单项式和多项式相乘的概念
《单项式与多项式相乘》教案
《单项式与多项式相乘》教案第一章:单项式与多项式的概念回顾1.1 回顾单项式的定义:一个数或字母的乘积称为单项式,如2x, 3y^2等。
1.2 回顾多项式的定义:由多个单项式通过加减运算组成的表达式,如ax^2 + bx + c等。
第二章:单项式与多项式的相乘规则2.1 介绍单项式与多项式相乘的规则:将单项式分别与多项式中的每一项相乘,将结果相加。
2.2 示例:假设要计算单项式3x与多项式2x^2 + 4x + 1相乘,则将3x分别与2x^2, 4x, 1相乘,将结果相加。
第三章:单项式与多项式相乘的计算步骤3.1 步骤1:将单项式与多项式中的每一项相乘。
3.2 步骤2:将乘积相加。
3.3 步骤3:简化结果,合并同类项。
3.4 示例:计算单项式-2x与多项式3x^2 + 5x 2相乘,按照步骤1、步骤2、步骤3进行计算。
第四章:单项式与多项式相乘的练习题4.1 设计一些练习题,让学生独立完成,加深对单项式与多项式相乘的理解。
4.2 练习题可以包括不同类型的单项式和多项式,以及不同难度的问题。
第五章:单项式与多项式相乘的应用题5.1 设计一些应用题,让学生将所学知识应用于实际问题中。
5.2 应用题可以涉及不同领域的实际问题,如面积、体积计算等。
第六章:单项式与多项式相乘的拓展概念6.1 介绍单项式与多项式相乘的拓展概念,如分配律的应用。
6.2 解释分配律:单项式乘以多项式中的每一项,将结果相加。
6.3 示例:使用分配律计算单项式4x与多项式(2x + 3)相乘。
第七章:单项式与多项式相乘的技巧与策略7.1 提供一些技巧与策略,帮助学生更高效地解决单项式与多项式相乘的问题。
7.2 技巧1:先乘除后加减,按照运算顺序进行计算。
7.3 技巧2:先简化多项式,再进行相乘。
7.4 示例:运用技巧解决复杂的单项式与多项式相乘问题。
第八章:单项式与多项式相乘的错误分析8.1 分析学生在单项式与多项式相乘中常见的错误。
(完整版)乘法公式和因式分解知识点
乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。
m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。
3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。
我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。
单项式与多项式相乘
.
2. 先化简,再求值:
[ xy( x 3 y) 3xy ] (2xy) x y (2x y) 1 x ,y=-5. 其中 2
2 2 3 2
3.选择题 2 2 m m(2m 5n) n(5m n) 的结果是( B ) 1.计算 2 A. n 2 B. n C. 10mn n
当堂训练一
P78练习 • 计算:
– 3x3y • (2xy2-3xyLeabharlann ; – 2x •(3x2-xy+y2)
• 化简:x(x2-1)+2x2(x+1)- 3x(2x-5)
1.计算:
当堂训练二
① (2x 3 y) (3xy 2 3xy 1)
② (x ) 2x [x x (4x 1)]
2
2
D.10mn n 2
3
2.要使 (x ax 1) (6x ) 的展开式中不含x 项,则a应等于( D ) 1 A.-6 B.-1 C. 6 D. 0 2 2 2 3 2 3.如果 ax (3x 4x y by ) 6x 8x y 6xy 成立,则a、b的值为( B ) A.a=3,b=2 B.a=2,b=3 C.a=-3,b=2 D.a=-2,b=3
1 x 的解集是___________ 4 .
