考点简谐运动的特点振动图像
【课件】 简谐运动及其图像 简谐运动回复力及能量 课件教科版(2019)选择性必修第一册
0(填“>”、“<”或“=”)。
a b
8.一竖直悬挂的弹簧振子,下端装有一记录笔,在竖直面内放置一记
录纸。当振子上下振动时,以速率 v 水平向左拉动 记录纸,记录笔在
纸上留下如图所示的图像。y1、y2、x0、 2x0 为纸上印迹的位置坐标。
求该弹簧振子振动的周期和振幅。
1−2
2
9.如图所示,物体 A 和 B 用轻绳相连,挂在轻弹簧下静止不动,A 的
做简谐运动的物体受到总是指向平衡位置,且大小与位移成
正比的回复力的作用。
回复力数学表达式:F=-kx
(1)x是相对于平衡位置的位移、k是比例系数
(2)回复力大小与离开平衡位置的位移大小成正比,回复力方向与位移方向总是相反
(3)回复力F=-kx是判定振动物体是否做简谐运动的动力学判据
• 问题6:试证明竖直弹簧振子的运动是简谐运动?
• 当 Δφ 等于 π 的奇数倍时,两者运动的步调正好相反。同理,当 Δφ 等于 0 或 2π 的
整数倍时,两者同步振动,任意时刻的振动状态均相同。
根据一个简谐运动的振幅A、周期T、初相位φ0,可以 知道做
简谐运动的物体在任意时刻t的位移x是
= (
+ )
所以,振幅、周期、初相位是描述简谐运动特征的物理量。
• 假设重物所受的重力为 G,弹簧的劲度系数为 k,重物处于平衡位置时弹簧的伸
长量为 x1。则G = kx1
• 设重物向下偏离平衡位置的位移为 x 时,弹簧
的伸长量为 x2,则x = x2 - x1 取竖直向下为正方向。
• 则此时弹簧振子的回复力 F= G - kx2 = kx1 - kx2 = -kx
高中物理知识点总结-简谐运动
高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。
《简谐运动的图像》课件
简谐运动是一种重要的物理现象,它在各个领域都有广泛的应用。这个PPT 课件将带您深入了解简谐运动的图像展示和应用实例。
简谐运动简介
1 什么是简谐运动
简谐运动是一种物体以 固定频率和振幅围绕平 衡位置做周期性往复运 动的现象。
2 简谐运动的特点
3 简谐运动的实例
具有周期性、振幅恒定、 频率恒定和相位关系确 定等特点。
ห้องสมุดไป่ตู้ 总结
简谐运动的图像展示了物体随时间的变化规律,可以通过不同的图像形式更好地理解和分析简谐运动的 特点和应用。简谐运动在机械、声学、光学等领域中发挥了重要作用,对我们的生活和科学研究带来了 巨大影响。
简谐振动的加速度图像
简谐振动的加速度随时间的变化可以通过图像 呈现出来。
应用实例
单摆的简谐运动
单摆的摆动运动可以近似看作简谐运动,例 如钟摆。
声波的简谐振动
声波是一种机械波,可以看作是分子在空气 中的简谐振动。
弹簧的简谐振动
弹簧的振动实际上是一种简谐振动,广泛应 用于各种机械设备。
光波的简谐性质
光波具有波动性,并且可以通过干涉和衍射 现象来解释光的简谐性质。
弹簧振子、摆锤、声波 等都可以视为简谐运动。
简谐运动图像展示
椭圆轨迹的简谐运动图像
简谐运动在行星轨道运动中以椭圆轨迹的形式 展现。
余弦函数和正弦函数简谐运动图像
余弦函数和正弦函数可以精确描述简谐运动的 位置随时间的变化。
简谐振动的位移和速度图像
简谐振动的位移和速度随时间的变化可以由图 像直观地表示。
简谐运动及其图像
专题一:简谐运动及其图象知识点一:弹簧振子1.弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。
小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。
这样就成了一个弹簧振子。
注意:①小球原来静止的位置就是平衡位置。
小球在平衡位置附近所做的往复运动,是一种机械振动。
②小球的运动是平动,可以看作质点。
③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。
2.弹簧振子的位移——时间图象(1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。
说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。
因而振子对平衡位置的位移方向始终背离平衡位置。
(2)振子位移的变化规律振子的运动A→O O→B B→O O→A对O点位移的方向向右向左向左向右大小变化减小增大减小增大(3)弹簧振子的位移-时间图象是一条正(余)弦曲线。
知识点二:简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。
简谐运动是机械振动中最简单、最基本的振动。
弹簧振子的运动就是简谐运动。
2.描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。
(2)周期(T)和频率(f)周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
3. 固有周期、固有频率简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。
弹簧振子的周期公式:,其中m是振动物体的质量,k为弹簧的劲度系数。
4.简谐运动的表达式y=Asin(ωt+φ),其中A是振幅,,φ是t=0时的相位,即初相位或初相。
简谐运动的图像和公式课件
答案 (1)5 2 cm -5 2 cm
π π (2)x=10sin2t+2
π cm 2
一、简谐运动的图像
(1)白纸不动时,甲同学画出的轨迹是怎样的? (2)乙同学匀速向右拖动白纸时,甲同学画出的轨迹又是怎 样的? 答案 (1)是一条垂直于OO′的直线.
