a 1+1)(a 5+3), 整理得:a 32+4a 3+4=a 1a 5+3a 1+a 5+3即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.3. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.4.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C5.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.6.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.7.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8. 【答案】A【解析】解:由奇函数的定义可知:若f (x )为奇函数, 则任意x 都有f (﹣x )=﹣f (x ),取x=0,可得f (0)=0;而仅由f (0)=0不能推得f (x )为奇函数,比如f (x )=x 2,显然满足f (0)=0,但f (x )为偶函数.由充要条件的定义可得:“函数f (x )是奇函数”是“f (0)=0””的充分不必要条件. 故选:A .9. 【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.10.【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1. 下列a 的取值能使“¬p ”是真命题的是a=2. 故选;D .11.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论. 【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角. 故选:C .12.【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 二、填空题13.【答案】.【解析】解:由于角A为锐角,∴且不共线,∴6+3m>0且2m≠9,解得m>﹣2且m.∴实数m的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.14.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}. 【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.15.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3,故答案为:a ≤0或a ≥3.16.【答案】 (﹣∞,3] .【解析】解:f ′(x )=3x 2﹣2ax+3, ∵f (x )在[1,+∞)上是增函数,∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f ′(1)=﹣2a+6≥0, ∴a ≤3;实数a 的取值范围是(﹣∞,3].17.【答案】⎛ ⎝⎭【解析】18.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0,故答案为x ﹣y ﹣2=0. 【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.三、解答题19.【答案】【解析】(Ⅰ)解:由4S n =(a n +1)2,令n=1,得,即a 1=1,又4S n+1=(a n+1+1)2,∴,整理得:(a n+1+a n )(a n+1﹣a n ﹣2)=0.∵a n >0,∴a n+1﹣a n =2,则{a n }是等差数列,∴a n =1+2(n ﹣1)=2n ﹣1;(Ⅱ)证明:由(Ⅰ)可知,b n ==,则b 1+b 2+…+b n ===.20.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710. 考点:1、分层抽样的应用;2、古典概型概率公式. 21.【答案】【解析】解:(Ⅰ)f (x )=sin2x+(1﹣2sin 2x )=sin2x+cos2x=2(sin2x+cos2x )=2sin (2x+),由2k π+≤2x+≤2k π+(k ∈Z )得:k π+≤x ≤k π+(k ∈Z ),故f (x )的单调减区间为:[k π+,k π+](k ∈Z );(Ⅱ)当x ∈[﹣,]时,(2x+)∈[0,],2sin (2x+)∈[0,2],所以,f (x )的值域为[0,2].22.【答案】【解析】解:∵z 在复平面上对应的点在直线y=x 上且z ≠0,∴设z=a+ai ,(a ≠0),∵|z ﹣1|=1, ∴|a ﹣1+ai|=1,即=1, 则2a 2﹣2a+1=1,即a 2﹣a=0,解得a=0(舍)或a=1, 即z=1+i , =1﹣i ,则z =(1+i )(1﹣i )=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.23.【答案】(1)22142x y +=;(2)22[2,7)F M F N ∈-. 【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=.1111]设11(,)M x y ,22(,)N x y ,则212212x x k +=-+,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++ 22222224(1)42(1)2(1)221212k k k k k k k --=++-++++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k -∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.24.【答案】【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.。