1.计算 1 2 3 2 1 1 1) x y y x
3 4 2 3
当堂训练三
1 2 3 1 3 1 2 x y x y x y 4 6 9
1 1 2 2 2 x ( 3 x 2 x 1 ) x ( 2 x 6 x ) 2) 2 3 13 3 1 4 2 2 x x x x 2.化简求值 6 2
单项式与多项式相乘
单项式与多项式相乘教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴ (-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如(99,河北)下列运算中,不正确的为()A. B.C. D.八、布置作业P112 A组 1.(2)(4)(6)(8),2,3.(2)参考答案:略单项式与多项式相乘。
单项式乘单项式、多项式乘多项式、同底数幂相除、单项式相除
单项式乘单项式:1、如=⨯=⨯⨯⨯=⨯⨯⨯101010105103725251553)()())((‗‗‗‗‗ 2、==∙∙∙=+abcc c bc acb a 252525)()(.‗‗‗‗‗一般的,单项式与单项式相乘,把它们的‗‗‗‗‗、‗‗‗‗‗‗‗‗‗‗分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
运用单项式乘单项式法则时可按以下三个步骤进行:①先把各因式的系数相乘,作为积的系数;②把各因式的同底数幂相乘,底数不变、指数相加;③只在一个单项式里出现的字母连同它的指数作为积的一个因式.单项式与单项式相乘,结果仍是单项式. 3、(1)计算:(-5a ²b )(-3a )=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗. (2)计算(2x )³(-5xy ²)=‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗=‗‗‗‗‗‗‗‗.(3)())((10810436⨯⨯=‗‗‗‗‗‗‗‗‗‗‗‗ 4、计算(1));21())3222(4(y y xxy ∙∙-- (2)a abc abc 12()31()21-32∙∙-(³b )单项式乘多项式:1、p (a+b+c )=pa+pb+pc(根据乘法的分配律得到这个等式) 2、一般的,单项式与多项式相乘,就是用单项式去乘多项式的‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗ 3、计算:(1)(-4x ²)(3x+1) (2)ab 32(²-2ab)ab 21∙4、(x ²+ax+1)(-6x ³)的计算结果不含x4的项,则a=‗‗‗‗‗.5、已知单项式-ba y x 832+与单项式b a yx y -∙324的和是单项式,求这两个单项式的积.6、先化简再求值:(1)已知x ²-3=0, (2)已知02)1(2=+--b a ,求x (x ²-x )-x ²(5+x )+9的值. 求3ab ⎥⎦⎤⎢⎣⎡--∙b ab ab a 231(36的值.多项式乘多项式:1、(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq可以先把其中一个多项式如p+q,看成一个整体,运用单项式与多项式相乘的法则计算.总体上看,计算结果可以看作由a+b的每一项乘p+q的每一项,再把所得的积相加而得到的,即(a+b)(p+q) =ap+aq+bp+bq.一般的,多项式与多项式相乘,先用一个多项式的‗‗‗‗‗‗‗‗乘另一个多项式的‗‗‗‗‗‗‗‗,再把所得的积‗‗‗‗‗‗.2、计算:(1)(3x+1)(x+2);(2)(x³-2)(x³+3)-(x³)²+x²·x;3、若a+b=m,ab=-4,则(a-2)(b-2)= ‗‗‗‗‗‗‗;4、若多项式(x²+mx+n)(x²-3x+4)展开后不含x³和x²的项,则m=‗‗‗‗‗,n=‗‗‗‗.5、如图,在长方形ABCD中,横向阴影部分是长方形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白的面积,其面积是‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.6、先化简,再求值:①(a+b)(a-b)+b(a+2b)-b²②已知x²-5x=3,求(x-1)(2x-1)-(x+1)²+1 其中a=1,b=-2; 的值.7、解方程(3x-2)(2x-3)=(6x+5)(x-1)-1.8、有若干张如图所示的正方形和长方形卡片,如果要拼成一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片‗‗‗‗‗‗张,B类卡片‗‗‗‗‗‗张,C类卡片‗‗‗‗‗‗张,请你在右下角的大矩形中画出一种拼法.