概率论与数理统计第五章 大数定律及中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理

定理五(李雅普诺夫中心极限定理) 李雅普诺夫
设随机变量 X1, X2 ,, Xn ,相互独立, 它 们具有数学期望 和方差:
E( Xk ) k , D( Xk ) k2 0 (k 1,2,),
n

Bn2
2 k
,
k 1
若存在正数 , 使得当 n 时,
1
Bn2
n
E{|
k 1
Xk
k
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
Xk
1 n
n k 1
E(Xk )
1 n
n
,
Dn1
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
定理二(伯努利大数定理)
伯努利
设 nA 是 n 次独立重复试验中事件 A 发生 的次数, p 是事件 A 在每次试验中发生的概率,
则对于任意正数 0, 有
lim
n
P
nA n
p
1

lim
n
P
nA n
p
0.
证明 引入随机变量
0, 若在第k 次试验中 A 不发生,
Xk
1,
若在第k 次试验中 A 发生, k 1,2,.
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计 第二版 第五章 大数定律及中心极限定理

概率论与数理统计 第二版 第五章  大数定律及中心极限定理
( (2)=0.977, 其中 (x)是标准正态分布函数. )
解 设Xi表示 “装运的第i箱的重量”(单位:千克), n为所n求箱数,则X1, X2,
, X n相互独立同分布, n箱的总重量 T n =X1+X2+ +X n = Xi ,且 E(Xi)=50,
D(Xi)=25, 由林德伯格-列维中心极限定理知
n
i 1
n
P{Tn
5000}=P{
n i 1
Xi
5000
}=P
i
1
Xi 50n
5n
5000
50n
=P
i 1
5n
Xi 5
50n
1000
10n
n
n
( 1000 10n) >
0.977=(2) ,
解得 n < 98.0199 ,
n
所以每辆汽车最多装 98 箱 .
第五章 大数定律及中心极限定理 §5.2 中心极限定理
μ
|
ε}
1,
1 n
lim
n
P{|
n
i 1
Xi
μ|
ε}
0
.
第五章 大数定律及中心极限定理 §5.1 大数定律
例1 (P149例1)设随机变量X1 , X2 , , X n , 相互独立同服从参
数为 2的指数分布, 则当n∞时, Yn =
1 n
n
i 1
X
2 i
依概率收敛于
____
.
解 因为随机变量 X1 , X2 , , X n 相互独立同分布, 所以
定理1 (伯努利大数定律) 设随机变量序列 X1 , X2 , , X n ,

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

中国矿业大学周圣武概率论与数理统计5第五章-大数定律与中心极限定理PPT课件

中国矿业大学周圣武概率论与数理统计5第五章-大数定律与中心极限定理PPT课件

可知,当 n时,有
1 n
ni1
Xi
P E(X1)a
因此我们可取 n 次测量值 x1,x2, ,xn的算术平均值
5
请注意 :
Xn依概率收敛于a,意味着对任意给定的0,
当n充分大时,事件Xna的概率很大,接近于 1; 并不排除事件Xna的发生,而只是说他发生的
可能性很小 . 依概率收敛比中 高的 等普 数通 学意义下
弱些,它具有定 某性 种 . 不确
6
命题 (切比雪夫Chebyshev不等式)
设随机变量X 的数学期望 E (X )和 方 差 D ( X ) 2
n
其部分和 X i 在什么条件下以正态分布为极限 i1
分布。
3
第一节 大数定律
第五章
一、 切比雪夫Chebyshev不等式 二、几个常见的大数定律
4
定义1 设随机变量序列 X1,X2, ,Xn,如果存
在常数 a ,使得对于任意 0 有:
ln i m P{X |na|}1
则称 X n 依概率收敛于a ,记为 Xn Pa.
存在,则对任意 0, 不等式
P{|XE(X)|}D(X 2 )
或 P{|XE(X)|}1D (X 2)成立,
则称此式为切比雪夫不等式。
证明 设 X 为连续性(离散型类似),其密度为 f ( x )
7
则 P {|XE (X)|} f(x)dx |xE (X)|
|xE(X)|[xE 2(X)]2 f(x)dx
又由于各次试验相互独立,所以
X1,X2, ,Xn独立同分布, 则由辛钦大数定律可得
lim P{n| Ap|}1
n n
17
例3 如何测量某一未知的物理量a ,使得误差较小?