应县高级中学2018-2019学年上学期高二数学12月月考试题含解析

应县高级中学2018-2019学年上学期高二数学12月月考试题含解析

应县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .162. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.154. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.5. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=16. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-547. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .D .8. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 9. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.10.已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x 11.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .12.函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .10二、填空题13.已知f (x )=,则f[f (0)]= .14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .16.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)17.已知线性回归方程=9,则b= .18.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .三、解答题19.设函数f (x )=e mx +x 2﹣mx .(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.20.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.(Ⅱ)证明:AM⊥PM.21.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.22.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.23.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.24.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.应县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D .2. 【答案】 D【解析】解:∵g (x )=﹣f (2﹣x ),∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x+x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.3.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.4.【答案】C5.【答案】C【解析】解:如图,++().故选C.6. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.7. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ===4,BG AD EF CE ====所以最长为GC =考点:几何体的三视图及几何体的结构特征. 8. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 9. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .10.【答案】A【解析】解:∵点M (﹣6,5)在双曲线C:﹣=1(a >0,b >0)上,∴,①又∵双曲线C 的焦距为12, ∴12=2,即a 2+b 2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.11.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.12.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.二、填空题13.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.14.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.15.【答案】±(7﹣i).【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω===,|ω|=,∴.把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i ).故答案为±(7﹣i ).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.16.【答案】 ③⑤【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤17.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.18.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x yλμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为三、解答题19.【答案】【解析】解:(1)证明:f ′(x )=m (e mx﹣1)+2x .若m ≥0,则当x ∈(﹣∞,0)时,e mx ﹣1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx﹣1≥0,f ′(x )>0. 若m <0,则当x ∈(﹣∞,0)时,e mx ﹣1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx﹣1<0,f ′(x )>0.所以,f (x )在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x=0处取得最小值. 所以对于任意x 1,x 2∈,|f (x 1)﹣f (x 2)|≤e ﹣1的充要条件是即设函数g (t )=e t﹣t ﹣e+1,则g ′(t )=e t﹣1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (﹣1)=e ﹣1+2﹣e <0,故当t ∈时,g (t )≤0.当m ∈时,g (m )≤0,g (﹣m )≤0,即合式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m﹣m >e ﹣1.当m <﹣1时,g (﹣m )>0,即e ﹣m+m >e ﹣1.综上,m 的取值范围是20.【答案】【解析】(Ⅰ)解:在棱AD 上找中点N ,连接CN ,则CN ∥平面AMP ;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CN∥AM,又CN⊄平面AMP,AM⊂平面AMP,所以CN∥平面AMP.(Ⅱ)证明:过P作PE⊥CD,连接AE,ME,因为边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点所以PE⊥平面ABCD,CM=,所以PE⊥AM,在△AME中,AE==3,ME==,AM==,所以AE2=AM2+ME2,所以AM⊥ME,所以AM⊥平面PME所以AM⊥PM.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.21.【答案】【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.22.【答案】(1)a=12(2)(-∞,-1-1e].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln xx . 令g (x )=22ln xx ,x >0,则g '(x )=()3212ln x x-.令g '(x )=0,解得x当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g (1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.23.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日 24.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c 2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.。