返回
(2)轨迹如图,类似于正弦曲线.
一、简谐运动的图像
2.绘制简谐运动的x-t图像
如图2所示,使漏斗在竖直平面内做小角度摆动, 并垂直于摆动平面匀速拉动薄板,则细沙在薄板 上形成曲线.若以振子的平衡位置为坐标原点,沿 着振动方向建立x轴,垂直于振动方向建立t轴,
5.相位差
φ2),则相位差为Δφ= 当Δφ= 当Δφ= 0 π =
若两个简谐运动的表达式为x1=A1sin (ωt+φ1),x2=A2sin (ωt+ . 时,两振动质点振动步调一致. (ωt+φ2)-(ωt+φ1) φ2-φ1 时,两振动质点振动步调完全相反.
典例精析 一、对简谐运动的图像的理解
T
x=Asin
2π t+φ或 x=Asin (2πft+φ). T
二、简谐运动的表达式及相位差
返回
4.ωt+φ代表了做简谐运动的质点在 t时刻处在一个运动周期中的
哪个状态,所以ωt+φ代表简谐运动的相位;其中φ是t=0时的相 位,称为初相位或初相.相位是一个角度,单位是 或 弧度 度 .
4
1
中正确的是( )
2
3
4
1.(对简谐运动的图像的理解)关于简谐运动的图像,下列说法 BCD A.表示质点振动的轨迹,是正弦或余弦曲线 B.由图像可判断任一时刻质点相对平衡位置的位移方向 C.表示质点的位移随时间变化的规律 D.由图像可判断任一时刻质点的速度方向 解析 振动图像表示质点的位移随时间的变化规律,不是运 动轨迹,A错,C对; 由图像可以判断某时刻质点的位移和速度方向,B、D正确.
考点简谐运动的特点振动图像
[变式 5] 一弹簧振子做简谐振动,周期为 T,则( ) A.若 t 时刻和(t+Δt)时刻振子运动位移的大小相等、 方向相同,则 Δt 一定等于 T 的整数倍 B.若 t 时刻和(t+Δt)时刻振子运动的速度的大小相 等、方向相反,则 Δt 一定等于 T/2 的整数倍 C.若 Δt=T,则在 t 时刻和(t+Δt)时刻振子运动的加 速度一定相等 D.若 Δt=T/2,则在 t 时刻和(t+Δt)时刻弹簧的长度 一定相等
周期和频率只由振动系统本身决定,与振幅无关.
[例 4] 某质点做简谐运动,从质点经过某一位置时 开始计时,则( )
A.当质点再次经过此位置时,经历的时间为一个周 期
B.当质点的速度再次与零时刻的速度相同时,经过 的时间为一个周期
C.当质点的加速度再次与零时刻的加速度相同时, 经过的时间为一个周期
D.以上三种说法都不对
[答案] D
4.简谐运动及描述简谐运动的物理量 (1)振幅 A:振动物体离开平衡位置的最大距离称为振 幅. ①是标量,没有方向,是一个正数.质点在做简谐运 动时,振幅不变. ②它是描述振动强弱的物理量.
(2)周期 T 和频率 f:振动物体完成一次全振动所需的 时间称为周期 T,它是标量,单位是秒;单位时间内完成 的全振动的次数称为频率,单位是赫兹(Hz).周期和频率 都是描述振动快慢的物理量,它们的关系是:T=1/f.
(2)运动学特征:简谐运动是变加速运动,且加速度和 速度都在做周期性的变化.振动图像(x-t 图像)是一条正弦 曲线.