同底数幂的除法:∵,)(a aa amnn m n nm ==∙+--(a ≠0,m ,n 都是正整数,并且m >n)∴aa anm nm-=÷.一般地,我们有 ∴aa anm n m-=÷(a ≠0,m ,n 都是正整数,并且m >n).即同底数幂相除,底数‗‗‗‗‗‗,指数‗‗‗‗‗‗.注意:(1)底数可以是单项式,也可以是多项式;(2)底数不能为0;(3)当三个数或三个以上的同底数幂相除时,也具有这一性质. 任何一个不等于0的数的0次幂都等于1,那么a =‗‗‗‗.(a ≠0). 1、 若(x-1)=1,则x取值范围是‗‗‗‗‗‗. 2、 计算(1);28x x ÷(2);)()(25ab ab ÷(3))-()()-25xy xy xy ÷÷-(. (4)(x-2y)³÷(2y-x)² 3、①若,4,3==a ay x则=-ayx ‗‗‗‗‗‗;②若,5,342==y x 则22yx -的值为‗‗‗‗‗‗.③若n m x xnm,(,8,4==是正整数),则xnm -3的值是‗‗‗‗‗‗.④求2416÷÷nm=‗‗‗‗.零指数幂:5、若(x-3)无意义,则(x²)³÷(x²·x)的值是‗‗‗‗‗‗. 5、计算:①)-3(0n (n≠3)=‗‗‗‗‗‗;②若1)2(0=-x ,则x的取值范围是‗‗‗‗‗‗; 6、若(2x+y-3)无意义,且3x+2y=8,则3x²-y=‗‗‗‗.7、计算: ①);3410(y y y÷÷ ②))()(5(32243aa a -÷⎥⎦⎤⎢⎣⎡∙ ③3(3)1()32330-÷++-8、①已知,27,9==a an m求anm 23-的值.②已知,6,433==y x求2792yx yx --+的值.单项式相除:∵4a ²x ³·3ab ²=12a ³b ²x ³, ∴12a ³b ²x ³÷3ab ²=4a ²x ³.一般的,单项式相除,把‗‗‗‗‗与‗‗‗‗‗‗‗‗‗‗分别相除作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的‗‗‗‗‗‗‗‗‗‗.1、①计算2x x 46÷的结果是‗‗‗‗‗‗‗‗; ②‗‗‗‗‗‗‗‗‗÷.56)65(32y a ax x y =- 2、已知,72223288b b a b a n m =÷那么m=‗‗‗‗‗‗‗,n=‗‗‗‗‗‗‗.3、计算()3()6(101046⨯÷⨯=‗‗‗‗‗‗‗‗‗‗‗‗‗;4、一个单项式与单项式ba n n 1136---的积为,172c ba n n +则这个单项式是‗‗‗‗‗‗‗‗‗‗‗.5、计算:(1)-8a ²b ³÷6a ²b ÷b ²; (2)(-0.3a ²b ³c ²)÷(-3ab )²·(10a ³b ²c ); (3);)2()2()2-(22123y x x y y x n n --++÷∙ (4));)103(10638⨯⨯÷6、已知,2,3==x xn m求x nm 23-的值.。
单项式与多项式相乘
三.选择 下列计算错误的是( D) (A)5x(2x2-y)=10x3-5xy (B)-3xa+b •4xa-b=-12x2a (C)2a2b•4ab2=8a3b3 (D)(-xn-1y2)•(-xym)2=xnym+2
=(-xn-1y2)•(x2y2m) =-xn+1y2m+2
四.解方程
7x-(x–3)x–3x(2–x)=(2x+1)x+6 解:去括号,得 7x–x2+3x–6x+3x2=2x2+x+6
创新应用
小李家的住房的结构如图所示(单位:米),小李打算把卧
室和客厅铺上木地板,请你根据图示的数据算一算,小
李至少要买多少平方米的木地板?
y 2y
2x
卫 生
间
卧
室
x
厨房
2x
客厅
4y
作业:
1、教材P27第1、2题;P30 第3、4题; 2、练习册P23-24;
3、课时达标P17-18第二课时。
32
2
=-12x3-4x2.