应城市实验中学2018-2019学年上学期高二数学12月月考试题含解析

应城市实验中学2018-2019学年上学期高二数学12月月考试题含解析

精选高中模拟试卷应城市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有()A .2个B .4个C .6个D .8个2. 已知数列,则5是这个数列的( )A .第12项B .第13项C .第14项D .第25项3. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .4. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B .483C.D .1632035. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a6. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .精选高中模拟试卷7. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为()120.51xyA .1B .2C .3D .48. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 9. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=()A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4) 10.二项式的展开式中项的系数为10,则( )(1)(N )nx n *+Î3x n =A .5B .6C .8D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.11.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有()A .2对B .3对C .4对D .5对12.双曲线的左右焦点分别为,过的直线与双曲线的右支交于()222210,0x y a b a b-=>>12F F 、2F 两点,若是以为直角顶点的等腰直角三角形,则( )A B 、1F AB ∆A 2e =A .B .C .D .1+4-5-3+二、填空题13.与圆22:240C x y x y +-+=外切于原点,且半径为的圆的标准方程为14.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.15.在(x 2﹣)9的二项展开式中,常数项的值为 .0,1n =()s n n=+⋅1n n +3?>输出s16.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .17.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .18.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .三、解答题19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围. 20.(本小题满分12分)已知在中,角所对的边分别为且ABC ∆C B A ,,,,,c b a .)3(sin ))(sin (sin c b C a b B A -=-+(Ⅰ)求角的大小;A(Ⅱ) 若,,求.2a =ABC ∆c b ,21.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点.(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.22.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.23.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.24.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.应城市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ;∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B . 2. 【答案】B 【解析】由题知,通项公式为,令得,故选B答案:B3. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 4. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132035. 【答案】C【解析】解:由题意f (x )=f (|x|).∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C6.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C7.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A.【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.8.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.9.【答案】A【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A .【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒. 10.【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A .(1)(N )n x n *+Î3x 3C n 3C 10n =5n =11.【答案】D【解析】解:∵PD ⊥矩形ABCD 所在的平面且PD ⊆面PDA ,PD ⊆面PDC ,∴面PDA ⊥面ABCD ,面PDC ⊥面ABCD ,又∵四边形ABCD 为矩形∴BC ⊥CD ,CD ⊥AD∵PD ⊥矩形ABCD 所在的平面∴PD ⊥BC ,PD ⊥CD ∵PD ∩AD=D ,PD ∩CD=D∴CD ⊥面PAD ,BC ⊥面PDC ,AB ⊥面PAD ,∵CD ⊆面PDC ,BC ⊆面PBC ,AB ⊆面PAB ,∴面PDC ⊥面PAD ,面PBC ⊥面PCD ,面PAB ⊥面PAD 综上相互垂直的平面有5对故答案选D 12.【答案】C 【解析】试题分析:设,则,因为1AF AB m ==122,2,2BF m AF m a BF a ==-=-,所以,解得,所以,在直角22AB AF BF m =+=22m a a m -+-=4a =21AF m ⎛=- ⎝三角形中,由勾股定理得,因为,所以,所以12AF F 22542c m ⎛= ⎝4a =225482c a ⎛=⨯ ⎝.25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]二、填空题13.【答案】 20)4()2(22=-++y x 【解析】由已知圆心),(b a 在直线上,所以圆心x y 2-=,又因为与圆22:240C x y x y +-+=外切于原点,)2,(a a -且半径为,可求得52)2(22=-+a a ,舍去。

应城市第三中学校2019-2020学年上学期高二数学12月月考试题含解析

应城市第三中学校2019-2020学年上学期高二数学12月月考试题含解析

应城市第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .2. 已知函数f (x )=a x+b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣3. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .4. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力. 5. 椭圆=1的离心率为( ) A . B .C .D .6. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β 7. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤8.已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1 B. C .3 D .29. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个10.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .711.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)12.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()A.2:1 B.5:2 C.1:4 D.3:1二、填空题13.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.14.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.15.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).16.若复数34sin(cos)i55zαα=-+-是纯虚数,则tanα的值为.【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.17.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .18.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.已知函数f (x )=|x ﹣2|. (1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a )20.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.21.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.22.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?23.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.24.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.应城市第三中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.2.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B3.【答案】B【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.4.【答案】D第Ⅱ卷(共90分)5.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.6. 【答案】D【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误; 对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误.故选D .7. 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C .【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.8. 【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D .【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.9. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

应城市第三中学2019-2020学年上学期高二数学12月月考试题含解析

应城市第三中学2019-2020学年上学期高二数学12月月考试题含解析

应城市第三中学2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台2. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .3. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β 4. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 5. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 56. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x =D 、()f x x =与2()f x =7. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( )A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N8. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .49. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种10.已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .211.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .312.已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .64二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________16.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为.18.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.20.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.21.已知函数f(x)=,求不等式f(x)<4的解集.22.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.23.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.24.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.应城市第三中学2019-2020学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的, 故选:C .2. 【答案】B【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B .3. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.4. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 5. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 6. 【答案】C 【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

应城市三中2018-2019学年高二上学期第二次月考试卷数学

应城市三中2018-2019学年高二上学期第二次月考试卷数学

应城市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36 2. 若,则下列不等式一定成立的是( ) A . B .C .D .3. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.4. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定5. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<6. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10B .﹣10C .9D .157. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)8. 已知向量(,2)a m =r ,(1,)b n =-r (0n >),且0a b ⋅=r r ,点(,)P m n 在圆225x y +=上,则 |2|a b +=r r( )A .34B .C .42D .32 9. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 10.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种11.数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .512.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A . B .C .D .二、填空题13.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .14.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .16.设函数 则______;若,,则的大小关系是______.17.不等式的解集为R,则实数m的范围是.18.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题19.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.20.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.21.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.22.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.23.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.24.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa (t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.应城市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