简谐振动是一种周期性运动,相关物理量也随时间做 周期性变化,其中位移、速度、加速度、回复力都为矢量, 随时间做周期性变化.
(4)简谐运动的对称性 对称性的含义: ①瞬时量的对称性:简谐运动的物体,在关于平衡位 置对称的两点,位移、回复力、加速度具有等大反向的关 系,速度、动能、势能的大小也具有对称性.但速度的方 向不一定相同. ②过程量的对称性:振动的质点先后通过两点后,再 次原路返回的过程中,时间等过程量相等;振动的质点先 后通过两点后,再沿对称的路线返回的过程中,时间等过 程量相等.
2.1简谐运动及其图像 (第一课时)课件高中物理教科版(2019)选择性必修第一册(共15张PPT)
探究任务一:弹簧振子
问题1:研究对象是谁? 问题2:小球可以被看作质点吗? 问题3:考虑弹簧的质量会给研究带来什么困难? 问题4:小球的质量越大越好吗? 问题5:怎样才能让小球持续运动?
弹簧振子(oscillator):小球和弹簧组成的系统(理想化模型)
探究任务一:弹簧振子
弹簧振子的位移 以平衡位置O为原点,建立x轴,
简谐运动及其图像(第一课时)
简谐运动及其图像
1 机械振动 弹簧振子——理想化模型
2 简谐运动图像的绘制 频闪照相法 虚拟实验软件NOBOOK
3 简谐运动图像的拟合 带入验证 利用GeoGebra软件拟合函数图像
机械振动
灯笼随风摇曳
树叶在微风中摇摆
机械振动:物体(或物体的一部分)在某 一位置两侧所做的往复运动,叫做机械振动, 通常简称为振动(vibration),这个位置称为 平衡位置(equilibrium position)。
课堂小结
1、弹簧振子 简
谐 运
2、弹簧振子位移时间图像的绘制
动
3、弹簧振子位移时间图像的分析
课后作业:完成简谐运动第一课时作业练习
1:x表示位移,t表示时间,1.38为 弹簧振子运动到的最大位移值; 2: 式中x的单位是cm,t的单位是s;
3: 0.01是由于选取拟合区域不是 从原点开始的。 4:弹簧振子x-t图像满足正弦函数
发展空间——用沙摆演示简谐运动的图像
问题 1:不拉动木板时,让沙摆摆动起来,细 沙的分布特点是直线还是曲线?两边的沙子多还 是中间的沙子多?说明了什么?
用视频软件将视频分成连续 相等时间间隔的静态图片
将图片按顺序纵向均匀排列
课堂练习
练习:绘制水平弹簧振子的位移时间关系图像
简谐运动的图象和公式
最新编辑ppt
19
5.一个质点作简谐运动的振动图像如图.从图中可以
看出,该质点的振幅A=0._1_ m,周期T=0_._4 s,频率 f=2_.5_ Hz,从t=0开始在△t=0.5s内质点的位移0._1_m,路 程= 0__.5_m.
最新编辑ppt
20
三、简谐运动的表达式
因, 以 此 o为圆点A , 的旋 末 o轴 转 x 端上 矢 在 影点的运 。 最新动 编辑ppt 是简谐2运 1
最新编辑ppt
4
三、弹簧振子的位移—时间图象 2、频闪照相法
思考:如何理解这就是最振新编子辑pp的t 位移时间图象?
5
也可以用数码照相机拍摄竖直方向弹簧振子的运动 录像,得到分帧照片,依次排列得到图象。
最新编辑ppt
6
3、用运动传感器测量垂直悬挂弹簧振子的运 动
最新编辑ppt
7
用位移传感器和计算机描绘
D 列说法正确的是( )
A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相 同,瞬时速度方向相反。
x/cm 2 0
0 1 2 3 4 5 6 7 t/s
简谐运动的图象和公式
最新编辑ppt
1
复习:
▪ 1.简谐运动的受力特点:F=-kx ▪ 2.描述简谐运动的参量:振幅、周期、频率、
位移、速度、回复力、加速度、动能和势能。
最新编辑ppt
2
一、简谐运动的振动图象(x—t图象) • 研究振子的运动
振子的位移x都是相对于平衡位置的位移,以平衡位 置为坐标原点O,沿振动方向建立坐标轴。规定在O点右 边时位移为正,在左边时位移为负。
简谐运动的六种图象
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
(新)简谐运动的六种图象
简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。
以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。
分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。
1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。
2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。
简谐运动图象和公式(教科)
2、间接描述量
①频率f=1/T ②任一时刻t的振动方向 ③x-t图线上任一点的切线的斜率等于v。 ④任一时刻t的加速度a的方向
AC
例3、如图所示,是质点的振动图象,则振 幅是______m,频率是_______Hz, 0-4s内 质点通过路程是______m,6s末质点位移是 _______m。
§1.3
简谐运动的图象和公式
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢?