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

概率论与数理统计第五章大数定律与中心极限定理

概率论与数理统计第五章大数定律与中心极限定理

由独立同分布中心极限定理
100
P{
i 1
Xi
300}
1
300 100 10 35
7 2
12
精品资料
1 (2.93)
0.9983
2. 德莫佛-拉普拉斯中心极限(jíxiàn)定理(De MoivreLaplace)
设随机变量 n (n=1, 2, ...) 服从(fúcóng)参数为 n, p
由切比雪夫大数定理
n
Xi P
fn
i 1
n
p
精品资料
3. 辛钦大数(dà shù)定律(P108)
若{Xk, k=1.2,...}为独立同分布随机变量序列, EXk= < , k=1, 2, … 则
Yn
1 n
n k 1
Xk
P
推论: 若{Xi, i=1.2,...}为独立同分布随机变量(suí jī biàn liànɡ)序列, E(X1k) < , 则
lim
n
P{|
Xn
X
|
}
1
则称{Xn}依概率收敛于X. 可记为 Xn P X.
精品资料
P
例如 X n a 意思(yì sī) n 时, Xn落在
(lìrú
是: 当
)(:a , a ) 内的概率越来越大. N , n N
Xn
a a a
而 X n a 意思是: 0, N , 当 n N | X n a |
1
n
n i 1
X
k i
P
E
(
X
k 1
)
精品资料
三. 几个(jǐ ɡè)常用的中心极限定理
1. 独立同分布中心极限(jíxiàn)定理(P109)

2014年自考 概率论与数理统计串讲讲义 第五章 大数定律与中心极限定理

2014年自考 概率论与数理统计串讲讲义 第五章  大数定律与中心极限定理
=1
n
2
),
为了便于查表近似计算,将
n
Xi 标准化(从而标准化后其近似分布 N (0,1) ) ∑ i
=1
X i − E ∑ X i ∑ X i − nµ ∑ i i i
=1 =1

n

n
D ∑ X i
i =1

n

=
=1

n ∑ X i − nµ 故上述随机变量的分布函数 Fn ( x) ≈ Φ ( x) ,即 P i =1 ≤ x ≈ Φ ( x) nσ
例1
计算机进行加法计算时,设所取整误差是相互独立的随机变量 X1 , X2 ," ,且都服从 ∪ (−0.5, 0.5) ,求 300
个数相加的误差总和的绝对值小于 10 的概率。 解 : 易 知 第 i
300
个 加 数 的 误 差
Xi 满 足 : Xi ~ ∪ (−0.5, 0.5) , EXi = 0, DXi =
2
n ∑ X i − nµ i =1 lim P ≤ x = Φ ( x) ,其中 Φ ( x) 为标准正态分布函数 n →∞ nσ
[注] : 中心极限定理的含义是: 大量随机变量的和近似正态分布, 即当 n 很大时
n
Xi 近似某正态分布 N ( µ , σ ∑ i
1 , 故 12
nµ = 0 D ∑ Xi = ∑ DXi = 300 ×
i =1
i =1
300

1 = 25 12
300 Xi − 0 ∑ 300 i =1 < 2 ≈ 2Φ(2) − 1 = 0.9544 故所 P ∑ Xi < 10 = P 1 i =1 300 × 12