应城市第三中学校2018-2019学年高二上学期第二次月考试卷数学

应城市第三中学校2018-2019学年高二上学期第二次月考试卷数学

应城市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.i是虚数单位,i2015等于()A.1B.﹣1C.i D.﹣i2.已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x3﹣2x2,则x<0时,函数f(x)的表达式为f(x)=()A.x3+2x2B.x3﹣2x2C.﹣x3+2x2D.﹣x3﹣2x23.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i4.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()AB CD5. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( )A .4B .6C .8D .106. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A .1372B .2024C .3136D .44957. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .8. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1﹣B .﹣C .D .9. 已知集合,则下列式子表示正确的有( ){}2|10A x x =-=①;②;③;④.1A ∈{}1A -∈A ∅⊆{}1,1A -⊆A .1个B .2个C .3个D .4个10.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A .0B .1C .2D .311.利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .12.函数是()A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数二、填空题13.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .14.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 . 17.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.18.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .三、解答题19.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集.(Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a .xOy(2,0)y20.在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨C迹为曲线.C(1)求曲线的方程;111](1,0)C A B C E F (2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,AB EF M N MN P P线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.21.设函数.(1)若x=1是f(x)的极大值点,求a的取值范围.(2)当a=0,b=﹣1时,函数F(x)=f(x)﹣λx2有唯一零点,求正数λ的值.22.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.23.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.24.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<应城市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.2.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.3.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.4.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

应城市三中2018-2019学年高二上学期数学期末模拟试卷含解析

应城市三中2018-2019学年高二上学期数学期末模拟试卷含解析

解得 x>2,
∴函数 f(x)的单调递增区间是(2,+∞).
故选:D.
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
二、填空题
13.【答案】 (﹣3,﹣2)∪(﹣1,0) .
【解析】解:函数 f(x)=x2ex 的导数为 y′=2xex+x2ex =xex (x+2), 令 y′=0,则 x=0 或﹣2, ﹣2<x<0 上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,
段记为 ()

,将线段
竖直放置在同一水平线上,则大致的图形是
第 2 页,共 20 页
A B C
第 3 页,共 20 页
D
12.已知双曲线
(a>0,b>0)的右焦点 F,直线 x= 与其渐近线交于 A,B 两点,且△ABF 为
钝角三角形,则双曲线离心率的取值范围是( )
A.
B.
C.
D.
二、填空题
13.函数 f(x)=x2ex 在区间(a,a+1)上存在极值点,则实数 a 的取值范围为 . 14.已知一个算法,其流程图如图,则输出结果是 .
综上,所求不等式的解集为{x|x<﹣ 或 0≤x< }. 故选 B 7. 【答案】B 【解析】

第 10 页,共 20 页
点:直线方程的形式. 【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的 斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程 不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 8. 【答案】B