1 a2b3 a2b2
(3)(-4x)·(2x2+3x-1) 3
单项式与多项式相乘
例 计算: (3)(-4x)·(2x2+3x-1)
解: (-4x)·(2x2+3x-1)
=(-4x)·(2x2)+(-4x)·3x+(-4x)·(-1)
=-8x3-12x2+4x; 注意(-1)这项不要漏乘,也不要当成是1;
=y2n+9yn+1-12yn–9yn+1+12yn
=y2n
当y=-3,n=2时,
原式=y2n =(-3)2×2=(-3)4=81
单项式与多项式相乘公开课课件
乘法分配律的运用
乘法分配律是数学中的一个基本定律,它指出一个数乘以 两个数的和等于这个数分别乘以这两个数再求和。在单项 式与多项式相乘时,乘法分配律是非常重要的。
例如,单项式$a^3$与多项式$b + c$相乘时,可以运用 乘法分配律进行计算:$(a^3)(b+c) = a^3b + a^3c$。 这样可以简化计算过程,提高计算效率。
单项式与多项式相乘公开课课件
contents
目录
• 单项式与多项式简介 • 单项式与多项式相乘的法则 • 单项式与多项式相乘的运算实例 • 单项式与多项式相乘的注意事项 • 习题与解答
01
单项式与多项式简介
单项式的定义与性质
定义
单项式是只包含一个项的代数式 ,通常表示为数字、字母的积。
性质
单项式具有加法封闭性、乘法交 换律和结合律等基本性质。
单项式的几何意义
在数轴上,单项式可以表示一个点或一个单位长度。例如,$3x$表示在x轴上, 每移动一个单位长度,坐标增加3。
多项式的几何意义
多项式可以表示一条曲线或曲面。例如,$y = x^2$表示一个开口向上的抛物线 。
02
单项式与多项式相乘的法则
单项式乘以多项式的法则
单项式乘以多项式的运算法则,是将单项式中的每一个因子 与多项式中的每一个项分别相乘,然后将所得的积相加。
多项式的定义与性质
定义
多项式是由有限个单项式通过加法运 算组成的代数式,表示为$P(x) = a_n x^n + a_{n-1} x^{n-1} + cdots + a_1换律 和结合律等基本性质,还具有分配律 和幂的运算法则等特殊性质。
单项式与多项式的几何意义
单项式乘以多项式课件
乘法运算的顺序
单项式乘以多 项式的计算方
法
乘法运算的顺 序:从左到右,
先乘后加
计算示例: 3x^2 * 2x + 1 = 6x^3 + 3x^2 + 3x +
1
注意事项:注 意符号和系数 的变化,以及
幂次的变化
计算步骤的演示
确定单项式和多项式的系数和次数 将单项式的系数与多项式的每一项的系数相乘 将单项式的次数与多项式的每一项的次数相加 合并同类项,得到结果
基础题:单项 式乘以多项式
的基本运算
中等题:涉及 单项式乘以多 项式的变形和
化简
提高题:涉及 单项式乘以多 项式的综合应
用和拓展
挑战题:涉及 单项式乘以多 项式的创新思 维和解题技巧
练习题的答案及解析
● 单项式乘以多项式:x^2y+xy^2=x^2y+xy^2 ● 单项式乘以多项式:2x^2y+3xy^2=2x^2y+3xy^2 ● 单项式乘以多项式:-x^2y-xy^2=-x^2y-xy^2 ● 单项式乘以多项式:2x^2y-3xy^2=2x^2y-3xy^2 ● 单项式乘以多项式:-2x^2y+3xy^2=-2x^2y+3xy^2 ● 单项式乘以多项式:-2x^2y-3xy^2=-2x^2y-3xy^2 ● 单项式乘以多项式:2x^2y+3xy^2=2x^2y+3xy^2 ● 单项式乘以多项式:-2x^2y-3xy^2=-2x^2y-3xy^2 ● 单项式乘以多项式:-2x^2y+3xy^2=-2x^2y+3xy^2 ● 单项式乘以多项式:2x^2y-3xy^2=2x^2y-3xy^2
单项式乘以多项式:(x + 1) * (x^2 - 2x + 1) =?