振幅(A) 周期和频率 2、单摆的周期与哪些因素有关? 与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动?
一、简谐运动的图像
横轴表示时间,纵轴表示振子偏离平衡位置 的位移
振动图象:1、定义:简谐运动的位移-时间图象 通常称为振动图象,也叫振动曲线。 2 、特点:都是正弦 或余弦曲线
一、简谐运动的图像
(1)由实验可了解到情况:
1、振动图象(如图)
2、x-t图线是一 条质点做简谐 运动时,位移 随时间变化的 图象,不是轨 迹。 3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
一、简谐运动的图像
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
(2)简谐运动图象描述的振动物理量
某简谐运动的振幅为8cm,f=0.5Hz 零时刻的位移为4cm,且振子沿x轴负方向 运动。 (1)写出相应的振动方程。 (2)作出振动图像。
四、振动图象的实际运用
心电图仪
地震仪
几种常见图形的表达式
1
结合图像中反映的运动情况与正 弦函数在四个象限中的特点,与 线后的表达式进行理解。
2
或
几种常见图像的表达式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例 2] 以下几种运动,哪个不是机械振动( ) A.拍皮球时,球的运动 B.一只小球在半径很大的光滑凹球面上来回滑动, 且假设它经过的弧线很短 C.质点做匀速圆周运动时,它在直径上的投影点的 运动 D.竖直悬挂的弹簧上挂一重物,在弹性限度内,将 重物拉开一定距离,然后放手任其运动
[答案] A
[变式 2]机械振动是( A.匀速直线运动 C.匀变速运动
[答案] D [点拨] 质点经过一个周期,完成一次全振动,先后两 次经过同一位置时,速度大小、方向应相同.
[变式 4] 下列关于简谐运动的周期、频率、振幅的 说法正确的是( )
A.振幅是矢量,方向是从平衡位置指向最大位移处 B.周期和频率的乘积是个常数 C.振幅增大,周期也必然增大,而频率减小 D.弹簧振子的频率只由弹簧的劲度系数决定
) B.匀加速运动 D.变加速运动
[答案] D
3.回复力 是指振动物体所受到的指向平衡位置的力. (1)是按力的作用效果来命名的.可由任意性质的力提 供,可以是几个力的合力也可以是一个力的分力. 它可以是重力、弹力或者摩擦力或者几个力的合力 (如 弹簧振子)也可以是某一个力的分力(如单摆).
(2)回复力时刻指向平衡位置 (3)在平衡位置处:回复力为零,而物体所受合外力可 以不为零,如单摆运动,当小球在最低点处,回复力为零, 而物体所受的合外力不为零. (4)回复力的作用效果总是将物体拉回平衡位置,从而 使物体围绕平衡位置做周期性的往复运动.
[例 5] (多选)一个质点在平衡位置 O 点附近做简谐 运动,若从 O 点开始计时,经过 3s 质点第一次经过 M 点(如 图所示),再继续运动,又经过 2s 它第二次经过 M 点;则 该质点第三次经过 M 点还需的时间是( )
A.8s C.14s
B.4s 10
D. 3 s
[答案] D [点拨] 设题图中 a、b 两点为质点振动过程的最大位移 处.若开始计时时刻质点从 O 点向右运动.O→M 运动过程 历时 3s,M→b→M 过程历时 2s,显然T4=4s,T=16s.质点 第三次经过 M 点还需要的时间 Δt3=T-2s=16s-2s=14s, 故 C 正确.若开始计时时刻质点从 O 点向左运动, O→a→O→M 运动过程历时 3s,M→b→M 运动过程历时 2s, 显然,T2′+T4′=4s,T′=136s.质点第三次再经过 M 点所 需要的时间 Δt3′=T′-2s=136s-2s=130s,故 D 正确.