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

[注]: X n P → a 注: 推论(辛钦大数定律) 推论(辛钦大数定律)
X n − a P → 0
设独立随机变量 X 1 , X 2 ,⋅ ⋅ ⋅, X n 服从同一分布 并且有数学 服从同一分布, 期望 µ 及方差 σ 2, X 1 , X 2 ,⋅ ⋅ ⋅, X n 的算术平均值当 n → ∞ 则 时,按概率收敛于µ, 即对于任何正数 ε,恒有 按概率收敛于 ,
第五章 大数定理与中心极限定理
“大数定律”: 用来阐明大量随机现象平均结果稳定性的定理 大数定律” 用来阐明大量随机现象平均结果稳定性的定理. 大数定律
一、切比雪夫不等式
切比雪夫不等式: 切比雪夫不等式: 设随机变量 X 有数学期望 EX 及方差 DX, , 下列不等式成立: 则对于任何正数 则对于任何正数 ε,下列不等式成立:
2 i
n
则:E(Yn ) =
2 µi , D(Yn ) = ∑σi2 = sn . ∑
n i =1
n
i =1
i =1
∴ Z n = Yn
1 = sn

n Y n − EY n 1 n = = ∑ X i − ∑ µ i sn i =1 DY n i =1
∑ (X
i =1
n
i
− µ i ), 则有:E ( Z n ) = 0 , D ( Z n ) = 1 . 则有:
概率论中有关论证随机变量的和的极限分布是正态分布的定 概率论中有关论证随机变量的和的极限分布是正态分布的定 随机变量的和的极限分布是正态分布 是独立随机变量, 设 X 1 , X 2 ,⋅ ⋅ ⋅ , X n ,⋅ ⋅ ⋅ 是独立随机变量,并各有
EX i = µ i , DXi = σ , i = 1,2,⋅ ⋅ ⋅, n,⋅ ⋅ ⋅. 设 n = ∑Xi , Y

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

概率论与数理统计 第三版 第五章 大数定律和中心极限定理

概率论与数理统计 第三版 第五章 大数定律和中心极限定理
上页 下页 返回
依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)

}≤
D(
X
2
)
,

P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P

概率论与数理统计 第五章

概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

自考概率论与数理统计大数定律及中心极限定理

自考概率论与数理统计大数定律及中心极限定理


是这16只元件的寿命的总和.
E(Y)=100×16=1 600,D(Y)= 160 000,
则所求概率为:
定理5.6(李雅普诺夫定理)
设随机变量 X1, X2 ,, Xn ,相互独立, 它 们具有数学期望和方差:
E(Xk ) k ,
D( Xk
)


2 k

0
(k

1,2,),
n

Bn2

0.310000k
k 6801
如果用契比雪夫不等式估计:
E( X ) np 10000 0.7 7000 D( X ) npq 10000 0.7 0.3 2100
P(6800<X<7200)=P(|X

7000|<200)
1
2100 2002

0.95
可见,虽然有10000盏灯,但是只要有供应7200盏 灯的电力就能够以相当大的概率保证够用.事实上, 契比雪夫不等式的估计只说明概率大于0.95,后面 将具体求出这个概率约为0.99999.
k1
的分布函数 Fn( x) 对于任意x 满足
lim
n
Fn
(
x
)

lim
n
P

n k 1
X
k Bn
n k 1
k


x


x

1
t2
e 2 dt


( x).


定理5.6表明:
无论各个随机变量 X1, X2 ,, Xn ,服从什么
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.

概率论与数理统计第5章-大数定律和中心极限定理

概率论与数理统计第5章-大数定律和中心极限定理

DX } 1
(2
DX DX
)2

3 4

例 1.2 设随机变量 X ~ P(9) ,试根据切比雪夫不等式 估计概率 P{X 19}. 解 由于 X ~ P(9) ,所以 EX DX 9 ,且
P{X 9 10} P{X 1} 0 , 故有 P{X 19} P{X 9 10}
P{ X 9 10} 9 0.09 . 102
例 1.3 设随机变量 X ,Y 独立同分布,且 D(X ) 2 ,
试根据切比雪夫不等式估计概率 P{ X Y 2} .
解 由于 X ,Y 独立同分布,所以 E( X Y ) 0 ,且
D(X Y ) DX DY 4
lim
n
FYn
(
x)

(
x)

1
2
x

e
t2 2
dt

x

(,
)