单项式乘以多项式课件
02
单项式乘以多项式的运算规则
乘法分配律的应用
乘法分配律
a(b+c) = ab + ac
举例
2(x+y) = 2x + 2y
应用
将单项式与多项式的每一项分别相乘,再将结果 相加。
乘法结合律的应用
乘法结合律
(ab)c = a(bc)
举例
(2x)(3y) = 6xy
应用
改变乘法运算的顺序,不影响结果。
工程设计
在物理和工程中,线性代数方程组经 常出现,单项式乘以多项式可以用于 求解这些方程组。
在工程设计中,单项式乘以多项式可 以用于计算和分析各种参数,如结构 强度、流体动力学等。
控制系统分析
在控制系统分析中,单项式乘以多项 式可以用于描述和分析系统的动态行 为。
05
单项式乘以多项式的注意事项 与易错点
数学建模中的应用
建立数学模型
在数学建模过程中,单项 式乘以多项式可以用于构 建和表示复杂的数学模型 。
参数估计
在模型中,单项式乘以多 项式可以用于估计未知参 数,从而更好地拟合数据 。
对模型进行预测和优 化,从而更好地解决实际 问题。
物理和工程中的应用
线性代数方程组
运算次序的注意事项
01
运算次序是先乘除后加减,单项 式乘以多项式时,应先进行单项 式与多项式中每一项的乘法运算 ,再将结果相加。
02
运算次序的错误可能导致结果不 正确,因此需要特别注意。
乘法分配律的易错点
乘法分配律是单项式乘以多项式的关 键,但也是易错点。学生需要理解并 掌握乘法分配律的运用,避免在计算 过程中出现错误。
乘法交换律的应用
乘法交换律
单项式乘多项式
例2:如图:
3a+2b
2a-b
一块长方形 地用来建造 住宅、广场、 商厦,求这 块地的面积.
4a
住宅用地 商业用地
3a
人民广场
解:长方形的长为(3a+2b)+(2a-b),宽为4a, 这块地的面积为:
4a[(3a+2b)+(2a-b)] =4a(5a+b) =4a〃5a+4a〃b =20a2+4ab 答:这块地的面积 为20a2+4ab.
2 2 2 2
(3)4ab[2a b (ab ab ) 3b].
2 2
课堂小结:
单项式与多项式相乘可以用公c)=ma+mb +mc 其本质就是应用乘法分配律,将其转化为
温故
1、单项式的乘法法则:
单项式相乘,把系数、同底数幂分别 相乘,作为积的因式;对于只在一个单 项式里含有的字母,则连同它的指数作 为积的一个因式。
温故
2、计算: 2 2 3 3 2 (1)( x y ) xyz ; 3 4 4 3 (2)(2 10 ) (6 10 );
(3)(2a b)(2ab c);
2 2
(4)( m n) ( m n).