应城市高中2018-2019学年高二上学期第二次月考试卷数学

应城市高中2018-2019学年高二上学期第二次月考试卷数学

应城市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称2. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.3. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .4. 函数y=2|x|的图象是( )A .B .C .D .5. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件6. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A.11? B.12? C.13? D.14?7.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.8.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.69.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线2x+y﹣3=0垂直,则双曲线的离心率是()A.B.C.4D.10.若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .2111.已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位12.给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④二、填空题13.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 14由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.15.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 16在这段时间内,该车每100千米平均耗油量为升.17.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.18.已知,0()1,0xe xf xxì³ï=í<ïî,则不等式2(2)()f x f x->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.三、解答题19.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?20.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.21.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.22.已知a >0,b >0,a+b=1,求证:(Ⅰ)++≥8;(Ⅱ)(1+)(1+)≥9.23.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .24.在△ABC中,cos2A﹣3cos(B+C)﹣1=0.(1)求角A的大小;(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.应城市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .2. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 3. 【答案】D【解析】解:∵当x >0时,3f (x )﹣2f ()=…①,∴3f ()﹣2f (x )==…②,①×3+③×2得:5f (x )=,故f (x )=,又∵函数f (x )为偶函数,故f (﹣2)=f (2)=,故选:D .【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x >0时,函数f (x )的解析式,是解答的关键.4. 【答案】B【解析】解:∵f (﹣x )=2|﹣x|=2|x|=f (x )∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C 错误.且当x=0时,y=1;x=1时,y=2,故A ,D 错误故选B 【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.5. 【答案】A【解析】解:由x 2+x+m=0知,⇔.(或由△≥0得1﹣4m ≥0,∴.),反之“一元二次方程x 2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x 2+x+m=0有实数解”的充分非必要条件.故选A .【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 8. 【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B 中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6; 故选D .【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.9. 【答案】A【解析】解:由题意双曲线kx 2﹣y 2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A .【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k ,熟练掌握双曲线的性质是求解本题的知识保证.10.【答案】B 【解析】试题分析:()()311328f f -===,故选B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应城市三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .CD 2. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=03. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条4. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个5. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位 B .向右平移个单位C .向左平移个单位D .向左平移个单位6. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>07. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣18. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .2509. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .B .C .D .10.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .11.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5412.已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣2二、填空题13.函数y=lgx 的定义域为 .14.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.15.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .16.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.17.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .18.函数f (x )=(x >3)的最小值为 .三、解答题19.已知函数f (x )=lnx+ax 2+b (a ,b ∈R ).(Ⅰ)若曲线y=f (x )在x=1处的切线为y=﹣1,求函数f (x )的单调区间;(Ⅱ)求证:对任意给定的正数m ,总存在实数a ,使函数f (x )在区间(m ,+∞)上不单调;(Ⅲ)若点A (x 1,y 1),B (x 2,y 2)(x 2>x 1>0)是曲线f (x )上的两点,试探究:当a <0时,是否存在实数x 0∈(x 1,x 2),使直线AB 的斜率等于f'(x 0)?若存在,给予证明;若不存在,说明理由.20.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.23.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.24.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.应城市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴1212S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质. 2. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.3. 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1; ∴两个圆外切,∴它们只有1条内公切线,2条外公切线. 故选C . 4. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 5. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题.6. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A .7. 【答案】B【解析】解:∵(a ﹣i )•2i=2ai+2为正实数, ∴2a=0, 解得a=0. 故选:B .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.8.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.9.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B10.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.11.【答案】【解析】解析:选C.由题意得a-1=1,∴a=2.若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.12.【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D .二、填空题13.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法.14.【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x -=,当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.15.【答案】 [,3] .【解析】解:直线AP 的斜率K==3,直线BP 的斜率K ′==由图象可知,则直线l 的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P 的直线l 与线段AB 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.16.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.17.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2}, ∴C U A={3,4}, 又B={2,3},∴(C U A )∪B={2,3,4},故答案为:{2,3,4}18.【答案】 12 .【解析】解:因为x >3,所以f (x )>0由题意知:=﹣令t=∈(0,),h (t )==t ﹣3t 2因为 h (t )=t ﹣3t 2的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;故h (t )∈(0,]由h (t )=⇒f (x )=≥12故答案为:12三、解答题19.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.20.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.21.【答案】【解析】(本题满分为12分)解:(1)由题意知:A=2,…∵T=6π,∴=6π得ω=,…∴f(x)=2sin(x+φ),∵函数图象过(π,2),∴sin(+φ)=1,∵﹣<φ+<,∴φ+=,得φ=…∴A=2,ω=,φ=,∴f(x)=2sin(x+).…(2)∵将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.故y=g(x)的解析式为:g(x)=2sin(﹣).…【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.22.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.23.【答案】【解析】解:(Ⅰ)用茎叶图表示如下:(Ⅱ)=,==80,=[(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,=[(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,∵=,,∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.24.【答案】【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.。

相关文档
最新文档