【注 1】定理 2.1 称为列维—林德伯格中心极限定理,也 称为独立同分布随机变量序列的中心极限定理.
【注 2】由定理 2.1 表明,当 n 充分大时, FYn (x) (x) ,
近似
n
近似
即得Yn ~ N (0,1) ,从而有 Xi ~ N (n, n 2 ) .
P{ X Y 2} 1 D(X Y ) 1 ,
22
2
二、大数定律(了解) 1.相关概念
定义 1.1 设有随机变量序列 X1, X 2 ,L , X n ,L ,如果
存在常数 a ,使得对任意的 0 ,有
lim P{
n
Xn
a
}1,

概率论与数理统计 五大数定理

概率论与数理统计 五大数定理

,
i
1,2, , n, .
设Yn
Xi,
i 1
n
n
则: E Yn
i , D Yn
2 i
sn2 .
i 1
i 1
Zn
Yn
Yn
EYn DYn
1 sn
n i1
Xi
n i 1
i
1 n
sn i1
Xi i ,
则有:E(Zn ) 0, D( Zn ) 1.
11
林德伯格定理:
显然, 当n 时,P(Bn ) 1.
[注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
中几乎必然发生。 10
第二节 中心极限定理
概率论中有关论证随机变量的和的极限分布是正态分布的定
理叫做中心极限定理。

X1
,
X
, , X , 是独立随机变量,并各有
2
n
n
EX i
i ,
DX i
2 i
的频率作为事件 A 的概率近似值时, 误差小于0.01的概率.

设事件A 在每次试验中发生的概率为 p,
在这10000次试验
中发生了X 次, 因此,所求事件的概率为
则 EX np 10000 p, DX 10000 p1 p,
P
X 10000
p
0.01 P
X 10000 p
100
P X EX 100 1 DX 1002
DX n
1 n2
nK
K n
由此,
当 n 充分大时,
随机变量
也就是说,
X 的值较紧密地聚集在它的数学期望 n
分散程度是很小的,
Xn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348
例3. 对敌人的防御地段进行100次炮击, 在每次 炮击中, 炮弹命中颗数的数学期望为2, 均方差为1.5, 求在100次炮击中,有180颗到220颗炮弹命中目标的 概率.

1

225 202
= 0.4375
切比雪夫(Chebyshev)定理证明∑ ∑ E[1n来自n k =1Xk]
=1 n
n k =1
E(Xk
)
=
1 nµ n
=
µ
∑ ∑ D[ 1 n
n k =1
Xk]
=
1 n2
n
D( Xk )
k =1
1 = n2
nσ 2
=
σ2 n
∑ ∴
P{|
1 n
n k =1
Xk

µ
|<
大大数数定定律律与与中中心心极极限限定定理理
§5.1 大数定律
一、大数定律的客观背景 二、几个常见的大数定律 三、小结
一、大数定律的客观背景
大量的随机现象中平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
……
二、几个常见的大数定律
Th1: 切比雪夫(Chebyshev)定理的特殊情况
5
解 (1) 以Xk (k=1,2,…,400)记第k个学生来参加会议 的家长数,其分布律为
一、中心极限定理的客观背景 二、中心极限定理 三、小结
一、中心极限定理的客观背景
在现实中为什么很多数量指标都服从
或近似服从正态分布
~近似
Z N(

,

)
研究发现这些指标通常是由大量相互独立的随机因素
综合影响而成,即
Z = X1 + X2 + ⋅⋅⋅ + Xn
当n → ∞时,在什么情况下
Zn
=
n

X i 的极限分布是 N
1,2,"),记
n
∑ Bn2 =
σ
2 k
若存在正数δ
>
0,使得当n

∞ 时,
k =1
∑ 1
Bn2+δ
n
E
k =1
||
Xk

µk
|2+δ | →
0,
n
n
n
n
∑ Xk − E(∑ Xk ) ∑ Xk − ∑ µk
随机变量
Zn = k=1
k =1 n
D(∑ Xk )
= k=1
k =1
Bn
k =1
n
n
n
n
∑ Xk − E(∑ Xk ) ∑ Xk − ∑ µk
E( Xk ) = µ , D( X k ) = σ 2,(k = 1,2,"),则序列
∑ Yn
=
1 n
n k =1
Xk
⎯⎯P→ µ
Th2:(伯努利大数定理) 设nA是n次独立重复试验中事件 A发生的次数, p
是事件 A在每次试验中发生的概率,则对于任意ε > 0,
有 lim P{| nA − p |< ε } = 1
若 X n ⎯⎯P → a ,Yn ⎯⎯P → b , 又 设 函 数 g ( x , y ) 在 点(a , b ) 连续,则 g ( X n ,Yn ) ⎯⎯P → g (a , b )
由此得到定理1的另一种叙述:
Th1′设随机变量 X1 , X2 ,…, Xn ,…相互独立,且 具有相同的数学期望和方差,
1
e