2 2
温故
3、乘法分配律:
a(b+c)=ab+ac
导新
如何利用乘法分配律计算:
(1)5 x (3x 4) (2)(2 x)(x x 1)
2
单项式乘多项式
b
c
d
a
a
a
如果把它看成三个小长方形,那么它们的 面积可分别表示为_____、_____、_____. ab ac ad
专题14.1.4单项式与单项式、多项式相乘(教案)-八年级上学期数学教材(人教版)
1.教学重点
(1)单项式与单项式相乘的法则:同类项相乘、不同类项相乘。
-同类项相乘:要求学生掌握同类项相乘时,系数相乘,字母部分相同字母的指数相加。
-不同类项相乘:指导学生理解不同类项相乘时,只需将系数相乘,字母部分分别相乘。
(2)单项式与多项式相乘的法则:分配律的应用。
-学生需掌握将单项式分别与多项式中的每一项相乘,然后将结果相加。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与单项式与单项式、多项式相乘相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的计算练习。这个练习将演示如何将不同的单项式与多项式相乘。
3.成果展示:每个小组将向全班展示他们的讨论成果和计算过程。
(四)学生小组讨论(用时10分钟)
(3)多项式与多项式相乘的法则:理解并运用分配律,逐项相乘并相加。
-要求学生通过实例,掌握将一个多项式的每一项分别与另一个多项式的每一项相乘,最后将结果相加。
2.教学难点
(1)不同类项相乘时,字母部分的处理。
-难点举例:在计算过程中,学生可能会忽略字母部分的指数相加,或对含有多个字母的项相乘时,处理不当。
1.讨论主题:学生将围绕“单项式与多项式相乘在实际问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果和解决方法。
3.多项式与多项式相乘的法则:通过实例,让学生掌握多项式与多项式相乘的法则,并能解决实际问题。
《单项式与多项式相乘》教案
《单项式与多项式相乘》教案第一章:单项式与多项式的概念引入1.1 教学目标让学生了解单项式和多项式的定义。
能够区分单项式和多项式。
1.2 教学内容定义单项式和多项式。
举例说明单项式和多项式的区别。
1.3 教学步骤1. 引入单项式和多项式的概念。
2. 通过示例让学生理解单项式和多项式的定义。
3. 让学生练习区分单项式和多项式。
1.4 作业让学生完成课后练习,练习区分单项式和多项式。
第二章:单项式与多项式的乘法规则2.1 教学目标让学生掌握单项式与多项式相乘的规则。
2.2 教学内容单项式与多项式相乘的规则。
2.3 教学步骤1. 引入单项式与多项式相乘的概念。
2. 通过示例讲解单项式与多项式相乘的规则。
3. 让学生练习单项式与多项式相乘。
2.4 作业让学生完成课后练习,练习单项式与多项式相乘。
第三章:单项式与多项式的乘法运算3.1 教学目标让学生能够进行单项式与多项式的乘法运算。
3.2 教学内容单项式与多项式相乘的运算方法。
3.3 教学步骤1. 回顾单项式与多项式相乘的规则。
2. 通过示例讲解单项式与多项式相乘的运算方法。
3. 让学生练习单项式与多项式相乘的运算。
3.4 作业让学生完成课后练习,练习单项式与多项式相乘的运算。
第四章:单项式与多项式的乘法应用4.1 教学目标让学生能够应用单项式与多项式相乘的知识解决实际问题。
4.2 教学内容单项式与多项式相乘的应用。
4.3 教学步骤1. 引入单项式与多项式相乘的应用问题。
2. 通过示例讲解单项式与多项式相乘的应用方法。
3. 让学生练习解决实际问题,应用单项式与多项式相乘的知识。
4.4 作业让学生完成课后练习,解决实际问题,应用单项式与多项式相乘的知识。
第五章:单项式与多项式的乘法综合练习5.1 教学目标让学生能够综合运用单项式与多项式相乘的知识。
5.2 教学内容单项式与多项式相乘的综合练习。
5.3 教学步骤1. 引入单项式与多项式相乘的综合练习。
2. 通过示例讲解单项式与多项式相乘的综合方法。
单项式与多项式相乘
单项式与多项式相乘:
(1)单项式与多项式相乘就是用单项式去乘多项式的每一项,再把所得的积相加,即:m(a+b+c)=ma+mb+mc,实际上就是根据乘法对加法的分配律来进行计算。
也就是将单项式与多项式相乘转化为若干组单项式与单项式的乘法运算。
(2)单项式与多项式相乘的积仍是一个多项式,而且积的项数和乘式中的多项式的项数相同,在运算过程中不要漏乘造成漏项。
(3)运算时要注意符号,因为多项式由若干个单项式组成,其中每一个单项式都包括前面的符号,因此要注意确定积中每一项的符号。
(4)最后结果一般按某一字母的降幂或升幂排列。
单项式与多项式乘法(公开课)
问题1 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6× 1 3
-
6×
1 6
=3+2-1
=4
问题2
问题 如果上述算式中的数字 换成字母m,a,b,c其中它们表示的 都是有理数,那么我们还可以仿 上式计算m(a+b+c)吗?