[例 1] (多选)关于振动物体的平衡位置,下列说法 中正确的是( )
A.是振动物体静止时的位置 B.是振动过程中受力平衡的位置 C.是速度最大的位置 D.是加速度最大的位置
[答案] AC [点拨] 振动的物体静止时一定是处于平衡位置.在振 动过程中经过平衡位置时,沿振动方向上受力平衡,速度 达到最大.
[答案] D
4.简谐运动及描述简谐运动的物理量 (1)振幅 A:振动物体离开平衡位置的最大距离称为振 幅. ①是标量,没有方向,是一个正数.质点在做简谐运 动时,振幅不变. ②它是描述振动强弱的物理量.
(2)周期 T 和频率 f:振动物体完成一次全振动所需的 时间称为周期 T,它是标量,单位是秒;单位时间内完成 的全振动的次数称为频率,单位是赫兹 (Hz).周期和频率 都是描述振动快慢的物理量,它们的关系是: T=1/f.
(2)运动学特征:简谐运动是变加速运动,且加速度和 速度都在做周期性的变化.振动图像(x-t 图像)是一条正弦 曲线.
简谐振动是一种周期性运动,相关物理量也随时间做 周期性变化,其中位移、速度、加速度、回复力都为矢量, 随时间做周期性变化.
(4)简谐运动的对称性 对称性的含义: ①瞬时量的对称性:简谐运动的物体,在关于平衡位 置对称的两点,位移、回复力、加速度具有等大反向的关 系,速度、动能、势能的大小也具有对称性.但速度的方 向不一定相同. ②过程量的对称性:振动的质点先后通过两点后,再 次原路返回的过程中,时间等过程量相等;振动的质点先 后通过两点后,再沿对称的路线返回的过程中,时间等过 程量相等.
周期和频率只由振动系统本身决定,与振幅无关.
[例 4] 某质点做简谐运动,从质点经过某一位置时 开始计时,则( )
A.当质点再次经过此位置时,经历的时间为一个周 期
B.当质点的速度再次与零时刻的速度相同时,经过 的时间为一个周期
C.当质点的加速度再次与零时刻的加速度相同时, 经过的时间为一个ቤተ መጻሕፍቲ ባይዱ期
D.以上三种说法都不对
[答案] B 解析: 振幅是标量,只有大小没有方向.周期和频率 只由振动系统本身决定,与振幅无关. T=1/f.弹簧振子的 频率由弹簧的劲度系数和振子质量共同决定.
5.简谐运动的特点 (1)受力特征:从动力学角度看,简谐运动的特征表现 在所受到的回复力的形式上:简谐运动的质点所受到的回 复力 F 其方向总与质点偏离平衡位置的位移 x的方向相反, 从而总指向平衡位置;其大小则总与质点偏离平衡位置的 位移 x 的大小成正比,即 F=-kx,动力学特征也是判断 某机械运动是否为简谐运动的依据.
[变式 1] 做简谐振动的质点在通过平衡位置时,为零
值的物理量有( )
A.加速度
B.速度
C.回复力
D.动能
[答案]C
2.机械振动 物体 (或物体的一部分 )在某一位置附近做的往复运 动,是一种机械振动,简称振动. 其特点是:①存在某一中心位置;②往复运动;③周 期性、往复性. 弹簧振子:一个可视为质点的小球与一根弹性很好且 不计质量的弹簧相连组成一个弹簧振子.一般来讲,弹簧 振子的回复力是弹力 (水平的弹簧振子 )或弹力和重力的合 力(竖直的弹簧振子 )提供的.弹簧振子与质点一样,是一 个理想的物理模型.
考点1 简谐运动的特点 振动图像
1.平衡位置 平衡位置是指物体在振动中所受的回复力为零的位 置,也是振动停止后,振动物体所在位置,平衡位置通常 在振动轨迹的中点.“平衡位置”不等于“平衡状态”.此 时振子未必一定处于平衡状态.比如单摆经过平衡位置时, 虽然回复力为零,但合外力并不为零,还有向心力.
[例 3] 关于回复力,下列说法正确的是( ) A.回复力一定是物体受到的合外力 B.回复力就是弹簧的弹力 C.回复力是根据力的性质来命名的 D.回复力的方向总是指向平衡位置
[答案] D
[变式 3] 单摆做简谐运动时,其回复力是( ) A.摆球所受的重力 B.悬线对摆球的拉力 C.摆球所受重力与悬线拉力的合力 D.摆球重力在垂直悬线方向上的分力