t2 2
dt

= 2Φ (4 / 3) − 1 = 2 × 0.908-1 = 0.816
例2 一加法器同时收到20个噪声电器Vk(k=1,2,…,20),
设它们是相互独立的随机变量,且都在区间(0,10)上
20
服从均匀分布。记 V = ∑Vk k =1
求P{V>105}的近似值
解 E(Vk)=5, D(Vk)=100/12 (k=1,2,…,20).
P{|
1 n
n k =1
Xk

µ
|<
ε}
=
1
说明
(1)此定理也称为切比雪夫大数定理
(2) 在所给的条件下,当n充分大时, n个随机变量的算术平均值与它们的数学期望有 较大偏差的可能性很小。
注意
证明切比雪夫大数定律主要的数学工
具是切比雪夫不等式.
设 随 机 变 量 X 有 期 望 E(X) = µ , 方 差
D( X ) = σ 2,则对于任意的ε > 0,
P {|
X

E(X
)
|<
ε
}

1

σ2 ε2

P {|
X

E(X
)
|≥
ε
}

σ ε
2 2
切比雪夫不等式
1
说明 不等式给出了在随机变量 X 的分布未知的 情况下,事件{| X − µ |< ε }概率的一种估计方法。
例 ε=3 σ, P {|X- µ|< ε}= P {|X- µ|< 3 σ}≥0.8889 ε=4 σ P {|X- µ|< ε}=P {|X- µ|< 4 σ}≥0.9375
n
n
n
∑ Xk − E(∑ Xk ) ∑ Xk − nµ
Yk = k=1
k =1 n
D(∑ Xk )
= k=1 nσ
k =1
的分布函数Fn( x)对于任意 x满足
n
∑ Xk − nµ
lim
∫ n→∞
Fn (
x)
=
lim
n→∞
P{
k =1

≤ x}=
x −∞
1
e

t2 2
dt
=
Φ
(
x
)

说明
1. 在所给的条件下,当n无穷大时, n 个具有期望和方差的独立同分布的随机 变量之和的标准化变量Yn近似服从标 准正态分布。
例 掷一颗骰子1620次,估计“六点”出现的次数X
在250~290之间的概率?
解 X ~ b(1620, 1)
E(X
)
=
np
6 = 1620
×
1
=
270
6
D( X ) = np(1 − p) = 1620 × 1 × 5 = 225
66
由切比雪夫(Chebyshev)不等式估计
P{250 < X < 290} = P{| X − 270 |< 20}
在概率论中,习惯于把和的分布收敛于 正态分布这一类定理都叫做中心极限定理.
3
二、中心极限定理
1、独立同分布的中心极限定理
设随机变量 X1, X2,…, X n,…相互独立, 服从同一
分 布 , 且 具 有 相 同 的 数 学 期 望 和 方 差 , E(Xk ) = µ ,
D( Xk ) = σ 2 ≠ 0,(k = 1,2,"),则随机变量
(
⋅,

)
i =1
n
n
∑ Xi − ∑ E(Xi )
i =1
i=1
的极限分布是 N (0,1)
n
D(∑ Xi )
i=1
由于无穷个随机变量之和可能趋于∞,故不
研究n个随机变量之和本身而考虑它的标准化的
随机变量
n
n
∑ Xk − E(∑ Xk )
Zn = k=1
k =1 n
Var(∑ Xk )
k =1
的分布函数的极限.
∫ lim P{ ηn − np
x
≤ x}=
1
−t2
e 2 dt = Φ ( x)
n→∞ np(1 − p)
相关文档
最新文档