① ②③
m ma mb mc
看 图 说
明
a
bc
(1)大长方形的长是_a__+_b_+_c__面积
一.判断
1.m(a+b+c+d)=ma+b+c+d(×)
× 2. 1 a(a2 a 2) 1 a3 1 a2 1( )
2
22
3.(-2x)•(ax+b-3)=-2ax2-2bx-6x(×)
4.一个单项式乘以一个多项式,所
得的结果仍是一个多项式( √ )
二.填空
1.单项式与多项式相乘,就是用单项式去乘
怎样叙述单项式与多项 式相乘的法则?
m(a+b+c)=ma+mb+mc
(m、a、b、c都是单项式)
单项式与多项式相乘法则
单项式与多项式相乘, 就是用单项式去乘多项 式的每一项,再把所得 的积相加
几点注意:
1.单项式乘多项式的结果仍是多项式, 积的项数与原多项式的项数相同。
2.单项式分别与多项式的每一项相乘时, 要注意积的各项符号的确定:
注意: 1.将2a2与5a前面的“-”看成性质符 号 2.单项式与多项式相乘的结果中,
练习:计算
1
(1)-2a2﹙ ab+b2﹚-5a﹙a2b-ab2﹚
单项式乘多项式的运算法则的依据
单项式乘多项式的运算法则的依据
单项式乘多项式的运算法则的依据是多项式的分配律和单项式的乘法法则。
根据分配律,单项式乘多项式的结果等于单项式分别乘以多项式中的每一项,并将结果相加。
而根据单项式的乘法法则,单项式乘单项式时,将各个变量的指数相加得到新的指数。
因此,当单项式乘多项式时,需要将单项式中各个变量的指数与多项式中各个项的变量指数相加,然后将系数相乘,最终得到结果。
这就是单项式乘多项式的运算法则的依据。
- 1 -。
单项式与多项式相乘(课件)
作业布置
课本 P17 练习题 P17 习题1.7
4
4
新知讲解
【想一想】 ab·(abc+2x)及c2 ·(m+n-p )等于什么? 你是怎样计算的?
ab·(abc+2x) =ab·abc+ab·2x =a2b2c+2abx
(乘法分配律 ) (单项式乘单项式 )
新知讲解
【想一想】 ab·(abc+2x)及c2 ·(m+n-p )等于什么? 你是怎样计算的? c2 ·(m+n-p ) =c2·m+c2·n-c2·p
(1) 2x2-x-1; (2)-3x2+ 2x+3.
2x2-x-1中的项分别是: 2x2,-x,-1; -3x2+ 2x+3中的项分别是: -3x2, 2x,3
新知讲解
【思考】 宁宁也作了一幅画,所用纸大小如图所示,她在纸的左、右两边 各留了 1 xm的空白, 这幅画的画面面积是多少?
8
新知讲解
m ·(a+ b + c ) = ma + mb + mc(m、a、b、c都是单项式)
新知讲解
【例】 计算:
(1) 2ab(5ab2+3a2b);
(2)(2 ab2 2ab)• 1 ab;
Байду номын сангаас
3
2
(3) 5m2n(2n + 3m-n2); (4) 2(x+y2z + xy2z3)·xyz .
【解】(1) 2ab(5ab2+3a2b)
1.下列运算正确的是( D ). A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1 C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式和多项式相乘的概念
单项式和多项式相乘的概念
单项式的定义和特点
•单项式是指只包含一个项的代数式。
•单项式由系数和一串变量的乘积构成,例如:5x、-3xy2、4x3。
•单项式的系数可以是实数、整数、分数、甚至是复数。
•变量的指数必须是非负整数,表示变量的幂次。
多项式的定义和特点
•多项式是指由若干个单项式(可以是常数项)经过加法、减法运算得到的代数式。
•多项式可以有一个或多个变量,每个单项式可以有不同的系数和指数。
•多项式的系数可以是实数、整数、分数、甚至是复数。
•多项式的次数是指最高次单项式的次数,可以通过单项式的指数进行比较。
单项式和多项式相乘的规则
•单项式和多项式相乘的结果仍然是一个多项式。
•单项式和最简单的多项式(只有一个项)相乘时,可以通过分配律进行展开。
•单项式和多项式相乘时,需要将单项式中的每一项与多项式中的每一项进行乘法运算,然后将结果相加得到最终结果。
相关概念
•乘法的交换律:对于任意两个实数a和b,a * b = b * a。
在多项式的乘法中,可以任意调整单项式的顺序,不影响最终结果。
•乘法的结合律:对于任意三个实数a、b和c,(a * b) * c = a * (b * c)。
在多项式的乘法中,可以任意改变加法运算的顺序,不影响最终结果。
•幂的乘法:对于任意实数a和非负整数m、n,a^m * a^n = a^(m+n)。
在单项式和多项式相乘时,可以根据幂的乘法规则进
行指数运算。
总结
单项式和多项式相乘是代数学中重要的概念和计算方法。
通过理
解单项式和多项式的定义和特点,以及相乘的规则和相关概念,我们
可以进行多项式的展开和简化,进而解决各种与单项式和多项式相关
的问题。
单项式和多项式相乘的应用场景
•在代数学中,单项式和多项式相乘常常用于多项式的展开和简化,以及方程的求解和证明过程中的变换和化简。
•在物理学中,单项式和多项式相乘可用于计算物理量之间的关系和数学模型的建立。
•在经济学中,单项式和多项式相乘可用于计算成本、收益、利润等经济指标的计算和分析。
•在工程学中,单项式和多项式相乘可用于建立数学模型,进行计算和预测。
•在计算机科学中,单项式和多项式相乘可用于算法设计和数据分析等领域。
单项式和多项式相乘的实例
•实例1: 计算多项式的乘积给定两个多项式: P(x) = 2x^3 - 4x + 1 Q(x) = 3x^2 + 2x - 5
我们需要计算P(x)和Q(x)的乘积。
按照单项式和多项式相乘的规则,我们可以将每一项相乘,并将结果求和得到最
终的乘积。
解:将P(x)和Q(x)的每一项相乘并求和,得到乘积为: P(x) * Q(x) = (2x^3 - 4x + 1) * (3x^2 + 2x - 5) =
6x^5 + 4x^4 - 25x^3 + 12x^3 - 8x^2 + 5x - 15x^2 - 10x +
25 = 6x^5 + 4x^4 - 13x^3 - 23x^2 - 5x + 25
•实例2: 应用多项式相乘计算物理问题假设一个运动物体的位移可以用多项式表达为: S(t) = -5t^3 + 3t^2 + 6t - 2
若我们需要计算该物体在t=2s时的位移,可以通过将t代入多项式中计算得出。
解:将t=2s代入多项式S(t)中,得到: S(2) = -5(2)^3 + 3(2)^2 + 6(2) - 2 = -40 + 12 + 12 - 2 = -18
因此,在t=2s时,物体的位移为-18。
总结
单项式和多项式相乘在代数学以及其他学科和领域中具有重要的应用。
通过理解其相关概念和规则,我们可以解决各种与单项式和多项式相乘相关的数学问题,应用于实际问题的计算和分析中。